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Abstract

We present an efficient, accurate, and robust method for simulation of dense suspensions of deformable and
rigid particles immersed in Stokesian fluid in two dimensions. We use a well-established boundary integral
formulation for the problem as the foundation of our approach. This type of formulation, with a high-order
spatial discretization and an implicit and adaptive time discretization, have been shown to be able to handle
complex interactions between particles with high accuracy. Yet, for dense suspensions, very small time-steps or
expensive implicit solves as well as a large number of discretization points are required to avoid non-physical
contact and intersections between particles, leading to infinite forces and numerical instability.

Our method maintains the accuracy of previous methods at a significantly lower cost for dense suspensions.
The key idea is to ensure interference-free configuration by introducing explicit contact constraints into the sys-
tem. While such constraints are unnecessary in the formulation, in the discrete form of the problem, they make
it possible to eliminate catastrophic loss of accuracy by preventing contact explicitly.

Introducing contact constraints results in a significant increase in stable time-step size for explicit time-
stepping, and a reduction in the number of points adequate for stability.

Keywords: Constraint-based collision handling, Complex fluids, Particulate Stokes flow, High volume fraction
flow, Boundary integral, SDC time stepping

1. Introduction

Particulate Stokesian suspensions of deformable and rigid particles commonly occur in nature and are widely used
in industrial applications. Examples of such fluids include emulsions, colloidal structures, particulate suspensions,
and blood. Most of these examples are complex fluids, i.e., fluids with unusual macroscopic behavior, often defying
a simple constitutive-law description. A major challenge in understanding the physics of complex fluids is the
link between microscopic and macroscopic fluid behavior. Dynamic simulation is a powerful tool [1, 2] to gain
insight into the underlying physical principles that govern these suspensions and to obtain relevant constitutive
relationships.

Nevertheless, simulating dense suspensions of rigid and deformable particles entails many numerical chal-
lenges, one of which is the need to frequently and accurately resolve contact between particles, requiring very
small times steps and/or fine spatial discretization. To make such simulations at larger scale practical, we present
an efficient, accurate, and robust method for simulation of dense suspensions in Stokesian fluid in 2D (e.g., Fig. 1),
which does not make any assumption about the dimensions of the problem and is extendable to 3D. We use the
boundary integral formulation to represent the flow and impose the contact-free condition as a constraint. This
work focuses mainly on suspensions of rigid bodies and vesicles with high volume fractions, in which multiple
particles are in contact or near-contact.

Vesicles are closed deformable membranes suspended in a viscous medium. The dynamic deformation of
vesicles and their interaction with the Stokesian fluid play an important role in many biological phenomena.
They are used to understand the properties of biomembranes [3, 4], and to simulate the motion of blood cells,
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Figure 1: SEDIMENTATION OF ONE HUNDRED VESICLES. Vesicles are randomly placed in a container, where only gravitational
force is present. (a) The initial configuration. The colored tracer particles are shown for visualization purposes and are not
hydrodynamically active. (b) and (c) The intermediate states; we see that as vesicles move downward they induce a strong
back flow. (d) shows the state where the simulation was terminated. As the vesicles accumulate at the bottom of the
container, many collision areas stay active. Nonetheless, the vesicles are stacked stably and without any artifact from the
collision handling.

in which vesicles with moderate viscosity contrast are used to model red blood cells and high viscosity contrast
vesicles or rigid particles are used to model white blood cells [5].

Boundary integral formulations offer a natural approach for accurate simulation of vesicle flows, by reducing
the problem to solving equations on surfaces, and eliminating the need for discretizing changing 3D volumes.
However, in non-dilute suspensions, these methods are hindered by difficulties: inaccuracies in computing near-
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singular integrals, and artificial force singularities caused by (non-physical) intersection of particles. Contact
situations in the Stokesian particulate flows occur frequently when the volume fraction of suspensions is high,
viscosity contrast of vesicles is high, or rigid particles are present. On the other hand, there are certain classes
of flows and formulations that are not hindered by frequent particle collision, e.g., unbounded flow of vesicles
with no viscosity contrast [6]. The dynamics of particle collision in Stokes flow are governed by the lubrication
film formation and drainage, which has a time scale much shorter than that of the flow [7]. Solely relying on the
hydrodynamics to prevent contact requires the accurate solution of the flow in the lubrication film, which in turn
entails very fine spatial and temporal resolution accompanied by increasingly ill-conditioned linear systems in the
boundary integral setting [8, 9]— imposing excessive computational burden as the volume fraction increases.

While adaptive time-stepping [10, 11] goes a long way in maintaining stability and efficiency in dilute sus-
pensions, the time-step is determined by the closest pair of vesicles, and tends to be uniformly small for dense
suspensions.

In this work we take a different approach: we augment the governing equations with the contact constraint.
While from the point of view of the physics of the problem such a constraint is redundant, as non-penetration is
ensured by fluid forces, in numerical context it plays an important role, improving both robustness and accuracy
of simulations. Typically, a contact law/constraint is characterized by conditions of non-penetration, no-adhesion
as well as a mechanical complementarity condition, i.e., the contact force is zero when there is no collision. These
three conditions are known as Signorini conditions in the context of contact mechanics or KKT conditions in the
context of constrained optimization [12, 13].

1.1. Our contributions

Contact constraints ensure that the discretized system remains intersection-free, even for relatively coarse spatial
and temporal discretizations, where the fidelity of the numerical model is insufficient for resolving the lubri-
cation film. These constraints lead to a Nonlinear Complementarity Problem (NCP), which we linearize and
solve using an iterative method that avoids explicit construction of full matrices. We describe an implicit-explicit
time-stepping scheme, adapting Spectral Deferred Correction (SDC) to our constrained setting, Section 3.2.

Contact constraints control the minimum distance between vesicles, maintaining it independent of the tem-
poral resolution. While solving NCP at every step incurs an additional cost, it is more than compensated by the
ability of our method to maintain larger time-steps, and lower spatial resolutions for a given target error.

For high volume fraction, our method makes it possible to increase the step size by at least an order of
magnitude, and the simulation remain stable even for relatively coarse spatial discretizations (16 points per
vesicle, versus at least 64 needed for stability without contact resolution; Section 4).

1.2. Synopsis of the method

We use the boundary integral formulation based on [6, 10, 14]; the basic formulation uses integral equation form
of the problem and includes the effects of the viscosity contrast, fixed boundaries, as well as deformable and rigid
moving bodies. We add contact constraints to this formulation, as an inequality constraint on a gap function that
is based on space-time intersection volume [15]. The contact force is then parallel to the gradient of this volume
with the Lagrange multiplier as its magnitude. We solve the contact NCP for the Lagrange multipliers of the
constraints using a Newton-like matrix-free method, as a sequence of Linear Complementarity Problems (LCP)
[16, 17], with each solved iteratively using GMRES. The spectral Fourier bases are used for spatial discretization.
For time stepping, we use semi-implicit backward Euler or semi-implicit Spectral Deferred Correction (SDC).

1.3. Related work

Related work on Stokesian particle flows. Stokesian particle models are employed to theoretically and experi-
mentally investigate the properties of biological membranes [18], drug-carrying capsules [19], and blood cells
[20, 21]. There is an extensive body of work on numerical methods for Stokesian particulate flows and an excel-
lent review of the literature up to 2001 can be found in Pozrikidis [22]. Reviews of later advances can be found
in [6, 9, 14]. Here, we briefly summarize the most important numerical methods and discuss the most recent
developments.
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Integral equation methods have been used extensively for the simulation of Stokesian particulate flows such
as droplets and bubbles [23–26], vesicles [6, 9, 14, 21, 27–31], and rigid particles [32–34]. Other methods —
such as phase-field approach [35, 36], immersed boundary and front tracking methods [37, 38], and level set
method [39]— are used by several authors for the simulation of particulate flows.

For certain flow regimes, near interaction and collision of particles has been a source of difficulty, which was
addressed either by spatial and temporal refinement to resolve the correct dynamics (increasing the computational
burden) or by the introduction of repulsion forces (making the time-stepping stiff).

Sangani and Mo [40] presented a framework for dynamic simulation of rigid particles with spherical or
cylindrical shapes, in which the lubrication forces were included directly by putting Stokes doublets at the contact
midpoint. The magnitude of lubrication force was computed using asymptotic analysis. To maintain the accuracy
in the interaction of deformable drops, [26, 41, 42] resorted to time-step refinement where the time step is
kept proportional to particle distance d. Zinchenko et al. [41], Zinchenko and Davis [42] keep the time step
proportional to

p
d. Loewenberg and Hinch [26] adjust both the grid spacing around the contact region and the

time-step to be proportional to d. Freund [27] resorted to repulsion force to avoid contact in a 2D particulate
flow. In a later work for 3D, Freund and coauthors [43] observed that significantly larger repulsion force density
are needed in three dimensions, as the total repulsion force is distributed over a smaller region, when measured
as a fraction of the total surface area/length. Consequently, they used a purely kinematic collision handing, in
which, after each time-step, the intersecting points are moved outside.

Quaife and Biros [11] applies adaptive time-stepping and backtracking to resolve collisions. Similarly, Ojala
and Tornberg [44] present an interesting integral equation method for the flow of droplets in two dimensions with
a specialized quadrature scheme for accurate near-singular evaluation enabling simulation of flows with close
to touching particles. While methods using adaptivity both in space and time are the most robust and accurate,
they incur excessive cost as means of collision handling.

Related work on contact response. A broad range of methods were developed for collision detection and response.
While the work in contact mechanics often focuses on capturing the physics of the contact correctly (e.g., taking
into account friction effects), the work in computer graphics literature emphasizes robustness and efficiency. In
our context, robustness and efficiency are particularly important, as we aim to model vesicle flows with high
volume fraction and large number of particles. Physical correctness has a somewhat different meaning: as we
know that if the forces and surfaces in the system are resolved with high accuracy, the contacts would not occur,
our primary emphasis is on reducing the impact of the artificial forces associated with contacts on the system.

There is an extensive literature on contact handling in computational contact mechanics mainly in the context
of FEM mechanical and thermal analysis [12, 45–50]. Wriggers [12, 46] presents in-depth reviews of the contact
mechanics framework. The works in contact mechanics literature can be categorized based on their ability in
handling large deformations and/or tangential friction. In some of the methods, to simplify the problem, small
deformation assumption is used to predefine the active part of the boundary as well as to align the FEM mesh. Nu-
merical methods for contact response can be categorized as (i) penalty forces, (ii) impulse/kinematic responses,
and (iii) constraint solvers.

From algorithmic viewpoint, contact mechanics methods in FEM include: (i) Node-to-node methods where
the contact between nodes is only considered. The FEM nodes of contacting bodies need to aligned and therefore
this method is only applicable to small deformation. (ii) Node-to-surface methods check the collision between
predefined set of nodes and segments. Similar to node-to-node methods, these methods can only handle small
deformations. (iii) Surface-to-surface methods, where the contact constraint is imposed in weak form. In contrast
to the two previous class of algorithms, methods in this class are capable of handling large deformations. Mortar
Method is well-known within this class of algorithms [47–50]. The Mortar Method was initially developed for
connecting different non-matching meshes in the domain decomposition approaches for parallel computing, e.g.,
[51].

In these methods, no-penetration is either enforced as a constraint using a Lagrangian (identified with the
contact pressure) or penalty force based on a gap function. To the best of our knowledge, for contact mechanics
problems, a signed distance between geometric primitives is used as the gap function, in contrast to our approach
where we use space-time interference volume.
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Fischer and Wriggers [47] present a frictionless contact resolution framework for 2D finite deformation using
Mortar Method using penalty force or Lagrange multiplier. Tur et al. [48] use similar method for frictional contact
in 2D. Puso et al. [49] use Mortar Method for large deformation contact using quadratic element.

Our problem has similarities to large-deformation frictionless contact problems in contact mechanics. An
important difference however, is the presence of fluid, which plays a major role in contact response.

Application of boundary integral methods in contact mechanics is rather limited compared to the FEM methods
[52, 53]. Eck et al. [52] used Boundary Element Method for the static contact problem where Coulomb friction
is presented. Gun [53] solved static problem with load increment and contact constraint on displacement and
traction.

In computer graphics literature, a set of commonly used and efficient methods are based on [54], a method
for the collision handling of mass-spring cloth models. To ensure that the system remains intersection-free, zones
of impact are introduced and rigid body motion is enforced in each zone of impact; while this method works well
in practice, its effects on the physics of the objects are difficult to quantify.

Penalty methods are common due to the ease in their implementation, but suffer from time-stepping stiffness
and/or the lack of robustness. Baraff and Witkin [55] uses implicit time-stepping coupled with repulsion force
equal to the variation of the quadratic constraint energy with respect to control vertices. Soft collisions are
handled by the introduction of damped spring and rigid collisions are enforced by modification to the mass matrix.
Faure et al. [56] introduced Layered Depth Images to allow efficient computation of the collision volumes and
their gradients using GPUs. A penalty force proportional to the gradient is used to resolve collisions. However,
the stiffness of the repulsion force varies greatly (from 105 to 1010) in their experiments. To address these
difficulties, Harmon et al. [57] present a framework for robust simulation of contact mechanics using penalty
forces through asynchronous time-stepping, albeit at a significant computational cost. Alternatively, one can view
collision response as an instantaneous reaction (an impulse), i.e., an instantaneous adjustment of the velocities.
However, such adjustments are often problematic in the case of multiple contacts, as these may lead to a cyclic
“trembling” behavior.

Our method belongs to a large family of constraint-based methods, which are increasingly the standard ap-
proach to contact handling. This set of methods meets our goals of providing robustness and improving efficiency
of contact response, while minimizing the impact on the physics of the system.

Duriez et al. [58] start from Signorini’s law and derive the contact force formulation. The resulting equation
is an LCP that is solved by Gauss–Seidel like iterations, sequentially resolving contacts until reaching the contact
free state. Harmon et al. [59] focus on robust treatment of collision without simulation artifacts. To enforce the
no-collision constraint, this work uses an impulse response that gives rise to an LCP problem for its magnitude.
To reduce the computational cost, the LCP solution (the Lagrange multiplier) is approximated by solving a linear
system. Otaduy et al. [60] uses a linear approximation to contact constraints and a semi-implicit discretization,
solving a mixed LCP problem at each iteration.

Our approach is directly based on [15] and is closest to [61], in which the intersection volume and its gradient
with respect to control vertices are computed at the candidate step. The non-collision is enforced as a constraint
on this volume, which lead to a much smaller system compared to distance formulation between geometric primi-
tives. The constrained formulation leads to an LCP problem. Harmon et al. [15] assumes linear trajectory between
edits and define space-time interference volume and uses it as a gap function and we use similar formulation to
define the interference volume.

1.4. Nomenclature

In Table 1 we list symbols and operators used in this paper. Throughout this paper, lower case letters refer to
scalars, and lowercase bold letters refer to vectors. Discretized quantities are denoted by sans serif letters.

2. Formulation

We start this section by stating the equations governing the flow in differential form and the imposed boundary
conditions in Section 2.1. We introduce the requirements for the contact function, V , and its definition in Sec-
tion 2.2. In Section 2.3, we impose no-contact as a constraint V ≥ 0 to the differential equations introduced in
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Symbol Definition

γi The boundary of the ith vesicle
γ ∪iγi

µ Viscosity of the ambient fluid
µi Viscosity of the fluid inside ith vesicle
νi The viscosity contrast µi/µ

π j The boundary of the jth rigid particle
π ∪ jπ j

σ Tension
χ Shear rate
%i The domain enclosed by γi

% ∪i%i

G Stokes Single-layer operator
T Stokes Double-layer operator

LCP Linear Complementarity problem
NCP Nonlinear Complementarity Problem
SDC Spectral Deferred Correction
STIV Space-Time Interference Volumes

Symbol Definition

LI Locally-implicit time-stepping
CLI Locally-implicit constrained time-stepping
GI Globally-implicit time-stepping
d Separation distance of particles
dm Minimum separation distance
fσ Tensile force
fb Bending force
fc Collision force
h Arclength distance between two discretiza-

tion points
J Jacobian of contact volumes V
n Unit outward normal
u Velocity

u∞ The background velocity field
V Contact volumes
X Coordinate of a (Lagrangian) point on a sur-

face

Table 1: INDEX OF FREQUENTLY USED SYMBOLS, OPERATORS, AND ABBREVIATIONS.

Section 2.1 and derive the constrained formulation for the evolution equations. The set of integro-differential
equations with contact constraint are solved using boundary integral formulation, which we outline in Section 2.4.
The boundary integral formulation covers the cases for flows due to the Dirichlet boundary condition on the fixed
boundaries, moving rigid particles, and elastic vesicle membranes. The formulation in Section 2.4 follows the
standard approach of potential theory [62, 63] and is presented in a concise manner.

2.1. Differential formulation

We consider the Stokes flow with Nv vesicles and Np rigid particles suspended in a Newtonian fluid which is either
confined or fills the free space, Fig. 2. In Stokesian flows, due to high viscosity and/or small length scale, the
ratio of inertial and viscous forces (The Reynolds number) is small and the fluid flow can be described by the
incompressible Stokes equation

−µ∆u(x ) +∇ p(x ) = F(x ), and ∇·u(x ) = 0 (x ∈ Ω), (1)

F(x ) =

∫

γ

f (X)δ(x − X)ds(X), (2)

where f is the surface density of the force exerted by the vesicle’s membrane on the fluid and δ is the two-
dimensional Dirac delta. The surface integral in Eq. (2) implies that F(x ) is a distribution in the direction
perpendicular to the surface. Ω denotes the fluid domain of interest with Γ0 as its enclosing boundary (if present)
and µ denoting the viscosity of ambient fluid. If Ω is multiply-connected, its interior boundary consists of K
smooth curves denoted by Γ1, . . . , ΓK . The outer boundary Γ0 encloses all the other connected components of the
domain. The boundary of the domain is then denoted Γ :=

⋃

k Γk. We use x to denote an Eulerian point in the
fluid (x ∈ Ω) and X a Lagrangian point on the vesicles or rigid particles. We let γi denote the boundary of the ith

vesicle (i = 1, . . . , Nv), %i denote the domain enclosed by γi , µi denote viscosity of the fluid inside that vesicle,
and γ :=

⋃

i γi . Equation (1) is valid for x ∈ %i by replacing µ with µi .
There are rigid particles suspended in the fluid domain. We denote the boundary of the jth rigid particle

by π j ( j = 1, . . . , Np) and let π :=
⋃

j π j . The governing equations are augmented with the no-slip boundary
condition on the surface of vesicles and particles

u(X , t) = Xt (X ∈ γ∪π), (3)
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Figure 2: SCHEMATIC. The flow domain Ω (gray shaded area) with boundary Γk (k = 0, . . . , K). Vesicles and rigid particles
are suspended in the fluid. The vesicle boundaries are denoted by γi (i = 1, . . . , Nv) and the rigid particles (checkered pattern)
are denoted by π j ( j = 1, . . . , Np). The outward normal vector to the boundaries is denotes by n. The dotted lines around
boundaries denote the prescribed minimum separation distance for each of them. The minimum separation distance is a
parameter and can be set to zero. In this schematic, vesicle γ1 and particle π2 as well as vesicle γ2 and boundary Γ1 are in
contact. The slices of the space-time intersection volumes at the current instance are marked by .

where Xt := ∂ X
∂ t is the material velocity of point X on the surface of vesicles or particles. The velocity on the fixed

boundaries is imposed as a Dirichlet boundary condition

u(x ) = U(x ) (x ∈ Γ ). (4)

We assume that the vesicle membrane is inextensible, i.e.,

Xs · us = 0 (X ∈ γ), (5)

where the subscript “s” denotes differentiation with respect to the arclength on the surface of vesicles.
Rigid particles are typically force- and torque-free. However, surface forces may be exerted on them due to a

constraint, e.g., the contact force fc , which we will define later. In this case, the force Fπj and torque Lπj exerted

on the jth particle are the sum of such terms induced by constraints

Fπj = 0, or Fπj =

∫

π j

fc(X)ds(X) ( j = 1, . . . , Np),

Lπj = 0, or Lπj =

∫

π j

(X − cπj ) · fc
⊥(X)ds(X) ( j = 1, . . . , Np),

(6)

where cπj is the center of mass for π j and f ⊥ = ( f1, f2)
⊥ := ( f2,− f1).
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2.2. Contact definition

It is known [7, 64] that the exact solution of equations of motion, Eqs. (1), (3), and (4), keeps particles apart in
finite time due to formation of lubrication film. Thus, it is theoretically sufficient to solve the equations with an
adequate degree of accuracy to avoid any problems related to overlaps between particles. Nonetheless, achieving
this accuracy for many types of flows (most notably, flows with high volume fraction of particles or with complex
boundaries) is prohibitively expensive.

With inadequate computational accuracy particles may intersect with each other or with the boundaries and
depending on the numerical method used, the consequences of this varies. For methods based on integral equa-
tions the consequences are particularly dramatic, as overlapping boundaries lead to divergent integrals. To ad-
dress this issue, we augment the governing equations with a contact constraint, formally written as

V (u, t)≥ 0, (7)

The function V is chosen in a way that V < 0 implies some parts of the surface S = Γ ∪ γ ∪π are at a distance
less than a user-specified constant dm. Function V may be a vector-valued function, for which the inequality is
understood component-wise. This constraint ensures that the suspension remains contact-free independent of
the numerical resolution.

For the constraint function V , in addition to the basic condition above, we choose a function that satisfies
these additional criteria:

(i) it introduces a relatively small number of additional constraints, and

(ii) when the function is discretized, no contact is missed even for large time step.

To clarify the second condition, suppose we have a small particle rapidly moving towards a planar boundary. For
a large time step, it may move to the other side of the boundary in a single step, so any condition that considers
an instantaneous quantity depending on only the current position is likely to miss such contact.

To this end, we extend the Space-Time Interference Volumes (STIV) from Harmon et al. [15] to define the
function V C as the area in space-time swept by the intersecting segments of the boundary over time. To be more
precise, for each point X(s, t0) on the boundary, consider a trajectory X(s,τ), between a time t0, for which there
are no collisions, and a time t. Points X(s,τ) define a deformed boundary S(τ) for each τ. For each point X(s,τ),
we define τI (s), t0 ≤ τI ≤ t, to be the first instance for which this point comes into contact with a different point
of S(τI ). Assuming an interference-free configuration at t0, the space-time volume constraint for the time interval
[t0, t] is

V C(S, t) = −
∫

S(t0)

∫ t

τI (s)

Æ

ε2 + (Xt(s,τ) · n(s,τ))2 dτds, (8)

where n(s,τ) denotes the normal to S(τ) at X(s,τ). The integration is over all points for which τI (s) ∈ [t0, t].
For two dimensional flows, it is the area of the surface formed by the points in 3D with coordinate (X(s,τ),ετ),
for all (s,τ) such that τI (s) ≤ t. To arrive at this formula, we used the fact that the surface is inextensible and
thus the surface metric does not change.

This is a modified continuous version of the discrete functional described in Harmon et al. [15]. The functional
used in Harmon et al. differs in the following respects: (i) it is defined for piecewise linear trajectories directly;
(ii) ε= 0; (iii) the normal is taken to be the vector at the time of contact n(s,τI (s)). In practice we observe little
difference in the behavior of two functionals, we choose this formulation as corresponds directly to the space-time
volume. The version of Harmon et al. can be visualized as projection of the space-time volume to the spatial
plane. The constant ε we introduce, which has units of velocity, effectively replaces |u · n| with

p

ε2 + (u · n)2
in the original formulation, smoothing out the constraint expression. Another important property of this choice
of function, compared to, e.g., a space intersection volume, is that for even a very thin object moving at high
velocity, it will be proportional to the time interval t − t0.
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Infinitesimal version of the constraint. Consider the constraint given in Eq. (8) on the interval [t, t +∆t], where
the configuration is collision-free at time t. For a fixed τ, the contact area, i.e., the set of points s such that
τI (s) ≤ τ, defines a set of boundary segments. We consider one such segment as a contact zone and let s1(τ)
and s2(τ) be the extents of such a contact zone at time τ. We rewrite the STIV integral for this contact zone by
exchanging the order of integration, using τ(s)≤ τ is equivalent to s1(τ)≤ s ≤ s2(τ):

∆V C = −
∫ t+∆t

t

∫ s2(τ)

s1(τ)

Æ

ε2 + (u(s,τ) · n(s,τ))2 ds dτ. (9)

Neglecting higher-order terms in ∆t, we obtain:

∆V C = −
∫ s2(t)

s1(t)

Æ

ε2 + (u(s, t) · n(s, t))2 ds ∆t, (10)

implying the rate of change of the space-time volume with respect to time.
As the maximal value of the integrand is −ε, we add ε to make sure that the constraint can be zero, defining

V (u, t) = −
∫ s2(t)

s1(t)

Æ

ε2 + (u(s, t) · n(s, t))2 ds+ ε, (11)

which we will use in the next section as a constraint for the fluid flow. The variation of this constraint with respect
to u is

du V [δu] = −
∫ s2(t)

s1(t)

(n · u)(n ·δu)
p

ε2 + (u · n)2
ds. (12)

We consider each connected component of this (infinitesimal) volume as a separate volume, and impose an
inequality constraint on each; while keeping a single volume is in principle equivalent, using multiple volumes
avoid certain undesirable effects in discretization [15]. Thus, V (u, t) is a vector function of time-dependent
dimension, with one component per active contact region.

Depending on the context, we may omit the dependence of V on u and write V (t) as the contact volume
function or V (γi , t) for elements of V (u, t) involving surface γi .

In practice, it is desirable to control the minimal distance between particles. Therefore, we define a minimum
separation distance dm ≥ 0 and modify the constraint such that particles are in contact when they are within dm
distance from each other; as shown in Fig. 2. The contact volume with minimum separation distance is calculated
with the surface displaced by dm, i.e., the time t I or, equivalently, the contact segment [s1, s2] is obtained not
from the first contact with S(τ) but rather the displaced surface S(τ)+dmn(τ). Maintaining minimum separation
distance — rather than considering pure contact only — eliminates of potentially expensive computation of nearly
singular integrals close to the surface and improves the accuracy in semi-explicit time-stepping.

2.3. Contact constraint

We use the Lagrange multiplier method (e.g., [12]) to add contact constraints, Eq. (11), to the system. While it is
computationally more expensive than adding a penalty force for the constraint (effectively, an artificial repulsion
force), it has the advantage of eliminating the need of tuning the parameters of the penalty force to ensure that
the constraint is satisfied and keeping nonphysical forces introduced into the system to the minimum required
for maintaining the desired separation. The constrained system can be written as

min

∫

Ω

�

1
2
µ∇u ·∇u − u · F

�

dA, (13)

subject to: ∇·u(x ) = 0 (x ∈ Ω),
Xs ·us = 0 (X ∈ γ),

V (u, t)≥ 0.
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If we omit the inequality constraint, the remaining three equations are equivalent to the Stokes equations (1).
Since we are solving a quasi-static system where the PDE is elliptic and the system is evolved due to no-slip
boundary condition, the system is in force balance at all instances. Also, the contact constraint is in fact on the
velocity field that evolves the surface. The Lagrangian for this system is

L (u, p,σ,λ) =

∫

Ω

�

1
2
µ∇u ·∇u − u · F − p∇·u

�

dA+

∫

γ

σXs ·us ds+ V ·λ. (14)

The first-order optimality (KKT) conditions yield the following modified Stokes equation, along with the con-
straints listed in Eq. (13):

−µ∆u +∇ p = F ′, (15)

F ′(x ) = F(x ) +

∫

γ

fσδ(x − X)ds+

∫

S

fcδ(x − X)ds, (16)

fσ = −(σXs)s, (17)

fc = du V Tλ, (18)

λ≥ 0, (19)

λ ·V = 0, (20)

where the last condition is the complementarity condition — either an equality constraint is active (Vi = 0) or
its corresponding Lagrange multiplier λi is zero. As we will see in the next section and based on Eq. (16), the
collision force fc is added to the traction jump across the vesicle’s interface. For rigid particles, the contact force
induces force and torque on each particle — as given in Eq. (6).

It is customary to combine V ≥ 0,λ≥ 0, and λ ·V = 0, into one expression and write

0≤ V (t) ⊥ λ≥ 0, (21)

where "⊥" denotes the complementarity condition. These ensure that the Signorini conditions introduced in
Section 1 are respected: contacts do not produce attraction force (λ≥ 0) and the constraint is active (λ nonzero)
if and only if V (t) is zero. We observe from Eq. (12) that for admissible velocities normal to the contact, du V [δu]
is zero for any δu. Therefore in the smooth case, the force du V Tλ does no work.

2.4. Boundary integral formulation

Following the standard approach of potential theory [33, 62], one can express the solution of the Stokes boundary
value problem, Eq. (15), as a system of singular integro-differential equations on all immersed and bounding
surfaces. Here, we outline general formulae that we use in our framework and refer the interested reader to
[62, 63] for in depth treatments of the subject.

The Stokeslet tensor G, the Stresslet tensor T, and the Rotlet R are the fundamental solutions of the Stokes
equation and are given by

G(r ) =
1

4πµ

�

− log‖r‖I + r ⊗ r
‖r‖2

�

, (22)

T(r ) =
1
π

r ⊗ r ⊗ r
‖r‖4

, (23)

R(r ) =
1

4πµ
r⊥

‖r‖2
, (24)

where r⊥ = (r1, r2)
⊥ := (r2,−r1) and ⊗ denotes the tensor product.

The solution of Eq. (15) can be expressed by the combination of single- and double-layer integrals. We denote
the single-layer integral on the vesicle surface γi by

Gγi
[ f ](x ) :=

∫

γi

G(x − Y ) · f (Y )ds(Y ), (25)
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where f is an appropriately defined density. The double-layer integral on a surface S (a vesicle, a rigid particle,
or a fixed boundary) is

TS[q](x ) :=

∫

S

n(Y ) · T(x − Y ) · q(Y )ds(Y ), (26)

where n denotes the outward normal to the surface S (as shown in Fig. 2), and q is an appropriately defined
density. When the evaluation point x is on the integration surface, Eq. (25) is a singular integral, and Eq. (26) is
interpreted in the principal value sense.

Due to the linearity of the Stokes equations, as formulated in [10, 14], the velocity at a point x ∈ Ω can be
expressed as the superposition of velocities due to vesicles, rigid particles, and fixed boundaries

αu(x ) = u∞(x ) + uγ(x ) + uπ(x ) + uΓ (x ), x ∈ Ω, α=







1 x ∈ Ω\%,

νi x ∈ %i ,

(1+ νi)/2 x ∈ γi ,

(27)

where u∞(x ) represent the background velocity field (for unbounded flows) and νi = µi/µ denotes the viscosity
contrast of the ith vesicle. The velocity contributions from vesicles, rigid particles, and fixed boundaries each can
be further decomposed into the contribution of individual components

uγ(x ) =
Nv
∑

i=1

uγi (x ), uπ(x ) =
Np
∑

j=1

uπj (x ), uΓ (x ) =
K
∑

k=0

uΓk (x ). (28)

To simplify the representation, we introduce the complementary velocity for each boundary component, as
a shorthand to denote the velocity field induced by other particles at point x . For the ith vesicle, it is defined as
ūγi = αu−uγi . The complementary velocity is defined in a similar fashion for rigid particles as well as components
of the fixed boundary.

2.4.1. The contribution from vesicles.The velocity induced by the ith vesicle is expressed as an integral [62]:

uγi (x ) = Gγi
[ f ](x ) + (1− νi)Tγi

[u](x ) (x ∈ Ω), (29)

where the double-layer density u is the total interface velocity and f is the traction jump across the vesicle
membrane [6]. Based on Eq. (16), the traction jump is equal to the sum of bending, tensile, and collision forces
(when present)

f (X) = fb + fσ + fc = −κbXssss − (σXs)s + du V Tλ (X ∈ γ), (30)

where κb is the membrane’s bending modulus. The tensile force fσ = (σXs)s is determined by the local inexten-
sibility constraint, Eq. (5), and the tension σ is its Lagrangian multiplier, Eq. (17).

Note that Eq. (29) is the contribution from each vesicle to the velocity field. To obtain an equation for the
interfacial velocity, Eq. (29) is to be substituted into Eq. (27) and evaluated at X ∈ γi:

(1+ νi)
2

u(X) = ūγi (X) +Gγi
[ f ](X) + (1− νi)Tγi

[u](X) (X ∈ γi), (31)

subject to the local inextensibility constraint

Xs · us = 0 (X ∈ γi). (32)

2.4.2. The contribution from the fixed boundaries.The velocity contribution from the fixed boundary can be ex-
pressed as a double-layer integral [33] along Γ . The contribution of the outer boundary Γ0 is

uΓ0(x ) = TΓ0[η0](x ) (x ∈ Ω), (33)
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where η0 is the density to be determined based on boundary conditions. Substituting Eq. (33) into Eq. (27) and
taking its limit to a point on Γ0 and using the Dirichlet boundary condition, Eq. (4), we obtain a Fredholm integral
equations for the density η0

U(x )− ūΓ0(x ) = −
1
2
η0(x ) +TΓ0[η0](x ) (x ∈ Γ0).

However, this equation is rank deficient [65]. To render it invertible, the equation is modified following [65]:

U(x )− ūΓ0(x ) = −
1
2
η0(x ) +TΓ0[η0](x ) +NΓ0[η0](x ) (x ∈ Γ0), (34)

where the operator NΓ0 is defined as

NΓ0[η0](x ) =

∫

Γ0

[n(x )⊗ n(y)] ·η0(y)ds(y) (x ∈ Γ0). (35)

For the enclosed boundary components Γk (k > 0), to eliminate the double-layer nullspace we need to include
additional Stokeslet and Rotlet terms

uΓk (x ) = TΓk[ηk](x ) +G(x − cΓk ) · F Γk +R(x − cΓk )L
Γ
k , (k = 1, . . . , K; x ∈ Ω), (36)

where cΓk is a point enclosed by Γk, F Γk is the force exerted on Γk, and LΓk is the torque:

F Γk =
1
|Γk|

∫

Γk

ηk ds, LΓk =
1
|Γk|

∫

Γk

(X − cΓk ) ·η⊥k ds, (37)

where |Γk| denotes the perimeter of Γk. Taking the limit to points on the surface Γk, leads to the following integral
equation:

U(x )− ūΓk (x ) = −
1
2
ηk(x ) +TΓk[ηk](x ) +G(x − cΓk ) · F Γk +R(x − cΓk )L

Γ
k (x ∈ Γk). (38)

Equations (37) and (38) are a complete system for double-layer densities ηk, forces F Γk , and torques LΓk on each
surface Γk.

2.4.3. The contribution from rigid particles.The formulation for rigid particles is very similar to that of fixed
boundaries, except the force and torque are known — cf. Eq. (6). The velocity contribution from the jth rigid
particle is

uπj (x ) = Tπ j
[ζ j](x ) +G(x − cπj ) · Fπj +R(x − cπj )L

π
j , (39)

Where Fπj , Lπj are, respectively, the known net force and torque exerted on the particle and ζ j is the unknown
density.

Let Uπj and ωπj be the translational and angular velocities of the jth particle; then we obtain the following
integral equation for the density ζ j from the limit of (39):

Uπj +ω
π
j (X − cπj )

⊥ − ūπj (X) = −
1
2
ζ j(X) +Tπ j

[ζ j](X) +G(X − cπj ) · Fπj +R(X − cπj )L
π
j . (40)

where

Fπj =
1
|π j |

∫

π j

ζ j ds, Lπj =
1
|π j |

∫

π j

(Y − cπj ) ·ζ⊥j ds (41)

where cπj is the center of jth rigid particle. Equations (40) and (41) are used to solve for the unknown densities ζ j

as well as the unknown translational and angular velocities of each particle. Note that the objective of Eqs. (37)
and (41) is to remove the null space of the double-layer operator and therefore their left-hand-side (i.e., the
projection of the solution onto the null space) can be chosen rather arbitrarily.
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2.5. Formulation summary

The formulae outlined above govern the evolution of the suspension. The flow constituents are hydrodynamically
coupled through the complementary velocity. Given the configuration of the suspension, the unknowns are:

• Velocity u(X) and tension σ of vesicles’ interface determined by Eqs. (30–32). The velocity is integrated
for the vesicles’ trajectory using Eq. (3).

• The double-layer density on the enclosing boundaryη0 as well as the double-layer densityηk (k = 1, . . . , K),
force F Γk , and torque LΓk on the interior boundaries determined by Eqs. (34), (37), and (38). Note that the
collision constraint does not enter the formulation for the fixed boundaries and when a particle collides
with a fixed boundary, the collision force is only applied to the particle. The unknown force and torque
above can be interpreted as the required force to keep the interior boundary piece stationary.

• Translational Uπj and angularωπj velocities of rigid particles ( j = 1, . . . , Np) as well as double-layer densities
ζ j on their boundary determined by Eqs. (40) and (41). Where the force and torque are either zero or
determined by the collision constraint Eq. (6).

This system is constrained by Signorini (KKT) conditions for the contact, Eq. (21), which is used to compute
λ, the strength of the contact force.

In the referenced equations above, the complementary velocity is combination of velocities given in Eqs. (29),
(33), (36), and (39).

Parameters and scaling. The characteristic length for a system with elastic vesicles is defined as R0 = L/2πwhere
L denotes the perimeter of a vesicle. The characteristic time is defined as τ= µL3/κb, where µ is the viscosity of
the suspending fluid and κb is the vesicles’ bending modulus. The reduced area for a vesicle is defined as A

πR2
0
. The

reduced area is used extensively to classify vesicles’ shape and dynamics. In the shear flows, the non-dimensional
shear rate is defined as χ̂ = τχ, where τ is the characteristic time and χ is the shear rate. For other types of flow,
local shear rate within the domain is used for scaling. Hereinafter, without change of notation, we use quantities
non-dimensionalized by characteristic variables [6].

3. Discretization and Numerical Methods

In this section, we describe the numerical algorithms required for solving the dynamics of a particulate Stokesian
suspension. We use the spatial representation and integral schemes presented in [14]. We also adapt the spectral
deferred correction time-stepping from [11, 66] to the local implicit time-stepping schemes. Furthermore, we
use piecewise-linear discretization of curves to calculate the space-time contact volume V (γ, t), Eq. (8), similar
to [15]. To solve the complementarity problem resulting from the contact constraint, we use the minimum-map
Newton method discussed in [17] or [16, Section 5.8].

The key difference, compared to previous works on particulate suspensions is that at every time step instead
of solving a linear system we solve a nonlinear complementarity problem (NCP). The NCPs are solved iteratively
by recursive linearization and using a Linear Complementarity Problem (LCP) solver. We refer to these iterations
as contact-resolving iterations, in contrast to the outer time-stepping iterations.

For simplicity, we describe the numerical scheme for a system including vesicles only, without boundaries or
rigid particles. Adding these requires straightforward modifications to the equations. In the following sections,
we will first summarize the spatial discretization, then discuss the LCP solver, and close with the time discretization
with contact constraint.

3.1. Spatial discretization

All interfaces are discretized with N uniformly-spaced discretization points [14]. The number of points on each
curve is typically different but for the sake of clarity we denote that number by N . The distance between dis-
cretization points over the curves does not change with time due to the rigidity of particles or the local inexten-
sibility constraint for vesicles. Let X(s), with s ∈ (0, L], be a parametrization of the interface γi (or π j), and let
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{sk = kL/N}Nk=1 be N equally spaced points in arclength parameter, and Xk := X(sk) denote the corresponding
material points.

High-order discretization for force computation. We use the Fourier basis to interpolate the positions and forces
associated with sample points, and FFT to calculate the derivatives of all orders to spectral accuracy. For computing
surface integrals with smooth integrand, we use the composite trapezoidal rule that provides spectral accuracy.
We use the hybrid Gauss-trapezoidal quadrature rules of [67] to integrate the singular single-layer potential for
X ∈ γi

Gγi
[ f ](X)≈Gγi

[f](X) :=
N+M
∑

`=1

w`G(X−Y`) · f(Y`), (42)

where w` are the quadrature weights given in [67, Table 8] and Y` are quadrature points. Collocating the integral
equation on X the linear operator in Eq. (42) is a matrix that we denote by Gγi

.
The double-layer kernel n(Y ) ·T(X − Y ) in Eq. (26) is non-singular in two dimensions

lim
γi3X→Y

n(Y ) · T(X − Y ) = − κ
2π

t ⊗ t ,

where t denotes the tangent vector at Y . Therefore, a simple uniform-weight composite trapezoidal quadrature
rule has spectral accuracy in this case. Similar to the single-layer case, we denote the discrete double-layer oper-
ator on γi by Tγi

. We use the nearly-singular integration scheme described in [10] to maintain high integration
accuracy for particles closely approaching each other.

Piecewise-linear discretization for constraints. While the spectral spatial discretization is used for most compu-
tations, it poses a problem for the minimal-separation constraint discretization. Computing parametric curve
intersections, an essential step in the STIV computation, is relatively expensive and difficult to implement ro-
bustly, as this requires solving nonlinear equations. We observe that the sensitivity to the separation distance on
the overall accuracy is low in most situations, as explored in Section 4. Thus, rather than enforcing the constraint
as precisely as allowed by the spectral discretization, we opt for a low-order, piecewise-linear discretization in
this case, and use an algorithm that ensures that at least the target minimal separation is maintained, but may
enforce a higher separation distance.

For the purpose of computing STIV and its gradient, we use L(X, r), the piecewise-linear interpolant of r
times refinement of points — the refined points correspond to arclength values with spacing L/(N2r), with r
determined adaptively.

For discretized computations, we set the separation distance to (1+ 2α)dm, where dm is the target minimum
separation distance. We choose r such that ‖L(X, r) − X‖∞ < αdm. Our NCP solver, described below, ensures
that the separation between parts of L(X, r) is (1+ 2α)dm at the end of a single time step. We choose α = 0.1,
which requires r = 1 in our experiments; smaller values of α require more refinement and enforce the constraint
more accurately.

At the end of the time step, the minimal-separation constraint ensures that L(X, r)(s), for any s, is at least
at the distance (1 + 2α)dm from a possible intersection if its trajectory is extrapolated linearly. By computing
the upper bounds on the difference between the X(s) and L(X, r)(s) at the beginning of the time step, and
interpolated velocities, we obtain a lower bound on the actual separation distance d ′ for the spectral surface
X(s). If d ′ < dm, we increase r, and repeat the time step. As the piecewise linear approximation converges to
the spectral boundary X , and so do the interpolated velocities. In practice, we have not observed a need for
refinement for our choice of α.

Computing the contact constraint. To discretize the constraint forces, rather than discretizing directly the in-
finitesimal functional Eq. (11), we closely follow the approach of [15], and compute the finite STIV via discretiza-
tion of Eq. (8), approximating the motion of the vertices with piecewise linear functions, and computing times of
intersections for each vertex separately. While resulting in more complex expressions versus direct discretization
of Eq. (11), this approach results in less extreme changes in forces for larger time steps.
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For the piecewise-linear discretization of curves, the space-time contact volume V (γ, t), Eq. (8), and its gra-
dient are calculated similar to the definitions and algorithms in [15]. Given a contact-free configuration and a
candidate configuration for the next time step, we calculate the discretized space-time contact volume as the sum
of edge-vertex contact volumes V =

∑

k Vk(e,X), where k indexes edge-vertex pairs. We use a regular spatial
grid of size proportional to the average boundary spacing to quickly find potential collisions. For all vertices
and edges, the bounding box enclosing their initial (collision-free) and final (candidate position) locations is
formed and all the grid boxes intersecting that box are marked. When the minimal separation distance dm > 0,
the bounding box is enlarged by dm. For each edge-vertex pair e(Xi ,Xi+1) and Xk, we solve a quartic equation
to find their earliest contact time τI assuming linear trajectory between initial and candidate, where the vertex
velocity is defined as Uk = [Xk(tn+1)−Xk(tn)]/∆t. We calculate the edge-vertex contact volume using Eq. (8):

Vk(e,X) = (t −τI )(1+ (Uk · n(τI ))
2)1/2|e|, (43)

where n(τI ) is the normal to the edge e(τI ). For each edge-vertex contact volume, we calculate the gradient
with respect to the vertices Xi , Xi+1 and X j , summing over all the edge-vertex contact pairs we get the total
space-time contact volume and gradient.

3.2. Temporal discretization

Our temporal discretization is based on the locally-implicit time-stepping scheme in [14]— adapting the Implicit–
Explicit (IMEX) scheme [68] for interfacial flow — in which we treat intra-particle interactions implicitly and inter-
particle interactions explicitly. We combine this method with the minimal-separation constraint. We refer to this
scheme as constrained locally-implicit (CLI) scheme. For comparison purposes, we also consider the same scheme
without constraints (LI) and the globally semi-implicit (GI) scheme, where all interactions treated implicitly [9].
From the perspective of boundary integral formulation, the distinguishing factor between LI and CLI is the extra
traction jump term due to collision. Schemes LI/CLI and GI differ in their explicit or implicit treatment of the
complementary velocities.

While treating the inter-vesicle interactions explicitly may result in more frequent violations of minimal-
separation constraint, we demonstrate that in essentially all cases the CLI scheme is significantly more efficient
than both the GI and LI schemes because these schemes are costlier and require higher spatial and temporal
resolution to prevent collisions.

We consider two versions of the CLI scheme, a simple first-order Euler scheme and a spectral deferred correc-
tion version. A first-order backward Euler CLI time stepping formulation for Eq. (31) is

1+ νi

2
u+i = ūγi +Gγi

f i(X
+
i ,σ+i ,λ+) + (1− νi)Tγi

u+i , (44)

Xi,s ·u+i,s = 0, (45)

f i(X
+
i ,σ+i ,λ+) = −κbX

+
i,ssss − (σ+Xi,s)s + ((duV+)Tλ+)i , (46)

0≤ V(γ; t+) ⊥ λ+ ≥ 0, (47)

where the implicit unknowns to be solved for at the current step are marked with superscript “+”. The position
and velocity of the points of ith vesicle are denoted by Xi , u+i = (X

+
i −Xi)/∆t, and f i is the traction jump on the

ith vesicle boundary. V(γ; t+) is the STIV function.

3.2.1. Spectral Deferred Correction.We use spectral deferred correction (SDC) method [11, 66, 69] to get a better
stability behavior compared to the basic backward Euler scheme described above. We use SDC both for LI and CLI
time-stepping. To obtain the SDC time-stepping equations, we reformulate Eq. (3) as a Picard integral

X(tn+1) = X(tn) +

∫ tn+1

tn

u (X(τ),σ(τ),λ(τ)) dτ, (48)

where the velocity satisfies Eqs. (31) and (44). In the SDC method, the temporal integral in Eq. (48) is first
discretized with p+1 Gauss-Lobatto quadrature points [66, 69]. Each iteration starts with p provisional positions
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eX corresponding to times τi in the interval [tn, tn+1]; tn = τ0 < · · · < τp = tn+1. Provisional tensions eσ and

provisional eλ are defined similarly. The SDC method iteratively corrects the provisional positions eX with the error
term ee, which is solved using the residual er resulting from the provisional solution as defined below. The residual
is given by:

er (τ) = eX(tn)− eX(τ) +
∫ τ

tn

eu(θ )dθ . (49)

After discretization, we use eX
w,m

, to denote the provisional position at mth Gauss-Lobatto point after w SDC
passes. The error term eew,m denotes the computed correction to obtain mth provisional position in wth pass. The
SDC correction iteration is defined by

eX
w,m
= eX

w−1,m
+ eew,m, eσw,m = eσw−1,m +eew,m

σ , eλw,m = eλw−1,m +eew,m
λ

. (50)

Setting eX
0,m

to zero, the first SDC pass is just backward Euler time stepping to obtain nontrivial provisional
solutions. Beginning from the second pass, we solve for the error term as corrections.

Denote (αI−(1−ν)T
eγw−1,m) by D

eγw−1,m . Following [11, 66], we solve the following equation for the error term:

α
eew,m − eew,m−1

∆τ
=D

eγw−1,m

�

erw−1,m −erw−1,m−1

∆τ

�

+G
eγw−1,mf(eew,m,eew,m

σ ,eew,m
λ
)+(1−ν)T

eγw−1,m

�

eew,m − eew,m−1

∆τ

�

. (51)

Eq. (51) is the identical to Eq. (44), except the right-hand-side for Eq. (51) is obtained from the residual while
the right-hand-side for Eq. (44) is the complementary velocity. The residualerw,m is obtained using a discretization
of Eq. (49):

erw,m = eX
w,0 − eXw,m

+
p
∑

l=0

wl,meu
w,l . (52)

where wl,m are the quadrature weights for Gauss-Lobatto points, whose quadrature error is O (∆t2p−3). In addi-
tion to the SDC iteration, Eq. (51), we also enforce the inextensibility constraint

eX
w−1,m

s · euw,m
s = 0, (53)

and the contact complementarity
0≤ V(eγw,m) ⊥ eew,m

λ
≥ 0. (54)

In evaluating the residuals using Eq. (52), provisional velocities are required. In the GI scheme [66], all the
interactions are treated implicitly and given provisional position eX

w,m
, the provisional velocities are obtained by

evaluating
euw,m =D−1

eγw,m

�

G
eγw,mf(eX

w,m
, eσw,m, eλw,m) + u∞

�

. (55)

which requires a global inversion of D
eγw,m . The same approach is taken for LI and CLI schemes, except the provi-

sional velocities are obtained using local inversion only, all the inter-particle interactions are treated explicitly and
added to the explicit term, i.e., complementary velocity eūw−1,m

i ; modifying Eq. (55) for each vesicle, we obtain

euw,m
i =D−1

eγ
w,m
i

�

G
eγ

w,m
i

f(eX
w,m

i , eσw,m
i , eλw,m

i ) + eūw−1,m
i

�

, (56)

where eūw−1,m
i is computed using eX

w,m
and euw−1,m

j ( j 6= i) accounting the velocity influence from other vesicles.
We only need to invert the local interaction matrices D

eγ
w,m
i

in this scheme.
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3.2.2. Contact-resolving iteration.Let AX+ = b be the linear system that is solved at each iteration of a CLI scheme
(in case of the CLI-SDC scheme, on each of the inner step of the SDC). A is a block diagonal matrix, with blocks
Aii corresponding to the self interactions of the ith particle. All inter-particle interactions are treated explicitly,
and thus included in the right-hand side b. We write Eq. (44), or Eq. (51), in a compact form as

AX+ = b+Gf+c , (57)

0≤ V(γ; t+) ⊥ λ≥ 0, (58)

which is a mixed Nonlinear Complementarity Problem (NCP), because the STIV function V(γ, t) is a nonlinear
function of position. Since this is the CLI scheme, G is a block diagonal matrix. To solve this NCP, we use a
first-order linearization of the V(γ; t) to obtain an LCP and iterate until the NCP is solved to the desired accuracy:

AX? = b+GJTλ. (59)

0≤ V(γ; t+k) + J∆X ⊥ λ≥ 0, (60)

where ∆X is the update to get the new candidate solution X?, and J denotes the Jacobian of the volume
∇X V(γ, t+k).

Algorithm 1 summarizes the steps to solve Eqs. (57) and (58) as a series of linearization steps Eqs. (59)
and (60). We discuss the details of the LCP solver separately below. In lines 1 to 6, we solve the unconstrained
system AX? = b using the solution from previous time step. Then, the STIVs are computed to check for collision.
The loop in lines 7−14 is the linearized contact-resolving steps. Substituting Eq. (59) into Eq. (60), and using
the fact that ∆X=A−1GJTλ we cast the problem in the standard LCP form

0≤ V+Bλ ⊥ λ≥ 0, (61)

where B= JA−1GJT . The LCP solver is called on line 9 to obtain the magnitude of the constraint force, which is
in turn used to obtain new candidate positions that may or may not satisfy the constraints. In line 11, the collision
force is incorporated into the right-hand-side b for self interaction in the next LCP iteration. Line 13 checks the
minimal-separation constraints for the candidate solution. In line 14, the contact force is updated, which will be
used to form the right-hand-side b for the global interaction in the next time step.

Algorithm 1: CONTACT-FREE TIME-STEPPING.
input : X,b
output: X+, f+c

1 A←A(X)
2 b← b(X)
3 f+c ← 0
4 k← 0
5 X?←A−1b
6 V← getContactVolume(X?)
7 while V < 0 do
8 J← getContactVolumeJacobi(X?)
9 λ← lcpSolver(V)

10 k← k+ 1
11 b← b+GJTλ

12 X?←A−1b
13 V← getContactVolume(X?)
14 f+c ← f+c + JTλ

15 X+←X?

17



The LCP matrix B is an M by M matrix, where M is the number of contact volumes, M = O (Nv + Np). Each
entry Bk,p is the induced change in the kth contact volume by the pth contact force. Matrix B is sparse and
typically diagonally dominant, since most STIV volumes are spatially separate.

3.3. Solving the Linear Complementarity Problem

In the contact-resolving iterations we solve an LCP, Eq. (61). Most common algorithms (e.g., Lemke’s algorithm
[70] and splitting based iterative algorithms [71, 72]) requires explicitly formed LCP matrix B, which can be pro-
hibitively expensive when there are many collisions. We use the minimum-map Newton method [16, Section 5.8],
which we modify to require matrix-vector evaluation only, as we can perform it without explicitly forming the
system matrix.

We briefly summarize the minimum-map Newton method. Let y = V+Bλ. Using the minimum map refor-
mulation we can convert the LCP to a root-finding problem

H(λ)≡




h(λ1, y1)
· · ·

h(λM , yM )



= 0, (62)

where h(λi , yi) =min(λi , yi). This problem is solved by Newton’s method (Alg. 2). In the algorithm, PA and PF
are selection matrices: PAλ selects the rows of λwhose indices are in setA and zeros out all the other rows. While
function H is not smooth, it is Lipschitz and directionally differentiable, and its so-called B-derivative PAB+PF
can be formed to find the descent direction for Newton’s method [17]. The matrix PAB+PF is a sparse matrix,
and we use GMRES to solve this linear system. Since B is sparse and diagonally dominant, in practice the linear
system is solved in few GMRES iterations and the Newton solver converges quadratically.

3.4. Algorithm Complexity

We estimate the complexity of a single time step as a function of the number of points on each vesicle N , number
of vesicles Nv . Let CN denote the cost of solving a local linear system for one particle; then the complexity of
inverting linear systems for all particles is O (CN Nv). In [6, 14] it is shown that for LI scheme CN = O (N log N).
The cost of evaluating the inter-particle interactions at the NvN discrete points using FMM is O (NvN).

We assume that for each contact resolving step, the number of contact volumes is M . Assuming that minimum
map Newton method takes K1 steps to converge, the cost of solving the LCP is O (K1CN Nv), because inverting A
is the costliest step in applying the LCP matrix. The total cost of solving the NCP problem is O (K1K2CN Nv), where
K2 are the number of contact resolving iterations. In the numerical simulations we observe that the minimum
map Newton method converges in a few iterations (K1 ≈ 15) and the number of contact resolving iterations is

Algorithm 2: MINIMUM MAP LCP SOLVER.
require: applyLCPMatrix(), V and ε
output : λ

1 e← ε
2 λ← 0
3 while e > ε do
4 y← V+ applyLCPMatrix(λ)
5 A← {i|yi < λi} // index of active constraints
6 F← {i|yi ≥ λi}
7 Iteratively solve

�

B −I
PF PA

��

∆λ
∆y

�

=
�

0
−PAy−PFλ

�

// B applied by applyLCPMatrix

8 τ← projectLineSearch(∆λ)
9 λ← λ+τ∆λ

10 e← ‖H(λ)‖
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also small and independent of the problem size (K2 ≈ 10). In Section 4, we compare the cost of solving contact
constrained system and the cost of unconstrained system.

4. Results

In this section, we present results characterizing the accuracy, robustness, and efficiency of a locally-implicit time
stepping scheme (CLI) combined with our contact resolution framework in comparison to other schemes mention
in Section 3.2 with no contact resolution (i.e., LI and GI schemes).

• First, to demonstrate the robustness of our scheme in maintaining the prescribed minimal separation dis-
tance with different viscosity contrast ν, we consider two vesicles in an extensional flow, Section 4.1.

• In Section 4.2, we explore the effect of minimal separation dm and its effect on collision displacement in
shear flow. We demonstrate that the collision scheme has a minimal effect on the shear displacement.

• We compare the cost of our scheme with the unconstrained system using a simple sedimentation example
in Section 4.3. While the per-step cost of the unconstrained locally implicit system is marginally lower, it
requires much finer spatial and temporal resolutions in order to maintain a valid contact-free configuration,
making the overall cost prohibitive.

• We report the convergence behavior of different time-stepping in Section 4.4 and show that our scheme
achieves second order convergence rate with SDC2.

• We illustrate the efficiency and robustness of our algorithm with three examples: 100 sedimenting vesicles
in a container, 196 vesicles in the Couette apparatus with 48% volume fraction (Section 4.5), and a flow
with multiple vesicles and rigid particles within a constricted tube in Section 4.6.

Our experiments support the general observation that when vesicles become close, the LI scheme does a very
poor job in handling of vesicles’ interaction [9] and the time stepping becomes unstable. The GI scheme stays
stable, but the iterative solver requires more and more iterations to reach the desired tolerance, which in turn
implies higher computational cost for each time step. Therefore, the GI scheme performance degrades to the point
of not being feasible due to the cost of computation and the LI scheme fails due to intersection or the time-step
instability.

4.1. Extensional flow

To demonstrate the robustness of our collision resolution framework, we consider two vesicles placed symmet-
rically with respect to the y axis in the extensional flow u = [−x , y]. The vesicles have reduced area of 0.9
and we use a first-order time stepping with LI, CLI, and GI schemes for the experiments in this test. We run the
experiments with different time step size and viscosity contrast and report the minimal distance between vesicles
as well as the final error in vesicle perimeter, which should be kept constant due local inextensibility. Snapshots
of the vesicle configuration for two of the time-stepping schemes are shown in Fig. 3.

In Fig. 4(a), we plot the distance between two vesicles over time. The vesicles continue to get closer in the GI
scheme. However, the CLI scheme maintains the desired minimum separation distance between two vesicles. In
Fig. 4(b), we show the minimum distance between the vesicles over the course of simulation (with time horizon
T = 10) versus the viscosity contrast. As expected, we observe that the minimum distance between two vesicles
decreases as the viscosity contrast is increased. Consequently, for higher viscosity contrast with both GI and
LI schemes, either the configuration loses its symmetry or the two vesicles intersect. With minimal-separation
constraint, any desired minimum separation distance between vesicles is maintained, and the simulation is more
robust and accurate as shown in Fig. 3 and Table 2.

In Table 2, we report the final error in vesicle perimeter for different schemes with respect to viscosity contrast
and timestep size. With minimal-separation constraint, we achieve similar or smaller error in length compared
to LI or GI methods (when these methods produce a valid result). Moreover, whereas one can use relatively
large time step in CLI for all flow parameters — most notably when vesicles have high viscosity contrast — the LI
scheme requires very small, often impractical, time steps to prevent instability or intersection.
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Figure 3: SNAPSHOTS OF TWO VESICLES IN EXTENSIONAL FLOW USING GI AND CLI SCHEMES. As the distance between two
vesicles decreases the configuration loses symmetry in the GI scheme as shown in the top row. Nevertheless, as shown in the
second row, the LI with minimal-separation constraint scheme maintains the desired minimum separation distance and two
vesicles also maintain a symmetric configuration. (The viscosity contrast is 500 in this simulation).
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Figure 4: DISTANCE BETWEEN TWO VESICLES IN EXTENSIONAL FLOW. (a) The distance between two vesicles over time for
both CLI and GI schemes. R0 := L/2π denotes the effective radius of a vesicle. The CLI scheme easily maintains the prescribed
minimal separation of dm. (b) The final distance (at T = 10) between two vesicles as viscosity contrast is increased (using
GI scheme).

4.2. Shear flow

We consider vesicles and rigid bodies in an unbounded shear flow and explore the effects of minimal separation
on shear diffusivity. In the first simulation, we consider two vesicles of reduced area 0.98 (to minimize the effect
of vesicles’ relative orientation on the dynamics) placed in a shear flow with (non-dimensional) shear rate χ = 2.
We observed in our previous work that in semi-implicit methods for vesicle suspensions, the stable time step is
inversely proportional to shear rate χ [14, Table 6] and [9, Table 4]. This is expected because we use the bending
relaxation time as characteristic time (see Section 2.5) that becomes less dominant as the shear rate increases.
With the observation that∆tstable∝ χ−1, we report the results for a single shear rate, and the approximate stable
time step can be estimated for other rates from this.

Let δt = |y1
t − y2

t | denote the vertical offset between the centroids of vesicles at time t. Initially, two vesicles
are placed with a relative vertical offset δ0 as show in Fig. 5.

In Fig. 6, we report δt and its value upon termination of the simulation when x1 > 8, denoted by δ∞(dm).
In Figs. 6(a) and 6(b), we plot δt with respect to x1 for different minimum separation distances. Based on a
high-resolution simulation (with N = 128 and 8× smaller time step), the minimal distance between two vesicles
without contact constraint is about 2.9h for vesicles and 2.2h for rigid particles. As the minimum separation pa-
rameter dm is decreased below this threshold, the simulations with minimal-separation constraint converge to the
reference simulation without minimal-separation constraint. In Fig. 6(c), we plot the excess terminal displace-
ment due to contact constraint, [δ∞(dm)−δ∞(0)]/h, as a function of the minimum separation distance. When
collision constraint is activate, the particles are in effect hydrodynamically larger and the excess displacement
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ν ∆t CLI LI GI

1 0.4 1.17e−01 1.17e−01 7.66e−02
1 0.2 9.49e−04 9.49e−04 1.03e−03
1 0.1 4.49e−04 4.49e−04 4.69e−04
1 0.05 2.23e−04 2.23e−04 2.29e−04
1 0.025 1.12e−04 1.12e−04 1.14e−04
1 0.0125 5.65e−05 5.65e−05 5.68e−05

1e2 0.4 9.42e−03 − 2.54e−04
1e2 0.2 1.33e−04 1.33e−04 1.22e−04
1e2 0.1 6.38e−05 6.38e−05 5.96e−05
1e2 0.05 3.05e−05 3.05e−05 2.95e−05
1e2 0.025 1.49e−05 1.49e−05 1.47e−05
1e2 0.0125 7.39e−06 7.39e−05 7.32e−06

ν ∆t CLI LI GI

1e3 0.4 8.88e−03T=8.8 − 1.66e−05
1e3 0.2 2.08e−02 − 7.99e−06
1e3 0.1 5.85e−06 − 3.93e−06
1e3 0.05 2.42e−06 1.93e−06 1.95e−06
1e3 0.025 1.12e−06 9.78e−07 7.33e−07
1e3 0.0125 5.89e−07 4.87e−07 2.01e−07

1e4 0.4 1.45e−03T=3.6 − −
1e4 0.2 7.23e−04T=5.4 − −
1e4 0.1 7.75e−04T=6.8 − −
1e4 0.05 2.41e−06 − −
1e4 0.025 1.17e−06 − −
1e4 0.0125 5.58e−07 − −

Table 2: ERROR IN THE LENGTH OF VESICLES IN EXTENSIONAL FLOW. The error in the final length of two vesicles in
extensional flow with respect to viscosity contrast, timestep size, and for different schemes. The experiment’s setup is described
in Section 4.1 and snapshots of which are shown in Fig. 3. The cases with a “−” indicate that either vesicles have intersected
or the GMRES failed to converge due to ill-conditioning of the system; the latter happens in the GI scheme and high viscosity
contrast. Cases with superscript indicate that the flow loses its symmetry at that time.

grows linearly with dm.

(a) t = 5 (b) t = 7.5 (c) t = 10 (d) t = 12

Figure 5: SHEAR FLOW EXPERIMENT. The snapshots of two vesicles in shear flow. Initially, one vesicle is placed at [−8,δ0]
and the second vesicle is placed at [0,0].
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Figure 6: THE OFFSET δt(dm) BETWEEN THE CENTROIDS OF TWO VESICLES IN SHEAR FLOW. The initial offset is δ0 = 0.64
and N = 64 discretization points are used, implying h = 0.0994, where h is the distance between two discretization points
along vesicle boundary. (a) and (b) show δt(x1) for the vesicles and circular rigid particles for different minimal separation
distance dm. (c) shows the excess displacement induced by minimal separation. When collision constraint is activate (larger
dm), the particles are in effect hydrodynamically larger and the excess displacement grows linearly with dm.
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4.3. Sedimentation

To compare the performance of schemes with and without contact constraints, we first consider a small problem
with three vesicles sedimenting in a container. We compare three first-order time stepping schemes: locally
implicit (LI), locally implicit with collision handling (CLI), and globally implicit (GI).

Snapshots of these simulations are shown in Fig. 7. For the LI scheme, the error grows rapidly when the
vesicles intersect and a 64× smaller time step is required for resolving the contact and for stability. Similarly, for
the GI scheme the vesicle intersect as shown in Figs. 7(e) and 7(f) and a 4× smaller time step is needed for the
contact to be resolved. The CLI scheme, maintains the desired minimal separation between vesicles.

Although the current code is not optimized for computational efficiency, it is instructive to consider the relative
amount of time spent for a single time step in each scheme. Each time step in LI scheme takes about 1 second,
the time goes up to 1.5 seconds for the CLI scheme. In contrast, a single time step with the GI scheme takes,
on average, 65 seconds because the solver needs up to 240 GMRES iterations to converge when vesicles are very
close. This excessive cost renders this scheme impractical for large problems.

To demonstrate the capabilities of the CLI scheme and to gain a qualitative understanding of the scaling of
the cost as the number of intersections increases, we consider the sedimentation of 100 vesicles. As the sediment
progresses the number of contact regions grows to about 70 per time step. For this simulation, we use a lower
viscosity contrast of 10 and the enclosing boundary is discretized with 512 points and the total time is T = 30.
Snapshots of the simulation with CLI scheme are shown in Fig. 1.

We observe that with first-order time stepping, both LI and CLI schemes are unstable. Therefore, we run
this simulation with second order SDC using LI and CLI schemes. The GI scheme is prohibitively expensive and
infeasible in this case, due to ill-conditioning and large number of GMRES iterations per time-step.

The LI scheme requires at least 12000 time steps to maintain the non-intersection constraint and each time
step takes about 700 seconds to complete. On the other hand, the CLI scheme only need 1500 time steps to
complete the simulation (taking the stable time step) and each time step takes about 830 seconds. We repeated
this experiment with 16 discretization points on each vesicle using CLI scheme and 1500 time steps are also
sufficient for this case (with final length error about 3.83e−3), each time step takes about 170 seconds and the
simulation takes about 70 hours to complete. The number of contact resolving iterations in Alg. 1 is about 10.

In summary, LI scheme requires 4×more points on each vesicle and 8× smaller time-step size to keep vesicles
in a valid configuration compared to CLI scheme.

(a) CLI t = 0 (b) CLI t = 5 (c) CLI t = 20 (d) CLI t = 20 (e) GI t = 10 (f) GI t = 10

Figure 7: SEDIMENTING VESICLES. Snapshots of three sedimenting vesicles in a container using three time-stepping schemes.
The vesicles have reduced area of 0.9, their viscosity contrast is 100, and are discretized with 64 points. The boundary is
discretized with 256 points, the simulation time horizon T = 26, and the time step is 0.01. (a)–(c) The dynamics of three
vesicles sedimenting with CLI scheme. (d) The contact region of (c). (e) The instance when the vesicles intersect using GI
scheme. (f) The contact region of (e).
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4.4. Convergence analysis

To investigate the accuracy of the time-stepping schemes, we consider the sedimentation of three vesicles with
reduced area 0.9 in a container as shown in Fig. 7. We test LI and CLI schemes for a range of time steps and spatial
resolutions and report the error in the location of the center of mass of the vesicles at the end of simulation. The
spatial resolution h is chosen proportional to time-step size and for the CLI scheme the minimal separation dm is
proportional to h. As a reference, we use a fine-resolution simulation with GI scheme. The error as a function of
time step size is shown in Fig. 8.

4.5. Couette Apparatus

To demonstrate the ability of the contact constraint scheme to handle a high volume fraction of vesicles, we
consider the flow inside a Couette apparatus. The device is filled with 196 vesicles of reduced area 0.65 and
viscosity contrast 2. The volume fraction is approximately 48%. With this high concentration, we use ∆t =
0.04 and SDC2 for both LI and CLI schemes. Snapshots of the flow and the instantaneous effective viscosity are
illustrated in Fig. 9.
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Figure 8: CONVERGENCE RATE. We compare the final center of mass of three sedimenting vesicles in a container (shown in
Fig. 7) for Backward Euler and SDC2 (second order Spectral Deferred Correction scheme). The time horizon is set to T = 2.
We choose the spatial resolution proportional to the time-step. As a reference, we use the results for the GI scheme with time
step ∆t = 1.25e−3 and N = 256 discretization points on each vesicle and 512 discretization points on the boundary.
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Figure 9: COUETTE FLOW WITH 196 VESICLES. (a)–(b) Snapshots of the vesicles’ initial and final configuration with the
contact constraint. Vesicles a viscosity contrast of 2 and their reduced area is 0.65. The inner boundary completes one full
revolution every 10 time units. The simulation without contact constraint fails at t = 10.64 as vesicles intersect. (c) The
instantaneous effective viscosity (as the ratio of the net torque on the inner circle and its angular velocity) with respect to
time.
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The LI scheme results in intersecting vesicles at t = 10.6, while the CLI scheme maintains the contact constraint
over the whole simulation. There are approximately 10 contact regions per time step. The simulation with T = 20
takes about 120 hours to complete for CLI scheme. At t = T , the error in area is 7.81e−03 and the error in length
is 1.17e−03. We did not run the GI scheme as, with the same area and length errors, it is estimated to take more
than three months for the simulation to complete.

In Fig. 9(c) we report the instantaneous effective viscosity with respect to time. The effective viscosity is
in qualitative agreement with similar studies for semi-dilute rigid-particle suspensions in wall bounded shear
flow [73, Eq. 1 with [η] = 2,β = 3.6]. We are not aware of any other study for the effective viscosity of
high-volume fraction vesicle suspension with flow curvature and viscosity contrast. An expression for effective
viscosity as a function of the flow parameters can be constructed from this type of experiment by systematic long-
time integration of multiple instantiations of the flow with large ensembles which we will report in a separate
work.

4.6. Stenosis

As another stress test for particle-boundary and vesicle-boundary interaction, we study the flow with 25 vesicles
of reduced area 0.9, mixed with 25 circular rigid particles in a constricted tube (Fig. 10). It is well known that
rigid bodies can become arbitrarily close in the Stokes flow, e.g. [26], and without proper collision handling, the
required temporal/spatial resolution is expected to be high for methods based on boundary integrals; [8] and
Fig. 11.

In this example, the vesicles and rigid particles are placed at the right hand side of the constricted tube. We use
backward Euler method and search for the stable time step for schemes LI and CLI. Similarly to the sedimentation
example, we do not consider the GI scheme due to its excessive computational cost.

The stable time step for the CLI scheme is ∆t = 0.01. For the LI scheme, we tested the cases with up to 32×
smaller time step size, but we were unable to avoid contact and intersection between vesicles and rigid particles.

Figure 11 shows the error and minimal distance between vesicles, particles, and boundary for CLI and LI
schemes with different time step sizes. Without the minimal-separation constraint, the solution diverges when
the particles cross the domain boundary.

To validate our estimates for the errors due to using a piecewise-linear approximation in the minimal separa-
tion constraint instead of high-order shapes, we plot the minimum distance at each step for the piecewise-linear
approximation and upsampled shapes in Fig. 12. The target minimal separation distance is set to dm = h. We ob-
serve that the actual minimal distance for smooth curve is smaller than the minimal distance for piecewise-linear
curve, while the difference between two distances is small compared to the target minimum separation distance.

Note that the due to higher shear rate in the constricted area, the stable time step is dictated by the dynamics
in that area. For these flows, we expect a combination of adaptive time stepping [66] and the scheme outlined
in this paper to provide the highest speedup.

5. Conclusion

In this paper we introduced a new scheme for efficient simulation of dense suspensions of deformable and rigid
particles immersed in Stokesian fluid. We demonstrated through numerical experiments that this scheme is
orders of magnitude faster than the alternatives and can achieve high order temporal accuracy. We are working
on extending this approach to three dimensions and using adaptive time stepping.

We extend our thanks to George Biros, David Harmon, Ehssan Nazockdast, Bryan Quaife, Michael Shelley,
and Etienne Vouga for stimulating conversations about various aspects of this work. This work was supported by
the US National Science Foundation (NSF) through grants DMS-1320621 and DMS-1436591.
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