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Figure 1: Comparing the parametrization distortion of [Aigerman and Lipman 2013], marked bounded distortion, and our strict minimizer.
The distortion is color-coded on the facets of the source mesh: dark blue corresponds to distortion 0 and red to distortion above 0.6. The two
sets of magnified images show parts of the mesh after quadrangulation using two parametrizations, with the same scale for distortion.

Abstract

We introduce the idea of strict minimizers for geometric distortion
measures used in shape interpolation, deformation, parametriza-
tion, and other applications involving geometric mappings. The
L∞-norm ensures the tightest possible control on the worst-case
distortion. Unfortunately, it does not yield a unique solution and
does not distinguish between solutions with high or low distortion
below the maximum. The strict minimizer is a minimal L∞-norm
solution, which always prioritizes higher distortion reduction. We
propose practical algorithms for computing strict minimizers. We
also offer an efficient algorithm for L∞ optimization based on the
ARAP energy. This algorithm can be used on its own or as a build-
ing block for an ARAP strict minimizer. We demonstrate that these
algorithms lead to significant improvements in quality.
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1 Introduction

A variety of problems in geometry processing are solved by min-
imizing a global measure of distortion over a surface or volume.
For example, computing the deformation of an object to a new pose
can be achieved by setting a few target locations to new positions
and minimizing a measure of isometric distortion; parameterizing
a surface, or computing surface-to-surface map via an intermediate
domain may be done by computing a pair of maps minimizing de-
viation from conformality; fitting a high-order approximation of a
surface to a mesh optimizes the difference between point positions
and normals at corresponding points.

In most cases, the global functional is obtained by making two
choices:

(1) a local, pointwise measure of distortion (for example, deviation
from isometry or quasiconformal distortion);

(2) a way to aggregate pointwise distortion into a single scalar mea-
suring global distortion.

The second choice determines how distortion is distributed on the
surface. L2-norm of the distortion, viewed as a function on the
surface, is popular, as it often leads to the most computationally ef-
ficient methods. It emphasizes the decrease in average distortion,
but allows arbitrarily high local distortion. This property leads to
significant problems for most applications: under- and oversam-
pled areas in quadrangulation and remeshing, low accuracy in sim-
ulations using meshes with high distortion, and visual artifacts in
texture mapping.

On the opposite end of the spectrum, L∞-norm ensures the tight-
est possible control on the worst-case distortion. Unfortunately, it
does not, in general, yield a unique solution. Moreover, below the
maximal distortion, it does not distinguish between solutions with
just one or all elements (triangles or tets) with high distortion. The
specific solution chosen depends on the choice of the solver.

It is also possible to cast the problem of distortion control as con-
strained optimization, e.g., minimizing the L2 norm, but subject to
user-defined upper bound on distortion. However, the choice of the
bound is constrained by a small number of highest-distortion lo-
cations, and does not prevent distortion concentration, typical for
L2-norm, as long as it remains below the bound.
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In this paper we take a different approach of controlling distortion
distribution. We use the notion of strict minimizers; these minimiz-
ers do not correspond to a globally defined energy. Rather, they are
minimal with respect to an ordering of pointwise distortion distribu-
tions on a surface. More specifically, we consider an ordering that
prioritizes reducing higher distortion over reducing lower distortion
(a precise definition is given in Section 4). A strict minimizer min-
imizes the L∞-norm of the distortion, while defining the distortion
uniquely on each element for an important class of convex distor-
tion measures. Experimentally, strict minimizers lead to substantial
improvements in high distortion areas, at the expense of small in-
creases of pointwise distortion spread over large low-distortion ar-
eas. Aside from being unique, they are also known to be the limits
of Lp-norm minimizers, which suggests a degree of regularity.

Computing strict minimizers using a precise algorithm that follows
the definition can be impractically expensive. We introduce two es-
sential components for fast computation of strict minimizers: a sim-
ple, efficient formulation for L∞ optimization for certain types of
distortion measures; and a relaxation-based algorithm which finds
an approximation to the strict minimizer orders of magnitude faster.
Our efficient formulation for L∞ optimization can also be used in-
dependently from strict minimization.

While most of our examples are related to parametrization, the al-
gorithm is applicable to other applications, such as deformation,
surface-to-surface mapping, and shape interpolation. We compare
to a number of previously proposed approaches for controlling dis-
tortion and explore the behavior of the proposed method for a num-
ber of examples.

2 Related Work

Strict minimizers. The idea of strict minimizers, defined pre-
cisely in Section 4, first appeared in [Rice 1963], as strict uni-
form best approximation. Rice [1963] develops the idea of a unique
(in a sense, best) solution to the minimax approximation problem
minai ‖f −

∑
i aigi‖∞, where f is a function, defined on a finite

set of points; gi are the approximation basis functions; and ai are
the coefficients to find. Marano [1990] has generalized the proper-
ties of strict approximations to convex sets in Rn.

This problem is equivalent to the problem of identifying a best max-
norm solution of an overdetermined linear system (strict Chebyshev
solution, e.g., [Abdelmalek 1977]). Descloux [1963] proves that it
is the limit of the p-approximations, for p → ∞. Computing a
strict approximation as a limit of p-norm approximations is often
referred to as the Polya algorithm. In [Mémoli et al. 2006], the 2-
norm of the differential of the map between two surfaces is used
as the distortion measure at each point, and the map is defined as
the limit of Lp norms of this measure. Behringer [1981] describes
a method of computing strict approximations using a simplex-type
method.

Strict approximation were considered as a way of aggregating costs
or error measures in many domains, e.g., resource allocation [Luss
and Smith 1986; Marchi and Oviedo 1992], network bandwidth
optimization [Ogryczak and Sliwinski 2007], and filter design.

Finally, we note that Delaunay triangulations are known to find the
strict minimizer of the problem of minimizing the maximal angle of
a triangulation for a point set. The classical flip algorithm comput-
ing Delaunay triangulations [Lawson 1972], by doing local mini-
mization structurally, resembles the relaxation-based algorithm that
we propose, with angle magnitude as the distortion measure.

Local distortion measures. Optimizing a measure of distortion
is the most common approach to shape deformation, parametriza-
tion, shape-to-shape mappings and shape interpolation. A variety
of local distortion measures have been proposed; in this paper we
consider field-deviation, measuring alignment of mapping gradients
with prescribed directions (e.g. [Kälberer et al. 2007; Ray et al.

2006; Bommes et al. 2009]), which is also a standard component
for local-global approaches to minimizing deviation from isometry
measured by the 2D and 3D ARAP functional [Alexa et al. 2000;
Sorkine and Alexa 2007; Liu et al. 2008; Chao et al. 2010]. More
recently, Aigerman and Lipman [2013] adopted from [Sorkine et al.
2002] a different measure of deviation from isometry, which can
also be used with our algorithm. In the context of parametriza-
tion and deformation, many papers approximate conformal maps
[Sheffer and de Sturler 2001; Kharevych et al. 2006; Ben-Chen
et al. 2008; Springborn et al. 2008], reducing conformal distortion
to zero in the smooth case. Closely related, harmonic maps [Lévy
et al. 2002; Desbrun et al. 2002] use the map’s gradient norm as
a distortion measure. They can also be viewed as minimizing the
distance to conformality in cases where boundary conditions do not
allow conformal map existence. A different scale-invariant mea-
sure of distance to conformality (dilatation or quasi-conformal dis-
tortion) is used in [Lipman 2012] and [Weber et al. 2012], which
is closely related to the MIPS energy [Hormann and Greiner 1999].
In [Solomon et al. 2011], the distance to a Killing field is used for
deformation optimization.

Global distortion optimization. With the exception of conformal
maps, most of the geometry processing literature uses L2 norms of
local distortion measures, although L1 norms, which lead to sparse
solutions, are gaining popularity for some applications. General
Lp-norms are mentioned in [Bommes et al. 2013] as a possible
option for global parametrization. Weber et al. [2012] indirectly
solve the L∞ minimization problem by using special properties of
the extremal quasiconformal maps, in particular, the fact that in the
smooth case, these are unique and characterized by constant distor-
tion measure. L∞-norm also has a long history in spline theory,
typically considered in settings when minimizers are unique.

Constrained formulations are becoming increasingly popular for
deformations and parametrization, allowing one to combine an
upper bound for local distortion with minimizing a global norm.
For example, a constrained field-deviation formulation was con-
sidered in [Bommes et al. 2013], with a constraint ensuring bijec-
tivity, but not bounding any specific type of distortion. Lipman
[2012] proposes a framework in which any convex global energy,
in particular field-deviation (ARAP’s global step), can be combined
with a bound on QC distortion. This approach is extended to a
broader class of distortion bounds in [Aigerman and Lipman 2013].
Schueller et al. [2013] use a penalty method to ensure bijectivity of
deformations.

For surface parametrization, distortion distribution is typically
strongly affected by the choice of singularities of the parameteri-
zation and, in the case of field deviation measure, by the choice of
the guiding field. In this paper, we do not consider the problem
of choosing singularities or finding positions of singularities; these
questions were addressed in many previous papers, e.g., [Kälberer
et al. 2007; Ben-Chen et al. 2008; Bommes et al. 2009; Myles
and Zorin 2012; Myles and Zorin 2013]. In particular, Myles and
Zorin [2012] use a form of ARAP distortion, restricted to confor-
mal maps, to determine singularity placement. Our approach can
be used with any fields, but naturally the best possible distortion
achievable is strongly affected by the choice of singularities.

3 Motivation and Overview

Notation. Although our primary focus is on triangular meshes
(embedded in R2 or R3), most of the considerations in this pa-
per apply also to tetrahedral meshes. Consider a mesh M with
vertices v1, . . . , vM ∈ Rn and elements (triangles or tetrahedra),
T1, . . . TN . We assume that a piecewise linear mapping f :M→
Rn, n = 2, 3, is given by its values at vertices f(vj) ∈ Rn,
j = 1 . . .M , forming a vector f ∈ RnM . We denote the con-
stant differential of the map f on an element Ti by Ji ∈ Rn×n;
Ji = Ji(f) : RnM → Rn×n is a linear function of f that returns
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the Jacobian. All the per-element distortion measures Di that we
consider in this paper are functions of Ji.

We start with an informal description of the approach in a spe-
cific case, to identify potential problems and possible solutions.
Consider the following 2D deformation problem: Given a pla-
nar mesh M with target locations qm ∈ R2 for several vertices
pm ∈ M ⊂ R2, we would like to compute a piecewise linear de-
formation f , such that f(pm) = qm. The local distortion measure
on each triangle is the deviation of the Jacobian Ji ∈ R2×2 from
identity: Di(q) = ‖Ji(q)− I‖F , where q ∈ R2M is the vector of
the new positions of the vertices.

Suppose we can compute an optimal deformation f with respect
to L2 and L∞ norms of the vector of distortions [D1, D2 . . . DN ].
(We use the notation Lp-norm, rather than p-norm, to indicate that
the vector is regarded as values of a piecewise-constant function
on M, so components’ contributions, in the case of p < ∞, are
weighted by areas of triangles.)

Figure 2, left, shows that for L2-norm, we get a high distortion
concentrated near a fixed point. L∞-norm optimization yields a
better result for worst-case triangles, but still allows high distortion
concentration. We call this initial L∞ solution q1.

L2 L∞ strict

Figure 2: The central point of a square with a fixed boundary is
displaced horizontally. Deformations optimal with respect to L2,
L∞ norms, and a strict minimizer are shown.

A natural idea is to fix a set of triangles I1 for which the maximal
distortion is reached: Di(q) = ‖D(q)‖∞ = k1, for i ∈ I1, and
attempt to reduce the distortion on the remaining ones as much as
possible. More specifically, we solve an L∞ optimization prob-
lem on the subset of triangles I \ I1, while imposing the constraint
Di(q) ≤ k1 on I1 (this problem is feasible because the solution of
the initial L∞ problem satisfies the constraints). Similarly to the
first step, this yields a second set of triangles I2, which reach the
second optimal bound k2. Continuing this process, we eventually
fix bounds for all triangles, decomposing them into groups I1, I2,
. . . IL, with the same distortion. This process allows one to choose
one particular solution out of many possible L∞ minimizers. This
solution tries to make the distortion as low as possible everywhere,
but always prioritizes reducing high distortion.

This idea leads to several important questions:

1. Is there a description of the result produced by this procedure
independent of the algorithm, so that efficient approximations
can be designed?

2. L∞ minimizers are not unique, but they determine sets Ii,
so the described algorithm may potentially produce different
results, depending on the way minimizers are defined. Which
one do we choose?

3. As described, the procedure requires L∞ optimization at ev-
ery step, and the number of steps may potentially be high: as
few as one triangle may be fixed at each step. How can L∞
optimization be performed efficiently and the number of steps
decreased?

In Section 4, we consider the first two questions, introducing the
concept of strict minimizers and its relation to the algorithm above.

In Section 5, we describe an efficient L∞ minimizer, which is an
essential component for an approximate direct strict optimization
algorithm. Building on the definition of the strict minimizer in the
next section, we describe a relaxation-based approximate algorithm
that yields comparable results in a fraction of the time.

4 Strict Minimizers

In this section, we describe the theoretical foundations of our ap-
proach. We start with a general definition, applicable both in the
smooth and discrete cases, and then specialize it to the discrete case.
We assume that for a map f : M → Rn, defined on a domain M
of matching dimension n = 2 or n = 3, a local pointwise dis-
tortion measure D[f ](x) ≥ 0 is chosen. We discuss a number of
specific examples of such measures in Section 7. The primary ex-
ample considered in this paper is frame field deviation, commonly
used in deformation, feature-aligned parametrization, quadrangula-
tion, and hex meshing in 3D.

Suppose a local coordinate frame of n vectors ei, n = 2, 3, is cho-
sen at every point x on M . Let J [f ] be the matrix representing the
differential of f with respect to this frame, andR be an orthonormal
matrix with columns corresponding to unit vectors that are viewed
as target images for vectors ei. Then the field deviation is defined
as

DFD[f ](x) = ‖J [f ](x)−R(x)‖F
where ‖ · ‖F is the Frobenius norm.

Strict minimizers. We use an approach to choose a particular L∞
minimizer, which we demonstrate to be unique in the discrete case,
based on the idea of introducing an ordering on distortion distribu-
tions D[f ](x). While this idea has been applied in many domains,
to the best of our knowledge, this idea has not been explored in the
geometry processing context.

For any distortion level z ≥ 0 and mapping f , define Hf,z ⊂M to
be the set of points x of M where D[f ](x) ≥ z, and let |Hf,z| be
the area/volume of Hf,z . Then we say that f is less distorting than
g, f ≺ g, if there is z0 such that |Hf,z0 | < |Hg,z0 |, and for any
z > z0, |Hf,z| = |Hg,z|.

If for f and g, |Hf,z| = |Hg,z| for any z, then we consider them
equivalent (f � g, if f ≺ g, or f ≡ g). The relation � defines a
total order on the set of equivalence classes of maps.

The idea behind this ordering is that we consider reducing the area
of higher distortion always a greater priority than reducing the area
for any lower distortion.
Definition 1. We say that f∗ has strictly minimal distortion or is a
strict minimizer if f∗ � g for any g.

The term originates in [Rice 1962], where a related problem of strict
approximation is considered. The definition above applies both to
the smooth surface case and to meshes. For meshes, D[f ] is typ-
ically piecewise constant per element, so we can represent it as a
vector of distortion values and define |Hf,z| more explicitly as a
sum of element areas. Next, we explain a conceptual algorithm
for constructing a strict minimizer. While not practical for any but
small meshes, it provides an important reference point and can be
used to establish that any two minimizers like this have exactly the
same distortion on every element (see Appendix B).

Discrete case. Definition 1 applies to meshes directly, as long as the
distortion measure can be computed almost everywhere (typically
at all interior points of triangles), but it is useful to rephrase it in a
more explicit form.

For 2D and 3D meshes and piecewise linear maps, we denote
D[f ] = [D1[f ], . . . DN [f ]], where Di[f ] is the distortion on ele-
ment i. The set Hf,z in the discrete case is the set of elements
with distortion level z or higher. As distortion levels z now form
a discrete set z0 > . . . > zL for a given f (there is at most as
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many distortion levels as there are mesh elements), we can define
If,` = {i|Di[f ] = z`}, the set of elements with a given distortion
z`. Then, the definition of ordering can be reformulated as follows.

f ≺ g if and only if for some ` two statements hold: (a) zf` < zg`
or zf` = zg` and |If,`| < |Ig,`|, (b) for all j < `, zfj = zgj and
|If,j | = |Ig,j |, where | · | denotes the area: |If,`| =

∑
T∈If,`

AT .

This notion has a close relationship to lexicographic ordering, be-
cause if all areas AT are the same, we have |If,`| proportional to
the number of elements in If,`. If we now arrange the vector D[f ]
in the order of nonincreasing distortion values, and denote this new
vector byD[f ]lex, then f ≺ g if and only ifD[f ]lex is lexicograph-
ically less than D[g]lex. In general, the area-weighted version we
use is only slightly different.

Computing a strict minimizer. Let I =
⋃L′

`=0 If,` be the set of
indices for which we fix an upper distortion bound ki, i ∈ I , on
element i, L′ ≤ L is the level with the minimal distortion that we
fix the distortion on (in the algorithm, the bounds ki are determined
at the previous steps). We consider the set of solutions X=M(I) of
the problem

k = min max
j 6∈I

Dj [f ], subject to Di[f ] ≤ ki, i ∈ I (1)

where minimization is done with respect to f . If Di[f ] are convex
functions of f , then M(I) is convex. Suppose the optimal value of
maxj 6∈I Dj [f ] is k. For M(I), define the set Ess(I) of essential
indices, for which Dj [f ] = k for all solutions in M(I).
Proposition 1. Ess(I) is not empty for any I and convex Di.

See Appendix B for a proof. Now we can define an algorithm for
computing a strict minimizer. In this form, it is clearly not prac-
tical, but it allows one to obtain a reference point for approximate
solutions and will be the foundation of more efficient approximate
algorithms. It also provides a foundation for proving uniqueness as
described in Proposition 2.

Algorithm 1 Strict minimization algorithm

1: F0 := ∅, j := 1
2: while Fj−1 6= {1 . . . N} do
3: Find Ess(Fj−1) from the set of solutions Xj of (1)

with I = Fj−1; k is the optimal value returned.
4: Fj := Fj−1 ∪ Ess(Fj−1)
5: For all i ∈ Ess(Fj−1), ki := k.
6: j := j + 1
7: end while

The first step of the algorithm solves the L∞ minimization, and
identifies the set of elements with distortion at the upper bound
for all solutions. The bounds for these elements are fixed. At
each step, the algorithm pushes down the maximal distortion of all
elements for which the bounds were not fixed, and again finds an
essential subset of these. Gradually, distortion ki is determined
for all elements. The end result, XL (where L is the number of
iterations), in fact contains all strict minimizers:

Proposition 2. For convexDi, any strict minimizer f∗ has the same
distortion vector D[f∗] = [k1, . . . , kN ], which is obtained by Al-
gorithm 1.

See Appendix B for a proof. It immediately follows from the propo-
sition that the strict minimizer is unique up to any transform of f∗
which all Di are invariant to. While uniqueness of D[f∗] holds un-
der general assumptions ofD, an explicit description of the setXL,
and conditions under which it contains only one minimizer depends
on D and mesh connectivity.

Relationship to the Lp-norms. In the context of approximation by
polynomials in one variable, when the L∞-minimizer is unique, a

classic approach [Pólya 1913] is to view it as a limit of the Lp-norm
minimizers. In the cases when the L∞ minimizer is not unique, for
the setting of [Rice 1963], Descloux [1963] shows that the sequence
of Lp norm approximations converges to the strict uniform approx-
imation. Fletcher et al. [1971], observing that the convergence may
be extremely slow, propose an extrapolation technique to acceler-
ate it. Thus, one can view strict minimizers in the context of surface
parametrization and deformation as the limit case ofLp norms, sug-
gested in [Bommes et al. 2013] and [Gao et al. 2012] respectively.
We discuss the relation in greater detail from a practical point of
view in Section 6.

5 Algorithms

5.1 L∞ optimization

We develop specific algorithms for strict approximation in the con-
text of minimizing the field-deviation distortion, defined in Sec-
tion 4. This measure appears in a variety of deformation and
parametrization contexts, both by itself and as a building block for
the ARAP distortion measure discussed in Section 5.4.

The difficulty in minimizing L∞-norm, compared, e.g., to L2 or
any smooth functional, is that standard general methods for un-
constrained optimization either converge slowly or require at least
gradient information. However, L∞-norm is not smooth, although
convex. We observe that in a number of cases important for geome-
try, in particular for optimizing L∞-norm of field-deviation distor-
tion, maxi∈I ‖Ji−Ri‖F , we can cast the problem as a constrained
optimization problem, by introducing an auxiliary slack variable k
for the unknown L∞ bound:

min k, subject to

DFD
i (q) = ‖Ji(q)−Ri‖F ≤ k, i = 1 . . . N (2)

where the minimization is with respect to the vector of unknowns
q. Note that the expression on the left-hand side of equalities is a
2-norm of a linear function of unknowns, and the right-hand side
is a linear function. Thus, this simple transformation results in a
second-order cone problem (SOCP), for which robust and efficient
solvers exist. In our implementation, we use a homogeneous inte-
rior point solver (MOSEK [Andersen et al. 2003]).

While the minimal value k of the L∞ norm is unique by convexity
of the norm, in general many possible solutions have this optimal
L∞ norm. Depending on the algorithm, different solutions q of (2)
may be found. To define the algorithm unambiguously, we can de-
fine a unique solution as follows: (a) we solve (2) first, and use the
resulting bound k∗ to solve a constrained L2 optimization problem,
min

∑
i∈I(DFD

i )2Ai, subject to DFD
i ≤ k∗, for which the solu-

tion is unique if we fix the value at a single point (to account for
invariance of DFD

i with respect to translations of the image).

As a building block in the strict minimization algorithm described
below, we found that as far as the sets of triangles Ii are concerned,
the difference between simply using the solution for (2) computed
by an interior point solver (MOSEK) and obtaining the constrained
L2 solution is insignificant (and both are far from the strict mini-
mizer). In our experience, our L∞ algorithm is quite efficient and
the solver converges with high accuracy quickly.

5.2 Direct Strict Minimization

We describe an approximate direct algorithm, following the overall
structure of Algorithm 1. The key difference is the change in how
the sets of elements with fixed distortion bounds Fj are defined.

Identifying the set Fj precisely is expensive: A common approach
would be to start with an initial set F ′ of maximal value elements
for an L∞ minimizer, and attempt to minimize distortion on each
element of F ′, while keeping the rest bounded by the same bound.
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First, rather than searching for precise sets Fj we simply use the so-
lution of the L∞ problem, solved as discussed in 5.1, and which, as
noted, is similar to the solution of the constrained L2 problem. The
intuition for using a similar solution to the constrained L2 problem
is that the L2-norm minimization is likely to lower the distortion
values for all non-essential elements in the interior of the feasible
domain (L2-norm tends to concentrate distortion in a few spots, as
this often decreases the average). While there is no guarantee that
this consistently happens, Figure 3 shows that in most cases only a
small number of additional triangles may be included in Fj unnec-
essarily.
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Figure 3: Exact (right) vs. approximate (left) computation of sets
Fj . The distributions of triangles by distortion (horizontal his-
togram axis) are nearly identical, with differences of 1-2 triangles
at the most. The approximate was generated with ∆k = 10−4, and
the exact was generated using brute force.

The second change is to ensure that the number of steps the algo-
rithm takes is controlled directly. Rather than fixing bounds for
elements that are within solver accuracy bound from the optimum,
we specify a ∆k, and include in Fj all elements i that have distor-
tion Di between the bound kj and kj −∆k. This ensures that the
number of steps is no more than k1/∆k. For example, typically for
high-quality fields Ri, k1 is 1 or below, and using 10−3, we can re-
strict the number of steps needed to 1000. We observe that typically
the number of steps is substantially lower, as there are often gaps in
the distortion value distribution. Further more, we set a lower dis-
tortion bound kmin, where the distortion becomes negligible, and
stop the iterative process prematurely. Nevertheless, the algorithm
in this form remains quite costly but quite accurate, yielding a close
approximation to the true strict minimizer.

Algorithm 2 Direct approximate minimization

F0 := ∅, j := 1, k :=∞, kmin := const.
while Fj−1 6= {1 . . . N } and k > kmin do

Solve (1) with I = Fj−1 to obtain the optimal value k.
E = {i|k −∆k ≤ Df

i ≤ k}
Fj := Fj−1 ∪ E
For all i ∈ E, ki := k.
j := j + 1

end while

5.3 Relaxation-Based Strict Minimization

A significantly faster algorithm is based on a more direct applica-
tion of the definition of the strict minimizer. Recall that the strict
minimizer has minimal vector of per-element distortion values with

respect to the relation � defined in Section 4. Hence, a natural
approach would be to find a starting L∞ minimizer and then iter-
atively improve it, always transitioning from a solution q to a new
solution q′ such that q′ ≺ q. The simplest algorithm of this type is
coordinate descent. We keep all components of q fixed, and change
only one.

We use 1-ring L∞ minimization as an elementary operation to
modify q. For a 1-ring N1(v) centered at a vertex v, we solve a
small L∞ problem with the value at v as the unknown, and values
at all other vertices fixed. In this respect, the process resembles
many similar algorithms ranging from Gauss-Seidel iteration to the
classical flip algorithm for Delaunay triangulation.

With this process, only the distortion on the triangles in the 1-ring
we optimize can change. Generically, the minimizer for the 1-ring
L-infinity problem is unique. Either the 1-ring is already at the
minimum – then q does not change – or it decreases the maximal
distortion k in the 1-ring, which ensures that the new q′ is less
distorting. It will decrease the area Hf,k, and any possible increase
in distortion will be at values less than k.

We refer to this simple algorithm as relaxation-based strict mini-
mization, as it gradually progresses towards the strict minimizer by
local improvements. We note that the principle underlying the flip
algorithm for Delaunay is the same. The Delaunay triangulation
minimizes the maximal angle (i.e., solves a discrete L∞ problem),
and if the distortion vector is defined as the vector of all triangle
angles, then a single flip results in a lower distortion vector with
respect to the ≺ relation that we have defined.

Algorithm 3 Relaxation-based approximate minimization

Solve L∞ optimization problem to obtain solution q
for m = 1 . . .mmax do

for v ∈ V do
Solve 1-ring L∞ problem on N1(v), for q∗v .
Replace qv with q∗v .

end for
end for

The algorithm is easily parallelized in a red-black relaxation style
(see performance discussion in Section 4 in [Levi and Gotsman
2015]). A stopping condition can be a threshold on the maximum
change in an iteration over all the 1-rings. In our experiments, we
found that setting mmax = 50 is more robust, and it is sufficient
in most cases for reaching a close to steady state for high distortion
values. This is attributed to the behavior of the algorithm that is
similar to many relaxation algorithms. It quickly reduces high dis-
tortions, but proceeds slowly after that, gradually decreasing lower
distortions in a broader area, which we care less about. Further ben-
efits of the algorithm include: (i) it can be used to improve an initial
solution, which was generated with Lp or IRLS (discussed in Sec-
tion 6); (ii) the algorithm can be used in a multiresolution scheme;
(iii) it can be modified to favor solutions with fewer flips or avoid
adding flips to an initial solution altogether.

Solving 1-ring problems in 2D. 1-ring optimization problems with
three (2D) or four (3D) variables can be solved quickly using a va-
riety of standard algorithms. In 2D, for field-deviation distortion or
distortion measures with similar properties, the 1-ring optimization
problems can be solved particularly efficiently, due to their special
properties. We briefly describe a specialized function that we use,
with detailed analysis in the supplementary document.

Suppose p1, p2, p3 are 3 vertices of a triangle T (in a local 2D
coordinate system), q1 and q2 are fixed parametric-plane images of
p1 and p2, and q = [u, v] is the vertex that is allowed to move.

Proposition 3. The set of positions of point q for which distortion
is equal to a given k is either empty, or a circle; the center of the
circle does not depend on k.
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Figure 4: Progress of relaxation-based strict minimizer: iterations
0 (L∞ minimizer), 40, 140, and the result of the direct strict mini-
mizer. Note that solutions do not differ significantly at high distor-
tion levels, but differ more at lower levels (all histograms are log-
scale, with distortion amount vertical). Here we chose an example
where there is a clear difference between 40 and 140 iterations;
usually 50 iterations are enough.

The geometric notion of distortion circles allows to define the
space of feasible solutions of the constraints above in the 3D space
(q, k) = (u, v, k), This is a set of circular cones, with vertical
axes (along k), with apexes at different heights ki (the height of
an apex is the minimal possible distortion for a triangle in the one
ring). The feasible domain is the intersection of feasible cones for
all triangles in the ring Ti, i = N . This is a convex 3D domain
with piecewise smooth boundary, and the solution of the optimiza-
tion problem is the lowest point of this domain. As the boundary
is made of pieces of circular cones, the following proposition holds:

Proposition 4. The solution q∗, k∗ of the 1-ringL∞ problem is at a
vertex of the feasible domain (intersection of 3 distortion cones), at
an edge point (lowest point of the intersection curve of two cones),
or at a cone apex.

The intersection of two or three circular cones with parallel axes
can be found by solving quadratic equations for the intersection
points. Similarly, finding the lowest point of an intersection curve
amounts to solving a quadratic equation. A brute force check of all
possible minima locations requires solving 41 quadratic equations
for a vertex of valence 6. While the cost of such brute force al-
gorithm is cubic in the size of the neighborhood, as the fraction of
high-valence vertices is typically small, actual performance is close
to the performance one expects for the average case.

5.4 ARAP Optimization

So far, we have considered convex distortion measures, focusing
on field-deviation distortion. Nevertheless, the algorithms of the
previous section are applicable to a broader range of functionals,
e.g.:

DARAP = min
R∈SO(n)

‖J −R‖F (3)

For 2D maps, this measure can be expressed as√
(σ1 − 1)2 + (σ2 − 1)2 in terms of singular values of the

Jacobian σ1 and σ2, and similar expressions hold in 3D. The
algorithm described in the previous section can be easily integrated
with a commonly used local-global ARAP iteration (e.g., [Liu
et al. 2008]. The local step in the ARAP algorithm updates the
frames using

Ri := argmin
R∈SO(n)

‖Ji(f)−R‖F , (4)

where the map f is kept fixed, while the global step minimizes field-
deviation distortion keeping Ri fixed.

We observe that L∞ optimization of the field-deviation distortion
is a natural match for local-global iteration: The local frame update
does not increase the distortion on any element, so a solution satis-
fying constraints with some bounds ki, still satisfies these bounds

after local update. While it is not guaranteed to converge to the
global minimum of the nonconvex energy, like similar local-global
algorithms, it is guaranteed to go to less distorted mappings at every
step. Similar observation holds for the 1-ring L∞ minimization.

Thus to obtain an accurate algorithm for approximating the strict
minimizer of ARAP distortion, we replace a single call to L∞ op-
timization in Algorithm 2 by a local-global iteration. Similarly, for
the fast relaxation-based algorithm, we add after the inner loop in
Algorithm 3 a local iteration. We can guarantee that for each itera-
tion q′ � q, because the local step decreases (or at least does not
increase) each component of the distortion vector.

ARAP shape interpolation. Using the method of [Levi and Gots-
man 2015], the ARAP distortion measure can be easily extended
to the problem of shape interpolation. Suppose we are given two
meshes M1 and M2 of the same connectivity, with a correspon-
dence between the vertices of the two, defining a piecewise linear
map f with differential Ji on the element Ti. Let R1

iY
1
i be a polar

decomposition of Ji. [Levi and Gotsman 2015] defines the sym-
metric part of the intermediate map ft, Y t

i = (1− t)Y 0
i + tY 1

i , for
0 ≤ t ≤ 1, where, Y 0

i = I , is the symmetric part of the Jacobian
of the initial map (identity). The intermediate shapes at time t are
obtained by optimizing the ARAP-like local distortion measure

min
Ri∈SO(3)

‖Jt
i −RiYi‖F

where R is a rotation. Our algorithms can be applied directly in
this setting. More generally, approximate strict minimizers can be
computed for any functional that can be optimized by a local-global
algorithm by a similar modification of our algorithms.

6 Evaluation

For evaluation, we use primarily global parametrization (see Ap-
pendix A) examples. The fields for these examples were obtained
using the algorithm of [Bommes et al. 2009]. In all cases, we use
kmin = 0.1, ∆k = 10−3 for the direct algorithm, and 50 iterations
of the iterative algorithm. In the images, the distortion is color-
coded on the facets of the source mesh: dark blue corresponds to
distortion 0 and red to distortion 0.6. All histograms are log-scale,
with horizontal axis indicating percentage of triangles at a given
distortion, and vertical the distortion magnitude.

Controlling distortion of quadrangulations. One of the moti-
vations for this work is the difficulty with controlling bijectivity
and more generally distortion of global parametrizations and quad
remeshing. Minimizing average distortion results in high distor-
tion concentrations which typically cannot be eliminated by using
a global constraint on distortion. Figs. 6-7 demonstrates that a sig-
nificant improvement in quad quality is achieved by our method.
While we show examples with relatively moderate (e.g., by finite
element standards) quad distortion, similar effects are observed for
higher distortion levels. In all cases we observe a large improve-
ment both of aspect ratio and size uniformity. We note that our
method, in pure form, does not guarantee that the parametrization
is bijective unless the resulting maximal field-deviation distortion
is less than 1. However, it is easy to add other types of constraints
[Lipman 2012; Bommes et al. 2013] that ensure that the result is bi-
jective (if a feasible solution is found). The stability of the method
is illustrated in Fig. 5. A different triangulation barely influenced
the histogram, and the added noise made a difference relative to its
strength.

L∞-minimizer vs. strict minimizers. Next, we compare the ef-
fects of our algorithms; see Figs 8-9. We show the effects on the
distortion histograms, which can be viewed as averaged represen-
tations of distortion vectors Df , as well as some examples of local
effects on the maps. Observe consistent reduction in the numbers
of high (but not maximal!) distortion triangles, at the expense of
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Figure 5: Stability. From left to right: source model, noise
α = 0.1, noise α = 0.3, noise α = 0.5, remeshed (different tri-
angulation). The noise was added as a displacement vector in the
normal direction (or its opposite) of length up to the average edge
length scaled by α.

model #faces L∞(s) direct,# direct (s) relax. (s)
cow 8k 1.3 28 45 1.2

dragon 104k 18 59 1810 15
elephant 50k 9 34 558 7

hand 3k .3 58 6 .3
homer 10k 1 43 67 1.3
horse 102k 17 49 1480 13
igea 100k 19 99 3208 13

julius 85k 19 22 657 11
lion 55k 8 24 363 8

piggy 10k 1.5 115 125 1.8
neptune 105k 16 69 2003 15

fish 35k 6 54 354 5

Table 1: We ran the experiments on a laptop with Intel Core i7-
2720QM CPU 2.2Ghz. For the relaxation-based algorithm, we ran
50 iterations.

an increase in distortion at low levels. This increase in distortion at
low levels, while nearly imperceptible and typically not reducing,
e.g., finite element accuracy, at the same time leads to a significant
increase in L2-norm. We also observe that while the histogram be-
havior for the relaxation-based algorithm for low distortion levels
can be quite different, it achieves similar effects for high distortion
level.

ARAP parametrization, deformation, and shape interpolation.
The results for ARAP global parametrization are shown in Fig-
ure 17. As expected, a reduction in distortion is achieved, and the
overall behavior is similar to the field-deviation case. A simple ex-
ample for shape deformation, based on ARAP distortion measure,
is shown in Figures 10-11; observe that essentially uniform distor-
tion is obtained. Similar behavior is observed for shape interpola-
tion (Figure 12).

Performance. The information on performance of our algorithms
is presented in Table 1, which includes most of the shapes used in
this paper. The column direct,# shows the number of steps in the
direct algorithm. Observe that the time required by the relaxation-
based algorithm (not counting initialization) is about the same as a
single L∞ solve.

Our L∞ optimization method yields significant performance ad-
vantages compared to [Aigerman and Lipman 2013], discussed in
more detail in the next section: we can obtain an approximation of
a strict minimizer with a fraction of the cost of a single projection
iteration.

Alternative algorithms for strict minimization. We consider two
potential alternatives to the algorithm that we propose. One is
Polya’s algorithm which we have already discussed in Section 4. It
requires solving a sequence of Lp problems to determine the strict
minimizer as a limit. One could consider simply solving a singleLp

problem for a large p. However, we observe (Figure 13) that the Lp

minimizers approach the strict minimizer first, but then start mov-
ing away from the strict minimizer. While experimentally we see a

[Bommes et al. 2013] L∞-minimizer strict minimizer
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Figure 6: Comparison of strict minimization algorithms to the
method of [Bommes et al. 2013] and L∞ minimizer. (In the first
row, the increased maximum distortion in the strict minimizer is
due to accumulated numerical errors right on the border between
the histogram bins.)
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Figure 7: An additional example of parametrization rounding

reasonably close approximation to strict minimizer for p = 16 or
32, the maximal distortion for these values is always higher than the
expected limit value. For higher values of p, the maximal distortion
gets closer, but the number of triangles with distortion close to the
highest increases, and the Lp solution deviates from the strict min-
imizer. Even a single stage of Lp optimization is 5-6 times slower
than the relaxation-based algorithm, and at least several minimiza-
tions of Lp are required if we want to identify for which value of
Lp the result is optimal, in the sense of the distortion ordering we
have defined.

Another possible option is using Iterative Reweighted Least
Squares (IRLS). A version of IRLS for L∞ optimization was pro-
posed by Lawson [Rice and Usow 1968], however, it is not known if
it converges to a strict minimizer or not. As [Rice and Usow 1968]
points out, its rate of convergence depends on the ratio of the worst
distortion to second worst, which is likely to be small in the prob-
lems we consider. We observe that it does yield some improvement
but remains far from the strict minimizer.

Finally, we observe that the stiffening algorithm of [Bommes et al.
2009] can be viewed as a type of IRLS algorithm, but with weights
determined by a different formula. The results of using IRLS ap-
pear to be better, but in both cases, a more significant reduction of
distortion can be obtained using our approximations of strict mini-
mizers.

7 Other Distortion Measures

So far, we considered a strict minimizer for our ARAP-L∞ method.
But the strict minimizer concept can be easily extended to other al-
gorithms and distortion measures. We consider two different dis-
tortion measures in 2D, quasiconformal distortion [Lipman 2012]
and an alternative measure of deviation from isometry [Aigerman
and Lipman 2013]. To evaluate the behavior of strict minimiz-
ers with these measures, we use a binary-search (bisection) L∞-

optimization in the direct strict optimization solver of Section 5. It
is possible to improve the results using the local-global framework,
but due to the bisection it would take too long.

Quasiconformal distortion (or dilatation) is a particularly inter-
esting test case, because of the difference in the behavior of L∞-
minimizers in the smooth and discrete cases. This measure is
defined by the deviation from conformality of an affine map f ,
DQC = σ1/σ2, where σ1 ≥ σ2 are the largest and smallest singu-
lar values of the Jacobian of f . In the smooth case, the solution of
theL∞ optimization problem is, in fact, unique and is a Teichmüller
map [Weber et al. 2012], characterized by DQC = const = k ev-
erywhere, excluding isolated points where the map is not smooth.
No analogous statement is known in the discrete case. There are
many L∞ minimizers, and an optimization does not produce maps
that are anywhere close to uniform distortion. There is a simple
way to evaluate the quality of a discrete solution, by considering
how close to constant DQC is. The discrete strict minimizer re-
sults in (Figure 15) are much closer approximation to the smooth
Teichmüller map vs. the L∞ minimizer. Although the results of
[Weber et al. 2012], which explicitly tries to make DQC constant,
are also close to constant distortion, the algorithm proposed there
does not guarantee bijectivity and, as can be observed, has a small
number of triangles deviating from average. In contrast, a strict
minimizer has much lower maximal distortion.

ASAP. As-similar-as-possible distortion measure is a different way
to measure conformal distortion. Similar to (3) we define

DASAP = min
R∈SO(n),s∈R+

‖J − sR‖F . (5)

We modify the local step in the framework suggested in Section
5.4 to update the frames to the closest similarity matrix instead of a
rotation

siRi := argmin
R∈SO(n),s∈R+

‖Ji(f)− sR‖F . (6)

For 2D maps, the ASAP distortion measure in (5) can be expressed
as σ1−σ2; expressions for 3D maps are similar. As minimizing the
ASAP distortion is another way to minimize the conformal distor-
tion, the strict minimizer approximates a Teichmüller map (Figure
15).

Bounded singular values. A different measure of deviation from
isometry than ARAP is used in [Aigerman and Lipman 2013],
DSV M = max(σ1, 1/σ2). Since the constraint, DSV M ≤ k,
is not convex, a projection of a given map to the bounded space is
approximated. The strict minimizer is demonstrated in Figure 16.
While there is, as expected, some decrease in high distortion, it
is modest compared to what is observed for DFD , DARAP , and
DQC .

Singular-value bound vs. L∞-ARAP optimization. Our ap-
proach to minimizing the L∞ norm of the ARAP distortion mea-
sure (L∞-ARAP) provides a useful alternative to methods based on
optimizing bounds on singular values as in [Aigerman and Lipman
2013]. These methods yield different types of bounded distortion
maps. We compare these approaches in more detail to clarify rela-
tive benefits of each.

• Both methods yield results with a reasonable trade-off be-
tween conformal and area distortion, and work in any dimen-
sion.

• While [Aigerman and Lipman 2013] can operate inside the
local-global framework (Section 5.4), L∞-ARAP optimiza-
tion in the local-global setting ensures that the energy is de-
creased at every step.

• The L∞-ARAP is quite efficient, as it requires solving a sin-
gle SOCP in each global step, finding the tightest bound for
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Figure 8: L∞ optimization, relaxation-based, and direct algorithms for strict minimization for global mesh parametrization. Please note
that no singularity position rounding is done, so the displayed textures have a mismatch along the seam, which was used to cut the surface to
a disk.

Strict Minimizers For Geometric Optimization        •        185:9

ACM Transactions on Graphics, Vol. 33, No. 6, Article 185, Publication Date: November 2014



L∞-minimizer strict, relax strict, direct L∞-minimizer strict, relax strict, direct

      

0.0

0.2

0.4

0.6

0.8

1.0

0.1% 1% 10% 100%

74%

19%

4.3%

1.3%

0.42%

0.11%

0.018%

0%

0%

0%

       

0.0

0.2

0.4

0.6

0.8

1.0

0.1% 1% 10% 100%

31%

60%

6%

2.4%

0.58%

0.014%

0.0054%

0%

0%

0%

       

0.0

0.2

0.4

0.6

0.8

1.0

0.1% 1% 10% 100%

25%

71%

4.3%

0.014%

0.0054%

0.013%

0.0054%

0%

0%

0%

      

0.0

0.2

0.4

0.6

0.8

1.0

0.1% 1% 10% 100%

79%

15%

3.8%

1.6%

0.58%

0.066%

0%

0%

0%

0%

      

0.0

0.2

0.4

0.6

0.8

1.0

0.1% 1% 10% 100%

48%

41%

8%

2%

0.83%

0.073%

0%

0%

0%

0%

       

0.0

0.2

0.4

0.6

0.8

1.0

0.1% 1% 10% 100%

48%

42%

8.7%

0.59%

0.49%

0.0029%

0%

0%

0%

0%

Figure 9: Additional examples comparing L∞ optimization, relaxation-based, and direct algorithms examples.

L∞

L2

Figure 10: Two ARAP deformation examples; the result is colored
by distortion. Note that in these cases the distortion is essentially
constant for our algorithm. The L2 results contain foldovers.

the step, without projections and bisection iterations needed
by [Aigerman and Lipman 2013].

• L∞-ARAP problem is always feasible. For example, the ini-
tialization step of the local-global framework is usually arbi-
trary, and the frames (rotations) are set to identity. Thus, it is
common in deformation applications to go through unavoid-
able configurations with inverted elements, which are not in
the feasible space of problems solved in [Aigerman and Lip-
man 2013]. For example, the two bar deformations in Fig. 10
cannot be obtained with a method that does not allow inter-
mediate configurations with inverted elements.

• [Aigerman and Lipman 2013] guarantees, when a feasible so-
lution is found, that it is bijective. The L∞-ARAP minimizer

Figure 11: Tetrahedral bar deformation. (Left) source, (Top) L2

concentrates the error near the positional constraints, (Bottom)
L∞ keeps the error bounded.

may not be bijective even if a bijective solution exists (bijec-
tivity is guaranteed only if the optimal norm is lower than 1).

8 Conclusions and Future Work

Strict minimizers introduced in this paper provide a natural defi-
nition of uniquely defined maps of least distortion, in cases when
the space of maps with the best possible distortion bound is large.
While the algorithms closely following the definition are expensive,
we proposed an alternative that is easy to implement, efficient, and
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Figure 12: Shape interpolation. (First row) middle shapes for t =
0.5, [Chen et al. 2013] and L∞, (Second row) t = 0.75, L2 and
L∞.

gives a reasonable approximation to the exact solution.

Many improvements and additional applications to 2D and 3D de-
formation and shape interpolation are possible. We can expect that
a simplex-type algorithm combined with our algorithm for one-
ring optimization would result in large speedups, reducing the cost
to just several quadratic equation solves per one ring, making its
cost substantially less than a single SOCP solve. A multiresolu-
tion relaxation-based algorithm can be constructed both reducing
the number of iterations and potentially improving quality.

While strict minimizers in pure form yield a useful class of map-
pings, in practice it may be necessary to combine these with other
quality functionals or impose additional constraints (e.g., use them
locally to improve a given map).

From a theoretical point of view, nothing is known about the limit
behavior of strict minimizers under mesh refinement. In fact, a
number of examples show that some of the properties cannot be
transferred exactly. For this reason, excluding special cases such as
Teichmüller maps, nothing is known at this point about the smooth-
ness of the limit solutions.
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BOMMES, D., LÉVY, B., PIETRONI, N., PUPPO, E., SILVA, C.,
TARINI, M., AND ZORIN, D. 2012. State of the art in quad
meshing. In Eurographics STARS.

BOMMES, D., CAMPEN, M., EBKE, H.-C., ALLIEZ, P.,
KOBBELT, L., ET AL. 2013. Integer-grid maps for reliable quad
meshing. ACM Trans. Graph. 32, 4.

CHAO, I., PINKALL, U., SANAN, P., AND SCHRÖDER, P. 2010.
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A Algorithmic Details for Global Parametriza-
tion

For global parametrization, the overall structure of the algorithms
remains the same, but there are several differences. We largely use
the formulation of [Bommes et al. 2009]. Recall that f consists
of values fim assigned to corners of each element Ti (in this case,
parametric coordinates), where i is a vertex and m is a triangle
index. For every interior edge of the mesh, an integer matching pij
is defined, which determines how parametric coordinates change
across the edge eij . Typically, matchings are inferred from a field
[Bommes et al. 2012]. Specifically, let vi be a vertex of an edge
eij shared by triangles T` and Tm. Let fi` and fim be parametric
positions of vi at corners of T` and Tm. For each edge, these are
related by the constraint

fi` = Rijfim + tij (7)

where Rij is a rotation by πpij/2, and tij are auxiliary variables,
referred to as translations. The system C consists of these con-
straints for all edges (in practice only edges with nontrivial Rij

yield explicit constraints). The matrix C is assembled and all con-
vex problems are solved with these linear constraints added. tij are
regarded as free variables. To use a global parametrization for quad-
rangulation, we need an integer grid layout, i.e., tij need to have in-
teger components. For the quadrangulation examples shown in the
paper, these values of tij are computed using the solver described
in [Bommes et al. 2009], and then fixed for strict minimization.

Finally, we note that for 1-ring optimization, the center of the ring
vi might have multiple positions fim. Then, using (7) with fixed
tij , we can express Jm for all triangles Tm as functions of fi1,
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Figure 15: Computing discrete approximations to Teichmüller
maps. (a) Source domains of the three maps, (b) [Lipman 2012],
(c) [Weber et al. 2012], (d) [Lipman 2012] strict minimizer, (e)
ASAP strict minimizer. The color maps and histograms show the
quasiconformal distortion; note that ASAP does not optimize this
measure directly, yet it optimizes it well.

which require only two variables at for the vertex v. The resulting
system has exactly the same structure as considered in Section 5. As
a possible extension, one can generalize the relaxation-based strict
minimization algorithm to handle free translations tij (and thus de-
termine their values), by introducing these as additional variables
with global influence and adding iterative minimization of L∞ with
respect to these variables to the process.

B Proofs of Propositions

To prove Proposition 1, we prove an auxiliary proposition first.

Let X be the set of solutions of the problem in (1), and k the corre-
sponding optimal value. Let the set of active constraints A(h) for
a point h ∈ X be the subset of indices i ∈ I , such that Di[h] = k.
X is a convex set, since the Di are convex functions. X contains
infinite solutions (we can interpolate between two points f ,g ∈ X ,
treating the vertex coordinates as scalar functions).

Proposition 5. For h = (1 − a)f + ag, 0 < a < 1, f ,g ∈ X ,
A(h) ⊆ A(f) ∩A(g).

Proof. Consider a segment connecting two points f ,g ∈ X , h =
af + (1− a)g, for 0 < a < 1. If some element i ∈ A(h) is not in
bothA(f) andA(g), then eitherDi[f ] < k orDi[g] < k (or both).
Due to convexity, this means thatDi[h] ≤ aDi[f ]+(1−a)Di[g] <
k, which is a contradiction of i ∈ A(h).

Proof of Proposition 1.

Proof. It is sufficient to prove that the intersection of all active con-
straints sets of the (infinite) set of solutions in X is not empty. If
it is empty, there is also a finite subset of solutions of X for which
the intersection of sets of active constraints is empty: Because the
set of constraints is finite, we can pick a single solution x for each
constraint i, such that A(x) does not contain i.

Suppose we have m points fi in X , such that the intersection of
all A(fi) is empty. Construct the midpoint h1 of the segment
(f1, f2). It has, by Proposition 5, an active constraint set contained
in A(f1)∩A(f2). Repeat the process with the segment (h1,f3) and
so on. Eventually, we construct a point hm−1 in X with an active
set A(hm−1) contained in the intersection of all A(fi) which, by
the supposition, is empty. But this contradicts the definition of X
(each solution must have an active constraint, i.e., an element with
distortion touching the bound). We conclude that there must be a
common active constraint for all of X .

Proof of Proposition 2.

Proof. We prove by induction that any strict minimizer should have
distortion value zj on the set Ess(Fj) computed by the algorithm.

Suppose for any strict minimizer f∗ and any i ∈ Fj−1, Di[f
∗] =

ki, where ki = zj−1 is the distortion value associated with element
Ti by Algorithm 1, and f∗ ∈ Xj−1. We show that the same has to
hold for Fj .

The statement above holds trivially for j = 1, as F0 is empty, and
we can define the set X0 to be the set of all functions. Suppose f∗

is not in Xj , i.e., not a solution of problem (1). As D[f∗] satisfies
the bounds ki on all of Fj−1, f∗ satisfies the constraints of (1).
If f∗ is not a minimizer of (1) in the jth iteration (the distortion
on the unconstrained elements is greater than zj), then for some
element i in Ess(Fj), Di[f

∗] > zj . As a consequence, for any
g ∈ Xj , g ≺ f∗, because zfj < zgj and for all ` < j, zf` = zg` and
|If,`| = |Ig,`| . This contradicts the definition of a strict minimizer.
As an element of Xj , f∗ has to have value zj on Ess(Fj). By
induction, we conclude that for any strict minimizer, the distortion
on each triangle is uniquely determined by Algorithm 1.

We note that although the area factors in the definition of the sets
Hf,z are natural and allow the use of a uniform definition for con-
tinuous and discrete cases, they play no role in the algorithm, and
hence, somewhat surprisingly, strict minimizers are not different
from solutions of lexicographic minimax problems in the discrete
case.
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Figure 16: [Aigerman and Lipman 2013] and a strict minimizer
based on its algorithm and distortion measure.
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Figure 17: field-deviation strict minimizer (left) compared to ARAP
strict minimizer (right).

185:14        •        Z. Levi et al.

ACM Transactions on Graphics, Vol. 33, No. 6, Article 185, Publication Date: November 2014




