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Abstract We introduce a quadrature scheme—QBKIX—for the ubiquitous high-
order accurate evaluation of singular layer potentials associated with general elliptic
PDEs, i.e., a scheme that yields high accuracy at all distances to the domain boundary
as well as on the boundary itself. Relying solely on point evaluations of the underlying
kernel, our scheme is essentially PDE-independent; in particular, no analytic expan-
sion nor addition theorem is required. Moreover, it applies to boundary integrals with
singular, weakly singular, and hypersingular kernels. Our work builds upon quadra-
ture by expansion, which approximates the potential by an analytic expansion in the
neighborhood of each expansion center. In contrast, we use a sum of fundamental
solutions lying on a ring enclosing the neighborhood, and solve a small dense linear
system for their coefficients tomatch the potential on a smaller concentric ring.We test
the new method with Laplace, Helmholtz, Yukawa, Stokes, and Navier (elastostatic)
kernels in two dimensions (2D) using adaptive, panel-based boundary quadratures on
smooth and corner domains. Advantages of the algorithm include its relative simplic-
ity of implementation, immediate extension to new kernels, dimension-independence
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(allowing simple generalization to 3D), and compatibility with fast algorithms such
as the kernel-independent FMM.

Keywords Boundary integral equations · High order quadrature · Kernel-
independent · Near-singular integrals · Elliptic Boundary value problem

Mathematics Subject Classification 65R20

1 Introduction

The boundary integral method is a powerful tool for solving linear partial differential
equations (PDEs) of classical physics with piecewise constant material coefficients,
with applications including electromagnetic scattering, molecular electrostatics, vis-
cous fluid flow, and acoustics. It involves expressing the solution as a convolution
integral with a kernel function derived from the fundamental solution of the PDE [40]
and an unknown “density” function defined on the domain boundaries or material
interfaces, using the physical boundary condition to formulate an integral equation for
this density, and finally obtaining a linear algebraic system via Galerkin, Nyström, or
other discretization. Compared to commonly used differential formulations, bound-
ary integral methods have a number of advantages: decreasing the dimension of the
problem that needs to be discretized, avoiding meshing the volume, and improving
conditioning. For instance, the integral equation can often be chosen to be a Fred-
holm equation of the second kind, resulting in a well-conditioned linear system which
can be solved by a Krylov subspace methods in a few iterations. All these considera-
tions are particularly important for problemswith complicated andmoving geometries
[17,29,43,48].

The main difficulty in using boundary integral methods is the need to evaluate
singular and nearly-singular integrals: (i) Evaluating system matrix entries requires
evaluation of the potential on the surface, which involves a singular integral; (ii) Once
the density is solved for, the desired solution must still be evaluated in the form of
a potential. As an evaluation point approaches the boundary of the domain, the peak
in the resulting integrand becomes taller and narrower, giving rise to what is referred
to as a near-singular integral. The result is an arbitrarily high loss of accuracy, if the
distance from points to the surface is not bounded from below, when a quadrature
scheme designed for smooth integrands is used [4, Section 7.2.1] [5].

Figure 1 illustrates the near-singular evaluation of the solution u of the Dirichlet
Laplace equation in a simple smooth domain, which is represented by the double-layer
potential

u(x) = 1

2π

∫
Γ

∂

∂ny
log

1

‖x − y‖φ( y) ds( y) , (1.1)

where φ is the density defined on the boundary Γ . Various smooth quadrature rules
are used for this integral. The growth in error as x approaches Γ is apparent in all four
plots (showing panel-based and global quadratures with different numbers of nodes
N ). Although the width of the high-error layer near the boundary shrinks like 1/N
[5], the error always reachesO (1) at the boundary. The goal of this paper is to present
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Fig. 1 Evaluation error plotted in the solution domain due to approximating the Laplace double-layer
potential Eq. (1.1) using a quadrature designed for smooth functions. Logarithm of absolute error,
log10 |ũ(x)−u(x)|, where u is the true solution and ũ is the discrete approximation using smooth quadrature
is plotted for the case of constant density φ ≡ 1. a Composite quadrature with M = 7 (left) or M = 15
(right) panels each with q = 10 Gauss–Legendre nodes. b Global composite trapezoid rule with N = 64
(left) or N = 128 (right) nodes

a flexible scheme that handles both tasks (singular and near-singular evaluation) to
high-order accuracy in a kernel-independent (i.e., PDE-independent) manner.

Related work Designing quadrature schemes for singular and near-singular integrals
has a long and rich history [4,40].Until recently, the quadraturemethodswere designed
specifically for either on-surface evaluation or near-surface evaluation. Many of the
on-surface integration quadrature are specific to a certain type of kernel (singularity),
e.g., log |r| in 2D or 1/|r| in 3D [3,12,27,33,37,39,50,51,56]; the former case is
reviewed in [26].

A popular method for on-surface quadrature is the product integration (in 2D, for
the global trapezoid rule see [4, Section 4.2] or [40, Section 12.3], and for panel-
based rules see [29]). In this context, an analytic convolution of the kernel with each
function in some basis set is found, reducing evaluation of the integral to projection
of the boundary density onto that basis set.

Another approach for on-surface evaluation is singularity subtraction, where the
integrand is modified by subtracting an expression that eliminates its singularity [18,
Chapter 2] and [31,45]. However, this leaves high-order singularities in the kernel
which makes the higher derivatives of the kernels unbounded, limiting the accuracy
of the quadrature scheme. Alternatively, for weakly singular kernels, one can use
transformations to cancel the singularity by the decay of area element (e.g., in 3D
using Duffy transformation [19] or polar coordinates) [15,21–24,32,35,49,55,57].
To achieve a high convergence order, these methods need some form of partition of
unity so that a high-order polar patch can be constructed around each point [57].

One can also regularize the kernel and then exploit quadrature schemes for smooth
functions [41,53]. However, to achieve higher accuracy, the effect of regularization
needs to be corrected by using analytic expressions (e.g., asymptotic analysis) for the
integrand [8]. Finally, there exist special high-order quadrature schemes for domains
with corners, either via reparametrization [38,40], panel-wise geometric refinement
[28], or by custom generalized Gaussian quadratures [13,14].

We now turn to near-singular integrals (evaluation close to the surface), which has
traditionally been handled as a distinct task [7,8,25,28,29,35,52]. Beale and coau-
thors [9,52,58] use regularization methods to remove the singularity of the integral.
To correct the error introduced by the regularization, they perform asymptotic analy-
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sis and find correction expressions. Some authors used singularity cancellation (e.g.,
using local polar coordinates) in evaluating near-singular integrals [25,35]. Interpola-
tion along carefully-chosen lines connecting distant points (where a smooth quadrature
is accurate) to an on-surface point has also been successful [46,57].

Recently, unified approaches to on-surface and close evaluation have been pro-
posed, the first being the 2D Laplace high-order global and panel-based quadratures
of Helsing and Ojala [29]. This approach has been extended to near-singular Stokes
single- and double-layer kernels with global [7] and panel-based [43] quadrature. The
use of local expansions—analytic separation of variables to the PDE solutions analo-
gous to a Taylor series in the complex plane—for the evaluation of integrals near the
boundary was introduced in [5].

In the scheme proposed in [5], a refined smooth quadrature is needed to accurately
evaluate the expansion coefficients via the addition theorem. It was observed that the
expansion can also be used to evaluate at target points on the boundary of the domain,
if certain conditions are satisfied [20]; this was used to construct a unified quadrature
scheme—Quadrature by Expansion (QBX)—for near and on-surface evaluation of
integrals [36]. Rachh et al. [47] recently showed how to efficiently combine QBX
evaluations with the fast multipole method.

However, powerful as they are, QBX schemes require both a local expansion and
addition theorem particular to each PDE, which would be algebraically tedious espe-
cially for vector-valued PDEs such as Stokes and elastostatics. This motivates the need
for a scheme that can handle multiple PDEs without code changes. The present work
fills this gap.

Overview andmodel problemsAswith QBX, we construct an approximate representa-
tion for PDE solutions in a small region abutting the boundary, then use it for near and
on-surface evaluations. However, in contrast to QBX, our representation is an equiva-
lent density on a closed curve enclosing this region; when discretized, this gives a ring
of “proxy” point sources (also known as the method of fundamental solutions [10]).
Matching is done at a second smaller ring of “check” points where a refined smooth
quadrature is accurate, thus the only dependence on thePDE is via point-to-point kernel
evaluations—the method is kernel-independent, and essentially PDE-independent.

We focus on Dirichlet boundary-value problems

L u = 0 in Ω , (1.2)

u = f on Γ , (1.3)

where Ω is a simply-connected interior domain with smooth boundary Γ , for the
following partial differential operators:

L u =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δu Laplace,

(Δ − λ2)u Yukawa,

(Δ + ω2)u Helmholtz (Imω ≥ 0),

Δu − ∇ p Stokes (subject to ∇· u = 0),

Δu + 1
1−2ν ∇ ∇· u Elastostatic.

(1.4)
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To obtain well-conditioned formulations of the problem, we represent the solution of
Eqs. (1.2–1.4) for x ∈ Ω by the double-layer potentials

u(x) = D[φ](x) :=
∫

Γ

∂Φ(x, y)
∂ny

φ( y) ds( y) , (1.5)

where Φ is the fundamental solution for the operator L , and φ is an unknown den-
sity. The fundamental solutions for the operators listed in Eq. (1.4) are given in
“Appendix A”. A standard step ( see, e.g., [30]) is now to substitute Eq. (1.5) into the
boundary condition and use the jump relation for the potential to obtain the second-
kind integral equation

−1

2
φ(x) + (Dφ)(x) = f (x), for x ∈ Γ , (1.6)

where D is the restriction of D to the curve. Here, the integral implicit in the integral
operator D must be taken in the principal value sense.

Discretization and overall approach In general, a smooth quadrature is a set of nodes
xi ∈ Γ with associated weights wi , such that

∫
Γ

f ds ≈
N∑
i=1

wi f (xi ) , (1.7)

holds to high accuracy for smooth functions on Γ—including the density φ. In
this work, we use q-node Gauss–Legendre quadrature scheme on panels, and for
convergence tests, we increase the number of panels while holding q fixed. Upon
discretization, Eq. (1.6) will be approximated by the linear system

N∑
j=1

Ai jφ j = f (xi ), i = 1, . . . , N , (1.8)

whose solution φ = {φ j }Nj=1 approximates the density values at the collocation points.
In practice, for large problems, the matrix A is not constructed explicitly, but instead
the matrix-vector product Aφ is evaluated using the fast multipole method.We test the
QBKIX scheme both for applyingmatrix A (i.e., on-surface evaluation) and evaluating
the solution at arbitrary points, near-evaluation in particular.

The system matrix elements are computed using the Nyström method [40, Ch. 12].
If the operator D is smooth on Γ × Γ , we use a smooth Nyström formula; e.g., for
Laplace,

Ai j =
{ ∂Φ(xi ,x j )

∂nx j
w j , i �= j,

− 1
2 − κ(x j )

4π w j , i = j,
(1.9)

where κ(x) is the curvature at x ∈ Γ . For a Gauss–Legendre quadrature scheme,
one may achieve high-order convergence in N ; if a spectral quadrature is used, super-
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algebraic convergence is possible. However, for Yukawa and Helmholtz in 2D, and all
3D elliptic kernels, singular quadrature is needed for high-order accuracy.

In contrast to established approaches using specialized singular quadratures, we
follow the idea underlying the QBX method: applying A to a vector φ is equivalent
to evaluating the interior limit of the double-layer potential due to a smooth density
interpolated from φ. This observation leads to the QBKIX idea: use a fast algorithm
combined with the smooth quadrature scheme, Eq. (1.7), for point evaluation away
from the surface—at points we refer to as check points—and interpolate from these
points to the on surface point, to compute Aφ for the Krylov iteration. As this inter-
polation can be done using points on one or both sides of the surface, in Sect. 4.2 we
compare “one-sided” and “two-sided” variants of QBKIXwith respect to their spectra
and iterative convergence rates.

Although we are focusing on interior Dirichlet tests and Nyström-style sampled
representation of the density in this work, QBKIX is applicable for Neumann or other
boundary conditions, and Galerkin and other discretization types. Moreover, while the
approach presented in this paper is restricted to 2D, there is no fundamental obstacle
to an extension to 3D.

The rest of the paper is structured as follows. In Sect. 2 we present the QBKIX
algorithm for integration. We present an error analysis in Sect. 3. In Sect. 4, and report
the results of numerical experiments quantifying the accuracy of the method for a
number of representative problems.

2 Algorithms

Given a closed curveΓ ⊂ R
2 with interiorΩ , and Dirichlet data f onΓ , our goal is to

numerically solve the integral equation (1.6) for density and evaluate the solution of the
underlying PDE at an arbitrary target point x ∈ Ω . We assume that Γ is parametrized
by a 2π -periodic piecewise-smooth function X(t), so that the arc length element is
ds = |X ′(t)| dt , |X ′(t)| is bounded from below, and that X(t) and the data function
f (t) may be evaluated at any t ∈ [0, 2π). The boundary is subdivided into panels,
which can be of different lengths, on which the smooth quadrature rule is defined (we
use Gauss–Legendre quadrature), at q nodes x j per panel. We assume that the density
is available as a vector of samples φ(x j ) at the quadrature nodes.

2.1 Single-point evaluation

We describe our method in the simplest form for computing the solution accurately at
a given point x. We assume that there is a single point on Γ closest to x, on a panel of
length L . We assume that at a distance 2δ along the normal to the panel at any point,
the smooth quadrature meets the target accuracy of evaluation, so the distance from x
to the surface is less than 2δ. We discuss how δ is chosen and how to ensure that this
condition holds after the algorithm formulation.

The local geometric configuration of various types of points we are using in our
algorithm is shown in Fig. 2. The setup shown in the image is for computing the
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Fig. 2 Schematic of a kernel-independent expansion. Geometry of QBKIX, with proxy and check circles
centered at c near a panel of length L of the boundary Γ discretized with q Gauss–Legendre sample points.
The evaluation domain Bc

δ is a disc centered at c of radius δ (dashed circle abutting the boundary at x0).
The points zi are the check points on the circle ∂Bc

rc of radius rc , and y j are the proxy points on the circle
∂Bc

R of radius R. For error analysis, the singularities of the exact solution are assumed to be at a distance
farther than ρ from c. Note that, for clarity, the relative sizes of circles and distances between sample points
are different from the ones actually used

potential accurately for any point x inside a disk Bc
δ of radius δ centered at c, touching

the surface at a point x0 on a panel of length L .
The points we use in the algorithm are placed on two concentric circles with the

same center as the evaluation disk Bc
δ . The proxy points on a circle ∂Bc

R of a radius
R > δ, where we compute equivalent density values, are used to approximate the
solution inside Bc

δ . The check points zi are on a circle ∂Bc
rc of a radius rc < δ. At

these points, we evaluate the solution accurately by using a smooth quadrature on a
set of smaller panels obtained by splitting each original panel to β smaller panels. The
check points are used to compute the equivalent density values at the proxy points as
described below.

The algorithm depends on a number of parameters; these parameters need to be cho-
sen appropriately to achieve an overall target accuracy. Specific choices are discussed
in the next section. The key steps in the algorithm are

(1) Set-up of proxy and check points. We choose a center c ∈ Ω at a distance δ from
Γ , such that x is no further from c than δ. E.g., for x ∈ Γ , we set c = x − δn,
where n is the outward normal. n p proxy points y j are arranged equally on the
circle of radius R with center c, where R > δ is of order L . Similarly nc check
points zi are arranged on the concentric circle of radius rc < δ (Fig. 2).

(2) Upsampling the density. Each panel is split into β panels corresponding to equal
ranges of t , to give a set of βN fine-scale nodes x̃l with weights w̃l . The global
factor β is chosen so that the solution can be evaluated accurately at the check
points, i.e., at a distance δ − rc from the surface. The density is interpolated from
its original samples φ(x j ) on each panel, using qth order Lagrange interpolation
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to the fine-scale nodes, to give the refined vector of samples φ̃l , l = 1, . . . , βN .
Alternative to panel splitting, one can use a higher order panel with βN nodes at
this step. We opted for the former due to its simpler implementation.

(3) Direct upsampled evaluation at check points. The integral is evaluated at each
check point zi using the fine-scale boundary smooth quadrature:

ũ(zi ) =
βN∑
l=1

∂Φ(zi , xl)
∂nxl

φ̃lw̃l . (2.1)

Denote by ũ := {ũ(zi )}nci=1 the column vector of these values at the check points.
(4) Solving for the equivalent density values. Next, we construct an nc × n p matrix

Q with elements
Qi j = Φ(zi , y j ) . (2.2)

Applying Q to a vector of density values at proxy points computes a periodic
trapezoidal rule approximation to the single-layer potential corresponding to
this density evaluated at check points. Then we solve a small, dense, and ill-
conditioned linear system

Qα = ũ , (2.3)

in the least-squares sense, to get the set of proxy density values α := {α j }n p
j=1.

The ill-conditioning arises from the exponential decay of singular values in the
single-layer operator between concentric circles (see Fig. 4). Despite this, if Eq.
(2.3) is solved in a backward-stable manner, a high-accuracy result is obtained
(cf. [6], we explain the details below for completeness).

5 Evaluation of the proxy sources at the target. Finally, the equivalent density is
evaluated at the target x,

û(x) =
n p∑
j=1

α jΦ(x, y j ) , (2.4)

We may view this as an approximation for the true solution u in the basis of
fundamental solutions centered at the proxy points, that holds to high accuracy
in the disk Bc

δ .

Figure 3 illustrates the stages of QBKIX evaluation for a set of target points lying
in a single disk Bc

δ . The final evaluation of Eq. (2.4) over the disc of target points has
around 12 digits of accuracy.

Handling the ill-conditioned linear solves The ill-conditioned system Eq. (2.3) is
solved by applying a regularized pseudo-inverse, as follows. Let εpinv be the desired
relative accuracy for inversion; typically we set εpinv = 10−14. Then, taking the
singular value decomposition (SVD) [54] Q = U�V ∗ with � = diag{σ j } being the
diagonal matrix of singular values, we write �† := diag{σ †

j } where

σ
†
j =

{
σ−1
j , σ j > εpinvσ1,

0, otherwise.
(2.5)
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(a) (b) (c)

Fig. 3 Stages of QBKIX construction. The stages given in Sect. 2 are illustrated using plots of the log10
of the evaluation error near a boundary (full boundary is shown in Fig. 9), for the double-layer density
φ ≡ 1 for Laplace’s equation. The evaluation disc Bc

δ (dashed circle), check circle ∂Bc
rc (solid circle) are

shown, and proxy points are not shown. The stages of the algorithm as well as the geometry of the QBKIX
expansion are kernel-independent—the accuracy of the solution depends on the problem

Then we use the solution
α := V (�†U∗u) . (2.6)

Note that the matrices U∗ and V must be applied in two separate steps (as indicated
by the parenthesis) for backward stability [54], since a matrix-vector multiply with
the single pseudo-inverse matrix Q† := V�†U∗ is unstable due to round-off error
caused by its large entries. If k is the number of singular values greater than εpinv, i.e.,
the numerical εpinv-rank of the matrix Q, the factors V and U∗ have sizes n p × k and
k × nc respectively.

Parameter summary The algorithm described above uses a number of parameters,
which we summarize here.

The following parameters are defined globally:

– The quadrature order q, which determines the number of samples per panel, and
both far-field evaluation accuracy and, together with β, the accuracy of evaluation
at check points. This parameter is selected arbitrarily based on the desired overall
accuracy.We use q = 16,which is sufficient for full double precision of integration
in the far field.

– The numbers of proxy points n p and check points nc; the former determines how
accurate the approximation inside Bc

δ can be and the latter is chosen to have enough
sampling.

– The panel refinement factor β which needs to be chosen to maintain desired accu-
racy for check point evaluation.

Three additional parameters, the accurate evaluation distance δ, the proxy point
circle radius R and the check point circle radius rc, are panel-dependent, and are
chosen with respect to the length of the nearest panel L . A careful choice of all of
these, as fractions of L , is needed to achieve a target error without requiring excessive
refinement. We discuss the choice of these parameters in Sect. 3.

Defining panels In our experiments, we consider two ways of defining panels. The
first approach is primarily needed to understand the convergence of the method with
respect to the number of panels, i.e., for a given number of panels, we determine
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the error. In this case, we simply partition the parametric domain of X(t) into M
equal-sized intervals, with one panel corresponding to each interval. We assume the
parametrization to be sufficiently close to an arclength parametrization, so that the
panel length has little variation, and choose M to be fine enough so that the geometric
condition on the check points is satisfied.

In a more practical scenario, when a target error is specified, we need to determine
panel sizes adaptively. The key requirement that needs to be satisfied by panels is that
the accuracy of check-point evaluation at stage 2 matches the target accuracy in the
far field (i.e., points farther than 2δ from the boundary). The adaptive refinement starts
with one panel covering the entire boundary, then recursively splitting panels into two
equal pieces in parameter t , until all panels are deemed admissible or their length is
less than a set tolerance εl .

A panel is admissible if

(i) the interpolation of X(t) and f (t) from a q-node panel at the collocation points
of the two q-nodes Gauss–Legendre panels (obtained by splitting the coarse
panel to two pieces) matches the direct evaluation of X and f on the finer nodes,
to a maximum absolute tolerance εa , which we choose as 10−11 unless stated
otherwise;

(ii) it is no more than twice the arc length of that of its neighbors;
(iii) the length of the panel does not exceed a given fraction of the minimal radius of

curvature at a point of the panel, or is less than a minimal length εl set by the user
(which can be chosen proportional to the desired error for a smooth quadrature);
and

(iv) any check point corresponding to a point x is not closer than δ − rc to any point
on the surface.

The relationship between a panel and its children implies a binary tree over the
boundary. The second criterion ensures that the panels are the leaves of a balanced
binary tree, which is needed for accurate evaluation of integrals at the check points,
by ensuring that, after upsampling by the factor β, check points from a panel are in the
accurate region of the panel’s immediate neighbors. For domains with sharp corners,
the forth and second conditions imply dyadic refinement of panel length bounded
below by panel minimum length εl .

To check criterion (iv), it is sufficient to check the distance of the center of expansion
c from the boundary and ensure that |c− x| ≥ |c− x′| for all x′ ∈ Γ . To this end, we
use a uniform grid of size proportional the average value of δ to quickly find panels that
may violate the condition (the exact value of grid spacing affects efficiency and not
accuracy). We insert the bounding boxes of panels as well as the bounding boxes for
discs Bc

δ into the grid. Then, we compute the distance of c to panels whose bounding
box intersects the grid boxes covering Bc

δ . If the distance is less than δ for a point other
that x, that panel is mark to be divided.

In both cases, the result is a set of N nodes x j = X(t j ), where t j are the parameter
values of the nodes, with weightsw j = |X ′(t j )|w′

j wherew′
j are the Gauss–Legendre

weights scaled by the panel parametric lengths. This smooth quadrature approximates
the boundary condition f with target accuracy εa . When the domain is smooth, the
densityφ solving Eq. (1.6) is just as smooth as f : since D is compact, Eq. (1.6) satisfies
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the Fredholm alternative, meaning that (−1/2 + D) : Hs → Hs is one-to-one and
onto, for any Sobolev order s (see [40, p. 215]). Thus the approximation accuracy of
φ is similar to that of f .

2.2 On-surface evaluation for iterative solution of the linear system

As discussed in the introduction, one context where singular quadratures are needed
is for applying A, the matrix discretization of the operator (− 1

2 I + D), to the current
density vector φ during the iterative solution of Eq. (1.8). This matrix-vector multi-
plication is equivalent to evaluation of the interior limit of the double-layer potential
at the nodes due to the smooth interpolant of the density vector. As with QBX [36,
Sec. 3.5], one may exploit this in two different ways.

– One-sided QBKIX: as stated above, we use the interior limit of the potential at the
nodes for Aφ.

– Two-sidedQBKIX:we average the interior and exterior limits of the potential at the
nodes,which, by canceling the jump relation terms, applies amatrix approximation
to the operator D. We then explicitly add − 1

2φ to the answer.

Although mathematically equivalent, these two variants smooth high-frequency
components in the density differently: one-sided QBKIX tends to dampen these com-
ponents, leading to an accumulation of eigenvalues of A around zero. This has a
negative impact on convergence. In contrast, for two-sided QBKIX, since the approxi-
mation of D tends to damp high-frequency components, the explicit inclusion of− 1

2 I
ensures that these components end up being multiplied by a number very close to − 1

2 ,
which leads to better clustering of the spectrum and improved convergence rates. We
present a numerical comparison of these two alternatives in Sect. 4.2.

2.3 Efficiency considerations and computational complexity

Given a set of evaluation points x, the brute-force approach is to run the algorithm
described above, including construction of check and proxy points, for each sample
point separately. This is highly inefficient, and the following obvious optimizations
can be applied:

– The upsampled density on the fine-scale nodes need be computed only once.
– The SVD of matrices Q may be precomputed. For translation- and scale-invariant
kernels, (i.e., all kernelswe consider exceptYukawa andHelmholtz) thesematrices
do not depend on the choice of the center and circle radii, as long as the ratio R/rc
is fixed.

– One may use the kernel-independent FMM method for evaluation of the solution
at the check points for all target points at once.

We consider the complexity of using QBKIX for the task of on-surface evaluation
at all boundary nodes x ∈ Γ . For a boundary with M panels and q-node Gauss–
Legendre quadrature on each, there are N = Mq nodes in total. We use a conservative
assumption that a distinct set of check and proxy points is used for each of the tar-
gets. Then, using KIFMM, the evaluation of the boundary integral from the β-refined
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boundary to the check points is O ((β + nc)N ). We assume that the factorization of
the pseudo-inverse for computing the equivalent densities α is precomputed. The cost
of applying the factors V and U∗, of sizes n p × k and k × nc, for targets point is
O

(
k(nc + n p)N

)
. The cost of evaluation of the approximation from proxy density

values at target points is O
(
Nnp

)
.

We conclude that the overall cost is O
(
(β + nc + knc + kn p + n p)N

)
, which for

typical choices β = 4 and nc = 2n p reduces to O
(
kn pN

)
. We see that the scheme

is linear in N , but with a prefactor of order k2 (since, as discussed in the next section,
n p is of order k). The two-sided variant involves another overall factor of 2.

If the same check and proxy points are used for a number of targets, an additional,
potentially very large, constant-factor speedup can be obtained. The speedup factor is
proportional to the average number of targets handled by each set of check and proxy
points.

3 Error analysis and parameter choices

In this section,we present theoretical results, focusing on the cases of scalar u governed
by the Laplace equation Δu = 0, or by the Helmholtz equation (Δ + ω2)u = 0 for
real ω. We expect similar results for the other elliptic PDEs in Eq. 1.4.

We split QBKIX into two stages: (i) evaluation of u on the check points using a
refined smooth quadrature, with the associated error ec; (ii) solution of a small linear
system to determine the equivalent density values α at the proxy points that best
represent u at the check points. This is followed by evaluating the approximation of u
at target points using these density values.

At the first stage, the error ec is effectively the smooth quadrature error of the
refined panels. The primary focus of our analysis is on the second stage. We analyze
the error behavior in the idealized situation of exact arithmetic and infinitely many
check points, obtaining the dependence of the second-stage error e on δ, R, ρ, and n p.
We then describe a heuristic model for the effects of finite-precision computations,
which adds an extra term to e, depending on ec, δ, rc, and k.

We use the overall error model, along with experiments, to provide a choice of
the various parameters in the scheme resulting in the on- and near-surface evaluation
errors of the same magnitude as the far-field integration errors.

3.1 Error at check points

Recall that evaluation of u on the check points is done by approximating the exact
integral Eq. (1.5) by Eq. (2.1) using q-node Gauss–Legendre quadrature on panels
(subdivided by factor β). We state a theorem adapted from [36, Theorem 1] (specif-
ically, taking the quadrature error term for p = 0), which uses classical quadrature
error bounds. It was proven in the context of the Helmholtz equation.

Theorem 3.1 ([36]) Let L be the arc-length of a panel Γ subdivided equally (with
respect to parameterization) into β ∈ N segments, on each of which a q-node
Gauss–Legendre quadrature rule is used. Let the density be φ ∈ C2q+1(Γ ). Then
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the quadrature error for Eq. (2.1) at a target point zi a distance d from Γ obeys

ec ≤ CΓ,q

(
L

4βd

)2q

‖φ(2q+1)‖L∞(Γ ) , (3.1)

where CΓ,q depends on the panel and the order q, but not on β or d.

Thus, at fixed q, panel size L , and target distance d, error vanishes with order 2q with
respect to the upsampling β. It is conjectured that this holds for other standard PDE
kernels. In our application, panels are adaptively refined, so that they are relatively flat
(the radius of curvature exceeds δ), ensuring that d = δ − rc is the closest distance of
the check points to the panel. As discussed in Sect. 3.4, we will fix d/L , by choosing
the evaluation disk radius δ and the checkpoint circle radius rc as fractions of L . Thus,
by choosing the refinement factor β high enough one can lower ec to close to machine
precision. For instance, when q = 16, it is sufficient to use L/(4βd) = 1/2, to obtain
an error on the order of 10−10 at distance d from the panel.

Note that the above theorem is pessimistic, because of rapid growth of the deriva-
tives due to the nearby singularity in the analytic continuation of the integrand [2,
Sect. 3.1.1]. af Klinteburg and Tornberg have proven better error estimates for the
Laplace and Helmholtz equations, both for flat panels [2], and for curved panels [1],
that capture the exponential convergence with respect to q when all other parameters
are fixed, and have sharp constants. These may be viewed as panel-wise versions of
Laplace periodic trapezoid rule exponential convergence results of the second author
[5, Theorems 2.3 and 2.9]. However, Theorem 3.1 will be sufficient for our purposes.

3.2 Error of the proxy point representation in exact arithmetic

Next, we analyze the dependence of the error (computed in exact arithmetic) of the
second stage of QBKIX on the number of proxy points np, the proxy circle radius R,
and the distance r ≤ δ from the center c to the evaluation point.

Let û be given by the proxy representation, Eq. (2.4), with equivalent density values
α j at proxy points y j , j = 1, . . . , n p. We consider evaluation of the approximation
û in Bc

r , the disc of radius r centered at c, given correct values for u at a very large
number of check points nc, so that we can replace the discrete least-squares problem
we solve with a continuous one.

Let the equivalent densities α j be chosen to minimize the L2 error on the check
circle, i.e.,

α = arg min
α∈Cn p

‖û − u‖L2(∂Bc
rc )

. (3.2)

By convergence of the periodic trapezoidal quadrature on the check points, this cor-
responds to the nc → ∞ limit of the QBKIX scheme. Let

e(r) := sup
x∈Ω ∩ Bc

r

|û(x) − u(x)| , (3.3)
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be the upper bound on the pointwise error in the part of the disc lying inside the closure
of the domain. Below we give bounds on e when u is sufficiently regular, meaning
that any singularities in the continuation of u exceed some distance ρ > δ from the
center of the expansion c.

As a toy model, it is instructive to consider the case of û generated by a con-
tinuous single-layer potential on the circle of radius R, with density ψ(θ) =∑

n∈[−n p/2,n p/2) ψneinθ , i.e. Fourier modes up to the Nyquist frequency n p/2. The
estimates we derive in this case will be used in the proof of the general theorem.

Following [6] (including a prefactor 1/R in the layer potential), the linear map
from ψ(θ) to the solution values at radius rc is diagonal in the Fourier basis, with the
coefficient for frequency m given by

ŝ(m) =
{

1
2|m|

( rc
R

)|m|
, m �= 0

log R , m = 0
(Laplace),

ŝ(m) = iπ

2
H (1)
m (ωR)Jm(ωrc) (Helmholtz). (3.4)

Let us assume for now that ŝ(m) never vanishes. Since u is a regular solution to the
PDE, it has a (scaled) local expansion in polar coordinates

u(r, θ) =
∑
n∈Z

an
fn(r)

fn(rc)
einθ , where fn(r) := r |n| (Laplace), or

fn(r) := Jn(ωr) (Helmholtz), (3.5)

where an are the Fourier coefficients of u as a function of θ on the check circle (we
assume that fn(rc) never vanishes). Note that asymptotically, fn(r)/ fn(rc) ∼ (r/rc)|n|
as n → ∞; in the Helmholtz case, this follows from the large-order asymptotic
behavior of the Bessel function [44, 10.19.1]. Since u is regular in the closed disc
of radius ρ, each Fourier coefficient at radius ρ, namely an fn(ρ)/ fn(rc), must be
bounded, proving that

an = O

((
rc
ρ

)|n|)
, n → ∞. (3.6)

By orthogonality of Fourier modes on the check circle, the set of ψn that minimizes
(3.2) is that which matches the coefficients an for n ∈ [−n p/2, n p/2), namely

ψn = an
ŝ(n)

, n ∈ [−n p/2, n p/2) .

The error function u − û is the remaining terms of the series for u, (3.5) so that,
extrapolating this expansion into the evaluation disc we obtain,
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e(r) = sup
s≤r,0≤θ<2π

∣∣∣∣∣∣
∑

n /∈[−n p/2,n p/2)

an
fn(s)

fn(rc)
einθ

∣∣∣∣∣∣
≤

∑
n /∈[−n p/2,n p/2)

|an|
| fn(rc)| ‖ fn‖L∞([0,r ])

Applying the asymptotics for fn(r) and (3.6), and bounding the geometric series by a
constant times their first term gives

e(r) ≤ C

(
r

ρ

)n p/2

(3.7)

for some constant C independent of n p. This error estimate for the model example
matches the large-R case in the theorem below, where the proxy points are distant
enough to give an accurate quadrature approximation to the above set of layer potential
modes.

We now return to the general case, where we will see that when R is sufficiently
close, a different type of error—aliasing or quadrature error—will instead dominate.

Remark 3.1 The analysis in this section builds upon the literature on the method of
fundamental solutions (MFS). The original result for the Laplace equation is due to
Katsurada [34, Theorem 2.2], who considered the case nc = n p and restricted to
r = rc. We extend this result to include extrapolation from the check radius rc out to
larger radii r , and to include the Helmholtz equation.

Theorem 3.2 Let u, the solution of the Laplace or Helmholtz Dirichlet problem on
the domain Ω , be continuable as a regular solution to the Laplace or Helmholtz
equation in the closed disc of radius ρ centered at c. Let R �= 1 in the Laplace case.
Let Jn(ωrc) �= 0, ∀n ∈ Z, in the Helmholtz case (the check circle is non-resonant
for Dirichlet boundary data). Let the n p equivalent density values at proxy points be
solved in exact arithmetic in the least-squares sense on the check circle as in Eq. (3.2),
where û is the expansion in Eq. (2.4). Then the error e in the disc of radius r around
c, as defined by Eq. (3.3), converges exponentially at the following rates,

e(r) ≤

⎧⎪⎨
⎪⎩
C

( r
ρ

)n p/2, ρr < R2 ,

Cnp
( r
R

)n p , ρr = R2 ,

C
( r
R

)n p , ρr > R2 ,

(3.8)

where in each case, C indicates a constant that may depend on u (and therefore ω in
the Helmholtz case), r , and R, but not on n p.

Proof Our proof follows the argument in Barnett and Betcke [6, Theorem 3], with
the following extensions: no assumptions are made on the check radius rc other than
rc < δ, the evaluation radius r can differ from unity, the sup norm of the solution is
assumed to be bounded in the evaluation disk, rather than just being L2 on its boundary,
and the Laplace case is included.
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A new aspect of the proof is that the quantity we minimize is no longer the one
we bound, so that merely exhibiting a vector does not give an upper bound on the
least-squares error as in [6, Theorem 3], and additional arguments are needed.

We use C and c to denote constants that are independent of n p. We exploit (3.5)
and (3.6), noting that in the case where Bc

r lies partially outside Ω , one may continue
u as a regular PDE solution in the disc and these still hold (in our implementation, Bc

r
at most touches the boundary, but the estimates of the theorem apply in a more general
case).

By the hypotheses of the theorem, ŝ(m) defined by (3.4) never vanishes, so, as in
[6], there are constants c and C such that

c
1

|m|
(
R

rc

)−|m|
≤ ŝ(m) ≤ C

1

|m|
(
R

rc

)−|m|
, ∀m ∈ Z. (3.9)

The hypotheses also guarantee that fn(rc) never vanishes, so that (3.5) is well-defined.
The proxy representation û given by Eq. (2.4) also has an expansion of the form

(3.5); let ân denote its coefficients. Then from [6, Eqs. (19–20)] we have

ân = n p

2π
ŝ(n)α̂n mod n p , (3.10)

where the vector α̂ ∈ C
n p is the discrete Fourier transform (DFT) of the weight vector

α, obtained by solving the and mod folds integers into the range [−n p2, n p/2).
The squared error L2-norm on the check circle is then, using (3.10), proportional

to

∑
n∈Z

|ân − an|2 =
∑
n∈Z

|(n p/2π)ŝ(n)α̂n mod N − an|2.

In Fourier domain, least-squares computation of α decouples into n p independent
least-squares problems, one for eachDFTcoefficient α̂m ,m ∈ [−n p/2, n p/2).Writing
n = m + bn p, the mth such problem is to minimize over the single number α̂m , the
quantity

∑
b∈Z

∣∣(n p/2π)ŝ(m + bn p)α̂m − am+bn p

∣∣2

The analytic solution is

α̂m =
∑

b∈Z(n p/2π)ŝ(m + bn p)
∗am+bn p∑

b∈Z(n p/2π)2|ŝ(m + bn p)|2

= 2π

n p

am
ŝ(m)

(1 + βm), −n p/2 ≤ m < n p/2, (3.11)

where the leading term is due to the terms b = 0 in the numerator and denominator
sums, and the small relative correction βm is due to the terms b �= 0. Applying (3.9)
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and (3.6) with rc < R and rc < ρ, and bounding the geometric sums by a constant
times the leading term, yields an estimate for βm :

|βm | ≤ C

(
rc2

Rmin(R, ρ)

)n p−2|m|
, −n p/2 ≤ m < n p/2 , (3.12)

for some constant C . This means that βm is very small apart from at the extreme
frequencies |m| ≈ n p/2.

Similarly to the model case, the error (3.3) is then, applying (3.10) and the asymp-
totics of fn ,

e(r) = sup
s≤r,0≤θ<2π

∣∣∣∣∣
∑
n∈Z

(ân − an)
fn(s)

fn(rc)
einθ

∣∣∣∣∣

≤
∑
n∈Z

|ân − an| ‖ fn‖L∞([0,r ])
| fn(rc)| ≤ C

∑
n∈Z

|(n p/2π)ŝ(n)α̂n mod N − an|
(
r

rc

)|n|
,

where we can now substitute (3.11) for α̂n .
For the frequencies −n p/2 ≤ m < n p/2, the leading terms in (3.11) match an ,

leaving just βm contributions there. Outside this frequency range we use that βm is
bounded and estimate the series outside the −n p/2 ≤ m < n p/2 range. This leaves,
applying the triangle inequality,

e(r) ≤ C
∑

n∈[−n p/2,n p/2)

|anβn|
(
r

rc

)|n|
+ C

∑
n /∈[−n p/2,n p/2)

∣∣∣∣ŝ(n)
an mod n p

ŝ(n mod n p)

∣∣∣∣
(
r

rc

)|n|

+ C
∑

n /∈[−n p/2,n p/2)

|an|
(
r

rc

)|n|
=: Eβ + Eu + Ev,

where similar notation as in [6] is used for the two tail terms. The third term is easy
to bound, inserting (3.6) and bounding the decaying geometric series by a constant
times its leading term,

Ev ≤ C

(
r

ρ

)n p/2

,

giving the same as (3.7). The estimate for first term Eβ needs (3.6) and (3.12), giving
(in both cases, R < ρ and R ≥ ρ) a growing geometric sum which is bounded by a
constant times its last term, m = n p/2, giving (after cancellations) exactly the same
order bound as Ev .
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We now turn to the middle term Eu . Rewriting the sum using n = m + bn p, then
applying upper and lower bounds in (3.9), and (3.6) gives

Eu = C
∑

m∈[−n p/2,n p/2)

∣∣∣∣ am
ŝ(m)

∣∣∣∣
∑
b �=0

|ŝ(m + bn p)|
(
r

rc

)|m+bn p |

≤ C
∑

m∈[−n p/2,n p/2)

(
R

ρ

)|m| ∑
b �=0

( r

R

)|m+bn p |
.

Notice that, as before, rc has canceled. The b sum is decaying so can be estimated by
C(r/R)n p−|m|. Thus

Eu ≤ C
( r

R

)n p ∑
m∈[−n p/2,n p/2)

(
R2

ρr

)|m|
.

There are three possibilities, giving the three cases in Eq. (3.8). If ρr < R2 the
sum is geometrically growing, so can be bounded by a constant times the final term
(R2/ρr)n p/2, in which case Eu dominates the other two terms, giving the first case
in Eq. (3.8). If ρr = R2 there are N equal terms, and Eu still dominates, giving the
second case. If ρr > R2, the sum is decaying, so is no more than a constant times its
first term, simplifying to Eu ≤ C(r/ρ)n p/2, which is the same order as Eβ and Ev ,
giving the final case. ��

As in (3.7), rc will not appear in Eq. (3.8), because in exact arithmetic it matters little
(modulo a non-resonance condition) atwhat radius in (0, R) theFourier coefficients are
matched. In the next section we will see that in practice rounding error strongly affects
the choice of rc, since the extrapolation is ill-conditioned. Note that the Helmholtz
non-resonance condition on rc is guaranteed if ωrc < 2.4, since all positive roots of
all J -Bessel functions exceed this value; this will anyway be necessary in practice if
high accuracy is needed.

A surprising aspect of Theorem 3.2 is that u may have singularities closer to the
center than the proxy radius R and yet exponential convergence still holds; this is
closely related to the Runge approximation theorem.

Remark 3.2 The two regimes in Eq. (3.8) may be interpreted as follows:

• r < R2

ρ
: the solution u is relatively rough (has a nearby singularity), and error

is controlled by the decay of the local expansion coefficients an of u for orders
beyond n p/2, as in the preceding toy model.

• r > R2

ρ
: the solution u is smooth, and error is controlled instead by aliasing (in

Fourier coefficient space) due to the discreteness of the proxy point representation
on the proxy circle.

We observe in numerical experiments that when the boundary is adaptively refined
based on the boundary data as in Sect. 2, L ≈ ρ and the expansion centers that
dominate the error in a domain are typically those that are near to a singularity of the
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solution. In our numerical experiments, when the location of singularity is known, we
observed that such centers are typically in the rough regime.

Note that the boundary Γ may intersect the closed disc, and yet u may still be
continued as a PDE solution into the closed disc. This requires the boundary data f
or density to be analytic—see [5] for related analysis of QBX in this case.

Remark 3.3 (Extension of analysis to other kernels) It is clearly of interest to have a
kernel-independent extension of Theorem 3.2 that would apply also to vector PDEs
such as Stokes. Initial attempts suggest this requires significantly more complicated
analysis, since to use the method of the above proof one needs to be able to write down
a proxy coefficient vector α that produces a single Fourier mode on the check circle
plus exponentially decaying amounts of aliased modes, which is challenging even in
the Stokes case. We leave this for future work.

3.3 Modeling the effect of finite-precision arithmetic

Independence from rc inTheorem3.2 relies on exact arithmetic; since the extrapolation
from rc to a larger r is ill-conditioned. Moreover, due to finite precision, there are
possibly fewer than n p functions available to cancel the Fourier coefficients. As a
result, we need to study the effect of rounding error on û − u. Rather than attempting
a rigorous analysis, we present a heuristic model and demonstrate that it agrees well
with numerical observations.

For the Laplace kernel, the nth singular value of the matrix Q in Eq. (2.2) decays
as σn = 1

n (rc/R)n/2, i.e., marginally faster than exponentially. In the continuous limit
(n p, nc → ∞), this follows from the single-layer operator eigenvalues (3.4). The
formula (3.6) shows that finite n p introduces only an exponentially small correction.
Although we do not give details, a similar argument (but with two vector components)
could bemade for the Stokes kernel, so that nth singular value ofmatrix Q corresponds
to the eigenvalue for frequency n/4. The Helmholtz case—although there are O (ω)

eigenvalues that do not decay—is asymptotically identical to Laplace, as (3.9) shows;
also see [6, Equation (14)]. To verify this asymptotic behavior, in Fig. 4 we show the
decay of singular values for several kernels.

When the pseudoinverse of Q is computed based onEq. (2.5), only k singular values
lying above εpinvσ1 are retained. The corresponding singular vectors approximate the
lowest Fourier modes up to frequency |n| < k/2 (in the scalar PDE cases). Thus,
equating up to constants the kth singular value above to εpinv, the ranks of the matrices
in the pseudoinverse are

k ≈ min
(
km, n p

)
, km = 2

log(1/εpinv)

log(R/rc)
, (3.13)

and the highest (Nyquist) frequency they can represent is k/2.
The values of ũ at the check points have error bounded by ec, so in this model

we expect the errors to be amplified (by considering the local expansion as above) to
become ec(r/rc)k/2 at the evaluation radius r .
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Fig. 4 Singular values of proxy to check matrix. The solid lines are the singular values of Q for different R
and different single-layer kernels, and the dashed lines labeled (T ) are the theoretical decay: 1

n (rc/R)n/2

for Laplace or Helmholtz, and 1
n (rc/R)n/4 for Stokes, where n denotes the index of the singular value.

Other parameters are rc = 1, n p = 128, nc = 256. For the Helmholtz problem, the dashed lines show
the asymptotic bound for the singular values and are not accurate for small indices; the interested reader is
referred to [6, Eq. (14)]

3.4 Error bounds and choice of parameters

Combining the rigorous results from Sect. 3.2 with the heuristic of Sect. 3.3 for a
kernel-independent expansion, using n p proxy points, the error in the scalar PDE
cases is approximately bounded by

e(r) ≤

⎧⎪⎪⎨
⎪⎪⎩
C

(
r

ρ

)k/2

+ Cec

(
r

rc

)k/2

, ρr < R2 ,

C
( r

R

)n p + Cec

(
r

rc

)k/2

, ρr > R2 ,

(3.14)

where C represents possibly different constants in each case (omitting the case ρr =
R2).

In Fig. 5, we show how this formula models the error growth for a single kernel-
independent expansion interpolating a Laplace solution in free space with a known
nearest singularity at various distances ρ, for a typical choice of ratio R/rc = 8. The
key observation is that, despite its simplicity, our model Eq. (3.14) explains well the
observed error behavior. Other salient features of the plots include:

– As r increases beyond rc, errors grow rapidly dominated by the second term in the
error estimate.

– The error is mostly controlled by k and increasing n p beyond km ≈ 27 (defined in
Eq. 3.13) has no tangible effect unless ρr > R2 (i.e., right half of leftmost plot in
Fig. 5).

Figure 6 instead continuously varies R/ρ (the inverse scaled singularity distance),
showing the same effect: a relatively distant singularity allows high accuracy expansion
out to larger r/R.

Choice of parameters Using the model Eq. (3.14), one can make choices for R, rc, δ,
and n p to achieve a desired accuracy ε. An unknown in applying this in a practical
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Fig. 5 Error bounds for Laplace QBKIX with known singularity. Errors e observed (solid lines) and
predicted by Eq. (3.14) (dashed lines) for a single expansion with different singularity distances ρ =
2R, R, and 0.8R, and different numbers of proxy points n p . The expansion is centered at c = [0, 0] and
the solution u(x) = − log |x − x0|, x0 = ρe1i/19 is a harmonic function with a singularity at distance
ρ. Laplace single-layer kernel is used for the expansion. The error is the maximum error over the Bc

r as
defined in Eq. (3.3). The proxy to check radius ratio is R/rc = 8, the number of checks is set to nc = 2n p ,
ec = 10−14, and km ≈ 27 [given by Eq. (3.13) with εpinv = 10−14]. The constants C in Eq. (3.14) were
chosen to qualitatively match the trend lines (all set to 0.1)

Fig. 6 Error at different evaluation radii. The error for evaluation of a single expansion with various R and
r , but fixed rc = ρ/40 and ρ. The expansion is interpolating a harmonic function (similar to the one used
in Fig. 5) with singularity at distance ρ = 4, using the Laplace double-layer kernel. The dotted lines are
r = mrc for m = 1, 2, and 3. In practice, we have no direct control on R

ρ , and it is implied by the panel
size. Here we chose n p = 64, and nc = 2n p ; the trends are the same for lower n p and nc

setting is the singularity distance ρ. However, in any high-accuracy choice of boundary
quadrature, such as the adaptive panel quadrature of Sect. 2, panels are refined such
that the data f and hence the density φ and the solution u are smooth on the local
panel scale L , thus we expect singularities to be at least of order L distant from
the center. Indeed, we experimentally observe (in tests where we know the location
of singularity, e.g., Fig. 7 or Sect. 4.3) that when the panels are adaptively refined,
L < ρ, and consequently the convergence behavior is most like the left-hand plot of
Fig. 5.
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Fig. 7 Error versus center and singularity distances. The induced error for singularities and centers at
various distances from the boundary for the Laplace Dirichlet interior BVP, in the domain shown in Fig. 9.
The boundary data is generated by putting a Laplace singularity at distance ρ̃ from the boundary—the
singularity distance to the center of expansion is ρ ≥ ρ̃ + δ. The density is solved directly and QBKIX is
used only for evaluation. The error is computed using the known solution corresponding to the boundary
data. The left plot shows the errors for the case with fixed number of panels on the boundary (M = 40
panels). In this plot, because L is fixed, L/ρ̃ is decreasing by increasing ρ̃. The right plot shows the errors
for adaptive refinement of the boundary with εa = 10−11. Here, since L is chosen adaptively due to the
boundary data, it increases as the solution becomes smoother. Because, L is chosen proportional to ρ̃, the
error curves almost collapse to one. We use n p = 64, nc = 2n p , rc = δ/3 and R = 8rc . In both cases, the
center of expansion is located based on the panel size at distance δ

Given the target accuracy of ε for the solution and the selected smooth quadrature
order q, the adaptive refinement of boundary sets the panel length L . We use the
following steps to glean the value of other parameters. Since the constants in the
error estimates are problem dependent and unknown, we set them to unity. To have a
concrete example, we pick ε = 10−10 and q = 16.

(1) Setting δ: By construction, points farther than 2δ from the boundary are evaluated
using the smooth quadrature. To meet the desired error ε at these points, L

δ
≈

8ε1/2q , which implies δ ≈ L/4 for ε = 10−10, q = 16.
(2) Setting km , R/rc, and n p: Requiring that the two terms in the error estimate (i.e.,

proxy point representation and extrapolation errors) have similar contribution
at the on surface point (r = δ) and assuming that L ≈ ρ we can estimate the
minimum required k based on the proxy representation error in the rough regime:

(
δ

ρ

)k/2

≈ ε or k ≈ 2 log ε

log (δ/L)
, (3.15)

implying k ≈ 32 for L/δ = 4, ε = 10−10. Since k is bounded by min(km, n p),
knowing minimum k implies a lower bound for km and n p. Therefore, reorga-

nizing Eq. (3.13), we have R/rc = ε
2/k
pinv ≈ 7, for εpinv = 10−14.

(3) Setting rc/δ and β: Inspecting the extrapolation error at an on surface point, we
have
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ee(δ) ≈ ec

(
δ

rc

)k/2

≈
(

L

4β(δ − rc)

)2q (
δ

rc

)k/2

≈
(

L

4βδ

)2q 1

(1 − θ)2qθk/2
,

(3.16)

where θ = rc/δ. This expression attains its minimum at θ = k
4q+k . For q = 16

and k = 32, we have θ = 1/3. As we require that two terms in the error estimate
have similar contribution, we use ee(δ) and estimate β:

β ≈ L/4δ

(1 − θ)θk/4qε1/2q
, (3.17)

implying β = 5, for the choices of parameter listed above.

Note that we have not analyzed the effect of finite nc, but find that the choice
nc = 2n p behaves indistinguishably from the limit nc → ∞; we attribute this to the
rapid convergence of the periodic trapezoid rule on the check points.

4 Numerical experiments

In this section,we present the results of numerical tests demonstrating the accuracy and
versatility of the QBKIX algorithm for on-surface evaluation needed for the boundary
integral equation solver and solution evaluation close to the surface. In the following
experiments, unless noted otherwise, we use QBKIX for both tasks.

4.1 Convergence with respect to the number of panels

In Table 1, we report the error in the evaluation of single- and double-layer potentials
at a set of points on the boundary by verifying Green’s identity for a known function
u. The test solution u is constructed by putting singularities with random strength at
points marked outside the domain. The Dirichlet and Neumann data for this solution
is evaluated on the boundary and QBKIX is used to evaluate the layer potential on
boundary points. The error is

eg(x) =
∣∣∣∣S

[
∂u

∂n

]
(x) − D[u](x) − u(x)

∣∣∣∣ ,

where S and D denote single- and double- layer operators that are evaluated using
one-sided QBKIX. We have chosen simple geometries such that all panels are nearly-
admissible (to observe convergence trend, they need to violate the first condition).
For all cases, QBKIX achieves high-order convergence rate, albeit lower accuracy for
Stokes and elastostatic kernels.

In Table 2, we report the convergence of the solution evaluated at the interior
points using non-adaptive boundary quadrature with increasing number of panels.
The test solution is the potential due to a set of singularities at the source points shown
outside the domain. These source points are used to generate the boundary data f
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Fig. 8 The spectra of discretizations of the Laplace double-layer operator. This figure shows eigenvalues,
and the GMRES convergence rate, for different discretizations of the Laplace double-layer operator in the
domain shown in Fig. 9. The left plots show the real part and themagnitude of the eigenvalues corresponding
the one-sided interiorQBKIX, one-sided exteriorQBKIX, two-sidedQBKIX, and the plainNyströmmatrix.
See Sects. 2.2 and 4.2. The right plot shows the residual versus the iteration number for the three interior
variants with two different right hand sides (boundary data corresponding to a harmonic function or random
data). The residual of the two-sided and Nyström schemes are indistinguishable

and the reference solution to check the error. For all problems, the double-layer for-
mulation is used, except for the Helmholtz for which a combined-field formulation
u = D[φ]+ iωS [φ], whereS is the single-layer potential [16, Section 3.2], is used.
This representation addresses problems associated with resonance of the complemen-
tary domain. The double-layer (or combined-field) density φ is solved using QBKIX
to evaluate the matrix-vector product in each iteration of GMRES. The error in the
density is quantified by computing the solution from φ, Eq. (1.5), at a set of target
points in the interior of the domain. For the first three kernels, which are smooth, we
also report the convergence using the Nyström (direct) evaluation, Eq. (1.9), which
by comparison against one- or two-sided QBKIX shows how much of the error is due
to QBKIX.

In all cases, it can be seen that QBKIX gives high-order convergence rate that is
independent of the type of the kernel. We notice that the error performance of the
two-sided variant is worse than one-sided at the same number of panels (however, as
we discuss below, it is valuable since it improves the convergence rate of GMRES).

4.2 Operator spectrum and GMRES convergence rate

We now perform numerical tests of the one-sided and two-sided variants of on-surface
evaluation of QBKIX discussed in Sect. 2.2 and compare it to direct use of an accu-
rate quadrature. To simplify comparisons, we use an operator with a smooth kernel
(Laplace). The spectra and convergence behavior for singular kernels is similar. In
Fig. 8 we plot—for the domain shown in Fig. 9 and the Laplace equation—the eigen-
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values for four different approximations to the operator − 1
2 + D: one-sided (interior)

QBKIX, the one-sided (exterior) QBKIX, two-sidedQBKIX, and the quadrature given
by Eq. (1.9), to which we refer as direct. The exterior version of QBKIX is constructed
similarly to the interior variant discussed in Sect. 2. The only modification is that for
each collocation point x0 on Γ , we place an expansion center at c = x0 + δn. We
see that the one-sided variants have clusters of eigenvalues near zero, whereas the
two-sided variant and the Nyström matrix have a cleaner spectrum with eigenvalue
clustering only around 1

2 .
A broader spread of the eigenvalues has a negative impact on GMRES conver-

gence [42]. Figure 8, right, shows GMRES residual versus the iteration number
for the interior, two-sided, and direct operators with two different right-hand sides
(boundary data corresponding to a harmonic function and a random right-hand
side).

The convergence of one-sided interior QBKIX is identical to the Nyström method
convergence up to the residual magnitude on the order of numerical accuracy of
QBKIX, but it slows down once the residual decreases below this value (near 10−9).
The two-sided variant has identical convergence behavior to the direct method, and
converges in a few iterations. We also show the residual for a random-right hand side
to expose the effect of near-zero eigenvalues: we see that convergence is very slow for
the one-sided scheme in this case, but for the two-sided scheme it is the same as for
the true smooth data f .

4.3 Error for Dirichlet problems for five PDEs

For this set of tests, we use adaptive refinement as described in Sect. 2.We use QBKIX
both as the on-surface quadrature scheme when solving for the desired density as
well as the evaluator for the near-singular integrals. As before, we use boundary data
sampled from a sum of fundamental solutions centered at a set of points close to the
boundary. Figure 9 plots the error across the domain for all of the PDEs listed in
Eq. (1.4), on the points lying on a 600 × 600 grid and interior to the domain. When
an evaluation point is within 2δ distance from the boundary, it is evaluated using the
nearest QBKIX expansion. The remaining points are evaluated using Eq. (1.7) applied
to Eq. (1.5).

We observe that parameter choices which were selected for the Laplace equation
perform well for the other PDEs. As expected, the highest error is due to expansions
for panels adjacent to larger ones (e.g. Fig. 9a).

4.4 Domain with a large number of corners

As a final example, we useQBKIX in a domainwith 256 corners as shown in Fig. 10. A
Laplace boundary value problem is solved using GMRES with tolerance for relative
residual set to εr = 10−6. The boundary condition is generated by placing source
points at locations marked by dots outside the domain in Fig. 10b. The strength of the
each source point is chosen randomly from [−25, 25].
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(a) (b) (c)

(e)(d)

(f) (g)

Fig. 9 The log10 of pointwise error. The interior Dirichlet boundary value problem is solved with known
solution generated by source points distributed over an exterior circle as shown in the lower figure in
Table 2, apart from in (f) and (g) where we use the cubic flow with velocity u = [y3, x3] and pressure
p = 6xy. Error is evaluated on the same fine grid used for visualization (600× 600). We use q = 16 node
Gauss–Legendre panels and set εa = 10−13 in the adaptive panel quadrature set-up. M denotes the number
of boundary panels. The expansion centers c are shown by black dots close to the boundary. a Laplace
(M = 30), b Helmholtz (M = 30), c Yukawa (M = 30), d Stokes velocity (M = 48), e Elastostatic
(M = 40), f Smooth stokes velocity (M = 26), g Smooth stokes pressure (M = 26)

The boundary of the domain is adaptively refined, withminimum panel length set to
εl = εr/10. Large panels are also refined based on the adaptive criterion we outlined
in Sect. 2. The dyadic and adaptive refinements result in a total of 10072 panels.

Due to the singularities on the boundary, the system matrix is ill-conditioned. The
ill-conditioning is greatly reduced using left and right preconditioners with square
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(a) (b)

Fig. 10 QBKIX in a domain with 256 corners. Laplace Dirichlet boundary value problem. The boundary
condition is generated by placing source points at locations marked by dots outside the domain in (b). The
strength of the each source point is chosen randomly from [−25, 25]. We use a 2D composite trapezoidal
rule with 600 × 600 points in the unit box [0, 1] × [0, 1] to compute the reported L2 error. a The log10 of
relative pointwise error, b solution

root of smooth quadrature weights on its diagonal [11], solving for density in L2

sense. Considering this preconditioning and since the last panel in each side of the
corner is of length smaller than εr/10, we set the density on those panels to zero
(effectively deleting the last two panels). The GMRES converges after 38 iterations;
we use KIFMM (with accuracy set to εr/10) for fast evaluation.

In Fig. 10, we measure the error in the L2 sense because both dyadic refinement of
panels approaching the corners as well as the L2 preconditioning of the system may
cause the error for point closer than εl to a corner to be potentially large.

5 Conclusions

In this paper we introduced a new quadrature scheme for the high-order accurate
evaluation of layer potentials associated with general elliptic PDE on the domain
boundary and close to it. The scheme—which builds local solution approximations
using a refined evaluation and the solution of small linear systems—relies solely on
the evaluation of the underlying kernel, so is essentially PDE-independent. It is highly
flexible, being agnostic as to the boundary condition type, the layer representation,
and crucially, the dimension of the problem. We have analyzed the error behavior of
the scheme for Laplace and Helmholtz cases. It also fits naturally in the framework
of existing fast kernel-independent algorithms for potential evaluation such as the
KIFMM, as it uses similar local approximations.

We have tested its accuracy for three scalar- and two vector-valued 2D Dirichlet
boundary-value problems that are common in engineering problems. We have not
attempted to optimize performance, and leave that for future work.

There are several obvious extensions that have motivated this initial study that we
plan to pursue:

123



A. Rahimian et al.

(1) Generalization to 3D. High-order singular quadratures for surfaces are compli-
cated, application dependent, and scarce. Since it requires only pointwise kernel
evaluations, QBKIX is by design very easy to implement in 3D using proxy and
check surfaces, and would handle a wide class of PDEs. The constants will be
larger, but the linear systems (anticipated to be of size around 103) would still be
very practical.

(2) Application to other boundary conditions. QBX, and thus also QBKIX, can apply
withoutmodification, for instance, the normal derivative of the double-layer oper-
ator,which is hypersingular, and can occurwhenNeumann conditions are needed.

(3) IntegrationwithKIFMM. In thiswork,we only used kernel-independentFMMfor
fast evaluation of potential on the check points. However, we expect performance
gains by reusing the local expansion of KIFMM as a QBKIX expansion.

(4) Local QBKIX. The construction of local schemes which automatically handle
general domains with thin features (i.e., with geodesically distant parts of the
boundary in close proximity in space) without excessive refinement needed for
the panel size to be on the order of feature size, is important formaking themethod
practical. [5] proposed the local version of QBX, in which only the contribution
of the nearby panels to a target is evaluated using expansions, while contributions
of more distant panels is evaluated using standard quadrature. Implementing this
idea is nontrivial however, as the end-points of the group of neighboring panels
produce new singularities that can affect the convergence rate.

(5) Generalization of analysis to all kernels. As Remark 3.3 discusses, this is a non-
trivial missing piece in the theoretical foundations.

Acknowledgements Weextend our thanks toManasRachh,AndreasKlöckner,MichaelO’Neil, andLeslie
Greengard for stimulating conversations about various aspects of this work. A.R. and D.Z. acknowledge the
support of the US National Science Foundation (NSF) through Grant DMS-1320621; A.B. acknowledges
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Appendix A: List of kernels

Here we list the kernels for the single- and double-layer potentials for the PDEs
considered text. In each case x and y are points in R

2 and r := x − y. The single-
layer kernel is the fundamental solution. In double-layer kernels, n is the unit vector
denoting the dipole direction, which in the context of boundary integral formulation
is the outward pointing normal to the surface.

• Laplace:

Δu = 0, (A.1)

S(x, y) = − 1

2π
log |r|, (A.2)

D(x, y) = 1

2π

r · n
|r|2 , (A.3)

lim
y→x

D(x, y) = − κ

4π
, x, y ∈ Γ, (where κ is the signed curvature). (A.4)
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• Yukawa:

Δu − λ2u = 0, (A.5)

S(x, y) = 1

2π
K0(λ|r|), (A.6)

D(x, y) = λ

2π

r · n
|r| K1(λ|r|), (A.7)

where K0, K1 are modified Bessel functions of the second kind of order zero and
one, respectively.

• Helmholtz:

Δu + ω2u = 0, (A.8)

S(x, y) = i

4
H1
0 (ω|r|), (A.9)

D(x, y) = iω

4

r · n
|r| H1

1 (ω|r|), (A.10)

where H1
0 , H1

1 are respectively modified Hankel functions of the first kind of order
zero and one.

• Stokes:

−Δu + ∇ p = 0, ∇· u = 0, (A.11)

S(x, y) = 1

4π

(
− log |r| + r ⊗ r

|r|2
)

, (A.12)

D(x, y) = r · n
π

r ⊗ r
|r|4 , (A.13)

lim
y→x

D(x, y) = − κ

2π
t ⊗ t, (A.14)

P(x, y) = − 1

π |r|2
(
1 − 2

r ⊗ r
|r|2

)
n. (A.15)

• Navier: Linear elasticity for isotropic material with shear modulus μ and Poisson
ratio ν,

μΔu + μ

1 − 2ν
∇ ∇· u = 0, (A.16)

S(x, y) = − 3 − 4ν

8π(1 − ν)
log |r| + 1

8π(1 − ν)

r ⊗ r
|r|2 , (A.17)

D(x, y) = 1 − 2ν

4π(1 − ν)

(
r · n + n ⊗ r − r ⊗ n

|r|2 + 2

1 − 2ν

r · n r ⊗ r
|r|4

)
.

(A.18)
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