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Additive fabrication technologies are limited by the types of material they
can print: while the technologies are continuously improving, still only a
relatively small discrete set of materials can be used in each printed object.
At the same time, the low cost of introducing geometric complexity suggests
the alternative of controlling the elastic material properties by producing
microstructures, which can achieve behaviors significantly differing from the
solid printing material. While promising results have been obtained in this
direction, fragility is a significant problem blocking practical applications,
especially for achieving soft material properties: due to stress concentrations
at thin joints, deformations and repeated loadings are likely to cause fracture.

We present a set of methods minimizing stress concentrations in mi-
crostructures by evolving their shapes. First, we demonstrate that the worst-
case stress analysis problem (maximizing a stress measure over all possible
unit loads) has an exact solution for periodic microstructures. We develop a
new, accurate discretization of the shape derivative for stress objectives and
introduce a low-dimensional parametric shape model for microstructures.
This model supports robust minimization of maximal stress (approximated
by an Lp norm with high p) and an efficient implementation of printability
constraints. In addition to significantly reducing stresses (by a typical factor
of 5×), the new method substantially expands the range of effective material
properties covered by the collection of structures.
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1 INTRODUCTION
Most additive fabrication technologies share the distinctive fea-
ture that printing cost is primarily determined by the amount of
material used and is generally independent of the object’s complex-
ity. These characteristics make it practical to fabricate small-scale
structures, which can be used to fine-tune the object’s deformation
behavior and achieve more effective designs for classical problems
such as maximizing a design’s strength under particular loads while
constraining its weight. More generally, spatially varying effective
material properties, including exotic properties such as negative
Poisson’s ratio, can be achieved on even a single-material printer
using fine-scale structures (microstructures).
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Fig. 1. We design microstructures emulating a desired material while
simultaneously experiencing minimized peak stresses under the worst-
case load. Here we show two structures with identical macroscopic
properties. Our optimization smoothes out the stress concentrations
seen in red on the left, creating a robust, organic microstructure. The
meshes are shaded with our novel worst-case micro-stress measure.

Geometric complexity is typically associated with high curvature
variation and negatively-curved regions. These surface features
are well-known to generate high stress concentrations, which may
preclude practical applications: even moderate loads may result in
cracks or plastic deformations. While the task of distributing stress
evenly is essential to many mechanical design problems, stress
distribution acquires particular importance for complex geometry,
and it is more difficult to address on an ad hoc basis. Optimal designs,
minimizing the maximal stress norm subject to a set of constraints,
tend to be smooth, “organic” free-form structures, as small surface
variations often result in significant changes in local stress.

Shape modeling tools have addressed the problem of creating low-
stress designs in a variety of ways, primarily by providing engineers
with techniques to add fillets and blends. These approaches are based
on the intuition that eliminating sharp concave corners improves
stress behavior, and engineers tend to make specific choices of
geometry based on prior experience and trial and error.

Shape and topology optimization provide a principled approach
to solving this problem and have been used with success to optimize
various functionals, most commonly compliance. However, success
has been limited so far in minimizing max stress accurately and
efficiently. Moreover, the typical setting for stress minimization
is to specify a load the structure is required to support. In many
cases, especially the case of microstructure design we consider, the
loads are not known in advance, so worst-case analysis is needed in
the optimization loop, i.e. determining at each iteration the loads
causing the highest maximal stress.

In this paper, we focus on optimizing microstructures: assemblies
of small cells, each filled with a pattern that, when periodically
tiled, produces a particular averaged (homogenized) elastic behav-
ior. Many of the methods we propose are relevant to other stress
optimization problems.
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Contributions. In this paper, we describe a set of techniques for
producing optimized microstructures that cover a broad range of
isotropic material properties while at the same time experiencing
minimized stress concentrations under the worst-case scenario. We
also ensure these structures satisfy printability constraints for addi-
tive fabrication. Specifically, our contributions include:

• A novel exact microstructure worst-case stress analysis
that expresses worst-case loads as eigenvectors of small
tensors, incurring negligible computational cost beyond
homogenization.

• An accurate and efficient approach to optimize a nearly
nonsmooth large-p Lp norm stress objective approximating
maximal stress. Combined with robust, adaptive meshing,
this yields a method capable of reliably designing reduced-
stress microstructures under the thousands of different tar-
get material property constraints from our microstructure
database, using only tens of iterations per design.

• A parametric model significantly expanding material prop-
erty coverage over previous work, while using a single
topology and enabling substantial stress reduction (5x for
most properties).

• A new blending operator for implicit surface modeling that
eliminates bulging outside the convex hull. This is essential
to efficiently enforce printability for our parametric model.

We demonstrate experimentally that our pipeline yields struc-
tures with significantly reduced stresses and, consequently, greater
resilience to repeated loadings and stronger loads.

2 RELATED WORK
Stress minimization. Several works have focused on minimum
stress design using shape and topology optimization. The closest
work to ours is [Allaire et al. 2004], which applies topology opti-
mization to design lightweight minimal-stress objects built from
sequentially laminated composites. It considers the stress concen-
trations occurring in the microstructure, but only for a fixed loading
scenario (not the worst-case), and only for sequential laminates, mi-
crostructures whose properties have nice closed-form expressions
but are not manufacturable. Another similar work is [All 2008],
which applies the level-set topology optimization method to mini-
mize the p-norm of stress. [Xia et al. 2012] and [?] propose similar
machinery but, to address numerical and convergence problems ofp-
norm minimization for high p, use different objective functions: the
former adds a penalty term that activates for stresses above a speci-
fied threshold, and the latter switches to penalizing the deviation
of stress from the average stress level. In the engineering literature,
several works have considered fillet design with optimal shape, e.g.,
[Sonmez 2009; Van Miegroet and Duysinx 2007], minimizing the
stress concentration factor.
Our work differs from traditional shape and topology optimiza-

tion approaches in several important ways: (i) we use exact worst-
case analysis to determine the loads; (ii) we optimize a parametric
model for which formulating fabrication constraints is efficient and
exact; and (iii) our formulation for the shape derivative in combi-
nation with adaptive meshing, absent in level-set and SIMP-based

formulations, yields much better accuracy when evaluating and
differentiating stress.

A concurrent work, [?] uses a fully discrete approach to find 2D
shapeswith optimal Lp -norm of vonMises stress under known loads,
treating all vertices as free variables (we use a low-dimensional para-
metric model instead). This method requires thousands of iterations
in 2D compared to the 50 iterations typical in 3D for our method. It
also cannot enforce our fabrication and tileability constraints.

In the computer graphics community, [Stava et al. 2012] presented
several heuristic model correction techniques, such as thickening
and strut insertion, to improve a structure’s resilience to specific
loading scenarios. [Zhao et al. 2016] optimize the shell thickness
to bound the von Mises stress on all vertices under a given load.
This can be viewed as a similar type of optimization to ours, with
the shell thickness serving as the shape parameter with a simple,
direct relation to the effective material properties. Similarly, [Zhou
et al. 2016] bound the von Mises stress under specified force, while
penalizing deviation from the input structure, operating on coarse
meshes with linear elements and without remeshing.
Worst-case stress analysis. In graphics, two papers have pre-
sented heuristics to analyze stress under unknown load. [Zhou
et al. 2013] approximately determine the most efficient pressure
distribution to break or severely deform a structure by solving a
large eigenvalue problem and many linear programs. [Langlois et al.
2016] use a PCA-based Monte Carlo sampling to construct a stress
probability distribution from a large number of force samples gen-
erated by a rigid body simulator. They use the failure probability
as a constraint in a costly gradient-based topology optimization
to reduce weight, but forbid the object’s surface from changing to
avoid differentiating the full stress analysis pipeline. In contrast,
we derive an exact, efficient way to determine worst-case loads for
microstructures and compute its exact derivative.
Periodic homogenization. Homogenization is a central tool to
our work, and our formulation is based on [Allaire 2002]. Homoge-
nization has been used in graphics to reduce complexity of physical
models in [Kharevych et al. 2009], which finds the constitutive pa-
rameters of a low resolution discretization that best approximates
the behavior of the original, more complex object.
Microstructure design and optimization. There is a large body
of literature dedicated to theoretical studies of composites’ effective
moduli (our periodic structures are a limiting case of composites,
combining a single material with free space), which was reviewed
in [Panetta et al. 2015]. Recent monographs on this topic include
[Allaire 2002; Cherkaev 2000; Cioranescu and Donato 1999; Mil-
ton 2002; Torquato 2002], which primarily focus on identifying
microstructures with extremal behavior (having effective elasticity
properties at the boundary of domain achievable by a given class of
composites).

Microstructures have been designed using various forms of topol-
ogy optimization [Bendsøe 1989; Bendsøe and Sigmund 2003; Naka-
sone and Silva 2010], seeking periodic structures minimizing, e.g.,
compliance for a fixed total volume fraction. The result is normally
a single-scale structure, with scale controlled by the design grid
resolution or other types of regularization.

[Schumacher et al. 2015] and [Panetta et al. 2015] propose meth-
ods to design tileable microstructures with printability constraints
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to fabricate deformable objects with spatially varying elastic proper-
ties. Our method follows the general shape optimization approach
of [Panetta et al. 2015], but introduces a different functional (mak-
ing the elasticity tensor fitting a constraint), a different approach
for computing shape derivatives, and a new, enriched parametric
model.
In contrast to these works, [Martínez et al. 2016] construct ape-

riodic, printable structures with pointwise control over Young’s
moduli, but cannot independently control the Poisson’s ratio.
Fabrication constraints. [Gaynor and Guest 2016; Langelaar 2016;
Qian 2016] have made recent progress in incorporating under-
cut/overhang angle constraints in the topology optimization frame-
work. However, these method enforce the constraints only approxi-
mately, requiring parameter tuning, and add nonlinearities to the
problem that hinder convergence ([Gaynor and Guest 2016]). We
impose printability constraints natively on our model’s parame-
ters similarly to [Panetta et al. 2015]; this is made possible in our
smoothness-enriched parametric model by our novel blending algo-
rithm that avoids overhangs if none are present in the pre-blended
structure.
Fabrication. [Hollister 2005; Kang 2010; Lin et al. 2004a,b] have
demonstrated the fabrication of optimized microstructures in the
context of bone scaffold and fusion cage design, and [Andreassen
et al. 2014; Bückmann et al. 2012; Greaves et al. 2011; Schwerdtfeger
et al. 2011] have demonstrated the possibility of manufacturing
auxetic materials. The idea of manufacturing objects with spatially
varying properties using tileable structures also appears in [Hiller
and Lipson 2009].
[Bickel et al. 2010] designs and fabricates objects satisfying an

input deformation by optimizing for the best combination of stacked
layers of their multi-material 3D printer’s base materials. [Skouras
et al. 2013] applies discrete material optimization to achieve desired
deformations of complex characters with actuation, fabricating the
results with multi-material printing.
Blending. Both parametric and implicit blending have received
extensive attention in geometry modeling. A survey of parametric
blending methods can be found in [Vida et al. 1994], and [Lin et al.
2014] discusses more recent work. A broad range of techniques
have been proposed for implicit blending, starting with the founda-
tional works [Sabin 1968] and [Blinn 1982]. The problems of bulging
and (lack of) local control—characteristic of the simplest implicit
blending constructions—are key topics of research. Bulging is an im-
portant problem in our context, as it leads to violation of printability
constraints.

Clean union operations and related work can be used to generate
smooth surfaces as offsets to the union of input surfaces [Pasko
and Adzhiev 2002], and can be made local by introducing blending
volumes [Barthe et al. 2004; Bernhardt et al. 2010; Pasko et al. 2005].
However, these method cannot easily control radius independently
of blending for surfaces built from a 1-dimensional skeleton, and are
restricted to binary operators. Convolution surfaces [Bloomenthal
1997] are generally bulge-free; however, the degree of blending at
vertices is difficult to control independently at different joints, in-
cluding in a recent advanced version discussed in [Zanni et al. 2013].
The approach of [Rockwood 1989] reduces the bulging problem but
may not produce smooth surfaces, and is difficult to localize. More

Fig. 2. The stress a microstructure experiences depends strongly on
the structure’s corner smoothness.

recent work modulating the blending based on the angles between
primitive normals [Gourmel et al. 2013] produces high-quality re-
sults but does not fully control bulging in the sense our application
requires (we consider gradient-based methods in more detail in
Section 6). A gradient-based approach was extended to N-ary oper-
ations in [Zanni et al. 2015], but similar considerations apply. In our
blending construction, we use the Kreisselmeier-Steinhauser func-
tion [Kreisselmeier and Steinhauser 1983], which is commonly used
in optimization and has been applied to implicit surface blending in
production [Quilez Quilez].

3 OVERVIEW
Our aim is to produce printable microstructures achieving a pre-
scribed homogenized elasticity tensor (effective material properties)
C⋆ with minimal pointwise worst-case stress; the general optimiza-
tion problem can be written as

argmin
ω printable
C̄ (ω )=C⋆

J (s (ω)), (1)

where J is an integral stress measure, e.g., the Lp norm of a point-
wise stress measure, ω is the microstructure shape, and s (ω) is the
pointwise worst-case stress distribution. The pointwise worst-case
stress distribution is a function of the shape only, obtained sepa-
rately for each point by maximizing a stress norm over all possible
unit macroscopic (averaged) loads applied to the structure.

To solve this optimization problem we need (i) a parametric shape
description that can be meshed efficiently and differentiated with
respect to its parameters; (ii) a way to impose printability and elastic
tensor constraints; and (iii) an efficient and accurate method to
compute shape derivatives of our stress objective.
Our shape representation is based on a skeleton graph, consist-

ing of vertices connected by edges. We construct a smooth implicit
surface from this skeleton by inflating each edge and joining them
together smoothly with a custom blending operation (Section 6).
The final inflated geometry is controlled by radius, position, and
smoothing parameters assigned to each vertex. These shape param-
eters are the variables in the optimization.

To reduce our search space and improve performance, we focus on
patterns with reflectional symmetry. These shapes are guaranteed
to produce axis-aligned orthotropic material properties and can be
designed by meshing and analyzing only the period cell’s positive
octant (upper-right quadrant in 2D) with appropriate modifications
to the homogenization boundary conditions. In the following, we
refer to this portion of the period cell as the structure’s symmetry
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cell. We enforce reflectional symmetries by assigning independent
parameters only to vertices in the positive octant and constraining
every vertex initially on a reflection plane to stay on that plane.
We enforce two types of printability constraints: minimal part

thickness and a self-supporting constraint. We do this by first en-
forcing printability on the pre-blended structure, that is, the structure
where all inflated edges are combined with an exact union. This can
be done easily by applying inequality constraints on the position
and radius variables during our optimization. In particular, we apply
a lower bound constraint to the radius variables and ensure the
sphere defined by each vertex is supported:

v .z −v .r ≥ min
u

(u .z − u .r ),

where z is the vertex’s position along the printing axis, r is the
radius, and the minimization is over neighboring vertices of v that
can “support”v . Then we restrict our blending to avoid bulging that
would violate the self-supporting constraint by creating overhang-
ing features (Section 6). The result is a printable, smoothly blended
structure.
We optimize a discretization of (1) using SLSQP [Kraft 1994]

within the NLopt package [Johnson 2016]. At each step of the opti-
mization, we perform the following steps to evaluate the objective
function and its gradient:
(i) We use CGAL’s [Alliez et al. 2016] 3D Mesh Generation pack-

age to create a high-quality tetrahedral mesh of the structure’s
symmetry cell from our smooth signed distance function.

(ii) We solve the elasticity equations (4) within the symmetry
cell to find the fluctuation displacements, then compute the
effective macro-scale elasticity tensor and its shape derivative,
as well as the worst-case stress measure at each point (by
solving a small eigenvalue problem at each point). These steps
are outlined in Section 4.

(iii) We compute the perturbation velocity of the boundary vertices
induced by perturbing each shape parameter using automatic
differentiation of our signed distance function.

(iv) We solve the adjoint problem for our stress objective and eval-
uate the shape derivative (Section 5): using the adjoint solu-
tion, we construct the discrete volume differential form (25)
that computes the change in stress objective caused by per-
turbing each mesh vertex. Then from (25), we construct an
accurate boundary differential form (discrete shape derivative)
(16) which takes a boundary perturbation velocity, smoothly
extends it to the interior and applies the volume differential
form. Feeding in the velocities found in (iii), we obtain accurate
partial derivatives for each parameter.

4 WORST-CASE STRESS ANALYSIS OF PERIODIC
STRUCTURES

In this section, we obtain formulas for the worst-case stress at a
point in the microstructure. In general, finding a load distribution
(with the total load fixed) that maximizes the stress norm at a point is
a difficult nonconvex problem—unlike minimization, maximization
of a convex function on a constrained domain is not convex.

However, in our specific setting, the space of loads that we need
to consider is low (6-dimensional) and periodic homogenization

ε

Ωε

Yω

Fig. 3. (Schematic) Periodic tiling of a domain Ω with base cell Y
having geometry ω and length scale ϵ [Panetta et al. 2015].

imposes structure that greatly simplifies the optimization. We con-
sider the idealized setting where the structure’s length scale is much
smaller than the object to be filled by the structure—a standard
assumption in microstructure design—so that at the macro scale
(the full object’s scale) the structure can be viewed as a homoge-
neous material experiencing smooth stress and strain distributions
varying gradually compared to the size of a single cell. Evaluating
these smooth stress and strain distributions at a point in the full
object obtains the average stress and strain tensor experienced by
the microstructure cell at that point, and under the periodic homoge-
nization assumptions either of these tensors completely determines
the microstructure’s deformation. Thus, the external loads trans-
mitted to the cell are captured by a single averaged “macroscopic
stress” tensor, reducing our space of loads to 6 dimensions.
Solving this optimization problem for every point, we obtain a

distribution of per-point worst-case stress (and corresponding per-
point worst-case load), which depends on the microstructure’s shape
only, not on the full object or choice of loading.

To derive the equations for the worst-case stress at a given point,
we need to review the formulas for homogenization of linear elas-
ticity (e.g., [Allaire 2002]). We employ Einstein summation notation,
where summation over repeated indices is implied. When appropri-
ate, we use coordinate free expressions with A : B denoting double
contraction, A :: B denoting quadruple contraction, and ⊗ denoting
tensor products.
The homogenized elasticity tensor.We summarize the key steps
in the homogenization process used to determine the effective mate-
rial properties of a solid-voidmicrostructure fabricatedwith printing
material Cbase. This process is presented in more detail in [Panetta
et al. 2015]. The elastic response of a periodically tiled object, Ω
(Figure 3), under macroscopic external load f̄ is governed by the
linear elastostatic equation

− ∇ · [C̄ : ε (ū)] = f̄ in Ω, (2)

augmented with problem-dependent boundary conditions. Tensor
C̄ is the homogenized elasticity tensor, vector ū denotes the macro-
scopic (averaged) displacement, and ε (u) B 1

2 (∇u + (∇u)T ) is the
Cauchy strain tensor.
Zooming in on a particular point, we see a periodic tiling of the

structure’s base cell Y where each cell undergoes the same average
strain ε (ū). Translational symmetry implies the microscopic strain
and stress fields in the tiling are periodic, so the tiling’s displacement
field consists of a linear term (with constant strain ε (ū)) plus a
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periodic “microscopic fluctuation” term w (having zero average
strain by periodicity). The average stress in the tiling is defined by
C̄ : ε (ū) = 1

|Y |

∫
ωC

base : [ε (w) + ε (ū)] dy. Decomposing ε (ū) in the
basis of symmetric rank 2 tensors, i.e., ekl B 1

2 (ek ⊗ el + el ⊗ ek ),
we see that the homogenized elasticity tensor is given by

C̄i jkl =
1
|Y |

∫
ω
Cbase
i jpq [ε (wkl ) + ekl ]pq dx. (3)

Finally, to find the microscopic fluctuation term, the force balance
equation in the cellY is solved for each of the six basis strain probing
conditions ekl :

−∇ ·
(
Cbase : [ε (wkl ) + ekl ]

)
= 0 in ω, (4a)

n̂ ·
(
Cbase : [ε (wkl ) + ekl ]

)
= 0 on ∂ω \ ∂Y , (4b)

wkl (x) Y -periodic, (4c)∫
ω
wkl (x) dx = 0. (4d)

The compliance tensor S̄ is defined as the symmetric rank four
inverse of C̄ . Notice that C̄ is a function of the structure’s geometry
alone; it is independent of the macroscopic details (shape Ω, forces
f̄ , and boundary conditions).
Macro- to micro-stress. After solving (4), we can construct a rank
four tensor mapping the cell’s macroscopic strain to the microscopic
strain at a point x ∈ ω: Gi jkl (x)

def
= [ε (wkl ) (x) + ekl ]i j . Then the

microscopic stress at x under a particular macroscopic loading σ̄ is

σ (x) = Cbase : G (x) : S̄ : σ̄ def
= F (x) : σ̄ . (5)

Tensor F is the linear map from the macroscopic stress to the micro-
scopic stress at a point. Although the micro-stress can vary from
point to point in complicated ways, it actually can be maximized
explicitly due to its simple relationship to load σ̄ at each point.

Fig. 4. Left: worst-case stress field with peak stress value circled.
Right: macroscopic stress condition inducing this peak stress.

Various pointwise stress measures can be utilized. The worst-case
maximum principal stress, predicting the failure of brittle material,
is defined at a point in the microstructure as:

sm (x) = max
σ̄ :σ̄=1

λmax (F (x) : σ̄ ), (6)

where we maximize over macroscopic stresses with unit Frobenius
norm. The worst-case microscopic stress Frobenius norm is:

s2
f (x) = max

σ̄ :σ̄=1
σ̄ : F (x)T : F (x)︸         ︷︷         ︸

T F (x)

: σ̄ , (7)

Fig. 5. The three worst-case microscopic stress measures from left to
right: maximum principal stress, Frobenius norm, and von Mises stress.
Each is efficient to compute exactly for every element in the mesh.

and the maximum von Mises microscopic stress (for predicting
ductile failure) is given by

s2
v (x) = max

σ̄ :σ̄=1
σ̄ : FT (x) : VT : V : F (x)︸                      ︷︷                      ︸

TV (x)

: σ̄ , (8)

whereV extracts the vonMises stress: (Vσ )i j =
√

3
2
(
σi j −

1
3δi jσkk

)
.

It turns out that each worst-case stress measure can be evaluated
efficiently by solving a tensor eigenvalue problem. The expressions
for sf and sv are already in the familiar eigenvalue form for sym-
metric tensorsT F andTV : they can be computed by flattening these
tensors into matrices and finding the maximum eigenvalue. The
corresponding eigenvector, when unflattened, is the worst-case load.
Worst-case maximum principal stress leads to a different type of
eigenvalue problem (see Appendix A for more detail):

n⋆ ·TM (x) : [n⋆n⋆T ] = s2
mn⋆, (9)

with TM (x) = F (x) : F (x)T . We denote the per-point macro-stress
tensor attaining the peak stress measure by worst-case load σ̄⋆.
Surprisingly, all three of these measures are very similar, as the

maximum stress tensor eigenvalue tends to dominate all others in
the worst-case scenario (see Figure 5).
Optimization problem. We wish to find a microstructure that
minimizes the Lp norm of the stress measure (either sm , sf , or sv )
while achieving a particular homogenized elasticity tensor C⋆:

argmin
ω printable
C̄ (ω )=C⋆

J (ω), J (ω) =

∫
ω
j (s (x)) dx, j (s )

def
= sp/2. (10)

Here, s is the squared stress measure of interest, e.g. s2
v . In our

experiments, we use p up to 16. For simplicity, the remainder of this
paper will consider sf , but the other cases are nearly identical.
Discretization. We discretize the cell problems (4) with quadratic
tetrahedral FEM, which we found essential for accurate stress and
homogenized tensor evaluation. We use straight-edged elements
(subparametric FEM) for representing the geometry to simplify
meshing and the shape derivative formulas (edge nodes are placed
at the edge midpoints).
The integral in the objective function (10) is computed with nu-

merical quadrature, and the quadrature points determine where
worst-case stress must be evaluated. We use piecewise constant
quadrature, meaning a single worst-case stress quantity is computed

ACM Transactions on Graphics, Vol. 36, No. 4, Article 1. Publication date: July 2017.



1:6 • Julian Panetta, Abtin Rahimian, and Denis Zorin

for each mesh element (from the element’s averaged fluctuation
strains).

5 SHAPE OPTIMIZATION
We found the equality-constrained optimization formulation (10)
necessary to reliably reduce stress while preserving macroscopic
behavior. For instance, naïvely smoothing to reduce stress dramati-
cally changes macroscopic properties and is undone by re-fitting
via [Panetta et al. 2015]. Further, though stress-optimal designs gen-
erally exhibit smooth features, predicting how smooth is difficult.
In fact, [?] demonstrates that theoretically optimal structures can
have sharp corners. While we have not encountered this in our
experiments, we see significant variation in optimal curvature.
To solve (10) with SLSQP, we need partial derivatives of the ob-

jective and constraints with respect to each shape parameter. We
compute these derivatives in two stages: first, we compute the quan-
tities’ shape derivatives, i.e., how they change when the domain ω
is perturbed by an arbitrary velocity field v. Then, to differentiate
with respect to a parameter, we feed into these shape derivatives
the velocity field induced by changing the parameter.

5.1 Volumetric vs. boundary shape derivatives
The shape derivative of the objective functional J in the direction
of a shape perturbation v is defined as the Gâteaux derivative

dJ [v] def
= lim

t→0
J (ω (t , v)) − J (ω)

t
, (11)

where ω (t , v) = {x + tv(x) : x ∈ ω}.
Shape derivatives have been used to minimize a wide variety of

objective functions, and they are typically expressed as a boundary
integral depending only on the boundary’s normal velocity, e.g. [All
2008]. However, we found that in our setting (nearly nonsmooth
objective functionals resulting from using the Lp norm for a high p),
these standard formulas give poor accuracy (Figure 6). To address
this issue, we have developed a different formulation using volume
integrals instead. In this section, we use a simplified model problem
to clarify the source of inaccuracy in the standard method and to
introduce the main idea of our approach. Our expression for the
shape derivative for worst-case stress is described in Section 5.2 and
derived in the supplementary document.
Our model problem is to differentiate J =

∫
ω j (∇u) dx with re-

spect to changes of the domain ω, where u is a scalar field solving

∇ · (∇u + д) = 0 in ω, n̂ · (∇u + д) = 0 on ∂ω . (12)

Here, д is analogous to the macroscopic strain.
The standard expression for J ’s shape derivative is:

dJ [v] =
∫
∂ω

(
j (∇u) − ∇p · (∇u + д)

)
v · n̂ dx,

where p is the adjoint scalar field solving

∇ ·

(
∇p − j ′(∇u)

)
= 0 in ω, n̂ ·

(
∇p − j ′(∇u)

)
= 0 on ∂ω .

For optimizing relatively smooth functionals like compliance, this
method yields good results with standard discretization approaches.
To illustrate the problem with it in our setting, we briefly review
the main steps of its derivation.
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Fig. 6. Comparisons of different techniques for differentiating our
Lp worst-case stress objective with respect to a pattern parameter (in
this case, an offset variable whose value is plotted on the horizontal
axis). For low p, derivatives are computed reasonably accurately by
all methods. However, for L12 (which is needed to approximate L∞ as
shown in Figure 15) the traditional formula for the shape derivative is
wildly inaccurate. Using our discrete differential formwith interpolated
boundary velocities maintains good accuracy.

We consider the initial domain ω and slightly perturbed domain
ωt , with the deformation from ω to ωt given by map xt = x + tv
with Jacobian I + t∇v. Using the Reynolds Transport Theorem, the
derivative of J can be computed in terms of the Eulerian derivative
u̇ of ut (the PDE solution at time t ) evaluated at t = 0:

dJ [v] =
∫
ω
j ′(∇u) · ∇u̇ dx +

∫
∂ω

j (∇u)v · n̂ dA(x),

We obtain u̇ starting from the weak form of (12) in domain ωt :∫
ωt
∇ϕ · (∇ut + д) dx = 0, ∀ϕ . (13)

We apply the Reynolds Transport Theorem for the second time to
obtain an equation for the Eulerian derivative, u̇. As detailed in the
supplement, an intermediate step in the derivation of the Reynolds
Transport Theorem—when applied to the weak form (13)—yields an
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equation for the material derivative, δu:∫
ω
∇ϕ ·

(
∇δu − ∇v(∇u + д) − (∇v)T∇u + (∇u + д)∇ · v

)
dx = 0

(14)
holding for all ϕ. The derivation then proceeds by substituting the
definition u̇ def

= δu − v · ∇u. Applying integration by parts to the ∇ · v
term, we obtain:∫

ω
∇ϕ · ∇u̇ dx =

∫
ω
∇(∇ϕ · v) · (∇u + д) dx︸                             ︷︷                             ︸

I1

(15)

−

∫
∂ω
∇ϕ · (∇u + д) (v · n̂) dx ∀ϕ .

Note that I1 is exactly of the form (13), with ∇ϕ · v instead of ϕ.
As ϕ is assumed to be arbitrary (from a sufficiently smooth space
of functions), (13) implies that this term vanishes, leaving us with
a simple equation for u̇ (in this case, a Laplace equation with a
Neumann boundary condition).

Our key observation is that this term may not vanish identically in
the discrete setting, with the error being particularly large for low-order
finite element discretizations. We found that for rapidly varying-
functionals like our worst-case stress, this leads to large errors
in derivatives. To solve this problem, one could choose the finite
element basis and test functions for the problem in a way that
guarantees that I1 is exactly zero. Alternatively—and this is the
approach we follow—one can skip integration by parts and use (14)
to obtain the discretization. This approach ends up obtaining our
objective’s exact discrete derivative: it computes the exact change
in the objective if the tetrahedral mesh nodes are infinitesimally
advected by the velocity field without remeshing.
Extending boundary perturbation into the domain.Unlike the
traditional shape derivative formulas, this volume form will depend
on the perturbations v on the entire domain ω, rather than only the
boundary. This should not be surprising—finite element analysis
is sensitive to the interior meshing—but it is problematic: perturb-
ing the microstructure parameters induces a velocity vb on ω’s
boundary only, leaving the interior perturbation undefined.
Although we know that, in the limit of refinement, the shape

derivative is independent of v inside the domain (interior perturba-
tions do not impact shape), setting the interior velocity to 0 hurts
accuracy in practice (Figure 6). This is because perturbing only
boundary vertices distorts the incident elements and increases the
discretization error as a result. Smoothly extending velocities into
the interior (so that elements advect with the boundary, distorting
less) improves accuracy.

We perform this extension by solving the Laplace equation with
Dirichlet condition vb on the microstructure boundary and periodic
conditions on the cell boundary. Denoting the velocity at the interior
vertices by vi , we compute vi = −L−1

ii Libv
b , where L denotes the

linear finite element laplacian matrix. Using this extension, we can
define a differential form acting on the boundary velocity vb :

dJb [vb ] def
= dJ [v] = dJ

[(
−L−1

ii Lib
I

)
vb

]
. (16)

This differential form can be constructed explicitly by applying the
transpose of the interpolation matrix to the explicit representation

Parameter Velocity WCS JS

Fig. 7. Visualization of shape derivative quantities. Left: the normal
velocity induced by changing a position variable, as computed by
automatic differentiation of the signed distance function. On the right,
the steepest descent velocity for our worst-case stress objective and the
compliance tensor-fitting objective from [Panetta et al. 2015].

of the volume differential ((25) below). This accelerates gradient
computation for patterns with many parameters and recovers an ac-
curate steepest descent boundary velocity, as visualized in Figure 7.

5.2 Shape derivative in volume form for worst-case stress
We summarize the formulas for stress shape derivatives, in the
form we use in our implementation. The derivations of these are
somewhat lengthy and appear in the supplementary document.
The worst-case stress objective’s shape derivative is, in volume

form:

dJ [v] =
∫
ω
j∇ · v + τkl : D[ε (wkl )] + γ :: dC̄[v] dx, (17)

where D[•] denotes the material derivative, and v is the pertur-
bation velocity field. Tensors τkl and γ are partial derivatives of
j (s (x)) = j (s (εkl , C̄, x)) with respect to the fluctuation strains and
homogenized elasticity tensor:

δ j = (j ′)
∂s

∂εkl
: δεkl + (j ′)

∂s

∂C̄
:: δC̄ def

= τkl : δεkl + γ :: δC̄,

τkl = (2j ′Cbase : F : σ̄⋆)[S̄ : σ̄⋆]kl , (18)

γ = (−2j ′FT : F : σ̄⋆) ⊗ (S̄ : σ̄⋆). (19)

(Recall that the σ̄⋆ value for a point x is the unit macroscopic stress
maximizing microscopic stress at x). These formulas do not include
the derivative of the worst-case load σ̄⋆ since the derivative of
an eigenvalue (pointwise worst-case stress) does not depend on
its eigenvector’s derivative; see Appendix B. In other words, the
worst-case load can be considered constant when differentiating.

Because we use straight-edged elements (i.e. the fluctuation dis-
placement fields are piecewise quadratic, but the geometry represen-
tation is piecewise linear), the perturbation velocity v is piecewise
linear. Thus v is represented as a perturbation vector δqi on each
mesh vertex:

v =
∑
i
λiδqi , (20)

where λi is vertex i’s linear shape function.
The first term in the integrand of (17) can be computed directly,

and the third term is the homogenized elasticity tensor’s shape de-
rivative, which can be computed from the fluctuation displacements
wkl . The second term includes the unknown material derivative of
the fluctuation strains; we re-express this term using the solution
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to the adjoint cell problems, which are in the same form as (4) but
with different right hand sides.
Adjoint equation.We need to solve an adjoint equation to express
the term involving the fluctuation displacements’ material deriva-
tives in a computationally tractable form. The weak form of the klth
adjoint cell problem PDE is:∫

ω
τkl : ε (ϕ) dx =

∫
ω
ε (pkl ) : Cbase : ε (ϕ) dx, (21)

for all test functions ϕ, where pkl is the adjoint state vector field.
pkl is discretized using the same piecewise quadratic basis functions
as used for fluctuation displacements.
The expression for the discrete shape derivative is:

dJ [v] =
∫
ω

[ (
j − ε (pkl ) : σkl

)
∇ · v + (∇pkl∇v) : σkl (22)

+ (ε (pkl ) : Cbase − τkl ) : (∇wkl∇v)
]

dx

+

(∫
ω
γ dx

)
:: dC̄[v],

where σkl def
= Cbase :

[
ε (wkl ) + ekl

]
is the microscopic stress corre-

sponding to wkl .
For computation, it is convenient to express dJ [v] explicitly as a

1-form acting on the per-vertex perturbation vector field δq. To do
this, we re-express v in terms of δq. Using (20),

∇ · v =
∑
m

δqm · ∇λm , ∇v =
∑
m

δqm ⊗ ∇λm . (23)

We can write ∇pkl in terms of each scalar-valued finite element
shape function φn and its vector-valued coefficient pkln as:

∇pkl =
∑
n

pkln ⊗ ∇φn . (24)

Substituting these into dJ [v] and simplifying:

dJ [λmδqm] = δqm ·
∫
ω
a∇λm + (∇λm · bn ) ∇φn dx

+

(∫
ω
γ dx

)
:: dC̄[λmδqm], (25)

a = j − ε (pkl ) : σkl ,

bn = σklpkln +
(
ε (pkl ) : Cbase − τkl

)
wkl
n ,

where summation over repeated subscripts is implied.
The exact discrete shape derivative of homogenized tensor C̄ is

dC̄i jkl [λmδqm] =

δqm
|Y |
·

∫
ω

(
σ i j : Cbase−1 : σkl

)
∇λm

−
[
∇λm ·

(
σklwi j

n + σ
i jwkl

n
)]
∇φn dx,

where again summation overm and n is implied.
To summarize, we compute the shape derivative in three stages:

(i) solve the adjoint problem to obtain solutions pkl ; (ii) compute
the shape derivative of the homogenized elasticity tensor C̄; and
(iii) substitute these quantities into (25) and evaluate the integrals.

6 CONVEX HULL-RESTRICTED BLENDING
The parametric microstructure model is an essential part of our
method. It is designed to have few parameters (ensuring optimiza-
tion is stable and fast), while at the same time providing enough
degrees of freedom to achieve our stress reduction goal. Our model
consists of a skeleton graph with position, radius, and smoothing
parameters on each vertex. These parameters describe a sphere for
each vertex, and we define our edge geometry primitives as the
convex hull of the endpoint spheres for each edge. We then combine
every edge primitive incident on a vertex to form a smooth joint,
with smoothness determined by the vertex’s smoothing parameter,
and finally blend all the joints together into a single signed distance
function.

A variety of techniques, discussed briefly in Section 2, have been
developed to control smoothness both for parametric and implicit
surfaces. Unfortunately, existing techniques do not meet some crite-
ria our method needs to satisfy. Our list of requirements includes: (i)
Smooth geometry: the surface should be smooth for almost all param-
eter values. (ii) Smooth dependence on parameters: the dependence of
surface points on shape parameters should be differentiable, as (effi-
ciently computable) derivatives are needed for shape optimization.
(iii) Locality: smoothing needs to be controlled locally, with each
smoothness parameter affecting a part of the geometry (in our case,
a joint). (iv) No bulging: the surface does not create unnecessary
protrusions, which are a common side effect of smoothed boolean
operations; this aspect is particularly important for printability. (v)
Constraint-compatibility: printability constraints can be efficiently
expressed in terms of shape parameters.

As all existing methods we considered appeared difficult to adapt
directly to our application, we have developed a new, simple blend-
ing technique, which works quite well for our application. We be-
lieve that the basic idea may be useful in other contexts, but we
have not evaluated its utility for general-purpose implicit modeling.
Our method works on a collection of smooth shapes; for each

we need a signed distance function, and for a group of shapes we
need to compute signed distances to the convex hull efficiently. We
define a joint as a maximal set of primitives that have a nonempty
intersection. In our setting, this is a set of edge geometry primitives
incident on a vertex.
Bulging. Intuitively, bulging is a behavior of shape blending meth-
ods where material is added to a solid in places unnecessary to create
a smoothed shape (e.g., Figure 8). It is of special importance in the
context of 3D printing, as bulging is likely to violate the printability
of certain types of structures. To clarify: we enforce printability con-
straints on the edge primitives during optimization, so the boolean
(nonsmooth) union of edges is guaranteed to be printable. Our
blending operator is always additive and thus cannot violate the
edge primitives’ minimum thickness constraint, but bulging can
easily add overhanging material that violates the self-supporting
constraint for SLA printers (Figure 9).
While no formal definition of bulging is likely to capture the

intuition completely, we use the following definition, based on the
intuition for blended sets of convex primitives, which matches our
goals well: a bulge is the difference between the exact union of the
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Fig. 8. Bulging. Left: bulging exhibited by smoothed distance function;
Center: blending region defined by convex hull; Right: smooth, bulge-
free joint.

Fig. 9. Unprintability due to bulging (overhanging features bulging
below the red line) is resolved by the convex hull-restricted blending.

constituent primitives and the blended union that is not contained in
the convex hull of the primitives forming a joint.

The rationale for this definition is that for smooth primitives, the
parts on the surface of the convex hull are smooth, so there is no
need for further smoothing.
Summary.Our shape’s boundary is defined as the zero level-set of a
scalar volume function, which is constructed from the distance func-
tions to the convex, tangent-plane continuous primitives. As a basic
component of our method, we use the Kreisselmeier-Steinhauser (KS)
function,

KS (y1, . . . ,yn ; ρ) = − 1
ρ

ln *
,

n∑
i=1

e−ρyi +
-
, (26)

where variables yi are the distances to be blended. This function
is a smoothed version of the minimum function, with smoothness
controlled by parameter ρ. For the purposes of blending, it is more
intuitive—and yields better-scaled optimization variables—to apply
the change of parameters s = 1/ρ. Then, increasing smoothing
parameter s increases the amount of blending.

The KS function has two important properties: (i) if the difference
between maximal yi and the rest exceeds approximately 7s it van-
ishes to 10−12 accuracy, so it is effectively local; and (ii) it is always
smaller than the non-smoothed min function, with the maximal
difference proportional to s .
We use a two-stage blending process: first, we perform local

blending at joints, using position-dependent smoothing (s drops to
zero for points outside the joint’s convex hull). This yields larger
smooth, non-convex building blocks for the structure: the blended
joints, which are connected by shared primitives (the single common
edge primitive for a pair of adjacent joints in our setting). Second, we
blend all joints together with a spatially-varying smoothing amount

that avoids sharp creases while preventing unnecessary bulging on
the shared primitives.
Blending algorithm. The algorithm computes the level-set func-
tion F (p) at a point p ∈ R3 given a collection of convex primitives
Pi (i = 1 . . .Np ) with signed distance functions Fi (p). The prim-
itives form joints Jm (m = 1 . . .N J ), each defined by a subset of
the primitives. We define Rm to be the minimal distance from the
medial axis of any primitive in Jm to the convex hull boundary.

Blending is controlled by smoothing parameters sm , defined per
joint (skeleton vertex), and the smoothing amounts sab , defined per
overlapping joint pair. For reasons we explain below, we use only sm
as optimization variables (in addition to the primitives’ parameters).
Constructing blended joints.We use the smoothed minimum function
KS to construct joint blends, but with a spatially varying smoothing
parameter s (p). For points inside the convex hull of Jm , we use the
maximal smoothing amount, equal to joint’s blending parameter
sm . Outside the convex hull, s quickly decays to zero: we need
to leave a small buffer zone outside the convex hull to keep the
blended function differentiable and to avoid nearly non-smooth
surfaces when an intersection curve of two primitives approaches
the boundary. To apply this blending modulation, we define η J (t ),
where t is the (nondimensionalized) distance from p to the convex
hull boundary, with the following requirements: (i) η J (t ) = 1 for
t ≤ −1, (well inside the convex hull); and (ii) η J (t ) = 0 at t ≥ ϵ , a
user specified distance outside the convex hull.

We define two signed distance functions per joint, F sm , represent-
ing the blended joint, and Fhm , representing the (nonsmooth) exact
union of the primitives:

F sm (p) = KS

(
{Fi (p), i ∈ Jm }; smη J

( disthull (Jm ) (p)
Rm

))
Fhm (p) = min

i ∈Jm
Fi (p).

(27)

Combining joints. The exact union of the smoothed joints in general
is non-smooth: creases can appear on the shared primitives at the
intersection of two joint surfaces.

The obvious solution is to combine all joints using the smoothed
minimum function KS ; however, applying it in all cases will lead
to bulging (Figure 10). We apply it for a point p only to the two
joints closest to p in the sense of smoothed distances F sm , and only
when we detect that the joints “conflict” in a way that would cause
a crease. Specifically, we observe that |F sm (p) − Fhm (p) |, m = a,b,
measures the degree to which each joint’s surface differs from the
original primitive near p. A crease forms along the shared primitive
only if both of these quantities are nonzero; if one of the joints
coincides with the shared primitive near p, an exact union of the
joint surfaces simply adds the smooth blend of the other joint (if any)
atop the primitive. Thus we apply no blending when either quantity
is zero and rapidly but smoothly transition to a slight blend as
both quantities become nonzero. We achieve this with a smoothing
modulation function, ηF (t ), of these quantities’ squared geometric
mean. We design this function to transition from ηF (0) = 0 quickly
to 1 as t increases.

F (p) = KS (F sa (p), F
s
b (p); s̃ab (p))

s̃ab (p) = sabηF
(
(Fha (p) − F

s
a (p)) (F

h
b (p) − F

s
b (p))

) (28)
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Fig. 10. Top left: when two joints’ blending regions overlap, we must
smoothly union them to avoid a sharp crease. Top right: blending
using KS with spatially constant parameter sab dilates the shared
edge even when no overlap exists, introducing bulging that violates
printability. Blending with smoothing modulation ηF (bottom) solves
both problems.

Transition functions. Our specific choice of transition functions η J
and ηF is heuristic but yields good results based based on our expe-
rience. Other functions could be used as long as the specifications
stated above are satisfied. Both functions are constructed using tanh,
which can be viewed as constant outside a local interval similarly
to the KS function. We prefer this choice to, e.g., splines, which can
be made truly constant outside an interval, primarily due to the
more compact formulas. The specific choices we found to work well
are η J (t ) = 1 − tanh (C max(1 + t , 0))r , with r = 10 and C = 1.025,
which transitions from 1 to 0 roughly in the range −0.5 to 0.1, and
ηF (t ) = tanh(1000t ), which ensures smoothing is applied if even a
slight crease appears. We did not attempt to optimize sab , which
we fix to 0.02 for all joint pairs, because transition regions between
joints do not typically concentrate stresses in our structures.
Gradient-based implicit blending.Gradient-based implicit blend-

Fig. 11. Two surfaces’ normals intersect forming a right angle at a
point outside the convex hull (translucent gray). Blending at this point
would lead to potential unprintability.

ing ([Gourmel et al. 2013]) is a popular method to avoid bulging in
implicit modeling. However, it is not guaranteed to restrict blend-
ing to the convex hull of the input primitives and therefore cannot

preserve the primitives’ printability in our setting. One example is
demonstrated in Figure 11: evaluating at the arrows’ intersection
point outside the convex hull, the two primitives’ gradients are or-
thogonal. Since [Gourmel et al. 2013] uses only the gradients’ inner
product to modulate blending, the method is unable to distinguish
this situation—where blending would violate printability—from an
evaluation point near a 90◦ intersection of two cylinders for which
the maximum amount of blending would be desired.
From parameters to structure. We use CGAL’s 3D Mesh Gen-
eration package, which robustly constructs high-quality adaptive
tetrahedral meshes from smooth signed distance functions. For ac-
curate stress evaluation, we found adaptive refinement essential.
We achieved this using CGAL’s facet_distance parameter, which
ensures the mesh closely approximates the isosurface, leading to
automatic refinement in regions of high curvature where stress
concentrations are likely. One could instead drive refinement with
a sizing field constructed from the worst-case stress field evaluated
on a coarse initial mesh.
Creases in the isosurface lead to low-quality, occasionally non-

manifold meshes with many tiny elements created to approximate
the sharp features. However, CGAL can still produce high-quality
meshes if it is provided all such creases explicitly as polygonal
curves. Our tiled structures are smooth everywhere, but to mesh
the symmetry cell, we must perform a boolean intersection with
the cell’s bounding cube. This intersection operation creates sharp
curves along the cube faces, whichwe extract withmarching squares
and pass to CGAL as feature lines.

The vertices CGAL creates on the symmetry cell boundary do not
lie perfectly on the cell’s faces andmust be snapped. However, points
originating from the feature curves we extract are placed perfectly
on the boundary. We use this fact to snap vertices in a robust way
that is not too sensitive to the snapping threshold parameter: we
use the feature curves to segment the mesh’s boundary vertices
into connected components and then decide whether each whole
component lies on the boundary.
Shape velocities.When a parameter p (controlling vertex position,
radius, or smoothing) changes, each point x on the microstructure’s
boundary evolves with some velocity. We need this induced velocity
field to evaluate our objective and constraints’ partial derivatives.
We compute these fields directly from the signed distance function
using automatic differentiation (with Eigen’s Auto Diff module).

Boundary point x’s motion in the normal direction is determined
by differentiating the level set equation:

n̂ ·
dx
dp = −

1
∥∇ϕ∥

∂ϕ

∂p
, (29)

where ϕ is the signed distance function and n̂ = ∇ϕ
∥∇ϕ ∥ is the surface

normal. The tangential velocity is left undefined, but it is natural to
define it as zero.

7 RESULTS
In this section, we summarize the results obtained from our method.
Isotropic elasticity dictionary. We apply our framework to de-
sign structures with each of the six topologies chosen by [Panetta
et al. 2015], rather than performing a new topology search.
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Fig. 12. Comparison of material properties covered by [Panetta et al.
2015] (top) and our optimization (bottom). Each colored region shows a
single topology’s coverage, and the dashed curve at the bottom outlines
the region from [Panetta et al. 2015].

First, for each topology, we explore our new parametric model’s
coverage of isotropic material space using a breadth-first-style
search: we draw an infinite grid in the Young’s modulus, Poisson’s
ratio plane (with grid points spaced logarithmically in Young’s mod-
ulus) and plot the point corresponding to the default parameter
settings. We then design structures for every unattained grid point
neighboring known structures by running our optimizer without
the stress objective. We repeat until no more progress is made.
Next, starting from each structure found above, we run a worst-

case stress minimization while holding fixed the homogenized ma-
terial properties to design a more robust structure.
As can be seen from Figure 12, although we consider the more

difficult problem of minimizing stress while simultaneously fitting
the elasticity tensor, we achieve far greater coverage of isotropic
elastic moduli. This is primarily due to two factors: a different shape
parametrization enriched with additional parameters (smoothing
factors at the joints) and a greater robustness of the meshing al-
gorithm. Mesher robustness—particularly to topology changes as
thicknesses grow and parts merge—helped extend the Young’smodu-
lus range considerably (by a factor of 10), and the additional degrees
of freedom controlling joint smoothness expanded the Poisson’s
ratio range much closer to the theoretical limits (−1 to 1/2).

Fig. 13. Stress reduction (top) and log10 of optimized max stress
(bottom) for each microstructure in our database.

The total range covered is still significantly less than theoreti-
cally possible, as given by Hashin-Shtrikman bounds [Hashin and
Shtrikman 1963], however it is currently unknown if these bounds
are realizable by printable structures. We conjecture that a more
complete coverage requires finer-scale topology than provided by
the type of structures we consider. We also note that the narrowing
range of achieved Poisson’s ratios for higher E is predictable, since
a fully solid structure can only produce the printing material’s ν .
One surprising outcome of these experiments is that a single topol-
ogy (number “0646” in [Panetta et al. 2015]’s enumeration) covers
essentially the entire space reached by all six topologies (with the
caveat that patterns can change topology during the optimization
by merging, especially as the thickness parameters increase).
Stress reduction. Figure 13 shows the magnitude of stress reduc-
tion achieved by our algorithm is generally 5× to 6×, but rapidly
decays towards the boundary of the covered area. This is to be
expected, as the subspace of shape parameters satisfying the elastic-
ity tensor and printability constraints shrinks as we approach the
boundary. We also observe a growth of maximal stress as Young’s
modulus decreases, since thinner trusses are needed to make the
material sufficiently flexible. Because we perform optimization in a
reduced parameter space, we do not claim that our structures are
optimal. However, the relatively uniform stress distributions over
their surfaces suggest that much greater reductions are unlikely.
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1053
E 1.6 MPa
ν 0.125

0646
E 0.1 MPa
ν 0.4

0646
E 0.5 MPa
ν 0.0

0646
E 0.15 MPa

ν -0.4

0077
E 10 MPa
ν 0.25

1065
E 1.5 MPa
ν 0.35

Fig. 14. Significant stress reduction is achieved for a diverse set of structures. The top row visualizes structures in our pattern subspace found by
fitting to C⋆ without penalizing stress. The moduli are reported assuming a base printing material, Cbase = (200MPa, 0.35). The bottom row
displays structures achieving the sameC⋆ but with dramatically reduced peak stress. Histograms of the element counts at each stress level (reported
in MPa) in the unoptimized (top) and optimized (bottom) designs are plotted on a log scale.

Note that the initial coverage exploration and worst-case stress
minimization are performed over the same design space: the initial
designs against which we compare stress levels already have smooth
joints, but our worst-case stress objective is needed to exploit the
smoothing parameters to significantly reduce stress.
Figure 14 plots histograms of per-element stresses. We observe

that a large number of elements with high stress disappear after
optimization. We also note that the total number of elements has

decreased because stress optimization generally eliminates the sur-
face’s high curvature regions, which require significant refinement.
Choice of p in Lp . The dependence of maximal stress achieved by
Lp optimization on the chosen objective norm is shown in Figure 15.
We observe that p = 12 is generally adequate for approximating
the L∞ stress norm for optimization purposes. At this value of
p, the objective is highly non-smooth, necessitating the accurate
computation of shape derivatives described in Section 5.
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Fig. 15. The peak worst-case stress level and corresponding structures
designed by minimizing the Lp worst-case stress norm.

Resolution dependence. We have also verified that the optimiza-
tion’s effectiveness at minimizing stress is insensitive tomesh resolu-
tion after a reasonable level of refinement is reached (Figure 16). We
based our meshing settings for the sweep in Figure 13 on refinement
experiments like this one.

Fig. 16. Optimizations run at increasing mesh resolution from right
to left (controlled by adjusting CGAL’s facet_distance parameter
to adaptively refine the surface mesh based on curvature), with the Lp
norm of the stress of the final iterate evaluated on the fine mesh.

Experimental validation. Validating stress reduction experimen-
tally is far more difficult than, e.g., measuring Young’s modulus.
First, stress concentrations are difficult to measure directly and are
affected by small geometry variations caused by printing inaccura-
cies. Second, though we design our structures for robustness under
worst-case loads, these loads are often difficult to apply in a labora-
tory setting: our testing setup limited us to compression tests, which
do not reveal the full benefits of our optimization. Finally, testing
small tilings (2 × 2 × 1) leads to errors, as our compression test does
not match the periodic homogenization boundary conditions. These

errors often manifest themselves as early fractures in the dangling
bars touching the compression plates.

Topology 0646, E = 0.5MPa, v = 0.00

Fig. 17. We compressed unoptimized and optimized structures de-
signed for the same material tensor until breakage. Despite the unop-
timized pattern ending up slightly stiffer due to printing inaccuracies,
it fails under much lower deformation.

We have, however, consistently observed that our optimized pat-
terns can withstand deformations much larger than the deforma-
tions breaking the corresponding unoptimized patterns (Figure 17,
Figure 18). Homogenized moduli are reported based on an assumed
isotropic printing material with a Young’s modulus of 200MPa and a
Poisson’s ratio of 0.35. Note that curing time significantly affects the
true stiffness; we ensured the unoptimized and optimized structures
of each tested pair were post-processed identically.

Figure 19 shows the results of loading to a fixed deformation, un-
loading, and repeating to test for fractures and plastic deformation;
we have observed a substantial decrease in strength for unoptimized
patterns and no change for the optimized ones.

8 CONCLUSIONS AND FUTURE WORK
We have demonstrated that the problem of determining worst-case
loads, considered by numerous previous works, admits an exact so-
lution for the specific case of periodic structures. We have developed
a robust set of algorithms to minimize worst-case stresses, achieving
a 5× reduction for a significant share of patterns and substantially
expanding the covered region of (E,ν ) space versus previous work.
Our work has several limitations, which are all worth exploring

further in future work. First, it is unclear how much further stress
can be reduced while maintaining particular elasticity properties—a
more in-depth study would be illuminating, but requires Lp stress
optimization in the full-dimensional shape space. In our experience,
this optimization is unstable, and it is not obvious how to constrain
the optimization to printable designs. Second, it may be possible to
cover a greater region of the material property space by considering
finer topologies for the cells. Finally, one can apply our code to other
physics-based design problems involving L∞ stress optimization.
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Fig. 18. Additional compression test results for a variety of topologies
and material properties. A photo of the optimized pattern of each pair
is inset. The optimized structure in the bottom left example did not
actually break: it simply buckled into a lower energy configuration.
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Fig. 19. We compressed one optimized and unoptimized structure at
0.5mm/s to 2mm. We then unloaded each structure and repeated the
experiment twice. The optimized pattern traced out three overlapping
lines at the bottom: its moduli were unchanged. The unoptimized
structure broke on the first compression (top curve), causing weaker
behavior on the two subsequent compressions.

A WORST-CASE MAXIMUM STRESS
The maximum principal stress at a point is given by (6):

sm = max
σ̄ :σ̄=1

λmax (F : σ̄ ) = max
σ̄ :σ̄=1

max
∥n∥=1

nT [F : σ̄ ]n.

The Lagrangian for this maximization problem is

L (σ̄ ,n, λσ̄ , λn) = nT [F : σ̄ ]n + λσ̄ (σ̄ : σ̄ − 1) + λn
(
∥n∥2 − 1

)
.

The stationary condition with respect to σ̄ is
∂L

∂σ̄
= [nnT ] : F + 2λσ̄ σ̄ = 0, (30)

showing that, for arbitrary n, principal stress is maximized by load:

σ̄⋆ = −
[nnT ] : F

2λσ̄
= ±

[nnT ] : F√
[nnT ] : F : FT : [nnT ]

(since σ̄⋆ must have unit Frobenius norm).
This allows us to rewrite the (squared) worst-case principal stress

computation as a maximization over n only:

s2
m = max

∥n∥2=1
[nnT ] : F : FT︸ ︷︷ ︸

TM

: [nnT ], (31)

which is a symmetric rank 4 tensor eigenvalue problem. It is straight-
forward to show that it is maximized by a n⋆ such that

n⋆ ·TM : [n⋆n⋆T ] = s2
mn⋆. (32)

B EIGENVALUE DERIVATIVES
Assume matrix A has a non-repeated maximum eigenvalue λ with
corresponding unit eigenvector v . Then

λ̇ =
d
dt (v

TAv ) = vT Ȧv + 2λvT v̇ = vT Ȧv,

where we used the fact thatv (t ) is a unit vector (vT v̇ = 0). A similar
argument holds for rank four tensorT with non-repeated maximum
eigenvalue λ and corresponding unit eigenvector n:

λ̇ =
d
dt

(
Ti jklninjnknl

)
= Ṫi jklninjnknl + 4λṅini = Ṫi jklninjnknl .

In practice, elements with high stress have one dominant maximum
eigenvalue (Figure 20), so we do not need to worry about a repeated
eigenvalue breaking our Lp objective’s differentiability

Fig. 20. Regions of high worst-case stress (left) have the greatest
difference in eigenvalues (1.0, on right).
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