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Abstract

Volume textures aligned with a surface can be used to add topolog-
ically complex geometric detail to objects in an efficient way, while
retaining an underlying simple surface structure.

Adding a volume texture to a surface requires more than a con-
ventional two-dimensional parameterization: a part of the space
surrounding the surface has to be parameterized. Another problem
with using volume textures for adding geometric detail is the diffi-
culty in rendering implicitly represented surfaces, especially when
they are changed interactively.

In this paper we present algorithms for constructing and render-
ing volume-textured surfaces. We demonstrate a number of inter-
active operations that these algorithms enable.

Keywords: modeling, volumetric texture, volumetric rendering.

CR Categories: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling – Curve, surface, solid, and object rep-
resentations; Geometric algorithms, languages, and systems; I.3.7
[Three-Dimensional Graphics and Realism]: Color, shading, shad-
owing, and texture.

1 Introduction

Common surface representations work well for objects of relatively
simple topology and continuous geometric structure. However,
for many types of objects, the local geometry can be highly com-
plex. Examples include fur, bark, cracked surfaces, grilles, peeling
paint, chain-link fences and others. In these cases, using meshes or
patches to represent small-scale geometry is often prohibitively ex-
pensive. But if we ignore the small-scale structure, a complex sur-
face often has a simple overall shape, well represented by a mesh
or a smooth surface.

In this paper we describe a combined volume-surface represen-
tation for handling geometry of this type, extending the idea of vol-
ume textures. Volume textures aligned with the surface make it pos-
sible to represent geometrically and topologically complex details
in implicit form, encoding the surface as an isosurface in a layer.
This idea was explored by a number of researchers in the past (see
Section 2).

This representation has important advantages:
• It uses simple and efficient data structures (textures) to represent
highly irregular geometry.
• Small features of high topological complexity can be easily intro-
duced and modified.
• Image processing techniques can be used to modify small-scale
geometry without topological constraints.
• Hierarchical representations can be naturally constructed using fil-
tering on volumetric textures.

Figure 1: A surface with fine-scale detail added as volume texture.

• One can easily use procedural modeling and simulation to produce
complex effects near the surface.

In this paper we focus on two algorithms central to the goal of us-
ing this approach in modeling applications. Specifically, in addition
to surface parametrization required by 2D texturing, volume tex-
tures require parameterizing a region of space near a surface. Most
of the previous work on volume textures used techniques such as
normal displacement, which results in self-intersections near con-
cave features. We describe an algorithm for computing volume
layer parametrizations with a number of desirable properties, which
can be used to update the parametrization interactively.

While isosurfaces are convenient for many types of operations,
they are much more difficult to render than conventional meshes.
We describe algorithms for volume texture rendering that enable in-
teractive manipulation of volume-textured objects. Our algorithm
for rendering volume-textured surfaces extends the approach of di-
rect slice-based isosurface rendering for volumes. We take advan-
tage of the programmable graphics hardware to reduce the geom-
etry requirements of the slice-based methods, which is crucial for
interactive rendering of volume textures.

Finally, we demonstrate a number of interactive modeling oper-
ations that are made possible by these algorithms.
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2 Previous work

Our work builds on research in several areas.
Volume textures. The idea of volume textures goes back to the
work by Kajiya and Kay [Kajiya and Kay 1989]. Our work was
motivated by the work of F. Neyret and co-workers (e.g. [Neyret
1995; Neyret 1998; Meyer and Neyret 1998]) as well as recent work
on fur rendering [Lengyel 2000; Lengyel et al. 2001].

Our geometry is to some extent similar to the slab representa-
tion used for modeling weathered stone ([Dorsey et al. 1999]) and
for volume sculpting in [Agarwala 1999]. ([Dorsey et al. 1999])
uses the fast marching method (e.g. [Sethian 1999]) to construct
layers around a surface. Envelope construction [Cohen et al. 1996]
provides another alternative. Our method is compared with both in
Section 4.
Stable medial axes. Our construction is closely related to the work
in vision and medical imaging on using various types of medial axis
approximations to analyze shape and extract surfaces from volume
data (e.g. [Pizer et al. 1994; Eberly et al. 1994]). In these papers a
form of the medial axis of an object implicitly defined by a density
function is first constructed without recovering the boundary of the
object. Our generalized distance function (Section 4) is similar to
some of the medialness functions used to construct stable medial
axes. Our work is closest to [Siddiqi et al. 1999] which solves the
Hamilton-Jacobi equations for the medialness function on a reg-
ular grid to recover a skeleton. [Yezzi and Prince 2002] uses a
Laplacian equation solved on a regular grid to compute correspon-
dences between nested surfaces. Our generalized distance function
has the property of pruning away insignificant medial axis branches
close to the surface (see Section 4). R-functions have been used to
achieve similar effects ([Ricci 1973; Rockwood 1987; Pasko et al.
1995]), but with more complex computation based on a CSG repre-
sentation of the surface.
Direct isosurface rendering. Indirect methods for rendering iso-
surfaces [Lorensen and Cline 1987; Chernyaev 1995] require sig-
nificant preprocessing and result in large meshes. Our rendering
technique extends the direct volume and isosurface rendering ap-
proach based on slicing and 3D textures (or collections of 2D tex-
tures), which has origins in [Cullip and Neumann 1993; Cabral
et al. 1994; Wilson et al. 1994]. Our work is most closely related
to isosurface rendering and displacement map rendering [Wester-
mann and Ertl 1998; Schaufler 1998; Rezk-Salama et al. 2000; Di-
etrich 2000; Kautz and Seidel 2001]. For volumetric textures a
slice-based approach is described in [Meyer and Neyret 1998]. We
apply an extension of these techniques to a collection of relatively
small distorted volumes. Our technique has the crucial advantage
of allowing a more flexible choice of the number of slices per vol-
umetric element, while minimizing visual artifacts associated with
insufficient slice density. A more detailed comparison is given in
Section 5.
Implicit surfaces and volume modeling. There is an exten-
sive body of literature related to volume-based representations (see
[Bloomenthal 1997] for a list of references); some recent important
work includes [Frisken et al. 2000; Carr et al. 2001]. Interactive
and procedural volume sculpting techniques [Wang and Kaufman
1995; Agarwala 1999; Cutler et al. 2002] can be applied to our
surface representation. Most work on volume modeling focuses on
volume data in pure form, i.e. objects are represented as level sets of
a function defined by volume samples. In this paper we concentrate
on techniques which blend parametric and surface representations.
Structured mesh generation. Constructing a collection of layers
aligned with a surface is a common problem in structured mesh
generation. Mesh generation is a large and complex field aiming to
build meshes suitable for a variety of numerical algorithms for solv-
ing PDEs (see, e.g. surveys [Henshaw 1996; Bern and Plassmann
2000] and the book [Steinberg and Knupp 1993]). Such meshes
often have to satisfy stringent requirements for the algorithms to

Figure 2: Surface with a volume layer attached.

achieve optimal or nearly-optimal convergence rates, especially for
CFD problems, for which object-aligned grids are particularly im-
portant [Henshaw 1996].

Our goal is more modest: we aim to construct a shell aligned
with the surface efficiently, maintaining nondegeneracy without ex-
plicitly minimizing a distortion measure. At the same time, the
criteria used to formulate the PDEs in hyperbolic mesh generation
methods (volume preservation and orthogonality), are not necessar-
ily the best for our applications.

3 Representation

We refer to the initial surface for which we construct a shell as the
base surface. We consider shells which are obtained by displacing
points of the base surface along line segments defined at vertices,
which we call directors. At each vertex of the surface, we store shell
thickness, the number of shell layers stored and texture coordinates.
The shell consists of slabs corresponding to the faces of the mesh
or individual patches. Each slab is a deformation of a prism.

Shells can be exterior (e.g. for fur modeling), interior (e.g. for
cracks) and envelope with layers located on both sides of the sur-
face. Our technique works for all shell types.

The main additional storage is the 3D textures associated with
the surface. The number of layers in the shell corresponds to the
number of pixels in the texture in the direction perpendicular to
the surface. The alpha channel of the texture defines the effective
surface implicitly as the isosurface corresponding to a fixed alpha
value. The remaining texture channels are used to store the gradient
of α. The number of layers can vary across the surface. In an
extreme case, as shown in Figure 2 the number of layers can go
down to one. If there are no features on a portion of the surface we
do not need textures for that region.

In our implementation we use multiresolution surfaces with sub-
division connectivity. However, the basic techniques that we have
developed can be applied to arbitrary meshes with 2D texture coor-
dinates.

4 Constructing shells

In this section we describe our basic algorithm for constructing
shells around surfaces. Intuitively, one can think about this pro-
cess as growing thick skin on the surface; shells constructed by our
method behave more or less like elastic compressible skin, which
was our goal.

To make a shell useful for volumetric texturing, a number of
properties are desirable:
• The layers should not intersect. This requirement is motivated by
the ”skin” metaphor which we believe to be natural for manipulat-
ing this type of surface representation in many cases.
• The layers should have the same connectivity. This is crucial for
defining a vertex’s volumetric texture coordinates (s, t, r). They
can be obtained as follows in this case: (s, t) are given by the base
surface parametrization which is assumed to be known, and r is
incremented proportionally along the displacement director from
the base surface.
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Figure 3: a. Medial axis of a box. b. The shell with target thickness
exceeding one half of the box size constructed using the gradient
along the medial axis. The shell director lines are shown.

• The shell should maintain prescribed thickness whenever possi-
ble. However, if thickness cannot be maintained due to geometric
obstacles, a valid shell with locally decreased thickness should be
produced. This corresponds to the intuitive idea of elastic “sponge-
like” skin; note that volume preservation is somewhat undesirable
as it is likely to result in fold formation.
• The shell should be close to the one obtained by normal displace-
ment whenever possible.
• The shell at a point should depend only on the parts of the sur-
face close to that point. This property is important for modeling
applications and for efficient implementation.

Next, we describe our shell construction algorithm motivated by
these requirements.

4.1 The basic algorithm

To describe our algorithm in detail, we need some formal notation.
We assume that our base surface is a mesh or a higher order sur-
face associated with a mesh (subdivision surface, spline surface
etc.) without self-intersections. Formally, our goal of construct-
ing a shell around the surface can be described as follows: given
a surface M in R3, construct a one-to-one map f(x, t) from the
direct product M × [0, 1] into R3. We focus on shells for which
f(x, t) is linear, i.e. at each point, f(x, ·) is entirely defined by the
direction of displacement and shell thickness.
Main ideas. Our algorithm is based on a simple idea: to construct a
shell, we always need to move away from the surface. In the places
where this is impossible (the simplest example is the center of a
sphere) the shell cannot be extended further.

To understand how this idea can be made more formal, we con-
sider the example shown in Figure 3 in more detail. Suppose we
are building an interior shell, offsetting a surface M (in this case, a
box) in the direction opposite to the outside normal. If the gradient
of the point-to-surface distance function d(x,M) is defined, “mov-
ing away” from the surface more formally can be characterized as
moving along the gradient of the distance function. This gradient
points exactly along a normal direction to the surface whenever it
is defined. In such cases we can propagate the shell away from the
surface simply moving along the normal. However, the distance
function is singular at some points of space which are called (me-
dial axis points). Unfortunately the medial axis comes close to the
surface at concavities and extends all the way to the object at sharp
features, as shown in Figure 3. However, even on the medial axis
it is often possible to move away from the surface. E.g., if we start
from the corner of the box, we just move along the branch of the
medial axis. While the complete gradient of the distance function
is not defined, it is defined along the medial axis, i.e. the deriva-
tives can be computed for any direction tangent to the medial axis.
Define the extended distance function gradient by setting the value
of the gradient at the medial axis to the gradient along the medial
axis, whenever it is defined. The magnitude of this gradient is not
necessarily one: the sharper the angle of the concavity, the smaller
it is. For the horizontal part of the medial axis of the box, it is
identically zero. We note that these are exactly the points where no
further motion is possible, because shell parts extended from two
sides of the box run into each other. This shows that the magnitude
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Figure 4: The red plot shows the standard distance function from a
point on the line to the set of two points {−1, 1}. Other lines show
the averaged distance functions for different values of p.

of the gradient of the distance function along the medial axis can
be used as a measure of how easy it is to move a particle located at
that point of space away from the surface.

These observations suggest the following simple abstract algo-
rithm for constructing the director of a shell: to obtain the director
of a shell of thickness h at point x, first follow the extended gradient
field g(x) = ∇xd(x,M) of the distance function, solving the ODE

∂F (x, t)

∂t
= hg(x) (1)

where h is the desired thickness, and F (x, t) is position along the
integral line of the gradient field passing through x. Then define
f(x, t) by linear interpolation between x and F (x, 1). Note that
as long as the integral curve F (x, t) does not reach the medial
axis, it remains a straight line with unit speed parametrization, as
‖g(x)‖ = 1. For our box example and sufficiently large h this
yields a shell completely filling the box (Figure 3b). Unfortunately,
it is difficult to solve Equation 1, as the field is discontinuous, and
we would have to compute the medial axis and the gradient along it.
To make the algorithm practical, we replace the distance function
with a function we call Lp-averaged distance function.
Averaged distance functions. The basis of our definition is the
following simple observation. We can rewrite the distance function
from a point x to a surface M as

d(x,M) = inf
y∈M

|x − y| =

„
sup
y∈M

|x − y|−1

«−1

=
`‖|x − y|−1‖L∞(M)

´−1

(2)

This definition lends itself to a natural generalization:

dp(x,M) =
`‖A−1|x − y|−1‖Lp(M)

´−1

= A1/p

„Z
M

|x − y|−pdy

«−1/p (3)

where A is the area of the surface M . This normalization by the
area is introduced to ensure that the gradient of this distance func-
tion is nondimensional and close to magnitude 1 at infinity, which
mimicks the properties of the gradient of the euclidean distance. In-
tuitively, one can expect the gradient direction field of this function
to have similar properties to the gradient field of the euclidean dis-
tance function as p approaches ∞. Another intuitive interpretation
of this distance function is as a potential field generated by charges
on the surface raised to the power −1/p. In practice, we have ob-
served that even for small values of p, the fields are quite similar.
This is illustrated in Figure 4 and 5. The one-dimensional averaged
distance functions are compared to the standard distance function in
Figure 4, and fields of several values of p in a two-dimensional box
are shown in Figure 5. However, unlike the case of the euclidean
distance function, the gradient of this function is well defined away
from the surface, as the integration and differentiation can be ex-
changed. Using the averaged dp(x,M) yields the analog of Eq. 1
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Figure 5: Field lines of the gradient field of the distance function
for several values of p.

Figure 6: The four diagrams on the left show self-adjusting shell be-
havior of an exterior shell in the concave region. With an angle of
up to 90 degrees, no compression in shell thickness is observed, but
at greater angles the shell starts to compress. The three diagrams in
the right column illustrate an interior shell. The first image shows
the interior shell for which a prescribed thickness is achieved. As
the object is deformed, the shell compresses to avoid folds (pre-
scribed thickness remains the same).

in which the gradient has an explicit expression and the medial axis
does not have to be computed explicitly.

It can be proved that for p > 1 in 3D (and p > 0 in 2D), the
direction of the gradient gp, at points on a smooth surface, coin-
cides with the normal1. Furthermore, in all our experiments we
have observed that the magnitude of the gradient remains close to
one near the surface, and decays in the area close to the conven-
tional medial axis. So our function defines a fuzzy medial axis,
pruning away insignificant branches corresponding to concavities,
and with the gradient field close to zero only in areas where the
shell genuinely cannot be expanded (see Figure 6 for the results of
our two-dimensional experiments on deforming curves).
Localization. The function is supported over the whole surface.
However, it does not make sense to take into account portions of
the surface which are much further away than double the target shell
thickness; thus, we integrate only over the parts of the surface which
fit inside a sphere of radius 2h, making our calculation local. The
extra distance beyond h is neccessary to ensure stability.
Boundaries. So far we have assumed that M does not have a

1An interesting observation that p = 1 in 3D corresponds to the the
electric field potential which makes it clear that this value cannot be used:
e.g. the potential is constant inside a hollow uniformly charged sphere.

boundary. Near the boundary, the averaged distance function is
likely to yield shells with considerable distortion due to the fact
that the distance field has to make a 180-degree turn. The standard
distance function handles this case well, but the averaged function
gradient field turns in the outward direction. This problem is solved
by adding artificial faces at the boundary. A single additional vertex
is added for each boundary vertex. The direction to the new vertex
is obtained by using a tangent direction across the boundary, and
the distance is taken to be equal to the shell thickness. It should
be noted that such an extension is satisfactory if there are no other
parts of the surface near the boundary. Otherwise, the extension can
overlap a different surface part.

4.2 Numerical and performance considerations

There are two main difficulties in using the averaged distance func-
tion to construct shells: we need to solve the ODE, which is stiff
if the trajectory approaches the medial axis, and we need to com-
pute the field gradient efficiently. While the ODE in most cases is
well-behaved, it is stiff near the medial axis. The gradient, which is
an integral over the surface, is also expensive to evaluate. We have
evaluated several solution techniques (variants of explicit and im-
plicit Euler and Runge-Kutta methods) and obtained the best perfor-
mance and stability using an adaptive explicit Euler method. This
algorithm is given below in somewhat simplified form, where ∆ is
the variable step size, x0 is the starting point on the surface, x is
the current position along the trajectory, g is the gradient of the av-
eraged distance function at the point, h is the prescribed thickness,
and ε is the adaptivity threshold for the change in the direction.

x = x0; t = 0;
g = Field(x0);
while t < h

∆ = 2∆0;
do

∆ = ∆/2;
xnew = x + ∆ ∗ g;
gnew = Field(xnew);

while the angle between g and gnew is above ε;
x = xnew; t + = ∆;
g = gnew;

end while

Computing integrals per face. The simplest method for calcu-
lating the integrals is to do pointwise summation over the surface.
However, this approach does not work well in the case where the
sampling is fixed and the surface has very sharp angles. This is easy
to understand if the sample points are thought of as charges, con-
sidering the field as a surface charge density field. The approximate
gradient field may “escape” between points when a surface region
with high curvature is not sampled densely enough for numerical
methods; this results in shell inversion. This “escape” problem can
be avoided by integrating analytically over triangles of the surface
mesh (quads can be split into triangles for this purpose). Fortu-
nately, it is possible to integrate 1/r3 over a wedge, and a triangle
can be represented as a complement of three wedges in a plane, ob-
tained by extending each triangle side in one direction. For a single
wedge, the integral can be computed explicitly. Without losing gen-
erality, we can assume that the non-negative x axis is the starting
edge of the wedge, then the integral when p = 3 is

Z
�
|x − y|−3dy =

2

w
arctan

 
w

(|x| − u) cot β
2
− v

!
(4)

where (u, v, w) is the coordinates of the point x, and β is the
counter-clockwise angle of the wedge � . This formula is then dif-
ferentiated on u, v, and w for the calculation of gradient. Using
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Figure 7: Left: cross-section of the shell for a shape with sharp
corners; Right: same object with volume texture added.

Figure 8: Cross-sections of interior and exterior shells of the bunny.

these formulas, the integral over the mesh can be evaluated pre-
cisely if desired. While computing the gradient in this way is more
expensive, this eliminates the need for refinement, and in fact using
a coarser resolution version of the mesh yields good results.
Accelerating integral computation. The expense of computing
the gradient can be considerable for an interactive application since
it involves a surface integral.

Although we only integrate over a small part of the surface, in-
side a ball near a given point, further acceleration helps. We use the
Barnes and Hut algorithm [Barnes and Hut 1986] to compute the
integral hierarchically. Although the calculation is already constant
time, this algorithm is easy to implement, and provides a substantial
speedup.
Examples. Several examples of external and internal shells and tex-
tures are shown in Figures 7,8 and 14-18. The timings for simpler
objects were fractions of a second. For the bunny mesh in Figure 8,
the external shell was generated in 1.8 sec on a 1GHz Pentium III,
and the internal shell in 8 sec. The longer time for the internal
mesh is due to refinement necessary to compute a valid shell inside
the ears. The target thickness for the exterior shell was set at 10%
of the bounding box size, and at 5% for the interior shell.

target  thickness

Figure 9: Folding for extreme shell thickness (prescribed thickness
equal to the objects bounding box size, only 70% of the shell shown
to show the fold clearly.)

Figure 10: Comparison of the results of normal displacement
method (upper right) and our method (lower right) for a saddle.

Limitations of the approach. The resulting shell is not guaran-
teed to be one-to-one; this is essentially inevitable, as we require
directors to be straight. However, as shown in Figure 9, a rather
large shell thickness needs to be prescribed with a special type of
geometry for the failure to occur; for this figure, the requested shell
thickness was close to the size of the bounding box of the whole
object.
Comparison with alternatives. Shells created with normal dis-
placement and with our method are compared in Figure 10. For
a saddle as shown in the picture, the normal displacement method
inevitably generates a self intersecting shell. It does not matter on
which side of mesh the shell is expanded.

Level set methods, the fast marching method in particular,
present the main alternative to our approach. However, the level
set methods do not solve the problem of shell construction directly.
The methods do not readily provide any mapping from the orig-
inal surface to the advancing front, and the topology of the front
may change. In fact this is an advantage for many applications but
makes shell construction difficult. An additional step is required to
establish the correspondence, as described in [Sethian 1994]. An-
other alternative is the envelope construction [Cohen et al. 1996]
which preserves the topology of the original surface. We have ex-
plored this approach and found that the thickness of such envelopes
is very low in the regions of concavities, and the shape of the sur-
face of the envelope tends to be undesirable in such areas.

Finally we note that [Yezzi and Prince 2002] uses a conceptu-
ally similar (although numerically quite different) approach for con-
structing correspondences between surfaces, if we note that com-
puting our integrals over the whole surface for p = 1 corresponds
to solving the Laplace equation using Poisson formula. As we have
pointed out, the value p = 1 does not work for constructing shells.

5 Rendering

In this section we present the algorithm for rendering a surface rep-
resented using a volume texture.
Slice-based direct isosurface rendering. Consider a single quadri-
lateral face of the surface. The part of the shell on the top of this sur-
face is a hexahedron (Figure 11) with texture coordinates assigned
to all vertices. Our surface inside the hexahedron is the isosurface
of the function encoded in the alpha channnel of the texture. We
assume that the other channels contain the texture gradient. Recall
that the normal to an isosurface defined by α(x, y, z) = const is
∇α; therefore the gradient texture can be used for shading after
normalization. It should be noted that the gradient in the light di-
rection can be computed on the fly as suggested in [Westermann
and Ertl 1998]. However, this approach works only if the gradient
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no interpolation, 64 slices normal interpolation, 16 slices texture coordinate interpolation, 16 slices

layer boundaries, detail, 16 sliceslayer boundaries, 16 slicesmarching cubes, 643  grid

Figure 12: Comparison of quality for rendering methods for a single volume texture. The texture is computed as the distance field for a large
sphere with smaller spheres attached at vertices of a regular icosahedron. The number of slices in slice-based methods is chosen so that the
total time required to render an 800x800 image is approximately the same for each method.

view direction

view direction

surface

Figure 11: Left: Slices in a single texture hexahedron; slices are
oriented in the direction closest to the view direction. Right: Our
algorithm interpolates between the slice texture coordinates along
the view direction of the last slice outside the surface and the first
slice inside the surface.

already has unit magnitude (we need the unit normal for lighting),
which places considerable restrictions on the way α can vary.

The idea of the slice-based direct volume rendering is to ren-
der polygons intersecting the 3D textured volume, assigning tex-
ture space vertex positions as texture coordinates. The alpha test
is used to discard the part of each slice outside the object, and the
gradient texture is used for shading. One of the problems with this
approach is that there is a normal discontinuity at the boundary of
slice images (Figure 12). This means that many slices are needed
to achieve smooth shading. A large number of slices is affordable
when a single volume is rendered. In fact, several slices per 3D tex-
ture layer are often used; this still amounts to rendering only few
thousand slices, as the volume texture size rarely exceeds 512 in
any direction.

The situation is different for volume textured surfaces; for a
curved surface, a large number of polygons must be rendered for
each surface layer, so rendering multiple slices per pixel is often
not feasible.

Our algorithm addresses this problem by ensuring that the nor-
mal varies smoothly across slice boundaries, even if the distance
between slices is considerable. This allows us to reduce the num-
ber of needed slices by a large factor.
The idea of the algorithm. The idea of the algorithm is illustrated
in Figure 11 and is somewhat similar to the approach that was used
in [Westermann and Ertl 1998] for volume rendering of unstruc-

tured meshes. Suppose that for each pixel we know the texture
coordinates t1, corresponding to the first slice along the view di-
rection, for which α ≥ 0.5 (i.e. the point of the slice is inside the
object) and texture coordinates t2 for the last slice along the view
direction for which α < 0.5. In this case, we can approximate the
point where α = 0.5 by interpolating between two points, using α1

and α2 as weights. We interpolate the texture coordinates t1 and
t2 using the same ratio and look up the normal using the interpo-
lated coordinates. The interpolated coordinates change smoothly as
we pass the slice image boundary, and the normal obtained in this
way is considerably more accurate. This process can be regarded as
bump-mapping for isosurfaces.

Conceptually, our algorithm proceeds in two passes; an actual
implementation may be more efficient if the number of passes is
increased as discussed below.
Algorithm details. Suppose the top face of the hexahedron
is a quad P = [p0, p1, p2, p3] and the bottom face is Q =
[q0, q1, q2, q3]. We assume that the normals of any two opposite
faces are sufficiently close. Although nothing in the method relies
on this assumption, for highly distorted hexahedra, the quality of
the result will be low. We assume that the view direction is close
to the normals of both faces P and Q. We render a set of M slices
Sm where S0 = P and SM−1 = Q. The vertices pm

j j = 0 . . . 3
of the m-th slice are given by

pm
j =

“
1 − m

M

”
pj +

“m
M

”
qj

The texture coordinates are interpolated in a similar way. In addi-
tion to rendering the slices in the direction closest to the view direc-
tion, we also render the faces of the hexahedron to ensure correct
texture coordinate interpolation as explained below. We assume
that the top and bottom slices have alpha values below the thresh-
old at all points; otherwise we render additional slices in front and
back.
First pass. This pass is nearly identical to the simplest version of
slice-based rendering. The difference is that the output of this pass
is two textures. The 3D texture coordinates of the closest fragments
with α ≥ 0.5 are stored in the texture T1, while the z values of
those fragments are stored in the texture Z1.

The alpha test on this pass rejects the fragments with α < 0.5
(outside the object) while the standard depth test is performed.
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Figure 13: Steps of the rendering algorithm from left to right: Texture coordinates and depth from the first pass; Interpolated texture coordi-
nates of the second pass; Final image.

Second pass. On this pass, we need to perform somewhat more
complicated operations which require hardware programmability.
The textures from the first pass are applied to the rendered frag-
ments, using the viewport coordinates (x, y) as texture coordinates.
Fragments are discarded this time if α ≥ 0.5, i.e. it is inside the
object. For fragments with α < 0.5, we compare the fragment
z value with the depth texture value Z1(x, y) (the z value for the
closest fragment inside the isosurface). A fragment is discarded if
it is behind the closest fragment inside the isosurface.

If the fragment is not yet discarded, we look up α1 and t1, where
α1 = α(T1(x, y)) and t1 = T1(x, y), the α and 3D texture coor-
dinate from the previous pass at the current location in the frame-
buffer. We interpolate the two 3D texture coordinates to give us t3.
t3 = ((α1 − 0.5)t2 − (α2 − 0.5)t1)/(α1 − α2) where α2 and t2
are the α and 3D texture coordinate from the current pass.

The resulting coordinate t3 is used to look up the gradient for
lighting. We note that the gradient of α is computed in texture co-
ordinates and needs to be transformed to eye coordinates. Because
the hexahedron is a trilinearly distorted cube, the texture-to-eye co-
ordinates change from texel to texel. Instead of recomputing the
transformation, we compute it at the vertices and use trilinear inter-
polation in the interior. This approach works unless the distortion
is high.

Most importantly, the depth test on this pass is reversed. This
means that the fragment which is actually rendered is the furthest
fragment from the eye which is both outside the isosurface and
passes the comparison with the depth value from the first pass.

Note that in the second step we assume that the texture coor-
dinates from the first pass are taken from the same texture, so it
makes sense to interpolate t1 and t2. This is ensured by rendering
the boundaries between textures twice, with a small offset towards
each of the textures.

Finally, we observe that for smoothly varying textures, or if the
number of slices is equal to the texture dimension, normal interpo-
lation can be used instead of texture coordinate interpolation.
Implementation. The algorithm was implemented using
GeForceFX fragment programs.

The GeForceFX does not give you full depth when you bind
a texture to the depth buffer; only the 8 most significant bits are
present in the output. This precision is insufficient so we capture
the depth values from the first pass in a seperate pass that writes the
depth to 24 bits of a 32 bit RGBA buffer.

We also split the second pass into two passes: a pass to gener-
ate the 3D texture coordinates we need, followed by a final pass
that uses the two 3D texture coordinates per pixel from the previ-
ous passes to look up the gradient, generate a normal and calculate
the lighting. By using this extra pass we only need to perform the
lighting and interpolation of texture coordinates for visible slices,
and this final lighting pass also does not require geometry, so it is
inexpensive in terms of AGP bus bandwidth.

6 Results

In this section we describe a variety of operations that we have im-
plemented in our modeling system using algorithms described in
the previous sections.
Deformations. When the base surface is deformed, the shell needs
to be recomputed. We take advantage of the locality of the field
defining the shell, and recompute only the part which is within the
field influence distance from the modified surface part. This can
be done at interactive rates (Figure 14). We note that if a volume
deformer is used to modify the surface, the same volume deforma-
tion can be applied to the shell and no interactive recomputation is
necessary; however, for significant deformations it is still better to
recompute the shell.
Moving geometry along the surface. Image editing operations can
be relatively easily applied to volumetric textures, which results in
changes in the implicitly defined geometry (Figure 15). However,
when these operations are implemented, geometric distortion of the
2D texture mapping should be taken into account. This problem
is identical to the one addressed in [Biermann et al. 2002]. The
target area, to which the texture is moved, and the source area
are reparameterized on a common planar domain with a distortion-
minimizing parametrization. The common parameterization is used
to resample the source texture over the target geometry. The same
approach can be used for volume textures.
Boolean operations and carving. One of the advantages of vol-
ume geometry representations is that boolean operations become
relatively simple (Figure 14). In the case of volume textures, the sit-
uation is complicated by the fact that the transformation from world
coordinates to texture coordinates is nonlinear. However, it is still
relatively straightforward to compute a boolean operation between
a regular nondistorted volume object and the volume-textured sur-
face: this requires resampling the volume object over the shell grid,
which is straightforward.

Applying a boolean operation to two volume-textured surfaces is
much more difficult.
Animated Textures. Removing details from the underlying ge-
ometric representation and placing them into 3D textures makes
some animations much easier to execute. One example of this is
the boiling man (Figure 16). The texture is procedurally animated
to show the bubbles. Bubbles can easily appear, separate from the
surface and burst, as they are represented implicitly. Another ex-
ample of texture animation is growing trees on the surface; in the
video accompanying the paper, we added horses modeled as volu-
metric textures to a scene with a few dozen growing trees to show
how these techniques might complement one another. The speed of
our shell generation algorithm also enables us to animate the base
mesh and the texture at the same time (Figure 16,17).
Rendering Performance. The performance of the rendering algo-
rithm is quite good, especially for large textures. The turbine blade
shown in the video uses 128 slices through a 512x512x512 texture
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(compressed to 134 MB) and exhibits real-time performance. With
512 slices shown near the end of the clip, the quality is slightly
greater, and the rendering time is still acceptable for interactive
tasks.

On the other hand, when we try to stress geometric complexity,
we run into performance limitations. For example, with the shirt
shown in the video, we are limited to about 16 slices while still
obtaining close to real-time performance (17fps with either nor-
mal or texture coordinate interpolation). The video was created
using a Quadro 3000 card clocked at the standard 400/850 Mhz
(core/memory).

7 Conclusions and Future Work

In this paper we have presented methods for constructing and ren-
dering surfaces with small-scale geometry represented by volumet-
ric textures. These methods enable a variety of interactive modeling
operations. The shell construction algorithm might be useful for a
variety of applications using volume textures, such as fur rendering,
weathering, etc. The rendering algorithm is likely to be useful for
standard volume rendering applications to improve the isosurface
rendering quality.
Future Work. As we have mentioned, the shell construction al-
gorithm that we have proposed has considerable potential for ac-
celeration. Ideally, normal displacement should be used whenever
possible, with our algorithm applied only in complex areas.

It is easy to construct hierarchies for volume textures by low-
pass filtering and subsampling. However, it is well known that low-
pass filtering is not the best way to simplify implicit geometry, as
undesirable topological artifacts may appear. Exploring techniques
for topologically correct subsampling is a topic of future work.

As demonstrated in [Neyret 1995] and [Lengyel 2000], volume
textures provide a good foundation for a heterogeneous hierarchy,
when explicit geometry is converted to a form of reflection func-
tion or a normal distribution at coarser levels. Exploring interactive
techniques using such hierarchies is another promising direction for
future work.
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Figure 14: Editing operations: deforming a volume-textured surface and cutting a hole on the chain-mail shirt.

Figure 15: The first two are simple objects with small-scale geometry added. The last two show the operation of moving a geometric texture
on a surface.

Figure 16: An animated bubbling texture applied on a deforming head and two stages of a growing bush texture with a zoomed-in view.

Figure 17: A structural texture on a deforming plane and a kiosk. The second and the forth pictures are showing zoomed-in details. Volume
textures are used on the kiosk roof and walls.

Figure 18: Several different volumetric textures applied on the bunny. Only the heads are shown to view the geometric details.
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