Real-Time Rendering of Textures with Feature Curves

EVGUENI PARILOV and DENIS ZORIN
New York University

The standard bilinear interpolation on normal maps results in visual artifacts along sharp features, which are common for surfaces with creases, wrinkles, and
dents. In many cases, spatially varying features, like the normals near discontinuity curves, are best represented as functions of the distance to the curve and the
position along the curve. For high-quality interactive rendering at arbitrary magnifications, one needs to interpolate the distance field preserving discontinuity
curves exactly.

We present a real-time, GPU-based method for distance function and distance gradient interpolation which preserves discontinuity feature curves. The feature
curves are represented by a set of quadratic Bezier curves, with minimal restrictions on their intersections. We demonstrate how this technique can be used for
real-time rendering of complex feature patterns and blending normal maps with procedurally defined profiles near normal discontinuities.

Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/Image Generation—Antialiasing, line and curve generation; 1.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling—Curve, surface, solid, and object representations;1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Color, shading, shadowing, and texture

General Terms: Algorithms, Human Factors, Performance

Additional Key Words and Phrases: Curvilinear feature rendering, distance function, GPU algorithms, normal mapping, resolution independence

ACM Reference Format:

Parilov, E. and Zorin, D. 2008. Real-time rendering of textures with feature curves. ACM Trans. Graph. 27, 1, Article 3 (March 2008), 15 pages. DOI =

10.1145/ 1330511.1330514 http://doi.acm.org/10.1145/1330511.1330514

1. INTRODUCTION

Texture mapping is a powerful tool for adding high-resolution de-
tail to the material properties and geometry of models. However, the
regular sampling pattern used in textures leads to a range of aliasing
problems, particularly for curved one-dimensional features. Such
features are common in textures and include fine-scale geometry,
such as gratings, creases, scratches, cracks and seams, shadow maps,
and vector glyphs. For example, two main types of artifacts may be
observed for normal maps: staircasing artifacts due to misalign-
ment of linear features with the texture sample grid, and lighting
artifacts due to use of bilinear interpolation in areas of discontinuity
(Figure 1).

Recent feature-based texture representations [Ramanarayanan
et al. 2004; Tumblin and Choudhury 2004; Sen 2004; Tarini and
Cignoni 2005] improve texture appearance by explicitly represent-
ing discontinuities. This approach eliminates or reduces many types
of artifacts, and focuses on a unique way of representing and real-
time rendering of curvilinear features.

In this paper we describe algorithms for textures with feature
curves, extending previously proposed feature-based texturing tech-
niques. The distinctive elements of our approach to representing
features are: a) features not only represent the object boundaries
but also can be arbitrary functions of the distance and direction
to curvilinear discontinuity, and b) curved features are represented

by quadratic Bezier segments, rather then approximated with line
segments, which is essential for resolution independence.

Another central element of our construction is an approxima-
tion of the unsigned distance function to the feature curve set and
its gradient: the distance function vanishes precisely along the fea-
ture curves, is smooth away from feature curves, and is efficiently
represented by a pair of auxiliary textures. Using unsigned distance
functions is crucial for representing open feature curves. We present
a GPU-based algorithm for reconstructing the distance map and its
gradient from these textures in real time.

To avoid input restrictions, we developed a robust, incremental
preprocessing algorithm, which converts complex configurations
with multiple connected features into a texture representation that
can be handled by our rendering algorithm simplifying complex
joints as necessary. As a result, our system imposes few restrictions
on the input set of feature curves, although certain configurations
may cause artifacts, as discussed in Section 6. The preprocessing
algorithm is interactive if linear rather than quadratic curves are
used.

Our approach combines elements of texture-based and procedu-
ral geometry representation: the user can specify a profile for the
immediate neighborhood of a sharp feature as a function of the dis-
tance to the feature. Through using user-controlled profiles, we can
produce a variety of behaviors without dramatic increase in texture
size.

Author’s address: E. Parilov; email: parilov@cs.nyu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or direct commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions @acm.org.
(© 2008 ACM 0730-0301/2008/03-ART3 $5.00 DOI 10.1145/1330511.1330514 http://doi.acm.org/10.1145/1330511.1330514

ACM Transactions on Graphics, Vol. 27, No. 1, Article 3, Publication date: March 2008.

3:2 o E. Parilov and D. Zorin

Fig. 1. Left: Typical bump and normal map artifacts. Note the bright lines
at the bottom of the crease: these lines are due to the interpolation between
normals pointing in opposite directions. Right: the enhanced map using our
technique. The resolution of the map in both cases is the same; the visible
part is 40 x 40 pixels.

In this paper, we focus on normal maps, for which these exten-
sions are most relevant. However, our technique can be useful for
any piecewise-smooth texture, for which it is desirable to introduce
different types of feature profiles as a function of the distance to the
curve (e.g., color variation as the distance to the veins on tree leaves
or crease profile variation in displacement maps).

2. PREVIOUS WORK

Images and Textures with Resolution-Independent Features. The
idea of explicit representation of discontinuities for data sampled
on regular or unstructured grids has appeared in computer graphics
in many different contexts (e.g., discontinuity meshing for radiosity
[Heckbert 1992] to nonphotorealistic rendering). We focus only on
the most closely related work. Salisbury et al. [1996] presented
an illustration reproduction approach, which keeps discontinuous
regions sharp at any scale. The reconstruction algorithm starts from
an arbitrary interpolation kernel and reweights its intensity values
according to the closeness to the sample. As the algorithm is based
on finding shortest paths, it is difficult to adapt it for interactive
applications.

Our method builds on ideas in feature-based texture work
[Ramanarayanan et al. 2004], bixels [Tumblin and Choudhury 2004]
and silhouette maps [Sen 2004] and adaptive distance field work
[Frisken et al. 2000, 2002].

Bala et al. [2003] and Ramanarayanan et al. [2004] have devel-
oped a general framework for representing sharp features in textures,
called feature-based textures. Feature boundaries are represented
by Bezier segments, and texels may store complex intersections of
boundaries. Only values in the same continuous region are used for
texture interpolation. Our method can be regarded as an extension
of this approach with distance functions and an adaptation of it to
hardware implementation by conversion of the input curve networks
to simplified form.

Tumblin and Choudhury [2004] encode discontinuities using bix-
els, that is, pixels with additional annotation, which define texture
discontinuity segments for every pixel, allowing only a restricted set
of combinations of segments. Our feature maps are similar in spirit,
but they encode the distance field and are adapted to interactive
rendering.

Sen’s silhouette maps [Sen 2004], extending Sen et al. [2003],
are similar to feature-based textures and bixels, but the interpolation
approach used in this work is further simplified such that it maps
well to graphics hardware. As in Tumblin and Choudhury [2004],

ACM Transactions on Graphics, Vol. 27, No. 1, Article 3, Publication date: March 2008.

a finite number of discontinuity boundary configurations are used
for each texel. The discontinuity representation is restricted only to
straight segments.

Adaptively sampled distance fields (ADF) [Frisken et al. 2000]
is the most closely related technique, converting 2D (or 3D) ob-
ject boundaries into a signed distance field and storing distance
samples in a quadtree or octree of nonuniform cells. In its origi-
nal form, the technique is restricted to smooth boundary curves of
two-dimensional domains. The boundaries of objects are accurately
represented by using a polynomial distance field approximation in-
side cells containing boundaries [Frisken et al. 2002]. Using signed
distance fields makes it possible to avoid the problem of represent-
ing nonsmooth functions as the signed distance is smooth across
boundaries. [Perry and Frisken 2005; Frisken and Perry 2006] in-
troduced vector distance fields with specialized cells which are ca-
pable of representing corners, overlapping objects, and thin fea-
tures, for example, stems, without excessive cell subdivision, but
still does not allow for resolution-independent representation of ar-
bitrary curve networks (e.g., open curves or curves with joints as
shown on Figure 1, right). These patents also describe a GPU-based
implementation. A crucial element of our approach is an unsigned
distance function which vanishes exactly at the feature curves, ex-
tending distance-based techniques to arbitrary curve networks.

Unlike Perry and Frisken [2005], we use parametric form as the
primary feature representation. This helps representing curve inter-
sections in a direct way and considerably simplifies ensuring C'
continuity across cell boundaries; conversion from commonly used
vector graphics formats is more straightforward.

Real-Time Curvilinear Discontinuities. Textures with curvilin-
ear features look more appealing than their analogues represented
by the networks of linear segments. Direct representation of curvi-
linear features is essential when close-up rendering of textures is
needed. Among the already mentioned works, the sharp strokes
[Salisbury et al. 1996], feature-based textures [Bala et al. 2003;
Ramanarayanan et al. 2004], and bixels [Tumblin and Choudhury
2004] accept curves as their discontinuity features. However, GPU
adaptation of the latter algorithms is relatively difficult.

Tarini and Cignoni introduced the pinchmap [Tarini and Cignoni
2005], with which smooth textures with curvilinear discontinuities
are interpolated in realtime without artifacts. The algorithm accepts
arbitrary curves and is very efficient, but the feature curves cannot
have intersections.

In the GPU algorithm [Loop and Blinn 2005], objects with bound-
aries in the form of quadratic and cubic spline curves are sharply ren-
dered with infinite resolution. In our approach we also use quadratic
splines for the discontinuous features. However, their feature rep-
resentation is not suitable for interpolating distance function and
gradient field around the features, essential for making discontinu-
ity customizable as is possible for our feature curves.

Our feature curves are comparable to the concurrent work of Qin
et al. [2006] on rendering font glyphs anti-aliased at arbitrary mag-
nification. Similar to our technique, their approach is based on exact
computation of a distance field to glyph boundaries approximated
by line segments. The crucial difference is that we rasterize the dis-
tance field and its gradient during preprocessing (local approach),
while Qin et al. [2006] looks up the closest feature and calculates
the distance directly (global approach). This approach is difficult to
generalize to resolution-independent curvy features and to handle
multiple features meeting at a point.

Textures Representing Small-Scale Geometry. A variety of tech-
niques were developed for representing fine-scale geometric detail
with textures. Bump maps were invented by J. Blinn [1978]. Many

Real-Time Rendering of Textures with Feature Curves e 33

n, (d)

Fig. 2. Interpolation between the global smooth normal map and the local profile. We show updating height maps for clarity, but we interpolate normals, not

the underlined mesh.

techniques for interactive rendering of bump maps were proposed,
(e.g., Tarini et al. [2000] and references). With the appearance of pro-
grammable graphics hardware, use of basic bump mapping became
commonplace. Bump map appearance can be improved by horizon
maps, a technique for self-shadowing of bump maps, introduced in
Max [1986, 1988]. Sloan and Cohen [2000] described how hori-
zon maps can be accelerated using hardware. Parallax mapping and
steep parallax mapping [McGuire and McGuire 2005] aim to reduce
another artifact of bump maps: incorrect behavior when a surface
is tilted. A more consistent way to address this problem is by using
relief maps [Oliveira et al. 2000]. In many methods for high-quality
rendering of normal maps, one needs to make a transition between
different rendering modes as in Becker and Max [1993]. Enhance-
ments to lighting of bump maps necessary for such transitions are
described in Heidrich et al. [2000]. Displacement maps, introduced
in Cook [1984], and relief maps [Oliveira et al. 2000] are a more
advanced form of representing fine-scale geometry for flat surfaces
(extensions to arbitrary surfaces were presented in Policarpo et al.
[2005]). Distance maps [Donelly 2005] significantly improve ren-
dering quality of small details by making use of volumetric distance
field to the closest surface features while maintaining real-time per-
formance of displacement maps.

While techniques for interactive rendering of displacement maps
were recently proposed [Wang et al. 2003, 2004], these require large
precomputed data sets. Interactive rendering of relief maps requires
less data. While we describe our technique in the context of normal
maps, it can be applied to rendering of relief maps representing the
same type of geometry.

Texture and Detail Synthesis. As the application of our tech-
nique results in a combination of sampled and procedurally defined
normals, our work is related to work in texture synthesis. Procedu-
ral bump maps first appeared in Perlin [1985]. There were a large
number of papers on nonparametric synthesis from examples; these
techniques often can be applied to produce bump maps [Zhang et al.
2003]. Our technique addresses a specific case of the problem of
adding high-resolution detail to an image, focusing on sharp curvi-
linear linear features. A general approach to this problem can be
found in Ismert et al. [2003].

To summarize, we believe our method to be the only real-time
technique combining the following features: a) C' sharp feature
curves at arbitrary resolution, b) open and intersecting feature
curves, and ¢) smooth (away from feature curves) distance func-
tion and distance function gradient, enabling user-defined distance-
based feature profiles. For linear features, our method is fully
interactive.

3. OVERVIEW

The input to our algorithm consists of a network of feature curves
representing desired texture sharp features or discontinuities, a tex-

ture map to which feature curves are added, and a one-dimensional
profile defining how the texture is modified near the feature curves.
The curves are represented by nondegenerate (i.e., no two control
points coincide) quadratic Bezier segments. No further restrictions
are imposed on the input.

At the preprocessing stage, we convert the curves to a texture-
based representation (Section 4), and create additional textures rep-
resenting the distance field and its gradient (Sections 3.2 and 4).
The feature curves are split into texel-sized discontinuity segments,
defined by discontinuity signatures.

At the rendering stage the original texture, profile, and additional
textures generated by preprocessing are used to compute texture
values at arbitrary locations needed for rasterization.

The combination of preprocessing and real-time algorithms aims
to approximate, as closely as possible, a desired piecewise-smooth
function (color, normal direction, or any other quantity encoded
in the texture) defined by the combination of the feature curves,
profiles, and a smooth map interpolating texture values.

In the rest of the algorithm description, we focus on normal maps,
although the algorithm can be applied to other types of textures with
minor modifications.

3.1 Normal Maps with Features

We start with a precise definition of the normal field we aim to
approximate.

Suppose we are given a normal map, encoded in a texture,
N, v) : [0..Unax, 0..Vipax] — R3. We split the map into two
components N(u, v) = [Ny, Ny, N.] = [N,,, N.], where N, (u, v)
is the 2D projection of the normal to the object’s tangential plane at
a point p(u, v). Only N,,(u, v) needs to be represented explicitly.

Let the distance to the closest feature curve from p(u, v) be d(u, v)
and let the gradient of d(u, v) be Vd(u, v). Let h(d) be the user-
specified profile defining displacement of the fine-scale surface from
the coarse geometry to which the texture is applied. In the simplest
case, it depends only on the distance to the feature set d but may
also depend on the closest point on the feature curve and other
parameters.

We use a blending function b(d) to merge given normals with the
normals derived from the crease profile /(d). The process of obtain-
ing a new normal, given by N(d) = (1 — b(d)) n,(d) + b(d)N(d),
is illustrated in Figure 2, where ny, is a normal of the crease profile
pointing toward the feature curve. In the formulas, we omit the de-
pendence of d on (u, v) where it is clear. We choose b(d) to satisfy
b(d) = 0 for d < wy and b(d) = 1 for d > w, where wy is the
half-width of a band around the feature curve, for which the original
normal map has no effect (w, can also be zero), and w is the feature
curve width.

Assuming that the projection of profile normal n,, is aligned
with the distance gradient Vd(u, v), the (nonnormalized) desired

ACM Transactions on Graphics, Vol. 27, No. 1, Article 3, Publication date: March 2008.

3:4 o E. Parilov and D. Zorin

[d

<o
o>

/

Fig. 3. Left: Distance function singularities for a rectangle: the medial axis is depicted in blue, and vectors denote the gradient discontinuity areas. Right:

Distance function level lines and close-up rendered by using our techniques.

continuous normal map N(u, v) is
NX).(u, v) = —(1 —b(d)h' (d)Vd + l;(d)ny(u, v)
N.(u,v) = (1= b(d)) + b(d)N.(u, v), (1)

where b(d) = b(d)/h'(d)* - V2d + 1

Our algorithms are designed to approximate the function defined
by (1), maintaining precise behavior at the feature curves. For the rest
of the paper we assume working in the texture domain [0..Upgx] X
[0..Vinax], unless a different domain is specified. The domain is split
intotexels 7;; = AU [j..j + 1) x AV [i..i +1). Weusep, = [u, v]
to denote a sample in the texture domain. We exclude the right and
top boundaries from each texel, except the right and top boundary
rows of texels, such that each point in the domain belongs to a single
texel.

We also assume that meshes have nice parameterizations, so that
texture mapping does not noticeably distort the feature curves.

3.2 Distance Functions

The distance map representing the unsigned distance function is
central to our algorithm: it determines the locations of the discon-
tinuity curves and the distance to these curves. The direction of the
gradient of the distance function for many feature profiles heavily
influences the resulting value as can be seen from Equation (1). To
ensure rendering quality, we would like them to satisfy the following
distance function requirements (DFR):

DFR,. (a) the approximate distance function should be exactly
zero at feature curves so that sharp features can be created; (b) it
should vary continuously; (c) it should remain close to the precise
distance function near feature curves in order to be able to control
feature width correctly;

DFR,;. the gradient of the distance function should be continuous
away from feature curves;

To understand the difficulties with approximating the distance
function on the grid, we observe that the Euclidean distance func-
tion has two types of singularities where the gradient is discontin-
uous: distance zero curves, and medial axis curves, that is, sets of
points which are equidistant from two or more points on feature
lines (Figure 3).

‘We represent the first type of singularity explicitly. Most singular-
ities of the second type are far from feature curves, and the distance
function does not affect the result in these locations. However, at cor-
ners, the medial axis meets the feature lines, so we need to address
the gradient discontinuities there.

ACM Transactions on Graphics, Vol. 27, No. 1, Article 3, Publication date: March 2008.

Fig. 4. Interpolation domains for the distance function near a feature line
shown in different colors.

To satisfy our requirements, we compute the approximate distance
function and its gradient from samples as follows:

(1) Within the texel the distance function d(u, v) is linearly in-
terpolated on curved triangular subtexel domains (Figure 4)
aligned with feature curves to ensure that it is zero at these
lines.

(2) The gradient Vd(u, v) is also interpolated linearly. Note that
this is not equivalent to computing the gradient of the inter-
polated distance function, as the latter would be piecewise
constant.

(3) The gradient samples on the texture grid Vﬁ,«j are smoothed
away from the feature lines, to eliminate discontinuities at the
medial axis.

The construction of a specific representation of the distance map is
discussed in detail in Section 4. The real-time evaluation of distances
and gradients is discussed in Section 5.

4. PREPROCESSING

Preprocessing has two goals: to simplify the connectivity of the
feature curve network so that it can be represented using a fixed
number of curve segments per texel, and to ensure that the simplifi-
cation process results in a curve network with no self-intersections
and sufficiently smooth curve segments. The former is achieved by
a snapping process locally modifying curve segments overlapping
a texel. The latter requires solving a collection of local constrained
optimization problems. While computationally relatively expensive,
the latter step is essential for obtaining a usable simplified curve

Real-Time Rendering of Textures with Feature Curves e 35

A0 7
DN NS

L
M

Fig. 5. Left: Valid discontinuity configurations for a texel. Right: Prohibited discontinuity configurations.

-4

L

=

=

r X

Fig. 6. Left: Edge point transformations. Black points are replaced by their center of mass (white points) to satisfy the first rule, identified discontinuity
segments are deleted to follow the second rule, no hanging curves inside a texel according to the third rule. Right: Transformation artifacts: (top) reduction of

a curve to two linear discontinuity segments, (bottom) change of topology.

network; this step is unnecessary only if linear curve segments are
considered.

For every texel overlapping a curve, we define a discontinuity
configuration and a signature. The discontinuity configurations and
signatures are stored as additional textures. A discontinuity con-
figuration defines the number of discontinuity segments within the
texel and which edges are crossed by the segments. The disconti-
nuity signature stores more detailed information: exactly where the
discontinuity passes through an edge and its tangential direction.

In principle, local configurations of discontinuities can be arbi-
trarily complex: any number of curves can overlap a texel. Following
Tumblin and Choudhury [2004] and Sen [2004], we reduce the num-
ber of allowed configurations, avoiding introduction of points in the
center of texels. Valid discontinuity configurations for a single texel
are defined by the following three rules:

—One boundary edge of a texel may be crossed by discontinuity
curves at no more than one point.

—There are no more than two discontinuity curves inside any texel.

—A discontinuity curve ends on a texel boundary.

We call a portion of the discontinuity curve overlapped by a texel
as a discontinuity segment. Valid configurations of discontinuity
segments are shown in Figure 5 (left).

Our choice of the set of valid configurations aims to achieve a
good balance between generality of networks that can be represented
exactly, required texture size, and algorithm complexity. The major
limitation of our choice of valid configurations is that no more than
two curves may overlap a texel, curve termination inside texels is not
allowed, no more than four curves can share endpoints, and curves
sharing a point on a texel boundary also have to share a tangent [see
Figure 5 (right)].

The algorithm modifies discontinuity curves locally and trans-
forms an arbitrary configuration into the one that satisfies our re-
quirements. Figure 6 (left) illustrates the changes in the discontinuity
map the algorithm performs.

(:.6,)

(d,.9,) (4..6,)

(d,.8,)

(dl ’e 1) (dl ’e 1)

Fig.7. Discontinuity signature: an encoding of the endpoints and tangential
vectors along discontinuity segments.

Once the transformation is complete, every texel has at most two
discontinuity segments, so we can store texels’ configurations in the
configuration map as quadruples C; ;. Configuration Cis[0,0,0,0]
for an empty texel, has two pairs of endpoint edge indices for a texel
with two discontinuity segments: ¢ = [({y, my), (I, my)], and two
copies of endpoint edge indices of the only discontinuity segment
within a texel with one discontinuity: C = [({y, my), (I, my)]. The
edge indices [;, m;, s = 1,2 are in the range 1...4 (edges are
ordered clockwise starting with from the south edge).

Based on the resulting configuration map and by using the ad-
justed network of feature segments, we assign discontinuity sig-
natures for all affected texels: each texel is annotated with eight
numbers representing the four distances from the left/bottom cor-
ners to discontinuity segment endpoints along the texel bound-
ary, and four angles between tangential vectors at the end-
points and the horizon (Figure 7). The default distance/angle pair
(0.5, 0) is assigned to every edge without a discontinuity point
on it. For example, the default discontinuity signature for tex-
els with no segments is S = [(0.5,0), (0.5, 0), (0.5, 0), (0.5, 0)].
If there is a segment passing the south and the east edges, then
S = [(d1,6), (d2, 0,),(0.5,0), (0.5,0)]. Finally, S = [(d),, 6;,),
(dn,, Om,), dy,, 61,), (dp,, O,)] for texels with two discontinuities.

ACM Transactions on Graphics, Vol. 27, No. 1, Article 3, Publication date: March 2008.

3:6 o E. Parilov and D. Zorin

Fig. 8. Left: an example of the initial configuration for spline energy optimization, given by Equation (2), within an invalid central texel with two discontinuity
segments. All the locations of filled circles are optimized. Right: optimal positions of the segments «,8,y .81, and 8. All the locations of open circles are fixed

during optimization.

The conversion process proceeds as follows. Initially, default
empty configurations are assigned to all texels. Each feature curve
is scan-converted to the texture to determine all texels it intersects
(visited texels). For each visited texel, we check if there are one or
two intersections of the curve with the texel’s edges. In the former
case, only the intersection point is used in the conversion process,
while the part of the curve inside the texel is disregarded. In the latter
case, we use a table of texel transformations to adjust the configu-
ration; the table maps a pair (valid texel configuration, pair of edge
indices for the new segment endpoints) to a transformation defining
a new configuration. Any such transformation maps a valid texel
configuration to another valid texel configuration and updates the
texel’s discontinuity signature by calculating the center of mass of
all discontinuity points included so far per every edge (e.g., Figure 6
(left)).

The advantage of this algorithm is that it is easy to see that it will
always produce a valid set of configurations for all pixels; however,
it may introduce artifacts in rare situations like those depicted on
Figure 6 (right).

While texel configurations are guaranteed to be valid, in the case
of curvilinear features, not every resulting discontinuity signature
is valid. Some configuration-signature pairs may produce no Bezier
segment at all (e.g., when their 0s are equal), produce a Bezier
segment which leaves the interior of the texel, or C' continuity
is not maintained between connected discontinuity segments. To
address these issues, we transform all invalid signatures by running
aconstrained optimization on the curve segments within the affected
texels and their immediate edge-neighbors.

We describe the details of the optimization on a texel with two
discontinuity segments sharing one edge-point; other configurations
are optimized in a similar way. We minimize an energy of a set of
discontinuity segments including segments within the affected texel
(e.g., Bezier segments 4;, §, within the central texel in Figure 8) and
connected segments in the adjacent texels (segments «, §, and y
within the east, north, and west immediate neighbors in Figure 8).

To make the process local, we fix the signature angles and po-
sitions in the adjacent texels located on the edges not shared with
the central texel (open circles on the Figure 8). Locations of control
points (excluding those coincident with fixed signature locations)
of all Bezier segments are the variables in the optimization (filled
circles on Figure 8). Linear inequality constraints keep all segments

ACM Transactions on Graphics, Vol. 27, No. 1, Article 3, Publication date: March 2008.

inside their original texels, and nonlinear equality constraints ensure
tangent continuity with adjacent segments (§; with 8 and y, and 8,
with « and y on Figure 8). The complete optimization problem is

Econf= E,+Eg+ E, + E; + Es, — min

subject to linear inequalities

B 14
bf € 17y, by € T, ;5 by €T, S \
bS € 9.T;;, b €3,T;;, b} €d,T;;, b € T, b € Ty
subject to nonlinear equalities 2)

P(b%, b%, b?) = P(b? . b5, b)) =0
P(b}. b}, bi") = P(b], b}, b?) =0
subject to linear equalities
b = b}
by =b3, b} =b3 =b>.

In the optimization problem formulation, 7° and 0,7 de-
note the interior and the (east/north/west) boundary of texel
T, and b € T,-f’j is explicitly expressed by the inequalities
{0 < 13x —j<1,0< l3y —i< 1}.Thepointsonthetexel’sedges,
e.g. the west edge, b € 9,T;; are identified using a function
P as {P®,[j.il.[j,i+1)=0,0<b,—i <1}, where b =
[b./AU,by,/AV] and P(p, q,r) is zero whenever its arguments
lie on the same line. We use P(p,q.r) =(p—q)-(q—1)— |p —
qi’lq —rf*.

The energy E, of aquadratic Bezier segment x given in Bernstein
form [Farin 1997], BX(z), with control points b, i = 1,2, 3, is the
standard thin-plate energy:

1
-
0

We use sequential quadratic programming to solve the optimiza-
tion problem for each local configuration separately. An example is
shown in Figure 8.

If only linear discontinuities are presented in the original texture,
then every resulting discontinuity signature is valid. In this case,
the preprocessing algorithm avoids signature optimization and is
sufficiently fast for interactive feature line modification.

2

di=4pl =26 + b, (3

2

2B ®

Real-Time Rendering of Textures with Feature Curves . 3.7

Rasterization of Distance Field and Its Gradient. The dis-
tance field values and the gradient values are calculated at the texel
corners simultaneously with configuration transformations. We ini-
tialize the distance field with some “large” value and merge the
local distance fields of individual features one by one by keeping
the smallest distance values within the merging domains. Gradi-
ent values corresponding to the smallest distances are stored in the
gradient texture.

We smooth the resulting gradient texture Vd; ; by using con-
strained Laplacian smoothing (e.g., Taubin [1995] for similar tech-
niques). Specifically, each vertex moves toward the barycenter of
its neighbors, excluding the neighbors on the other side of the dis-
continuity. We found that approximately 10 smoothing iterations is
sufficient. As is well known, Laplacian smoothing quickly elimi-
nates high frequency features, while slowly reducing low frequency
features, which is the desired result in our case.

The significant improvement in appearance due to smoothing the
gradient field is shown in Figure 12: compare two images on the
right of the top row. Note that no smoothing is done on the distance
function itself; we found it important to keep it unchanged, for
example, for maintaining approximately constant width of creases
when desired.

5. REAL-TIME RENDERING
5.1 Normal Computation During Rendering

The input to the interactive part of our algorithm includes
—the distance map d; ; and the gradient map vd; s

—the discontinuity configurations C; ; and discontinuity signatures

Sij»

—any other texture maps used for rendering, including the normal
map Nl‘ s

—user-defined crease profile 7(d). It may be stored in a
one-dimensional texture /.

Our rendering algorithm, implemented as a pixel shader, uses the
normal map, per-texel discontinuity configurations and signatures
and profiles to compute the normal values. Once all necessary quan-
tities are interpolated, Equation (1) is used to obtain the normal. The
goal is to interpolate the distance field, its gradient, and normal tex-
ture in a way that respects feature curves. In particular, there should
be no averaging of values across the discontinuity segments. We
achieve this by using a three-stage interpolation procedure which
partition the texel.

Discontinuity segments partition a cell into several domains. For
valid configurations, the segments are topologically equivalent to a
subset of the boundaries of an eight-triangle partition of the domain
(Figure 4). For example, for a single discontinuity segment connect-
ing two adjacent sides, one domain is a union of seven curvilinear
triangles on one side of the segment and the other is one triangle
located on the opposite side of the segment. For any configuration,
we generate an eight-triangle partition, adding additional vertices
when necessary. The vertices of the partition triangles located on the
texel’s edges (edge vertices) are either determined by the disconti-
nuity endpoints (as for vertices ¢, and g, on Figure 9) or placed at
the edge center when there is no discontinuity passing such edge (as
for vertices g, and g, on Figure 9). The common central vertex r,,
is an intersection of horizontal segment {g;, g,} with vertical seg-
ment {q,, q.}. Partition triangle vertices are only created temporarily
during the rendering step.

Our algorithm can be summarized as follows: we interpolate/
extrapolate corner values of the texel contained in the same domain

gym.
el

Fig.9. Stepsin locating the partition’s triangle containing p; ; discontinuity
feature passes through points g, and g4.

of the discontinuity partition as p, (note there may be only one corner
value available) to obtain the values at the vertices of the curvilinear
triangle containing p,. Then, we obtain values at p, by interpolating
inside the triangle.

The curvilinear triangle which contains p, is localized in two
steps: first, by finding one of the four quadrants which contains the
point, and second, by choosing the triangle containing p, within the
quadrant. This process is illustrated in Figure 9. It requires running
a test to determine on which side of a discontinuity curve a point is
(Section 5.2).

To determine the values at the edge vertices, we interpolate the
samples at texel corners and then use the values at edge vertices to
interpolate the value at the central vertex. The values at the edge
and central are obtained using only samples from reachable texel
corners: the corners in the same discontinuity partition domain with
P:-

Once the samples at triangle corners are obtained, triangle’s
corners are interpolated to calculate the values at point p;:
d(u, v),Vd(u, v), and N(u, v). Our procedure ensures the distance
function is exactly zero on the discontinuity segments: if two edge
vertices are on a discontinuity segment, the distance function value
at these vertices is zero; the value at the central vertex is interpolated
from these two values and is also zero. Our technique for interpo-
lation on curvilinear triangles, described in Section 5.3, ensures all
intermediate values along the discontinuity segment connecting an
edge vertex with the central vertex are also zero.

5.2 Side Test

The side test determines on which side of a curve a point is located.
It is straightforward in the linear case, so we focus on the curvilinear
case.

To perform the side test for quadratic Bezier curves, we convert
them to animplicit form, f(x, y) = 0. By using a well-known result
from algebraic geometry [Cox et al. 1998], we find the implicit form
of a Bezier segment, written in power basis as B(s) = [¢.(s), g,(s)]
with g;(s) = a;s> + b;s + c;, by equating the resultant of the two
polynomials g, (s) — x and g,(s) — y to zero:

Sp(x,y) =Resaalgi(s) — x5g,(s) — y]
—a, —b, x —c,
1 0 —a, —b, x-—c -0 4)
~|=-a, =by, y—¢, O -
0 —a, —b, y-—c

The two sides of the curve are defined by the sign of f. The side
test, based on implicitization, may yield incorrect results for highly
curved segments: a curved segment may pass a unit square twice.
For example, a Bezier segment B[by, by, b,] on Figure 10 (left) has
a parabola y as its implicit form which intersects the texel a second
time at the NW corner such that samples p; and p; are on the same
side of the implicit curve but on different sides of the Bezier segment
B. We use the following simple test to detect such cases.

Consider a parabola which corresponds to the Bezier seg-
ment with control points, by = [—1/2,0], by = [xo, yo], and

ACM Transactions on Graphics, Vol. 27, No. 1, Article 3, Publication date: March 2008.

3:8 E. Parilov and D. Zorin

b,

d,

Fig. 10. Left: An example of an implicit form which assigns the same side for two points separated by a discontinuity. Center-right: resolving side test

ambiguity for the case xo # 0 (center), and xo = 0 (right).

Fig. 11.
edge. Right: a 2C-triangle with two curvilinear edges.

b, = [1/2,0]. It has the following unique form up to a constant
factor:

(5)

After applying a linear transformation u = (xox + yoy)/|bi1], v =

(—Yyox + x0y)/|by|, the parabola becomes
b

vV— — =
2

4(—yxo + x¥0)* + 2yy0 — ¥5 = 0.

2|b1|3 2 Xo
——v -

Yo

(6)

Yo
The larger the leading coefficient is in Equation 6, the narrower the
parabola will be, and more likely that both branches of the parabola
will intersect the texel.

We consider the following two cases: xo # 0 and xo = 0. In
the first case, the distance from a point b}, the image of b; under
the linear transformation, to the parabola’s medial axis, d;, equals
|x0Yol/4|b;]3, and the corresponding distances dj, d, for bj and b}
are |xoyo|/4/b1|* £ |yol/2|b;| [Figure 10 (center)]. If the smallest
such distance is larger than the diameter of the unit square, then the
second parabola’s branch never intersects the texel, making the side
test unambiguous. Therefore, we use the following as a safety test:

@)

If the inequality (7) fails, we update the position of the second control
point b; so that x, = 0, leading us to the second case.

The second case is always unambiguous if we assume a lower
bound on possible values of the angles 6 between the tangential
direction and the texel edge [Figure 10 (right)]. If aline, representing
a texel’s edge with by on it and having a parametrization [1/2, 0] +
[cos «, sin ¢, were to intersect the parabola y = —2yox? + /2,
derived from Equation (5) with x, = 0, at point p, the distance

min(dy, dy, dy) > V2.

ACM Transactions on Graphics, Vol. 27, No. 1, Article 3, Publication date: March 2008.

Interpolation schemes at a sample point p for triangles of different edge types. Left: a straight-edge triangle. Center: a 1C-triangle with one curvilinear

d(by, p) to the intersection point is

2
d(by, p) = (L tana + 1) (1 + tan? oz) . ®)
2y0

This distance is always larger than 1 (guaranteeing that the parabola
does not intersect the texel again) if tana < —4yy. As the deriva-
tive of the parabola equation at point by equals (—2yy), we can
approximate the smallest possible angle 6, = arctan(—2yy) —
arctan(—4yy) ~ 2y, /(1 + 16y§). To ensure this condition holds, we
always convert curvilinear discontinuity segments with small values
of 6 < Oy, to straight segments.

5.3

We apply three different interpolation techniques to reconstruct the
unknown values inside a triangle given three values at the triangle’s
corners, depending on the following types of the triangle’s edges:
(a) straight-line triangle: all edges are straight lines; (b) curvilinear
1C-triangle: one curvilinear edge represented by a quadratic Bezier
segment; (c) curvilinear 2C-triangle: two quadratic Bezier edges
(Figure 11).

To find an unknown value V(p) (i.e., distance, gradient, or nor-
mal) at a point p inside of a straight triangle (pi, p2, p3), given
corner values V; =V (p;), we apply the standard linear interpo-
lation based on the barycentric coordinates {u;} of p;: u;
SPi—1, Pis1> P)/S(P1, P2 P3), V(P) =), ui Vi

For a 1C-triangle (p;, p2, q), where q is adjacent to the straight
edges (Figure 11, center), we define a map from the unit square
with coordinates (s, u) to the triangle’s interior, being degenerate at
the edge s = 0. For any point in the triangle, we obtain the values
of s and u by intersecting a ray [q, p) with the curvilinear edge

Interpolation in a Curvilinear Triangle

Real-Time Rendering of Textures with Feature Curves e 39

{p1, p2} to locate a point p’. As the edge {p;, p»} is parameterized
by a quadratic function ¢(u), the system of equations for s and u is

P = o) 9)
s=|p —p|/|p—dql.

Solving the system reduces to solving a quadratic equation. We
note that there is always exactly one intersection, which can be
shown by using the variation-diminishing property of Bezier curves.
Finally, we use bilinear interpolation to compute V(p): V(p) =
so(ue(Vy,V2),V,), whereu o (V, W)= (1 —u)V +uW.

We use a different approach for 2C-triangles, as a simple radial
parametrization of the type we use for 1C triangles is impossible.

For a 2C-triangle (p;, p2. q) with curvilinear edges {p,, p»} and
{q, p2}, parameterized by ¢;(u) and @,(v) respectively, we choose
an auxiliary point r on the ray passing the straight edge [p;, ql.
Consider the ray [r, p) going through point p. Again, by the Bezier
curve variation-diminishing property, one can show there will be
exactly one intersection with curvilinear edges. For the sample p,
we find the intersection points p’ and p” of the ray [r, p) with the
curvilinear edges by applying the well known Bezier clipping algo-
rithm described in Nishita et al. [1990]. Then, s is found the same
way as it is done for a 1C-triangle by solving the following system:

P = @)
P’ = ¢a(v)
s=1[p'—pl/|p—p"| (10)
while the final interpolation formula is given by V(p) = s e

(e (Vi,Va),ve(V,, V2)).

6. IMPLEMENTATION AND RESULTS

We have implemented the real-time interpolation algorithm as a
fragment shader in Cg and tested the implementation on an NVidia
GeForce 7800GS AGP 256M, running on Pentium 4, 2.8MHz. The
frame rates that we have obtained for 512 x 512 images are in the
range from 25 to 215 frames per second (fps) for interpolating curvi-
linear features, and from 65 to 380 fps for interpolating features
approximated by linear segments. Such wide ranges is the result of
sensitivity of the performance to the ratio of discontinuity pixels,
configuration complexity of feature curves being rendered in the
current frame, and to the size of the scene.

A normal map with feature curves is rendered in two passes.
We run the interpolation shader in the first pass. It interpolates the
normal texture with discontinuities represented by feature textures
and stores the resulting normals in the Framebuffer object (FBO)
[Green 2005] attached to the current fragment output. FBO is faster
during switching than its former alternative p-buffer, and it maintains
up to 32 bit float images as the fragment destination texture. On the
second pass, the FBO with stored normals is detached from the
fragment and is used as a general texture image that provides pixel
normals for rendering.

The interpolation shader starts with reconstructing the feature
curves inside a texel containing a texture sample encoded by the
texture coordinates of a point currently observed by the fragment
shader. It partitions the texel interior into 8 curvilinear triangles, and
locates a triangle which covers the texture sample. It then propagates
known distance/gradient/normal values from the texel’s corners to
the corners of the triangle (see Figure 9). Finally, the normal at the
sample is interpolated within the triangle by applying the corre-
sponding interpolating algorithm, described earlier in (Section 5.3).
All the calculations are performed in single precision arithmetic

(floats). More detailed description of the shader can be found in the
Appendix.

Memory Consumption. We use two extra textures: RGBA float
and 16-bit grayscale. The former encodes discontinuity signatures
5 ;¢ its “RG” component contains the south edge pair of the signa-
ture, and its“BA” component carries the west edge pair. The east
and the north edge signature pairs are located in the corresponding
“RG” and “BA” components of the east and the north texel neigh-
bors. The latter stores discontinuity configurations C; ;. Distance
values are stored in the unused “A” component of the normal map
texture. Therefore, our approach requires to consume in total extra
5 floats per texel.

Figure 12 compares different modes of rendering normal maps
with sharp features, enabling different parts of our approach one-
by-one. The obvious artifacts at the bottom of the crease on the
images from the first column are eliminated by using a reduced
version of our method which approximates the gradient field from
the distance samples. However, the resulting normal field is not
smooth along the texel edges as can be clearly seen at the high
intensity spots in the second column images. This occurs because
the interpolated distance field is only Cy continuous across the texel
edges. The images in the third column look more smooth at the
spots after separating the distance and gradient interpolation into
two independent processes. Finally, the artifacts along the distance
medial axis are smoothed away by a preliminary filtering of the
gradient field at the preprocessing stage.

Feature Curves. Figure 13 shows several examples of apply-
ing user-specified profiles. All discontinuity features are curvilinear
(quadratic Bezier curves) and stored in the 128 x 128 textures (one
of the examples shows texel sizes). The close-up views show that
our technique results in few artifacts even in complex situations.
The rendering frame rates for these images were 65 fps, with 75 fps
for the close-up views and up to 215 fps when the object only par-
tially covers the rendering fragment. These examples have a simple
feature pattern and the smallest mesh size, which makes them the
fastest among the examples with curvilinear features that follow.

Figures 14-16 show several images of models of feature-based
normal maps rendered by our technique with different types of fea-
tures and surface properties. 512 x 512 textures were used for ren-
dering images on Figures 14, 16, while the snake mesh of Figure 15
was wrapped by a 1024 x 1024 texture.

The coke can with the fingerprints on its surface shown in
Figure 14(a) is rendered at 46 fps (with at least 93 fps when the
can is scaled to one-half of the image size). Its magnified version,
shown on the right, runs as low as 26 fps. To clarify the reasons for
inferior performance relative to the previous example, we consid-
ered the frame rate dependence on the level of complexity of feature
curves and the size of underlying mesh.

We measured the feature coverage ratio (FCR) for the can im-
age, and found a strong impact of the feature pattern complexity
within the current rendering frame on the overall performance (we
define FCR as a ratio of pixels whose texture samples are located
within discontinuity texels to the total number of pixels in the cur-
rent output frame). Indeed, the FCR was approximately 5.5% for
the full view can image, while discontinuity features covered more
than 19% of the current frame for the magnified version of the can.
However, the FCR only partially explains the resulting performance
drop. The images of the Chinese character “luck” on the top row of
Figure 13 also have an FCR approximately equal to 5%, but they
run almost two times faster than the full view image of the can.
The obvious difference between the two images is in the locality of
discontinuity pixels in the current frame. Usually, the performance

ACM Transactions on Graphics, Vol. 27, No. 1, Article 3, Publication date: March 2008.

3:10 . E. Parilov and D. Zorin

Fig. 12. The appearance of features for different interpolation methods, from left to right: standard bilinear interpolation of samples representing the profile;
piecewise linear distance function and piecewise constant gradient computed directly from the distance function; piecewise linear interpolation for gradient
and distance function, without constrained smoothing of the gradient field; same with smoothing.

Fig. 13. Examples of user-defined profiles. The discontinuity map is the same in all cases; note that in some cases, the discontinuity is removed entirely: a
spectrum of creases of variable sharpness is possible.

ACM Transactions on Graphics, Vol. 27, No. 1, Article 3, Publication date: March 2008.

Real-Time Rendering of Textures with Feature Curves J 3:11

Fig. 14. Several examples of models with details added using our technique; a magnified view is shown for each texture.

Fig. 15. An example of a snake model with curvilinear features approximated by a set of linear segments.

ACM Transactions on Graphics, Vol. 27, No. 1, Article 3, Publication date: March 2008.

3:12 o E. Parilov and D. Zorin

Fig. 16. An example of different profiles; a magnified view is shown for each texture.

Table I. Feature Curves Performance Measured in Frames Per Second (fps) and Superimposed to Feature Coverage Ratio (FCR) and
the Underlying Mesh Size. “res” = Texture Resolution, “dscnt” = Memory Used for Storing Discontinuities

”Luck” Coke can Escher’s pattern
res.=1282, dscnt.=163K, Fig. 13 res.=5122, dscnt.=2.6M, Fig. 14 (a) res.=5122, dscnt.=2.6M, Fig. 14 (b)
close-up | full view | full view zoom 1/2x | close-up full view full view zoom 1/2x | close-up full view
fps 75 65 215 26 46 49 93 35 25
FCR 5 1.6 0.3 19.0 5.5 5.5 2.3 8 4
ffaces 2 2 2 4.2K 4.2K 2 42K 43K 43K

of GeForce 6/7 series cards suffer from frequently occurring in-
coherent branching in the pixel shaders. Our shader has a number
of conditional statements, including the main one, which checks
whether a pixel overlaps a discontinuous texel. The fragment of the
magnified luck character image has many more coherent continuous
pixels than the coke can image where continuous and discontinuous
pixels are mixed. As a result, a combination of the FCR ratio with
pixel coherence dominates overall performance.

The performance is only slightly sensitive to the size of the un-
derlying mesh. The mesh of the coke can has 4.2K faces. However,
performance improved only 6%, from 46 fps to 49 fps, for a two-
triangle square with the same normal map applied.

The image of the plate with an Escher pattern [Figure 14(b)] runs
as low as 25 fps (35 fps for the magnified image). Performance
is relatively poor in this case versus other cases with comparable
FCR because the pattern contains more discontinuity texels with
two feature curves in them.

Table I summarizes the performance of our feature curve shader
running with textures we just discussed. Pixel coherence and the
value of the FCR are the parameters which greatly influence the per-
formance, while the size of the mesh is a less important parameter.

Linear Features. Our algorithm can be easily transformed into
a shader for interpolating normal maps with linear features, which
runs significantly faster at any resolution. Indeed, there is no need
for time-consuming curve reconstruction in step 2 (see Appendix);
the side test for the linear segments does not require computationally
intensive curve implicitization in step 3; and, an interpolation within
the straight triangle does not require solving quadratic equations as

ACM Transactions on Graphics, Vol. 27, No. 1, Article 3, Publication date: March 2008.

in the case for curvilinear triangles in step 5. Moreover, our version
of the shader for linear features has only one branching: the one
which checks the type of the pixel. Memory expense decreases to
3 floats per texel as tangential directions need not be stored.

A piece of glass depicted in Figure 14(c) has a very intricate
pattern of linear features with joints having as many as 7 meet-
ing features. The resulting feature texture has 91% discontinuous
texels. The rendering rate in this case is 222 fps (114 fps for the
first magnified image, and up to 380 fps for the version scaled by
75%) with FCR being close to 37% (90% and 20.2% for these two
cases).

‘We approximated feature curves by linear segments for the snake
mesh depicted in Figure 15. It runs at 124 fps with 10% FCR, and at
the same performance with 35% FCR in the case of the magnified
version (the mesh has 3.3K faces). Approximate feature curves look
smooth enough at certain magnifications. However, the corners are
already noticeable in the magnified version, which is not yet the
closest view.

Teapots with features created by Delaunay triangulation shown on
Figure 16 are examples of using user-defined feature profiles. They
illustrate that using different profiles may change the way the teapot
is perceived. Both the full view image and its magnified version
run at 75 fps, though their FCR ratios are different, equaling 25.4%
and 89.2%, respectively. We found a clear dependence of linear
feature performance on the mesh size, in contrast to a negligible
size-performance dependence for feature curves. The teapot mesh
(6.3K faces) is almost two times larger than the snake mesh. The
magnified versions of both examples run faster when features are
mapped to the plane (keeping the same FCR values): the teapot

Real-Time Rendering of Textures with Feature Curves J 3:13

Table II. Performance Measured for Linear Feature Shader. “res” = Texture Resolution, “dscnt” = Memory Used for
Storing Discontinuities

res.=5122, dscnt.=1.5M, Fig. 14 (c)

Glass Snake head
res.=10242, dscnt.=6.2M, Fig. 15

Teapot
res.=5122, dscnt.=1.5M, Fig. 16

close-up | full view | full view zoom 2/3 x close-up full view close-up full view | full view reduced mesh
fps 114 222 380 124 | 156 124 75 131 75 98 115 140
FCR 91 37 20.2 35 35 10 89.2 | 90.2 254 245 | 404 46.7
tifaces 2 22 2 3.3K 2 33K 6.3K 2 6.3K 47K | 39K | 3.1K

TRﬁ

Fig. 17. Left: magnified view (x 15) of feature curves constructed from spiral arrangement of Bezier curves (small picture on the left). Right: example of
rendering sharp edges. Discontinuity map resolutions: 512 x 512 (left), 80 x 80 (right).

plane fragment runs at 131 fps, and the snake plane fragment runs
at 156 fps as opposed to 75 fps and 124 fps reached for the 3D meshes
(More evidence on the performance dependence of the linear version
of our shader on the mesh size is collected in Table II).

Finally, we demonstrate how our algorithm handles complex star
configurations, such as the one shown in Figure 17 (left), on which
most of the existing GPU algorithms fail. While artifacts are in-
evitable by design (our discontinuity texel can not have more than
two intersecting curves), we keep them minimal and in the majority
of the patterns we guarantee holding C' continuity along the feature
curves. At the preprocessing step, the central intersection point is
split into several new points, which represent simpler intersections
of nearby curves in the neighboring texels: Figure 17 (right).

7. CONCLUSIONS AND FUTURE WORK

We have described a technique for representing and real-time ren-
dering of textures with discontinuity feature curves. The main dif-
ference of the feature curves from existing types of discontinuities is
that the interpolated map, computed by the algorithm, is a function
of distance to the discontinuity and its gradient. Separate interpola-
tion of distance and gradient functions were shown to be crucial for
obtaining high quality results.

The algorithm uses Bezier curve representation for features di-
rectly, and no linear approximation artifacts appear at any resolution.

While only a limited number of local configurations are allowed
by the rendering-time representation of the feature curves, we de-
scribe a preprocessing step that simplifies a general network to the
form that can be used by the rendering algorithm. The preprocess-
ing step is relatively simple, and, for texture with piecewise linear
features, can be done interactively.

We demonstrated effectiveness of our method for interpolating
normal maps. However, similar approaches can be applied to more
advanced types of geometric mapping, such as relief and displace-
ment maps. As discussed briefly in Tumblin and Choudhury [2004],
one can remove some of the topological restrictions by considering

higher resolution textures, localized to the areas of multiple curve
intersections. A variant of the ADF approach [Frisken et al. 2000]
can be used to optimize memory consumption of our technique
by employing the fact that a majority of texels are not affected
by discontinuities. While this approach saves considerable amount
of memory, it appears to be less GPU-friendly. Perry and Frisken
[2005] describe a cell-based rendering technique for adaptive dis-
tance fields. Every cell is associated with geometric primitive which
is scan-converted to provide the cell’s index to covered pixels. This
index is used to lookup cell information similar to our signatures,
stored in an array. Using this technique allows to reduce memory
consumption at the expense an additional rendering pass rendering
a potentially large number of geometric primitives and an indirect
texture lookup.

APPENDIX

CODE OUTLINE FOR THE NORMAL
INTERPOLATION SHADER

We summarize the part of our fragment shader program which esti-
mates a desired normal n(u, v) at a given texel’s sample p, = [u, v]
by reconstructing the values n(u, v), d(u, v), and Vd(u, v), and by
applying Equation (1) on the reconstructed values. The inputs for
the shader are the texture coordinates (u, v) of a current pixel’s
sample, corners’ samples ny, d;, and Vd,, k = 1..4, of the texel
T\v/av),1u/av)> and the discontinuity configuration/signature pair
(C, S) for that texel. The output is an estimated normal n(u, v).
As an example, Figure 18 shows normal interpolation for a texel
with two discontinuity segments inside. The steps are as follows:

1 Find locations of intermediate discontinuity points q., q», q.,
qq from the texel’s discontinuity signature S.

2 Fetch the texel’s edge indices for end-points of its feature
curves from the discontinuity configuration C. Reconstruct the

ACM Transactions on Graphics, Vol. 27, No. 1, Article 3, Publication date: March 2008.

3:14 o E. Parilov and D. Zorin

n
d4

|
|

1

IS

pn,d, q. Psnyd,

n,

U

pnd, 4, pyn,d,

n.d

mim

Fig. 18. Computing the normal n; and distance d; at a texel sample p;. Left: {q,, q5} and {q,, q.} are the discontinuity segments inside the texel; locations
of q4, qp, q., and r,, are calculated from discontinuity signature; g is in the default position. Center: computing normals and distances at qq, qc, qg, and r,.
Right: 1C-triangle (qc, qq, ') covers p;; values at the triangle’s corners are used to compute n; and d;.

Bernstein forms of the curves—B (s), B,(s)—by calculating

their middle control points b} and b? as the intersection points

of the rays going from the points q, and into the directions given
by the discontinuity signature S. Set r,, as an intersection of

(possibly curvilinear) segments {q,, q.} and {q,, q.}.

3 Reconstruct normals, distances, and gradients at the active dis-
continuity points—the points from q,...q., which are on the
same side of discontinuity segments as p,. Use the side test
equations from (Section 5.2).

3.1 Depending on the number of corners reachable from a
given active point, choose one of the following three cases
to reconstruct the normal':

3.1.1 two corners: interpolate the normal from the values
at these corners;

3.1.2 one corner: copy the normal from the corner;

3.1.3 none (such an active point is a common end-point
of the discontinuity segments with the sample point
located between the segments): use the normal from
the opposite end-point of either segment.

3.2 Set the resulting distance to zero and assign a predefined
value for the z-component of the resulting normal at every
active point which is located on the discontinuity.

4 Determine the triangle containing point p, by running the side
test with respect to curvilinear edges of the triangles from the
texel’s partition; if needed, reconstruct the normal and distance
atr,,, interpolating between the values at the endpoints of the
discontinuity with known values.

5 Depending on the type of the resulting curvilinear triangle,
compute the interpolated normal n(u, v), the distance d;, and
its gradient Vd, at p, from known samples at the triangle cor-
ners, using the corresponding scheme from (Section 5.3); apply
Equation 1 to the resulting values to calculate the final blended
normal n(u, v).

REFERENCES

BALA, K., WALTER, B. J., AND GREENBERG, D. P. 2003. Combining
edges and points for interactive high-quality rendering. ACM Trans.
Graph. 22, 3 (July), 631-640.

BECKER, B. G. ANDMAX,N.L. 1993. Smooth transitions between bump
rendering algorithms. In Proceedings of SIGGRAPH. Computer Graphics
Proceedings, Annual Conference Series. 183—190.

Ithe same rules are applied for reconstructing the distance and its gradient.

ACM Transactions on Graphics, Vol. 27, No. 1, Article 3, Publication date: March 2008.

BLINN, J. E. 1978. Simulation of wrinkled surfaces. In Proceedings of
SIGGRAPH. Vol. 12. 286-292.

CoOK, R. L. 1984. Shade trees. In Proceedings of SSIGGRAPH. Vol. 18.
223-231.

CoxX, D., LITTLE, J., AND O’SHEA, D. 1998. Using algebraic geometry.
Graduate Texts in Mathematics. Springer-Verlag, 78-82.

DONELLY, W. 2005. Per-pixel displacement mapping with distance func-
tions. In GPU Gems 2: Programming Techniques for High- Performance
Graphics and General-Purpose Computation. Addison-Wesley Profes-
sional, Chapter 8.

FARIN, G. 1997. Curves and Surfaces for Computer-Aided Geometric
Design, 4th Ed. Academic Press. 4.

FRISKEN, S. F. AND PERRY, R. N. 2006. Method for generating an adap-
tively sampled distance field of an object with specialized cells. US Patent
7,042,458.

FRISKEN, S. F., PERRY, R. N., AND JONES, T. R. 2002.
hierarchical distance fields. US Patent 6,396,492.

FRISKEN, S. F.,, PERRY, R. N., ROCKWOOD, A. P., AND JONES, T. R. 2000.
Adaptively sampled distance fields: a general representation of shape for
computer graphics. In Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH’00). ACM
Press. New York, NY, 249-254.

GREEN, S. 2005. The opengl framebuffer object exntension. In Proceed-
ings of the Game Developers Conference. San Francisco, CA.

HECKBERT,P. 1992. Discontinuity meshing for radiosity. In Proceedings
of the 3rd Eurographics Workshop on Rendering. 203-226.

HEIDRICH, W., DAUBERT, K., KAUTZ, J., AND SEIDEL, H.-P. 2000. Illumi-
nating micro geometry based on precomputed visibility. In Proceedings of
ACM SIGGRAPH. Computer Graphics Proceedings, Annual Conference
Series. 455-464.

ISMERT, R. M., BALA, K., AND GREENBERG, D. P. 2003. Detail synthesis
for image-based texturing. In Proceedings of the ACM Symposium on
Interactive 3D Graphics. 171-175.

Loop, C. AND BLINN, J. 2005. Resolution independent curve rendering
using programmable graphics hardware. ACM Trans. Graph. 24, 3, 1000—
10009.

Max,N.L. 1986. Shadows for bump-mapped surfaces. In Proceedings
of Advanced Computer Graphics. 145-156.

Max, N. L. 1988. Horizon mapping: shadows for bump-mapped sur-
faces. Visual Comput. 4, 2 (July), 109-117.

MCGUIRE, M. AND MCGUIRE, M. 2005. Steep parallax mapping. Poster,
Symposium on Interactive 3D Graphics and Curves.

Detail-directed

Real-Time Rendering of Textures with Feature Curves J

NISHITA, T., SEDERBERG, T. W., AND KAKIMOTO, M. 1990. Ray tracing
trimmed rational surface patches. SIGGRAPH Comput. Graph. 24, 4,
337-345.

OLIVEIRA, M. M., BISHOP, G., AND MCALLISTER, D. 2000. Relief tex-
ture mapping. In Proceedings of ACM SIGGRAPH. Computer Graphics
Proceedings, Annual Conference Series. 359-368.

PERLIN, K. 1985. An image synthesizer. In Proceedings of the 12th
Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH). ACM Press, New York, NY, 287-296.

PERRY, R. N. AND FRISKEN, S.F. 2005. Method and apparatus for render-
ing cell-based distance fields using texture mapping. US Patent 6,917,369.

POLICARPO, F., OLIVEIRA, M. M., AND AO L. D. COMBA, J. 2005. Real-
time relief mapping on arbitrary polygonal surfaces. In Proceedings of
the Symposium on Interactive 3D Graphics and Games (SI3D’05). ACM
Press, New York, NY, 155-162.

QIN, Z., McCooL, M. D., AND KAPLAN, C. S. 2006. Real-time texture-
mapped vector glyphs. In Proceedings of the Symposium on Interactive
3D Graphics and Games (SI3D’06). ACM Press, New York, NY, 125—
132.

RAMANARAYANAN, G., BALA, K., AND WALTER, B. 2004. Feature-based
textures. In 15th Eurographics Workshop on Rendering. 265-274.

SALISBURY, M., ANDERSON, C., LISCHINSKI, D., AND SALESIN,D. H. 1996.
Scale-dependent reproduction of pen-and-ink illustrations. In Proceed-
ings of SSIGGRAPH. Computer Graphics Proceedings, Annual Conference
Series. 461-468.

SEN, P. 2004. Silhouette maps for improved texture magnification. In
Graphics Hardware. 65-74.

3:15

SEN, P., CAMMARANO, M., AND HANRAHAN, P. 2003. Shadow silhouette
maps. ACM Trans. Graph. 22, 3 (July), 521-526.

SLOAN, P. AND COHEN, M. F. 2000. Hardware accelerated horizon map-
ping. In 11th Eurographics Workshop on Rendering. 281-286.

TARINI, M. AND CIGNONI, P. 2005. Pinchmaps: textures with customiz-
able discontinuities. Comput. Graph. For. 24, 3. To appear.

TARINI, M., CIGNONI, P., ROCCHINI, C., AND SCOPIGNO, R. 2000. Real
time, accurate, multi-featured rendering of bump mapped surfaces. Com-
put. Graph. For. 19, 3 (Aug.).

TAUBIN, G. 1995. A signal procesesing approach to fair surface design.
In SIGGRAPH Conference Proceedings,R. Cook, Ed. Annual Conference
Series. ACM SIGGRAPH, Addison Wesley, 351-358.

TUMBLIN, J. AND CHOUDHURY, P. 2004. Bixels: Picture samples with
sharp embedded boundaries. In Proceedings of the 15th Eurographics
Workshop on Rendering Techniques.

WANG, L., WANG, X., TONG, X., LIN, S., HU, S., GUO, B., AND SHUM, H.-Y.
2003. View-dependent displacement mapping. ACM Trans. Graph. 22, 3
(July), 334-339.

WANG, X., TONG, X., LIN, S., HU, S., Guo, B., AND SHUM, H.-Y. 2004.
Generalized displacement maps. In 15th Eurographics Workshop on Ren-
dering. 227-234.

ZHANG, J., ZHOU, K., VELHO, L., GUO, B., AND SHUM, H.-Y. 2003. Syn-
thesis of progressively variant textures on arbitrary surfaces. ACM Trans.
Graph. 22, 3 (July), 295-302.

Received June 2006; revised April 2007, September 2007; accepted October
2007

ACM Transactions on Graphics, Vol. 27, No. 1, Article 3, Publication date: March 2008.

