
A Free-Space Adaptive FMM-Based PDE Solver in Three
Dimensions

M.H. Langston† L. Greengard D. Zorin

July 2011

Abstract

We present a kernel-independent, adaptive fast multipole method (FMM) of arbitrary order accuracy for solving
elliptic PDEs in three dimensions with radiation and periodic boundary conditions. The algorithm requires only the
ability to evaluate the Green’s function for the governing equation and a representation of the source distribution (the
right-hand side) that can be evaluated at arbitrary points. The performance is accelerated in three ways. First, we
construct a piecewise polynomial approximation of the right-hand side and compute far-field expansions in the FMM
from the coefficients of this approximation. Second, we precompute tables of quadratures to handle the near-field
interactions on adaptive octree data structures, keeping the total storage requirements in check through the exploitation
of symmetries. Third, we employ shared-memory parallelization methods and load-balancing techniques to accelerate
the major algorithmic loops of the FMM. We present numerical examples for the Laplace, modified Helmholtz and
Stokes equations.

1 Introduction
Many problems in scientific computing call for the efficient solution to linear partial differential equations with con-
stant coefficients. On regular grids with separable Dirichlet, Neumann or periodic boundary conditions, such equations
can be solved using fast, direct methods. For free-space boundary conditions and highly nonuniform source distribu-
tions defined on adaptive and/or unstructured grids, alternative approaches are necessary. We describe a direct high-
order adaptive solver for inhomogeneous linear constant-coefficient PDEs in three dimensions with decay conditions
at infinity. A typical case is the Poisson equation

−∆u = g, supp(g) ⊂ Ω, (1)

where Ω is a bounded domain in R3, and u(x) = O(1/|x|) as |x| goes to infinity. Our solver uses a kernel-independent
fast multipole method (FMM) [60, 61] which can be applied to any PDE, for which a free-space Green’s function eval-
uation routine is provided. It handles highly nonuniform sources in an efficient manner, using an adaptive approxima-
tion of the right-hand side in (1). The structure of the solver allows for natural integration with FMM-based boundary
integral equation techniques, leading to the construction of an adaptive kernel-independent solver for inhomogeneous
PDEs in complex geometries, which will be described in a companion paper.

Related work. For regular grids in separable coordinate systems (rectangles, disks, spheres, etc.), fast methods for
constant-coefficient second order PDEs are well-established [14, 15]. These methods generally rely on cyclic reduction
and/or fast Fourier transforms (FFTs) to achieve nearly linear scaling. For many problems, however, adaptive meshes
resulting from adaptive mesh refinement (AMR) strategies are essential [2, 7, 48], and existing solvers typically rely on
domain decomposition strategies [22] or multigrid acceleration [17, 37, 39, 43]. For complex geometries, unstructured
grid generation techniques are often used (e.g., [44]). In such cases, both the grid generation process and the solution

†Courant Institute, New York University, New York 10012. Email: {harper,greengard,dzorin}@cims.nyu.edu
The work of M.H.L was supported by the U.S. Department of Energy CPES contract; the work of L.G. was supported in part by the U.S.

Department of Energy under contract DEFG0288ER25053; the work of D.Z. was supported by the U.S. Department of Energy CPES contract and
the National Science Foundation contract DMS-0612624.

1

of the resulting linear systems can be computationally expensive. The lack of regularity in the data structures adds
complexities in parallelization as well [1, 17].

A more recent class of methods combines ideas from potential theory with finite difference methods. In [26], fast
direct solvers were used on a sequence of refined grids with boundary conditions inherited from the coarser levels. This
results in discontinuities at coarse-fine interfaces, which are corrected using a second pass through the grid hierarchy.
In [4], the method of local corrections (MLC) [3] was combined with multigrid methods to solve the Poisson equation
on a hierarchy of nested grids. The fastest free-space Poisson solver for three-dimensional problems of which we are
aware is described in [46]. It first solves local Poisson problems on fine grids using FFT-based techniques and then
couples together the solutions on coarser grids using MLC. This approach was shown to be very effective in parallel,
with good scaling up to 1024 processors (A similar two-dimensional scheme is described in [29]). For unstructured
meshes, the preceding methods do not apply without significant modification and most fast solvers are based on
iterative methods using multigrid or domain decomposition acceleration [12, 13, 16].

In this paper, we concentrate on the integral equation (or, more precisely, the integral transform) viewpoint. Rather
than solving (1), for example, we simply compute

u(x) =
1
4π

∫
R3

1
|x− y|

g(y)dy. (2)

Among the advantages of this approach is the increase in precision in computing derivatives. In PDE-based methods,
if first or second derivatives of the solution are needed, accuracy tends to degrade due to the need for numerical dif-
ferentiation. Instead, we can differentiate the kernel in (2) and compute derivatives from their integral representation
as well. Other advantages are that free-space radiation conditions are automatically satisfied, we can obtain simple a
priori error estimates, and high order accuracy is straightforward to achieve. However, the computational complexity
of a naı̈ve implementation is high: computing the solution u at N points x given N discretization points y requires
O(N2) work. There have been a number of methods proposed to overcome this barrier. These include panel-clustering
techniques [10, 36], hierarchical matrices (H,H2-matrices) [9, 34, 35], the Barnes-Hut method [5], and the Fast Mul-
tipole Method (FMM) [20, 32, 24, 50] originally designed for gravitational/Coulomb interactions. These schemes all
achieve linear O(N) or nearly linear O(N log N) scaling. Most of these methods fall into the class of what are often
called “tree codes” because they separate near and far-field interactions on a hierarchy of spatial scales using quadtree
(2D) or octree (3D) data structures. Because it can achieve arbitrary precision at modest cost with straightforward
error estimates, we concentrate on the FMM in the present setting. The classical FMM is kernel-specific and relies
on detailed separation of variables solutions of the governing PDE. While the FMM references above considered the
Laplace equation, the Helmholtz equation was subsequently treated in [51]. A three-dimensional version effective for
all frequencies (and additional references) can be found in [19]. The modified Helmholtz equation was discussed in
[11, 27], and the biharmonic equation in [28, 33, 56]. The Stokes equations are somewhat exceptional, since they
can be handled by a sequence of calls to the original (Coulomb) FMM [54, 58]. An attractive alternative that avoids
much of the detailed analytic work of these methods is the kernel-independent approach of [60, 61]. In this approach,
expansions in special functions are replaced with equivalent source densities. The result is that the same numerical
apparatus can be used for a variety of PDEs, and the user need only supply a subroutine for the evaluation of the
relevant Green’s function.

While the bulk of the work on FMMs over the last two decades has concentrated on particle interactions or the
acceleration of boundary integral equation methods, there has been some work on solving inhomogeneous PDEs.
One option is to couple the FMM with finite difference methods to allow for fast solvers in complex geometries
[45, 47, 59]. While this is a significant improvement in terms of range of applicability over classical fast solvers,
these methods require a regular volume mesh on which is superimposed an irregular boundary. Adaptive FMMs for
volume source distributions in two dimensions were described in [21, 23, 29]. The present paper extends these two-
dimensional schemes to three dimensions, incorporates them into kernel-independent FMMs, and introduces several
new performance optimizations. The result is an efficient, adaptive method that is capable of computing volume
integrals in three dimensions for a broad variety of PDE kernels.

Before turning to the method itself, we should also note that there has been a significant body of work in the
quantum chemistry community on accelerating volume integral calculations using the FMM, where collections of
Gaussians are typically used to describe the charge distribution [52, 57]. These are Poisson problems in free-space but
with a different approach to defining the right-hand side.

2

2 Equations and Kernels
Given a linear, constant-coefficient PDE

L(u)(x) = g(x), (3)

classical mathematical methods can be used to compute the corresponding Green’s function K(x,y) in free space
such that

u(x) =
∫

Ω

K(x,y)g(y)dy , (4)

where Ω is the support of g. K(x,y) is in general weakly singular; assuming g(x) is given at N points and u(x) is
desired at N points, the non-local character of the integral representation, as indicated above, would lead to an O(N2)
solution procedure. Thus, we need both a suitable quadrature approach and a fast algorithm for (4) to yield a useful
numerical technique. Assuming this is achieved, a number of advantages follow. First, no linear system needs to be
solved. Second, adaptivity is achieved through the approximation of the right-hand side. Third, as mentioned in the
previous section, derivatives can be computed without loss of precision (There is some loss in accuracy for deriva-
tives of order greater than two, since at that point the integral operator becomes hypersingular and some catastrophic
cancellation cannot be avoided). Finally, we have simple a priori error estimates. To see this, let ĝ(x) be the approxi-
mation to g(x) and let Q̂[f](x) denote the quadrature approximation of

∫
Ω

K(x,y)f(y)dy. Assuming the near field
is computed exactly, the quadrature error satisfies an estimate of the form∣∣∣∣Q̂[f](x)−

∫
Ω

K(x,y)f(y)dy

∣∣∣∣ ≤ ε‖f‖1,

where ε is the approximation error in the FMM. ε is, in turn, controlled by the parameter p that determines the number
of discretization points used for equivalent densities, as described in Section 4.1 and reference [60].

To estimate the total error, let us assume ĝ(x) is a kth-order polynomial approximation of the right hand-side

ĝ(x)− g(x) ≤ δ = O(hk),

and that
û(x) = Q̂[ĝ](x) . (5)

Then

e(x) = u(x)− û(x) =
∫

Ω

K(x,y)g(y)dy −
∫

Ω

Q̂[ĝ](x)

≤
∫

Ω

K(x,y)[g(y)− ĝ(y)]dy +
∣∣∣∣∫

Ω

K(x,y)ĝ(y)dy − Q̂[ĝ](x)
∣∣∣∣

≤ C1‖g(y)− ĝ(y)‖∞ + ‖ĝ(y)‖1 ε, where C1 = max
x

∫
Ω

|K(x,y)|dy ≤ C1δ + ‖ĝ(y)‖1 ε.

(6)

The estimate above is much sharper than one typically obtained when discretizing the PDE itself, where the order of
accuracy is determined by high derivatives of the solution. Here, it depends only on the quality of the approximation
of the right-hand side (δ = O(hk)) and the FMM tolerance (ε). Note that the constant C1 is a bounded quantity
determined by the volume of Ω with no dependence on the data. If ε is chosen to be of the same order as δ, the scheme
is formally kth-order accurate. In practice, it is convenient to decouple the right-hand side approximation error from
the FMM tolerance, as above, permitting the user to control them independently.

The principal drawback with the integral formulation is that, when implemented naı̈vely, the complexity of the
approach is quadratic in the number of sample points. FMM algorithms overcome this computational barrier by
making systematic use of the smoothness of distant interactions on a hierarchy of spatial scales [6, 23, 30]. The
kernel-independent versions of the FMM [60, 61] are particularly useful because of their generality; they make it
possible to compute solutions of the form (4) for any (non-oscillatory) elliptic PDE, provided only a module which
evaluates the kernel.

After describing the details of the approach, we demonstrate its performance for the Poisson equation (7), the
modified Helmholtz equation (8), and the Stokes equations (9):

3

−∆u(x) = g(x), (7)

αu(x)−∆u(x) = g(x), α > 0, and (8)

∇p(x)− µ∆u(x) = g(x), ∇ · u(x) = 0, µ > 0. (9)

Defining r = x− y and r = ||r||, the corresponding kernels in three dimensions are given by

K(x,y) =
1

4πr
, (10)

K(x,y) =
1

4πr
e−

√
αr, and (11)

K(x,y) =
1

8πµ

(
1
r
I +

r⊗ r
r3

)
, respectively. (12)

The classical FMM is reviewed briefly in section 3, the kernel-independent method is described in section 4, and
symmetries for optimizing storage are discussed in section 5. Numerical experiments are presented in section 6 as
well as a brief discussion on extending our method to periodic boundary conditions or including a singular source
component along with a smooth background force. We provide additional error analysis in section 8 as well as a brief
summary of how the method is optimized using OpenMP and load-balancing techniques to achieve near-linear strong
scaling.

3 Analytic Fast Multipole Method
We briefly review the structure of the original two-dimensional FMM for the case of particle interactions [30]. Given
a set of Nsrc charges of strength g(yi) at locations (y)i, the FMM was designed to compute the induced potentials uj

at Ntrg target locations, xj ,

uj = u(xj) =
Nsrc∑
i=1

K(xj ,yi)g(yi) , j = 1, . . . , Ntrg, (13)

where K(x,y) = − log | {x− y} |/2π. For Nsrc ≈ Ntrg = N , the FMM decreases the computational cost from
O(N2) to O(N) for fixed user-prescribed accuracy by introducing a hierarchical partition (represented by a tree data
structure, T) of a regular bounding domain D and two series expansions for each box at each level of the hierarchy.
More precisely, the root of T is associated with the entire box D and defined to be at level ` = 0. Level ` + 1 is
obtained from level ` recursively, dividing each sub-domain at level ` into four equal-sized children. For a regular box
B of width H , B’s near field, NB , is defined as the set of all boxes in D that lie within a box centered at B of width
3H . The neighbor list, LB

N , is defined as the set of boxes in NB which share a vertex with B. In the non-adaptive
case, LB

N = NB . The far field, FB , is the complement of the near field: FB = D \ NB . Finally, the interaction list,
LB

I , is the set of children of B’s parent’s neighbors that are not neighbors themselves. Thus, LB
I ⊆ FB . The depth

of T is chosen so that the smallest boxes (leaves in T) contain no more than some fixed number of points, say s. We
first consider uniformly refined trees, where all leaves T are at the same level. Note that the total number of boxes in
a 2D quadtree is bounded by 4N/3s (and 8N/3s in a 3D octree). Thus, if the workload per box is constant, the net
algorithm has O(N) complexity.

A local expansion is used to represent within each box B the influence of all sources in the far field of B. A
multipole expansion about the center of B is used to represent the influence of sources inside B on boxes in the far
field FB [30].

The FMM computes the total field at a target point in leaf box B as the sum of (a) the field due to the source
points contained in the boxes of the neighbor list LB

N and (b) the contribution from sources in the far field FB . The
contributions from source points inside the boxes of LB

N are computed directly using (13), while the contributions
from FB are obtained by evaluating the local expansion of box B at the target. The essential task of the FMM is the
construction of the local expansions in a hierarchical manner. This takes place in two steps.

4

The upward pass. This pass begins at the finest level of the tree data structure, converting charge strengths at source
points into multipole expansions for each leaf box; this computation is carried out by the source-to-multipole (S2M)
operator. Multipole expansions for each non-leaf box B at each coarser level are obtained recursively. More precisely,
the multipole expansions for the four children of B are merged into a single expansion about B’s center using the
multipole-to-multipole (M2M) operator.

The downward pass. For each box B, starting at the coarsest level, the local expansion ofFB is obtained by shifting
the local expansion of B’s parent to the center of B using the local-to-local (L2L) operator and by mapping multipole
expansions centered at each box in LB

I to B’s local expansion using the multipole-to-local (M2L) operator. For leaf
box B, local expansions are then evaluated at each target point using the local to target (L2T) operator.

Summary. FMM uses S2M , M2M , M2L, L2L and L2T linear operators: M2M and L2L operators are deter-
mined uniquely by the relative position of a box and its parent; each M2L operator is determined by the relative
position of a box in the interaction list; S2M and L2T operators depend on source and target point locations and
can be different for each (finest level) box. Figure 1 illustrates the data flow involved in the M2M , M2L and L2L
operators.

M2M

C

BP

L2L

B

V

B

M2L

Figure 1: Boxes used by M2M, L2L and M2L operators. For box B at level `, P in the L2L operator represents the parent of B at level `− 1,
and in the M2M operator, C represents the children of B at level ` + 1. Boxes labeled V in the M2L operator reside in LB

I .

For the Laplace kernel in three dimensions, far-field expansions are represented using a mixture of spherical
harmonics [31] and plane-wave representations [32].

We turn now to the kernel-independent approach [60, 61] in order to design a volume integral FMM in three
dimensions that can handle a broad class of PDEs.

4 3D Kernel-Independent FMM Volume Integral Solver
Given an octree T for our 3D bounding domain D, let D =

∑
{Bi}, i = 1 . . .M be the set of leaf boxes resulting

from hierarchical subdivision. For a single-layer kernel K, we compute the integral (4) at some point x as

u(x) =
M∑
i=1

K[Bi, g
Bi](x), (14)

where K[B, gB](x) =
∫

B
K(x,y)g(y)dy, and gB represents the restriction of the source distribution to the box B.

The principal difference between the approach of this paper and the analytic FMM for point sources is that we
use sampled equivalent densities instead of classical special functions and series expansions to account for far-field
interactions, as in [60, 61]. This requires only a black-box kernel evaluation routine and allows for a kernel-independent
implementation. A second difference between the approach of this paper and prior kernel-independent FMM schemes
is that we are dealing with a continuous source distribution rather than a collection of point-like particles. To extend
the method of [60, 61] to this setting, we use polynomial basis functions to approximate the source distribution g
on each leaf box, following the two-dimensional approach of [21, 29, 23]. More precisely, we assume that the input
source is given on each leaf box B by a polynomial gB of degree k + 1 with coefficients γB ,

gB =
Nk∑
j=1

γB
j βj

(
2`(x− cB)

)
, (15)

5

where βj are polynomial basis functions, ` is the depth of the box B (` = 0 at the root of T), and cB is its center. We use
monomials for low-order accuracy and tensor-product Chebyshev polynomials for higher-order accuracy. The number
of coefficients is Nk = k(k + 1)(k + 2)/6 for each scalar source function g. We describe an interpolation scheme
to convert a set of source values defined on a grid of sample points to a polynomial representation in Section 4.6. As
output, our algorithm can return either point values of the potential at each target point or a polynomial approximation
of the potential on each leaf box (which can then be evaluated at arbitrary locations).

To simplify the exposition, we present our algorithm first for a uniformly refined octree of depth ` and then discuss
the changes necessary for the adaptive octree case separately. The final algorithmic steps are outlined in section 4.8,
and we briefly discuss how the major loops are optimized for shared-memory parallelization in section 8.4.

4.1 Equivalent Densities
The kernel-independent approach to translation operators is based on the following idea. For kernel K, suppose we
have an arbitrary (smooth or non-smooth) source distribution gs in a volume Ωs with surface Γs. Let Γt denote an
auxiliary surface in the exterior of Γs, and let Γcheck denote yet another auxiliary surface in the exterior of Γt. Finally,
let E denote the exterior of Γcheck. We will compute a charge density φt on Γt such that the potentials K[Ωs, gs] and
K[Γt, φt] coincide in E. This is always possible if the exterior Dirichlet problem on Γt has a unique solution and the
exterior field can be represented in terms of a single layer potential1

Remark For some problems, such as the Helmholtz equation, a combination of single and double layer sources may
be required because of non-physical resonances in the single layer representation, but it is generally sufficient for
non-oscillatory kernels (cf. [40] for the Poisson equation, [41] for the Stokes equations).

Our goal is to use K[Γt, φt] to represent the far-field instead of a multipole expansion. For this, we let Γcheck

approximate the outer boundary of the neighbor list LB
N and solve a Fredholm integral equation of the first kind for φt,

K[Γt, φt](x) = K[Ωs, gs](x), for all x ∈ Γcheck. (16)

Having matched the field on Γcheck, the fields will match in the exterior E (with precise estimates depending on
the specific kernel). We refer to Γt as an equivalent surface with equivalent density φt, and Γcheck as a check surface.
In the case when the original density is concentrated on the surface Γs, then (16) can be written as

K[Γt, φt](x) = K[Γs, φs](x), for all x ∈ xt. (17)

We match the field created by charges outside the near neighbors of a box by a discretized layer potential defined on
a surface enclosing the box, and a different equivalent density will be used to replace the local expansion. The number
of samples used to represent the equivalent density is the analog of the number of expansion terms in a classical FMM.
Γt and Γcheck are cubic surfaces, uniformly sampled at p locations. In discretized form, (17) can be written as

KΓt,xtφt = KΓs,xtφs, (18)

where φs and φt are vectors of point-sampled densities, and Ka,b are matrices with entries given by Ka,b
ij = K(ai, bj)

for sample points ai and aj on surfaces a and b. For known φs and solving for φt, (18) is a discretization of a Fredholm
equation of the first kind. For large p, linear systems may be poorly conditioned; in such cases, we choose to utilize
Tikhonov regularization methods [40] to invert KΓt,xt . We discuss this approach and its accuracy in sections 8.1 and
8.3.

Kernel invariance and matrix precomputation. For all equations we consider, the kernels are invariant with re-
spect to a rigid transformation T : for scalar kernels, K(T x, T y) = T K(x,y), and for matrix kernels, K(T x, T y) =
T K(x,y)T T . Hence, all matrices K need to be computed only once for each class of pairs of equivalent surfaces,
closed with respect to a specific T . Furthermore, many kernels are homogeneous: ∀c > 0, ∃ scaling exponent r 6= 0
such that K(cx, cy) = crK(x,y), further reducing the number of classes of surface pairs requiring separate matrices.
We consider optimizations due to invariance for each translation operator in the next sections, assuming scalar kernels
for simplicity, although our implementation can handle matrix kernels.

1For some kernels (Stokes), a low-dimensional nullspace may need to be eliminated.

6

4.2 Upward Pass
For the upward pass, recall now that for each leaf box, the sources are polynomials approximating the source distribu-
tion. For consistency with the FMM summary above, we use S, M , etc. in describing translation operator names.

Source to Multipole (S2M) translations. For each leaf box B, we choose yB,u, the upward equivalent surface, and
xB,u, the upward check surface, as in [60]. Equation (16) for upward equivalent density φB,u in this case becomes

K[yB,u, φB,u](x) = K[B, gB](x), and (19)

K[B, gB](x) ≈
Nk∑
j=1

γB
j FB

j (x), where (20)

FB
j (x) =

∫
B

βj

(
2`(y − cB)

)
K(x,y)dy, for x ∈ xB,u. (21)

By translation invariance, FB
j (x) depends only on the choice of βj and level ` of B. To evaluate the integrals in

(21), we use adaptive Gaussian quadrature [8]. In matrix form, the Nyström discretization of (19)-(21) at p sample
points, φB,u, on yB,u yields

KB
S2MφB,u = FB

S2MγB , (22)

where FB
S2M is the matrix of precomputed weights (21) and KB

S2M is the matrix with entries K(xi,yj), i = 1 . . . p,
j = 1 . . . p. Solving for φB,u,

φB,u = (KB
S2M)−1FB

S2MγB = TB
S2MγB . (23)

For a uniformly-refined tree, TB
S2M depends only on `, so one matrix is computed. Figure 2(a) illustrates the

computation of φB,u from γB .

Multipole to Multipole (M2M) translations. M2M translation operators translate φC,u at a child box C to φB,u

for the parent box B, shown in figure 2(b): For all x ∈ xB,u,

K[yB,u, φB,u](x) =
∑
C

K[yC,u, φC,u](x), or in matrix form: KB,B
M2MφB,u =

∑
C

KC,B
M2MφC,u. (24)

Similar to the S2M computations, these systems are solved as

φB,u =
∑
C

(KB,B
M2M)−1KC,B

M2MφC,u =
∑
C

TC,B
M2MφC,u. (25)

For any two children C1 and C2, rotation R maps C1 to C2; therefore, only one TC,B
M2M is computed per level, with

the contribution to φB,u from any other child obtained by composing this matrix with an appropriate permutation of
φC,u. Further, for homogeneous kernels, only one matrix is stored at a single level ` and scaled as necessary.

4.3 Downward Pass
In the downward pass downward equivalent densities are computed through the M2L, L2L, and L2T operators.

7

a) b)

xB,u

yB,u

yC,u

FB
S2M

xB,u

K
C,B
M2M

yB,u

(KB,B
M2M)−1

(KB
S2M)−1

Upw. Equ. Surface
Upw. Check Surface

(KB,B
L2L)

−1

K
P,B
L2L

d)

Dwn. Check Surface
Dwn./Upw. Equ. Surfacec)

(KB,B
L2L)

−1

xB,d

yB,d

yP,dyV,u

K
V,B
M2L

yB,d

xB,d K
B,B
L2T

Dwn. Equ. Surface
e)

xB,g

yB,d

Figure 2: Kernel-independent FMM translation operators. From top-left: a) S2M , b) M2M , c) M2L, d) L2L, and e) L2T translations.

Multipole to Local (M2L) translations. For any box B, M2L operators (Figure 2(c)) translate φV,u, approximating
the field of sources inside of V ∈ LB

I , to a downward equivalent density φB,d. In this case, we seek to induce identical
potentials inside of B, effectively, swapping upward equivalent and check surfaces to obtain downward equivalent and
check surfaces: yB,d = xB,u and xB,d = yB,u. Equation (17) takes the form

K[yB,d, φB,d](x) =
∑
V

K[yV,u, φV,u](x), for all x ∈ xB,d, (26)

where φB,d is discretized at p uniformly spaced samples on yB,d. The right-hand side of (26) is computed and stored
as a downward check potential, uB,d at xB,d, and φB,d is recovered after the L2L contribution is added.

uB,d
M2L =

∑
V

KV,B
M2LφV,u. (27)

We efficiently evaluate uB,d with FFTs by treating densities as being defined on extensions of yV,u and xB,d to
3D Cartesian grids with zero values in the interior. This results in O(p3/2) sample locations, and the computational
cost of O(p3/2 log(p)) for evaluation.

Further, there are at most 189 possible locations for V ∈ LB
I relative to any particular B; however, using trans-

lation and rotation invariance of the kernel as discussed in section 5, we store at most 16 total KV,B
M2L matrices for a

8

homogeneous kernel.

Local to Local (L2L) translations. Contributions from FB \ LB
I are captured through the local field computed for

B’s parent box, P , using L2L operators (Figure 2(d)). We translate φP,d at yP,d to φB,d at yB,d using the equation

K[yB,d, φB,d](x) = K[yP,d, φP,d](x), for all x ∈ xB,d. (28)

The right-hand side is computed as a contribution to uB,d, so (28) for B at depth ` becomes

uB,d
L2L = KP,B

L2LφP,d such that (29)

φB,d = (KB,B
L2L)−1

(
uB,d

M2L + uB,d
L2L

)
. (30)

The precomputation of matrix KP,B
L2L is completely analogous to KC,B

M2M , with parent and child swapped.

Local to Grid Target (L2T) translations. For each leaf box B, we evaluate uB,g at grid locations, xB,g . At depth
`, φB,d accounts for all contributions from FB while direct near-field calculations (discussed in detail in section 4.4)
account for the contributions from NB . The far-field potential is computed using L2T operators (Figure 2(e)).

u(x) = K[yB,d,φB,d](x), x ∈ xB,g , or in matrix form: uB,g = KB,B
L2T φB,d. (31)

For a uniformly-refined tree, all leaves are at the same level, so we precompute and store one KB,B
L2T matrix.

4.4 Near-Field Interactions
After the far-field contributions are computed, the final step is to compute near-field interactions for leaf boxes. This
is the most expensive step in the computation, if carried out naı̈vely, and it is essential to optimize this part of the
algorithm. For each leaf box B, we need to compute the influence of the volume density gU for every box U ∈ LN

B

(the near field boxes). Given a polynomial approximation γU to gU , we evaluate the potential on an n× n× n grid of
samples xB,g on B, which we then add to the far field contribution computed in (31).

The principal mechanism to accelerate this step is based on the observation that we may use a regular grid pattern
of points in B, permitting the use of precomputation. More precisely,

uB,g(x) =
∑
U

K[U, g](x) =
∑
U

Nk∑
j=1

γU
j FU,B

j (x), (32)

FU,B
j (x) =

∫
U

βj

(
2`(y − cU)

)
K(x,y)dy, for x ∈ xB,g , (33)

where cU is the center of box U . We evaluate uB,g on a uniform grid xB,g
i , i = 1 . . . n3 for n < 6 and on a tensor

product Chebyshev grid for n > 6 to avoid condition problems, as discussed in section 8.2. In matrix form (32)
becomes

uB,g =
∑
U

FU,BγU . (34)

For a uniform octree, there are at most 27 possible locations for U ∈ LB
N with respect to B itself; using symmetries,

however, only 4 are unique up to translation and rotation (section 5). As in the S2M computations, adaptive Gaussian
quadrature [8] is used to precompute and store the weights for these matrices. This can be done to machine precision
for the function u and its first or second derivatives.

As each leaf box, B is not dependent on the near-field computations of any leaf box in T , it can quickly be
seen how even the simplest approaches can take advantage of parallel architectures in the near-field computations. In
section 8.4, we discuss how we use OpenMP [18] and load-balancing approaches to parallelize the near-field and other
computational steps of the FMM for shared-memory, multiprocessor architectures.

9

4.5 Polynomial approximation of the solution
In order to compute the value of uB at an arbitrary point in the box, it is convenient to approximate it as a polynomial
υB using a least-squares fit: minimizing

n3∑
i=1

‖uB(xi)−
Nn∑
j=1

υB
j βj(xi − cB)‖2 for xi ∈ xB , (35)

where βj ∈ {Pa(x)Pb(y)Pc(z), 0 ≤ a + b + c ≤ n − 1} using either a monomial or Chebyshev polynomial basis,
depending on the desired order n. For n ≤ 6 it is more convenient to use regular grids, while for n > 6 Chebyshev
grid points provide greater stability. In section 8.2 we demonstrate the accuracy of equispaced points and Chebyshev
points for n = 4, 6, 8. For box B at depth `, if Γ is the matrix with entries Γij = βj(2`(x − cB)), (35) leads to the
equation υB = Γ(+)uB,g , where the pseudoinverse Γ(+) needs to be precomputed only once as it does not depend on
the kernel and is scale-invariant in all cases; that is, Γij = βj(x∗i) where x∗i are grid points in B∗ = [−1, 1]3. Once
the vB

j are known, we can evaluate the solution at an arbitrary point xt ∈ B as

u(xt) =
Nn∑
j=1

υB
j βj(xt − cB). (36)

In general, we assume that k, the order of the approximation γB of the force gB , is equal to n, the order of
approximation of υB ; however, as source and target locations need not be the same, k and n can be different.

4.6 Polynomial force approximation from grid samples
We have assumed the right-hand side is already given as a polynomial. However, if the force is available in another
form (e.g., as samples on an AMR grid or polynomials on an unstructured finite element grid), we need simply to
build a kth-order approximation of the right-hand side to the desired tolerance at regular grid points on each leaf node,
followed by conversion to a polynomial representation, as in the preceding section. We view this step as outside the
scope of the present paper.

4.7 Non-Uniform Source Distributions and Adaptive FMM
For nonuniform source distributions, leaf boxes may appear at different levels, leading to several additional types of
interactions between boxes that need to be taken into account. For adaptive octrees, the number of relative positions
of boxes one needs to consider can become very large. To avoid storing large number of precomputed matrices, we
consider level-restricted refinement: we require adjacent leaf boxes be within one level of each other, a common
restriction in tree codes and structured grids. Many fast approaches exist to convert arbitrary octrees to ones satisfying
this constraint [53]; we currently use a straightforward sequential algorithm similar to [23].

Lists for adaptive FMM. Our definitions and notation follow [25, 30, 31]. For leaf box B, we define U and W lists:

• The U-list, LB
U , consists of leaves adjacent to B, including itself; LB

U = LB
N for uniform trees.

• The W-list, LB
W , is the set of descendants of B’s neighbors, not adjacent to B, but whose parents are adjacent to

B. For any W ∈ LB
W , W is at a finer level than B and W ∈ NB (conversely, B ∈ FW).

For leaf and non-leaf boxes B, we define V and X lists.

• The V-list, LB
V , is the set of B’s parent’s neighbor’s children, not-adjacent to B. LB

V = LB
I for uniform trees.

• The X-list, LB
X , is the set of boxes A such that B ∈ LA

W .

We note the following: B ∈ LA
U ⇔ A ∈ LB

U , B ∈ LA
V ⇔ A ∈ LB

V , and B ∈ LA
W ⇔ A ∈ LB

X . [60] shows an
example domain with labeled lists; possible positions of boxes in the LB

U , LB
V , LB

W and LB
X are shown in Figure 3.

By the following lemma, for level-restricted trees, boxes in W and X lists have finite possible positions.

10

Lemma 4.1 For a level-restricted tree T in which all neighboring leaf boxes are within one level of each other in the
octree, for a box, B, all boxes in LB

W and LB
X must also be within one level of B.

Proof For box B assume ∃W ∈ LB
W where `W − `B ≥ 2. Then, for W ’s parent, PW , `PW

− `B ≥ 1, so ∃ descendants D of PW , D ∈ LB
U

and `D − `B ≥ 2, violating our tree-level restriction. Thus, `W − `B ≤ 1. Since W ∈ LB
W ⇒ B ∈ LW

X , ∀ X ∈ LB
X , `B − `X ≤ 1.

Boxes in LB
U and LB

V are handled as boxes in LB
N and LB

I , respectively, are in the uniform case. For leaf box B,
if W ∈ LB

W , then W 6∈ FB ; therefore, W ’s contribution to B is not accounted for through its parent, PB , but since
B ∈ FW , we can evaluate φW,u at xB,g . Hence, using notation analogous to other operators, M2T operators need to
be defined. Further, for X ∈ LB

X , B ∈ NX , but X ∈ FB . Thus, we need to evaluate contributions from X directly
but can apply them to φB,d; that is, we need to define an S2L operator.

same level U finer level U coarser level U W V X

Figure 3: Possible box positions for different lists in a level-restricted tree in 2d. The configurations in 3d are analogous.

To summarize, for adaptive FMM, in addition to M2M , M2L, L2L and L2T , two additional operators, M2T and
S2L need to be defined, and S2M and near-field (S2T) operators need to handle leaf boxes at arbitrary levels. We
begin by describing changes to S2M and S2T operators and follow with a discussion of M2T and S2L operators.

S2M operators for the adaptive case. For homogeneous kernels, we store a single matrix TB∗

S2M , scaling for level
` as was done for the M2M and L2L operators. Let B∗ = [−1, 1]3 at ` = 0. Then, for x ∈ B at level `, let
x∗ = 2`(x− cB) for x∗ ∈ B∗. For scaling exponent, r, K(xi,yj) =

(
1
2

)r`
K(x∗i ,y

∗
j), and (21) becomes

FB
j (x) =

(
1
2

)(r+2)`

K[B∗, βj](x∗) =
(

1
2

)(r+2)`

FB∗

j (x∗) for all x ∈ xB,g , x∗ ∈ xB∗,g.

In matrix form, FB
S2M = 2−(r+2)`FB∗

S2M and KB
S2M = 2−r`KB∗

S2M . Solving for φB,u, (23) becomes

φB,u = TB∗

S2MγB , (37)

where TB∗

S2M is precomputed and stored. (For inhomogeneous kernels, we store one matrix per leaf level).

Neighbor list interactions for adaptive trees. For adaptive level-restricted trees, leaves may exist at any level and
U ∈ LB

U may exist at one level finer or coarser than B. As above for the S2M operators, for homogeneous kernels
with scaling exponent r, we only compute matrices for pairs (B,U) with B scaled to B∗ (U is appropriately scaled as
well to U∗) such that (33) and (34) become

FU,B
j (x) =

(
1
2

)(r+2)`

K[U∗, βj](x∗) =
(

1
2

)(r+2)`

F
(U,B)∗

j (x∗), for all x ∈ xB,g , x∗ ∈ xB∗,g , and

uB,g =
∑
U

FU,B
S2T γU =

(
1
2

)(r+2)` ∑
U

F(U,B)∗

S2T γU . (38)

Along with 27 possible same-level neighbors, there are 56 fine-level neighbors (one level deeper) and 7 coarse-
level neighbors (one level higher), all constituting the 90 possible locations for boxes in LB

U in a level-restricted octree.
Using symmetries (section 5), we only precompute and store 10 matrices. For inhomogeneous kernels, this set of
matrices is precomputed for each level for which leaf boxes exist.

11

M2T and S2L operators. For leaf box B and W ∈ LB
W , we need an operator that evaluates φW,u at xB,g:

uB,g(x) =
∑
W

K[yW,u,φW,u](x) for x ∈ xB,g , or in matrix form: uB,g =
∑
W

KW,B
M2T φW,u, (39)

for precomputed KW,B
M2T . For all boxes B, LB

X contains leaves X , for which contributions to B are computed at xB,d.

uB,d(x) =
∑
X

K[X, gX](x) ≈
∑
X

Nk∑
j=1

γX
j Fj(x) for x ∈ xB,d, or in matrix form: uB,d =

∑
X

FX,B
S2LγX . (40)

There are 152 possible locations for W ∈ LB
W ; however, only six locations are distinct up to translation and

rotation; also, due to the inverse relationship between LB
X and LB

W , the number of symmetry classes is the same
(section 5). For homogeneous kernels, only six KW,B

M2T and six FX,B
S2L matrices are precomputed for level ` = 0 and

scaled as necessary. For inhomogeneous kernels we compute and store these sets for each leaf level.

Remark In cases where the order of γ is low compared to the order of φB,u and φB,d, the size of M2T and S2L
operators may actually be larger than those needed for direct computation of contributions from W ∈ LB

W or X ∈ LB
X

to xB,g . Assuming we have a homogeneous kernel, if W ∈ LB
W is a leaf box, we can replace KW,B

M2T with FW,B
S2T ,

constructed exactly in the same way as for boxes in the neighbor list LB
U . Similarly, for leaf box B and for a box

X ∈ LB
X , we can replace FX,B

S2L with FX,B
S2T . For homogeneous kernels, these operators are computed for B∗ only and

scaled as necessary as in section 4.4.

4.8 Pseudocode and Complexity for Kernel-Independent FMM Volume Solver
Pseudocode. We assume that a tree-level restricted octree, T , already exists [23] and that for each box, B, we are
given the approximation, γB to the force gB (we discuss how to construct γ from g in section 4.6). For clarity, we do
not include the optimization of replacing M2T and S2L with S2T operators when more efficient as discussed above.

Computational complexity and storage requirements. We analyze the complexity for a uniformly-refined octree.
The analysis for the adaptive FMM is similar but slightly more complicated. We assume a homogeneous scalar
kernel such as the Laplace kernel in equation (10) for analyzing the storage and computational complexities. Further,
we assume that there are ` levels in the octree T. For a uniform tree, this implies we have M` = 8` leaves and
Mt = (8`+1 − 1)/7 total boxes in T . If we are using a kth-order polynomial approximation to the force at each leaf,
we further assume there are approximately N = M`n

3 total target points and C = M`Nk total coefficients. Let p be
the number of coefficients sought in the multipole expansion, affecting the size of the equivalent densities and surfaces;
for a desired level of precision, εfmm = 10−np in the expansion, p = n3

p − (np − 2)3. In table 1, we indicate the
computational complexity of each step of the non-adaptive FMM algorithm as well as the amount of precomputation
and storage used for operators at each step. For non-uniform source distributions, we store additional operators for
the near-field interactions in the U, W, and X operators; the complexity of these operators are based on the degree of
adaptivity.

Finally, we note that the computational and storage complexities will scale linearly for matrix or inhomogeneous
kernels. For example, for the Stokes kernel in equation (12), the number of coefficients, p, scales as a results of the
matrix kernel size to p = 9(n3

p− (np− 2)3). For the Modified Helmholtz kernel in equation (11), the inhomogeneous
nature of the kernel results in an increased storage complexity, which varies depending on the number of different
levels in the tree.

5 Symmetries for precomputed interaction operators
For a box B and all boxes in LB

U ,LB
V ,LB

W and LB
X , the number of different relative positions can be large, so precom-

puting all possible interaction matrices may require significant time and storage. Performance can also be affected
by the need for random access of large amounts of precomputed data. The number of precomputed matrices can be

12

Algorithm 1 Kernel-Independent Volume FMM
STEP 1 - BUILD LISTS
for each box B in preorder traversal of T do

build LB
U , LB

W , LB
X , and LB

V (section 4.7)
end for
STEP 2 - UPWARD PASS (section 4.2)
for each box B in postorder traversal of T do

if B is a leaf box then
Convert local force approximations to upward densities:
φB,u := TB

S2MγB (23)
else

Translate children’s upward densities to parent’s upward density:
φB,u :=

X
C

TC,B
M2MφCi,u (25)

end if
end for
STEP 3 - DOWNWARD PASS (section 4.3)
for each non-root box B in preorder traversal of T do

Add potentials due to parent downward density, U and X boxes to get the downward check potential

uB,d := KP,B
L2LφP,d +

X
V ∈LB

V

KV,B
M2LφV,u +

X
X∈LB

X

FX,B
S2LγX (29), (27), (40)

Translate the check potential to the downward density:
φB,d := (KB,B

L2L)−1uB,d (30)
if B is a leaf box then

Compute potentials from adjacent and W boxes to the potential at grid locations:

uB,g :=
X

U∈LB
U

FU,B
S2T γU +

X
W∈LB

W

KW,B
M2T φW,u (34), (39)

Add the potential from the far field:
uB,g := uB,g + FL2T φB,d (31)

end if
end for

Operator Complexity Storage Operator Complexity Storage

S2M : TB
S2M O(Cp) pNk Near Interaction: FU,B

S2T O(27NNk) 4Nkn3

M2M : TC,B
M2M O((Mt −M`)p

2) p2 U -list (adaptive): FU,B
S2T 10Nkn3

M2L: KV,B
M2L O(Mtp3/2 log (p) 16p3/2 W -list: FW,B

S2T , KW,B
M2T 6n3(Nk + p)

+189Mtp3/2)

L2L: KP,B
L2L, (KB,B

L2L)−1 O(Mtp2) 2p2 X-list: FX,B
S2T , FX,B

S2L 6Nk(n3 + p)

L2T : KB,B
L2T O(Np) pn3

Table 1: Computational complexity and storage requirements for a scalar homogeneous kernel. These values scale linearly for matrix and
inhomogeneous kernels.

substantially reduced via symmetries; that is, many box positions are equivalent in the sense that there is a rigid trans-
formation T , mapping box Z1 to Z2 and box B to itself. We store a single matrix for a representative box for each
symmetry class, obtaining matrices for all elements of the class by applying T to the matrix for the representative box.

For every list type Z ∈ {U, V,W, X}, we define a set of possible positions Pos(Z) and a set of symmetry classes
which form a partition of Pos(Z). For each class, we define a reference box, and for each box position in Pos(Z), we
need an efficient way to determine its class and a transformation T (B) : R3 → R3 mapping it to the reference box.

For all lists, the symmetries are related to the transformations of space which map a grid of cubes to itself. We
consider N3 grids of sizes 13 to 73 (we discuss which lists correspond to which cubes in more detail below) and begin
by classifying all symmetries of such grids.

13

Grid symmetries. The cubes on the N3 grid are indexed by (i, j, k) with values −M . . . − 1, 0, 1 . . .M for odd
N = 2M + 1 and −M . . . − 1, 1 . . .M for even N = 2M . We skip index 0 for even grids to ensure cube centers
and indices are transformed by symmetries in the same way. If the cube size is 1, cube centers are exactly the indices
(i, j, k) for odd N and differ by ±1/2 for even N , depending on the index sign. Each N3 grid can be partitioned into
M (for even N) or M +1 (for odd N) layers. Layer 0 consists of one cube and exists for odd N , and layer M consists
of cubes on the surface of the N3 grid. For odd N , layer l has size (2l + 1)3 and for even N , layer l has size (2l)3.

The group of symmetries Gcube of a cube has order 48. For a cube centered at zero, transformations in Gcube are
compositions of rotations and reflections, mapping each axis direction to another, possibly with orientation reversed.
Any permutation of directions is possible, so we identify the group with S3×J3, where S3 is the group of permutations
of length 3, and J is the two-element group of reflections. The rotational part of any element of Gcube can be
specified as a permutation of length 3 on the set of axes {x, y, z}, with an orientation 1 or -1 specified for each
axis. Transformations from Gcube encoded in this way can be applied to points very efficiently: for a point x ∈ R3,
the permutation is applied to its coordinates, which are then scaled by 1 or -1.

x
z

y

(-M,-M,-M)

representative

Figure 4: A 3d view of the (1, 2, 3) class in the 73 grid for M = 3, showing the representative box.

For the N3 grid, the equivalence classes under the action of Gcube can be enumerated combinatorially. If two
indices (i, j, k) and (i′, j′, k′) differ only by signs of components, corresponding cubes are in the same class, mapped
by reflections. To enumerate all classes, we consider cubes with nonnegative indices. Two cubes with nonnegative
indices (i, j, k) and (i′, j′, k′) are in the same class if and only if there is a permutation mapping (i, j, k) to (i′, j′, k′).
For i 6= j 6= k and i, j, k ∈ [1,M], seven series of equivalence classes are easily enumerated, corresponding to
signatures (i, j, k), (i, i, j), (i, i, i), (0, i, i), (0, 0, i) and (0, 0, 0). A reference box in every class is uniquely defined
by requiring that its three indices are all nonnegative and are in nondecreasing order (Figure 4). The properties of
classes in each series are summarized in Table 2. For a box Z, with grid index (i, j, k) relative to B, the reference box
is obtained by taking absolute values and sorting the indices; sign changes and a permutation mapping (i, j, k) to the
reference box index also encode the transformation.

Symmetries of LB
U . Due to the tree-level restriction, boxes U ∈ LB

U are either neighbors of B, neighbors of B’s
parent and adjacent to B, or adjacent children of neighbors of B. We denote these three sublists of LB

U by LB
U,n, LB

U,p

and LB
U,c respectively. Note that A ∈ LB

U,p is equivalent to B ∈ LA
U,c; hence, it is sufficient to consider LB

U,n and LB
U,c.

The neighbors of B on the same level as B form a 33 grid centered at B, so from table 2, the number of classes is 4:
(1, 1, 1), (0, 1, 1), (0, 0, 1), and (0, 0, 0). Locations of U ∈ LB

U,c can be thought of as the outer layer of a 43 grid, with
M = 2 and B as the 23 subgrid in the center, so we obtain 3 classes: (1, 1, 2), (1, 2, 2), (2, 2, 2), giving 10 classes for
LB

U .

Symmetries of LB
V . Boxes in LB

V are children of neighbors of the parent of B, so they can all be represented by cubes
of a 63 grid; however, the group of rigid transformations of the grid mapping to itself do not necessarily preserve B.
Hence, instead regard LB

V as a subset of a 73 grid centered at B with M = 3. All V ∈ LB
V are in layers 2 and 3, and

there are 10 classes: for layer 3, classes (i, j, 3), i, j = 1 . . . 3, i ≤ j and for layer 2, classes (i, j, 2), i, j = 0, 1, 2,
i ≤ j. Because we consider only a subset of the the full 73 grid, the class sizes are smaller, but it can easily be seen
that no class becomes empty, so the number is optimal.

Symmetries of LB
W , LB

X . For a level-restricted tree, boxes W ∈ LB
W are children of neighbors of B not adjacent to

B, that is, they reside in the surface layer of a 63 grid with B as the central 23 grid. For M = 3, we have 6 classes

14

Series signature 73 classes Reference cube # of classes/grid # classes/layer class size

(i, j, k) (|i|, |j|, |k|),
|i| < |j| < |k|

„
M
3

« „
M − 1

2

«
48

(i, i, j) (|i|, |i|, |j|), |i| < |j|
or (|i|, |j|, |j|)

M(M − 1) 2(M − 1) 24

(i, i, i) (|i|, |i|, |i|) M 1 8

(0, i, j) (0, |i|, |j|)
„

M
2

«
M − 1 24

(0, i, i) (0, |i|, |i|) M 1 12

(0, i, i) (0, 0, |i|) M 1 6

(0, 0, 0) — (0, 0, 0) 1 — 1

Table 2: Series of equivalence classes of cubes in an N3 grid. For even N , N = 2M , and only the first 3 series of classes may be nonempty.
For odd N , N = 2M +1, and all classes are present. For M ≤ 2, (i, j, k) classes are empty, and for M = 1, (i, i, j) and (0, i, j) classes are also
empty. Class (0,0,0) corresponding to the center of the grid, exists only in layer 0. In the figures, boxes in different classes in one series are marked
with circles of different colors, representative boxes are marked with circles with black border. The view is from the top, with first index direction to
the right, second direction up and third towards the viewer, as in Figure 4. The total number of classes for (2M)3 layers is (M + 1)M/2 (classes
(i, j, M) with i, j = 1 . . . M , i ≤ j), and for (2M + 1)3 layers, it is (M + 2)(M + 1)/2 (classes (i, j, M) with i, j = 0 . . . M , i ≤ j).

from table 2: (i, j, 3), i, j = 1 . . . 3, i ≤ j. Due to duality, the number of classes for LB
X is the same, but the class

sizes may not be the same.

Summary. For a given pair (B,Z), if Z ∈ {LB
U,n, LB

U,c, L
B
V , LB

W }, determine the translation and scaling which map
B to the central box or 23 subgrid of a larger grid. Then, apply the same transformation to the center of Z; resulting
coordinates yield the index (i, j, k), which is translated into the reference box and rotation as described above.

6 Numerical Results
The above algorithm has been implemented in C++, and we have tested several kernels and source and target point
distributions. Our tests were run on an Intel Zeon-based X7560 (2.27GHz 64 bit) system with 16 CPUs and 128GB of
RAM; the major computation loops are accelerated with OpenMP [18] as discussed in section 8.4.

We first test the free-space Poisson solver on three different types of problems designed to show how our algorithm
handles increasing levels of complexity in the force distribution.

We use an adaptive-refinement strategy similar to [23]. For this, we compute a kth-order polynomial approxima-
tion, γB , to the force gB(x) sampled on a k× k× k grid. We let g̃B be the force evaluated on a refined 2k× 2k× 2k
grid. If

∣∣∣∣gB(x)− g̃B(x)
∣∣∣∣

2
> εrhs, B is subdivided, and the octree is balanced as needed. Three force distributions,

used in Examples (1-3) below are shown in Figure 5.

Example 1. The first experiment tests the accuracy of our method for solving the Poisson equation (equation (7)
with kernel (10)) with a fast-decaying smooth right-hand side.

15

−1

0

1

−1

0

1
−1

−0.5

0

0.5

1

 3.000

4.000

5.000

6.000

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 3.000

4.000

5.000

6.000

−1

0

1

−1

0

1
−1

−0.5

0

0.5

1

 3.000

4.000

5.000

6.000

7.000

−0.5
0

0.5
1

−1

0

1
−1

−0.5

0

0.5

1

 3.000

4.000

5.000

6.000

7.000

−1

0

1

−1

0

1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 2.000

3.000

4.000

5.000

6.000

7.000

8.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

Figure 5: Sample force distributions based on adaptive refinement. Each point, colored by its tree level, `, indicates the center of a leaf box, B.
Left: A single sharply-peaked Gaussian function; Middle: A discontinuous force distribution, equal to one inside a sphere and zero outside; Right:
A discontinuous force distribution involving oscillatory functions restricted to the interiors of a set of three spheres.

−∆u(x) =
8∑

i=0

−e−L||x−xi||2
(
4L ||x− xi||2 − 6L

)
, L = 250

with solution

u(x) =
8∑

i=0

−e−L||x−xi||2 ,

where xi = (± 3
40 ,± 3

40 ,± 3
40) inside of the [−1, 1]3 box. This test requires a high degree of adaptivity to achieve good

accuracy with a limited number of points.
In Table 3, εfmm is the precision of the translation operators, εrhs is the refinement criterion for the adaptive

refinement of the source distribution, and M` is the number of leaves in the tree T with LT levels. The number of
points Npts is computed as M`k

3 where k is the order of the polynomial. This number of points per leaf is chosen
to be sufficiently large to build the polynomial approximation of order k. The computation time TFMM is given in
seconds, and the “rate” is in points per second. E2 and E∞ are the relative L2 and L∞ errors, respectively. Timings
include FMM evaluation times only; when the precision εfmm remains constant, the rate of work per source and target
point remains close to constant, as we would expect since the FMM algorithm scales linearly.

Example 2. In this example, we consider a discontinuous right-hand side, with g(x) = 1 inside a sphere of radius
R = 0.75, and g(x) = 0 outside the sphere. Letting r = ||x||, the problem becomes

−∆u(x) =
{

1 if r ≤ R
0 else

}
with solution

−∆u(x) =
{ (

R2 − r2
)
/6 + R2/3 if r ≤ R

R3/3r2 else

}
.

While this problem can be handled analytically, it serves as a useful test of performance on adaptive data structures
that are refined in the neighborhood of a surface. The number of points indicates the total number of points both inside
and outside the sphere. Since the coefficient representation of the force for a leaf node entirely outside of the sphere is
zero, these boxes are ignored in all evaluation phases; this increases the computed rate somewhat. A greater speedup
is achieved from the observation that leaf nodes entirely in the interior have a constant source distribution, so that only
one polynomial coefficient is non-zero. This significantly accelerates both the near-field and S2M calculation stages.
Results are shown in Table 4.

16

εfmm εrhs M` Npts LT E2 E∞ TFMM Rate
Fourth-Order Force Approximation

10−2 10−2 736 47104 6 2.3E − 02 2.4E − 02 9.1453E − 03 5.15E + 06
10−4 10−2 736 47104 6 1.1E − 03 6.8E − 04 2.4328E − 02 1.94E + 06
10−4 10−4 3088 197632 7 1.1E − 04 2.7E − 04 9.6590E − 02 2.05E + 06
10−6 10−4 3088 197632 7 3.8E − 05 2.5E − 05 3.7906E − 01 5.21E + 05
10−6 10−6 19328 1236992 8 3.8E − 06 3.6E − 06 2.3889E + 00 5.18E + 05
10−8 10−6 19328 1236992 8 3.7E − 06 1.3E − 06 6.2057E + 00 1.99E + 05
10−8 10−8 143088 9157632 9 1.6E − 07 8.810E − 08 4.5280E + 01 2.02E + 05

Sixth-Order Force Approximation
10−4 10−4 1408 304128 6 1.1E − 04 2.3E − 04 1.1016E − 01 2.76E + 06
10−6 10−4 1408 304128 6 1.4E − 05 3.5E − 05 1.8717E − 01 1.62E + 06
10−6 10−6 4936 1066176 7 9.0E − 07 2.2E − 06 6.6737E − 01 1.60E + 06
10−8 10−6 4936 1066176 7 3.3E − 07 1.6E − 07 1.6155E + 00 6.60E + 05
10−8 10−8 20112 4344192 8 2.4E − 08 6.2E − 08 6.8652E + 00 6.33E + 05
10−10 10−8 20112 4344192 8 1.8E − 08 1.0E − 08 1.5771E + 01 2.76E + 05
10−10 10−10 92072 19887552 9 6.3E − 09 9.7E − 09 7.5103E + 01 2.65E + 05

Eighth-Order Force Approximation
10−6 10−6 2024 1036288 7 9.2E − 07 3.5E − 06 4.6688E − 01 2.22E + 06
10−8 10−6 2024 1036288 7 3.7E − 07 8.2E − 07 7.4189E − 01 1.40E + 06
10−8 10−8 5440 2785280 7 1.9E − 08 6.6E − 08 2.1128E + 00 1.32E + 06
10−10 10−8 5440 2785280 7 7.7E − 09 7.6E − 09 4.3588E + 00 6.40E + 05
10−10 10−10 22800 11673600 8 4.1E − 09 5.6E − 09 1.9449E + 01 6.00E + 05
10−12 10−10 22800 11673600 8 2.6E − 09 4.7E − 09 4.1602E + 01 2.81E + 05
10−12 10−12 50352 25780224 9 2.1E − 09 4.6E − 09 9.2139E + 01 2.80E + 05

Table 3: Free-Space Poisson Equation, Example 1: Gaussian bump at the origin

εfmm εrhs k M` Npts LT L2 L∞ TFMM Rate
10−2 10−2 4 232 14848 4 1.1E − 02 1.6E − 02 1.8346E − 03 8.09E + 06
10−3 10−3 4 1184 75776 5 4.3E − 03 4.6E − 03 1.1007E − 02 6.88E + 06
10−4 10−4 4 5888 376832 6 1.4E − 04 2.5E − 04 1.1327E − 01 3.33E + 06
10−5 10−5 6 11432 2469312 7 1.6E − 05 3.3E − 05 6.2147E − 01 3.97E + 06
10−6 10−6 6 80088 17299008 8 7.2E − 06 1.8E − 05 6.0647E + 00 2.85E + 06
10−7 10−7 8 127856 65462272 8 9.4E − 07 3.3E − 06 1.8852E + 01 3.47E + 06
10−8 10−8 8 528984 270839808 10 3.7E − 07 9.8E − 07 1.2335E + 02 2.20E + 06
10−9 10−9 8 2074360 1062072320 10 3.2E − 08 2.6E − 07 6.4900E + 02 1.64E + 06

Table 4: Free-Space Poisson Equation, Example 2: Discontinuous Force

Example 3. For our third example, we replicate an experiment from [46] for a highly-oscillatory force with discon-
tinuities along multiple surfaces.

fm(r) =
{

((r − r2) sin (2mπr))2 if r < 1
0 if r ≥ 1

}

−∆u(x) =
1

R3

2∑
i=0

fm(|x− ci|/R), (41)

where c0 = (3/16, 7/16, 13/16), c1 = (7/16, 13/16, 3/16), c2 = (13/16, 3/16, 7/16), R = 0.05, and the wave-
length of fm is λm = R/(2m) = (1/40m). Defining

17

φm(r) =
(10r6 − 28r5 + 21r4 − 7)

840
+

(60r − 120)
rλ6

m

− 9
λ4

m

+
[
(300r − 120)

rλ6
m

−+
(30r2 − 36r + 9)

λ4
m

+
(r4 − 2r3 + r2)

2λ2
m

]
cos (rλm)

+
[
− 360

rλ7
m

+
(120r2 − 96r + 12)

rλ5
m

+
(5r3 + 8r2 − 3r)

λ3
m

]
sin (rλm), and

θm(r) =
(

360
λ6

m

− 12
λ4

m

− 1
120

)
/r,

we write the solution to equation (41) as

uexact(x) =


φ(||x− c0|| /R) +

∑
i=1,2 θ(||x− ci|| /R) if ||x− c0|| < R

φ(||x− c1|| /R) +
∑

i=0,2 θ(||x− ci|| /R) if ||x− c1|| < R
φ(||x− c2|| /R) +

∑
i=0,1 θ(||x− ci|| /R) if ||x− c2|| < R∑2

i=0 θ(||x− ci|| /R) else


In order to compare our results to [46], we use the error metric introduced there. Let εB be the vector of errors

calculated as the difference between the calculated and exact solutions on B and calculate the following norm over all
leaf boxes.

∣∣∣∣εB
all

∣∣∣∣
2

=
∑
B

(∫
εB

||uexact||∞

) 1
2

.

As indicated in [46],∣∣∣∣uexact
∣∣∣∣
∞ =

∣∣∣∣(− 6
λ4

m

− 1
120

)
/R +

(
720
λ6

m

− 24
λ4

m

− 1
120

)
/ ||ci − cj ||

∣∣∣∣ ∀i, j = 0, 1, 2, i 6= j

Our automatic refinement strategy refines within or near the sphere surfaces, with refinement taking place in the
exterior of the spheres only for the purpose of tree-balancing. We build coefficients only on leaf boxes which contain
non-zero source distributions: either interior to or intersecting one of the three spheres. Results are shown in Table 5.

m εfmm εrhs M` Npts LT k
˛̨˛̨

εB
all

˛̨˛̨
2

˛̨˛̨
εB
all

˛̨˛̨
∞

1 10−6 10−6 3984 254976 8 4 2.3E − 07 2.2E − 05
1 10−8 10−8 7296 1575936 9 6 1.1E − 08 7.1E − 07
1 10−10 10−10 24144 12361728 9 8 1.6E − 10 1.8E − 08
7 10−6 10−6 93816 6004224 10 4 2.2E − 06 1.8E − 04
7 10−8 10−8 195984 42332544 10 6 9.3E − 09 1.1E − 06
7 10−10 10−10 228312 116895744 10 8 1.1E − 10 4.3E − 08
15 10−6 10−6 140568 8996352 10 4 6.4E − 07 8.6E − 05
15 10−8 10−8 1092456 235970496 11 6 7.2E − 08 4.2E − 06
15 10−10 10−10 1596672 817496064 11 8 4.8E − 10 6.1E − 08
30 10−6 10−6 148272 9489408 10 4 5.8E − 07 6.2E − 05
30 10−8 10−8 1491216 322102656 11 6 2.1E − 08 3.8E − 06
30 10−10 10−10 1720152 880717824 12 8 4.9E − 09 2.0E − 06
60 10−6 10−6 150288 9618432 11 4 6.0E − 07 9.6E − 05
60 10−8 10−8 1502592 324559872 11 6 9.2E − 08 1.4E − 05
60 10−10 10−9 1659312 849567744 11 8 7.7E − 08 1.7E − 05

Table 5: Free-Space Poisson Equation, Example 3: Discontinuities along several spherical surfaces containing oscillating source distributions

While the performance of our code cannot be compared easily to the optimized and parallelized scheme presented
in [46], we have implemented much higher order accurate schemes. Thus, as expected, we are able to reach comparable
accuracies with significantly fewer points. To compare the number of points required, we consider the number of

18

points in the finest level solve of their three-level examples. For m = 7, we achieve accuracy on par with their most
accurate tests with approximately 1/100 as many points. For m = 15, we require approximately 1/5 as many points,
and with 1/4 as many points, we achieve about two orders of magnitude greater accuracy. For m = 30, we achieve
equivalent results with approximately 1/4 as many points. Additionally, we extended the examples for an even higher
wavenumber component (m = 60), decreasing the wavelength to 4.1710−4, and achieving good results with fewer
than 109 points.

Example 4. For the Modified Helmholtz equation (equation (8) with kernel (11)), we use a right-hand side similar
to that of Example 1, setting the Helmholtz parameter (inverse Debye length) to α = π:

α u(x)−∆u(x) =
8∑

i=0

−e−L||x−xi||2
(
4L ||x− xi||2 − 6L− α

)
, L = 250

with solution

u(x) =
8∑

i=0

−e−L||x−xi||2 ,

for xi = (± 3
40 ,± 3

40 ,± 3
40) inside of the [−1, 1]3 box. All translation matrices are computed to a precision of

εfmm/10. These matrices can be computed at run-time in a lazy manner; if α is known before run-time, these ta-
bles can be precomputed, stored, and loaded as necessary. Additionally, since the right-hand side is the same as in
Example 1, we use the same point distribution; hence, the timings are essentially the same as Experiment 1 and are
omitted here. Results are shown in Table 6.

εfmm εrhs M` Npts LT E2 E∞
Fourth-Order Force Approximation

10−2 10−2 736 47104 6 2.3E − 02 2.4E − 02
10−4 10−2 736 47104 6 6.0E − 04 5.6E − 04
10−4 10−4 3088 197632 7 1.1E − 04 1.8E − 04
10−6 10−4 3088 197632 7 2.4E − 05 2.1E − 05
10−6 10−6 19328 1236992 8 2.3E − 06 3.4E − 06

Sixth-Order Force Approximation
10−4 10−4 1408 304128 6 1.1E − 04 2.4E − 04
10−6 10−4 1408 304128 6 1.4E − 05 3.5E − 05
10−6 10−6 4936 1066176 7 8.5E − 07 2.5E − 06
10−8 10−6 4936 1066176 7 1.4E − 07 1.3E − 07
10−8 10−8 20112 4344192 8 1.5E − 08 7.5E − 08
10−10 10−8 20112 4344192 8 8.9E − 09 7.4E − 09
10−10 10−10 92072 19887552 9 2.2E − 09 5.7E − 09

Eighth-Order Force Approximation
10−6 10−6 2024 1036288 7 1.9E − 06 4.7E − 06
10−8 10−6 2024 1036288 7 1.8E − 07 4.6E − 07
10−8 10−8 5440 2785280 7 1.2E − 08 1.4E − 08
10−10 10−8 5440 2785280 7 7.7E − 09 7.6E − 09
10−10 10−10 22800 11673600 8 3.4E − 09 5.6E − 09
10−12 10−10 22800 11673600 8 1.3E − 09 2.0E − 09
10−12 10−12 50352 25780224 9 2.0E − 09 2.6E − 09

Table 6: Free-Space Modified Helmholtz Equation, Example 4: Gaussian bump at the origin

Example 5. We test the ability of our code to handle matrix kernels by solving the Stokes equations (equation (9)
with kernel (12)) with the following divergence-free fast-decaying force.

−µ∆u(x) +∇p(x) =
8∑

i=0

(
8L3 ||x− xi||2 − 20L2

)
e−L||x−xi||2 [∇× (x− xi)]

19

with solution

u(x) =
2L

µ

8∑
i=0

e−L||x−xi||2 [∇× (x− xi)]

for xi = (± 3
40 ,± 3

40 ,± 3
40), µ = 1, L = 125 inside of the [−1, 1]3 box. Errors are again similar to those seen in

the fast-decaying experiments from examples 1 and 4; timings are worse, as expected, since we are dealing with nine
times as many degrees of freedom per point. Results are shown in in Table 7.

εfmm εrhs M` Npts LT E2 E∞ TFMM Rate
Fourth-Order Force Approximation

10−2 10−2 2038 130432 6 1.3E − 01 1.5E − 01 1.3485E − 01 9.67E + 05
10−4 10−2 2038 130432 6 1.0E − 03 8.4E − 04 9.4899E − 01 1.37E + 05
10−4 10−4 10606 678784 7 9.1E − 04 9.4E − 04 5.1145E + 00 1.33E + 05
10−6 10−4 10606 678784 7 8.4E − 06 1.1E − 05 2.2359E + 01 3.04E + 04
10−6 10−6 69140 4424960 8 7.5E − 06 1.4E − 05 1.4655E + 02 3.02E + 04
10−8 10−6 69140 4424960 8 2.2E − 07 4.4E − 07 4.8311E + 02 9.16E + 03
10−8 10−8 484408 31002112 9 1.4E − 07 4.4E − 07 3.2253E + 03 9.61E + 03

Sixth-Order Force Approximation
10−4 10−4 2696 582336 7 4.9E − 04 8.6E − 04 1.5720E + 00 3.70E + 05
10−6 10−4 2696 582336 7 4.3E − 06 9.9E − 06 5.9948E + 00 9.71E + 04
10−6 10−6 10396 2245536 7 8.1E − 06 1.3E − 06 2.3602E + 01 9.51E + 04
10−8 10−6 10396 2245536 7 1.6E − 07 4.1E − 07 7.7862E + 01 2.88E + 04
10−8 10−8 59830 12923280 8 1.4E − 07 4.3E − 07 4.1067E + 02 3.15E + 04
10−10 10−8 59830 12923280 8 5.4E − 09 1.3E − 08 1.0326E + 03 1.25E + 04
10−10 10−10 295100 63741600 9 5.2E − 09 1.1E − 08 5.3102E + 03 1.20E + 04

Eighth-Order Force Approximation
10−6 10−6 4894 2505728 7 4.8E − 06 1.5E − 05 1.4287E + 01 1.75E + 05
10−8 10−6 4894 2505728 7 8.0E − 08 4.3E − 07 4.1362E + 01 6.06E + 04
10−8 10−8 12860 6584320 7 1.5E − 07 4.5E − 07 1.0268E + 02 6.41E + 04
10−10 10−8 12860 6584320 7 6.0E − 09 1.5E − 08 2.3717E + 02 2.78E + 04
10−10 10−10 55854 28597248 8 4.7E − 09 1.6E − 08 1.0489E + 03 2.73E + 04
10−12 10−10 55854 28597248 8 6.3E − 09 8.8E − 09 1.9641E + 03 1.46E + 04
10−12 10−12 132490 67834880 9 5.6E − 09 7.0E − 09 4.4599E + 03 1.52E + 04

Table 7: Free-Space Stokes Equation, Example 5: Gaussian bump at the origin

Example 6. It is straightforward to extend the solver infrastructure described above to the case of periodic boundary
conditions, using the the classical method of images of Lord Rayleigh [49], following the discussion of [23]. The
influence of all separated image boxes can be incorporated using either a recursive approach [38] or a scheme based
on lattice sums [30]. In either case, the additional work depends only on εfmm and not on the number of degrees
of freedom. The main difference is that the unit cell B now has near neighbors, whose influence must be accounted
for. This, too, has relatively little impact on performance. A small number of additional boxes are added to both the
interaction and near neighbor lists, but no additional data structures are created; instead, everything is handled via
careful book-keeping to minimize additional memory consumption.

As an example, we consider the periodic source function

f(x) = CM2π2 sin(πMx) sin(πMy) sin(πMz),

for which the solution is
u(x) = C sin(πMx) sin(πMy) sin(πMz).

We conduct our experiments for a non-trivial oscillatory force, choosing C = 5 AND M = 7 on the domain
[−1, 1]3 with varying degrees of depth and precision. We check the relative L2 and L∞ with results shown in Table 8.

It is straightforward to extend this approach to a variety of homogeneous Dirichlet, Neumann or mixed boundary
conditions by the method of images as well with very little additional effort.

20

εfmm εrhs M` Npts LT E2 E∞ TFMM Rate
Fourth-Order Force Approximation

10−2 10−2 32768 2097152 6 2.6E − 02 3.3E − 02 3.3250E − 01 6.31E + 06
10−4 10−4 262144 16777216 7 2.9E − 04 7.6E − 04 1.6296E + 01 1.03E + 06
10−6 10−6 2097152 134217728 8 5.6E − 06 1.9E − 05 2.9403E + 02 4.56E + 05

Sixth-Order Force Approximation
10−2 10−2 32768 7077888 6 2.7E − 02 3.4E − 02 6.0730E − 01 1.17E + 07
10−4 10−4 37248 8045568 7 2.7E − 04 8.2E − 04 1.7895E + 00 4.50E + 06
10−6 10−6 262144 56623104 7 5.5E − 06 1.8E − 05 3.6250E + 01 1.56E + 06
10−8 10−8 2097152 452984832 8 1.0E − 07 3.0E − 07 7.2101E + 02 6.28E + 05

Eighth-Order Force Approximation
10−2 10−2 4096 2097152 5 1.8E − 02 2.8E − 02 2.5445E − 01 8.24E + 06
10−4 10−4 32768 16777216 6 3.7E − 04 9.5E − 04 2.9459E + 00 5.70E + 06
10−6 10−6 242432 124125184 7 6.5E − 06 2.0E − 05 5.4881E + 01 2.26E + 06
10−8 10−8 262144 134217728 7 1.4E − 07 5.3E − 07 1.3578E + 02 9.88E + 05
10−10 10−10 2097152 1073741824 8 9.0E − 09 4.3E − 08 1.8685E + 03 5.75E + 05

Table 8: Periodic Boundary Conditions Example, Example 6

Example 7. A number of applications require the modeling of source distributions that contain both a smooth com-
ponent and a singular component. In electrostatics, for example, positively charged ions are often approximated as
point charges and the neutralizing electrons as an inhomogeneous continuous background. We consider such a case
here. The relevant Poisson equation takes the form

∆u(x) = fsmooth(x) +
N∑

i=1

qiδ(x− xi),

where the qi are positive and the neutralizing background takes the form of a sum of Gaussian distributions f i
smooth(x) =

1√
2πσ2 e−(x−σ)2/2σ2

centered on each δ-function.
The smooth portion can be handled as above, while the particle sources can be handled with the corresponding

particle-based kernel-independent FMM [61]. However, it is trivial to modify our solver to incorporate the particle
sources into the S2M operator 4.2 by modifying equation (22).

KB
S2MφB,u = FB

S2MγB +
N∑

i=1

qiG(x,xi), (42)

where G is the kernel used for evaluating the singular component, consisting of the point charges. Once the point
charges are incorporated into φB,u, the rest of the components of the algorithm (i.e., M2M, M2L, and L2L) take
care of the far-field interactions. We need only calculate the influence of near-field particle interactions directly, and
evaluate both the local expansions (L2T) and the smooth contributions at particle locations. The latter is done by
interpolation, as discussed in section 4.5.

The performance of our scheme is shown in Table 9.
The upward pass timings are minimally larger than for the particle-only case, and the downward pass timings are

agnostic about the nature of the sources, dependent only on the tree-structure itself. The Near computation timings
are simply the sum of the particle and volume-based cases, since there is no amortization of cost in this step.

7 Conclusions
We have presented a kernel-independent FMM for solving a variety of constant-coefficient elliptic PDEs in free space,
allowing for arbitrary levels of adaptivity, highly non-homogeneous forces and arbitrarily distributed target locations.
Results for the Poisson, modified Helmholtz, and Stokes equations show that the performance is similar for each.
Applying the method to other equations requires only a kernel evaluation routine.

Compared to the state-of-the-art technique [46], our method is higher order accurate and therefore solves similar
problems with fewer degrees of freedom, and the work per point is approximately the same. Our current implemen-
tation uses OpenMP (but not MPI), although we expect the extension to be straightforward, as our solver is built

21

Npts εfmm M` LT S2M/M2M Near M2L L2L/L2T TFMM

1.024E + 06 10−2 4096 5 2.52E − 02 6.42E − 01 5.09E − 02 4.84E − 03 7.23E − 01
1.024E + 06 10−4 4096 5 6.97E − 02 6.49E − 01 1.29E − 01 2.35E − 02 8.71E − 01
1.024E + 06 10−6 4096 5 1.41E − 01 6.50E − 01 3.77E − 01 6.66E − 02 1.24E + 00
1.024E + 06 10−8 4096 5 2.48E − 01 6.41E − 01 1.03E + 00 1.58E − 01 2.08E + 00
4.096E + 06 10−2 32768 6 1.11E − 01 1.58E + 00 2.39E − 01 1.85E − 02 1.95E + 00
4.096E + 06 10−4 32768 6 3.04E − 01 1.61E + 00 1.32E + 00 1.01E − 01 3.34E + 00
4.096E + 06 10−6 32768 6 6.29E − 01 1.61E + 00 3.55E + 00 2.92E − 01 6.08E + 00
4.096E + 06 10−8 32768 6 1.17E + 00 1.60E + 00 9.20E + 00 6.48E − 01 1.26E + 01
1.638E + 07 10−2 262144 7 1.58E + 00 4.31E + 01 2.14E + 00 2.58E − 01 4.71E + 01
1.638E + 07 10−4 262144 7 4.31E + 00 4.34E + 01 1.14E + 01 1.48E + 00 6.06E + 01
1.638E + 07 10−6 262144 7 8.79E + 00 4.38E + 01 3.05E + 01 4.20E + 00 8.72E + 01
1.638E + 07 10−8 262144 7 1.55E + 01 4.32E + 01 8.26E + 01 9.96E + 00 1.51E + 02
6.554E + 07 10−2 2097152 8 7.00E + 00 1.04E + 02 1.80E + 01 1.40E + 00 1.31E + 02
6.554E + 07 10−4 2097152 8 1.93E + 01 1.05E + 02 9.14E + 01 6.76E + 00 2.23E + 02
6.554E + 07 10−6 2097152 8 4.01E + 01 1.07E + 02 2.61E + 02 1.93E + 01 4.27E + 02
6.554E + 07 10−8 2097152 8 7.34E + 01 1.06E + 02 7.00E + 02 4.19E + 01 9.21E + 02

Table 9: Example 7: Poisson equation with a mixture of smooth and singular sources

on top of the MPI-based code of [61]. We discuss how the major loops are optimized for OpenMP shared-memory
parallelization in section 8.4 for this current implementation.

As in [23], we have extended our solver to handle periodic, Dirichlet and Neumann boundary conditions for
problems on cubic domains using the method of images. We are also coupling the present volume integral code with
boundary integral methods to allow for the solution of linear, constant-coefficient, inhomogeneous elliptic PDEs in
complex geometries, as in [59]. Additional current work involves incorporating this solver into the state-of-the-art in
[42]. These extensions will be reported at a later date.

8 Appendix
In this appendix, we first verify numerically that the equivalent density representation yields the expected accuracy,
followed by a discussion of how the choice of grids affects the order of convergence and an overall numerical justifi-
cation for the use of Tikhonov regularization. We close with a discussion of how we accelerate the major computation
loops of our algorithm using OpenMP shared-memory parallelization and load-balancing techniques.

8.1 Equivalent Density Accuracy
As discussed in section 4.1, we invert several matrices of discretized Fredholm equations of the first kind in order to
build out far-field representations,

Kyd,xdφd = Kys,xdφs.

As in [60], we choose to use Tikhonov regularization [40] when solving these ill-conditioned systems. This solves two
problems: in this way, we eliminate the null space in the cases when it is present (Stokes kernel) and we significantly
improve accuracy of the inversion for higher numbers of samples (Section 8.3). We verify the potential we get from
φB,u, computed using our regularized method in the S2M operation, approximates well u(x), computed directly from
a force. We test using gB =

∑(a+b+c)≤(k−1)
a,b,c xaybzc for box B of width 2 and compute

u(x) =
∫

B

K(x,y)gB(y)dy, x ∈ xB,u,

to within 10−16 accuracy using adaptive Gaussian quadrature [8]. We then compute φB,u at yB,u using (23) where
(KS2M)−1 is replaced with (αI + (KS2M)∗KS2M)−1K∗

S2M . For FMM precision, np, we choose α = 10−(np+1).
More details on the choice of α are available in [60]. Our algorithm relies on the fact that for surfaces outside the near
field of B, φB,u is a sufficiently accurate representation of B’s volume force. We compute

22

u(x)equiv =
∫
yB,u

K(x,y)φB,u(y)dy

for x ∈ S, some surface. To evaluate the accuracy of this approximation, we compute

u(x)exact =
∫

B

K(x,y)gB(y)dy

up to an accuracy of 10−16 [8]. In figure 6, we compare the infinity-norm of the resulting error for three different ker-
nels (Laplace, Modified Helmholtz, Stokes) and varying levels of the polynomial approximation and multiple degrees
of FMM evaluation precision. For each of the kernels of interest, φB,u, computed by inverting our ill-conditioned
kernels, is recovered on each surface S to within the requested degree of precision. For evaluating the accuracy of
the kernel inversion and regularization in the computation of φB,d, we note that this computation is equivalent to the
particle-based FMM, of which numerical analysis for the M2L and L2L operators is available in [60].

3 3.5 4 4.5 5 5.5 6
−10

−8

−6

−4

−2

0

R
s

lo
g 10

 |ε
ap

p|

Poly approx k = 4

ε
fmm

=1e−2 ε
fmm

=1e−4 ε
fmm

=1e−6 ε
fmm

=1e−8

3 3.5 4 4.5 5 5.5 6
−10

−8

−6

−4

−2

0

R
s

lo
g 10

 |ε
ap

p|

Laplace Kernel
Poly approx k = 6

3 3.5 4 4.5 5 5.5 6
−10

−8

−6

−4

−2

0

R
s

lo
g 10

 |ε
ap

p|

Poly approx k = 8

3 3.5 4 4.5 5 5.5 6
−12

−10

−8

−6

−4

−2

0

R
s

lo
g 10

 |ε
ap

p|

3 3.5 4 4.5 5 5.5 6
−12

−10

−8

−6

−4

−2

0

R
s

lo
g 10

 |ε
ap

p|

Modified Helmholtz Kernel

3 3.5 4 4.5 5 5.5 6
−12

−10

−8

−6

−4

−2

0

R
s

lo
g 10

 |ε
ap

p|

3 3.5 4 4.5 5 5.5 6
−10

−8

−6

−4

−2

0

R
s

lo
g 10

 |ε
ap

p|

3 3.5 4 4.5 5 5.5 6
−10

−8

−6

−4

−2

0

R
s

lo
g 10

 |ε
ap

p|

Stokes Kernel

3 3.5 4 4.5 5 5.5 6
−10

−8

−6

−4

−2

0

R
s

lo
g 10

 |ε
ap

p|

Figure 6: Error due to upward equivalent density approximation of the field. From left to right, three columns show the errors for the polynomial
force approximations of degree 4, 6 and 8. Each plot shows four levels of FMM precision, εfmm = 10−np , p = n3

p − (np − 2)3 points are used
on the surfaces yB,u and xB,u. For the evaluation surfaces S, we vary the radius RS from 3.1 to 5.9, the region covering LB

I ∈ FB . The y-axis
of each plot is the infinity norm ||uequiv − uexact||∞ computed over 488 samples on S.

8.2 Polynomial Basis and Grid Spacing
As discussed in section 4.4, we evaluate the solution at a leaf box B on a grid of points, xB,g and construct an approx-
imating polynomial from these points. Additionally, (section 4.6) we construct a kth-order polynomial approximation
to B’s distributed force if gB is given on a grid. For consistency with AMR codes and efficiency of implementation, it
would have been desirable to use uniform grid samples. This approach works well for n ≤ 6, but it is well-known for

23

large n that equispaced grids lead to instabilities [55]; as a result, for n > 6 we use Chebyshev grid points. To show
that regularly-spaced grid points perform poorly for n, k > 6, we consider the following test case:

−∆u(x) = e−L(||x||2)
2 (

4L(||x||2)
2 − 6L

)
, L = 250, x ∈ [−1, 1]3

In figure 7, we compare the overall relative L2 error, E2, for solutions using equispaced and Chebyshev grid points
in the evaluation of the solution and construction of the polynomial approximations of degree 4, 6 and 8. Errors for
discretizations using equispaced or Chebyshev grid points are similar for k ≤, but for k = 8, Chebyshev points are
more accurate.

2 3 4 5 6 7 8
−8

−7

−6

−5

−4

−3

−2

−1

0
Poly approx k = 4

−log
10

 |ε
fmm

|

lo
g 10

 E
2

Regular Spacing

Chebyshev Spacing

2 3 4 5 6 7 8
−8

−7

−6

−5

−4

−3

−2

−1

0
Poly approx k = 6

−log
10

 |ε
fmm

|

lo
g 10

 E
2

2 4 6 8 10
−10

−8

−6

−4

−2

0
Poly approx k = 8

−log
10

 |ε
fmm

|

lo
g 10

 E
2

Figure 7: For each of the test examples, the x-axis indicates the negative log of the requested FMM accuracy, εfmm, and the y-axis indicates the
log of E2. The number of points chosen for each εfmm is equivalent to those in Example 1 of section 6 for εrhs = εfmm. Left: for polynomial
approximation of degree 4 and xB,g of size 43 on each leaf B, overall relative error is close for equispaced and Chebyshev points. Middle: For
n, k = 6 differences are visible but insignificant. Right: For n, k = 8, solutions based on equispaced grid are less accurate.

8.3 Tikhonov Regularization
As discussed above in section 8.1, we use Tikhonov regularization [40] to invert Fredholm equations of the first kind,
specifically the S2M, M2M, and L2L operators in section 4. Further, in section 8.1, we looked specifically at the
accuracy resulting from this inversion process. To justify the overall use of Tikhonov regularization, we consider the
following test cases for the Poisson and Stokes equations, respectively.

−∆u(x) = e−L(||x||2)
2 (

4L(||x||2)
2 − 6L

)
, L = 250, x ∈ [−1, 1]3

−∆u(x) +∇p(x) =
(
8L3 ||x− xi||2 − 20L2

)
e−L||x−xi||2 , and [∇× (x− xi)] , L = 125, x ∈ [−1, 1]3.

In figure 8, we compare the overall relative L2 error, E2, solutions, resulting from Tikhonov regularization versus
no regularization and the construction of polynomial approximations of degree k = 6 for the right-hand sides (errors
for k = 4, 8 are similar). For decreasing levels of εfmm, we choose εfmm = εrhs.

2 4 6 8 10
−9

−8

−7

−6

−5

−4

−3

−2

−1
Laplace Kernel, k=6

−log
10

|ε
fmm

|

lo
g 10

 E
2

No Regularization
Tik. Regularization

2 4 6 8 10
−9

−8

−7

−6

−5

−4

−3

−2

−1
Stokes Kernel, k=6

−log
10

|ε
fmm

|

lo
g 10

 E
2

No Regularization
Tik. Regularization

Figure 8: For each of the test examples, the x-axis indicates the negative log of the requested FMM accuracy, εfmm, and the y-axis indicates
the log of E2. The number of points chosen for each εfmm is equivalent to those in Examples 1 and 5 of section 6 for εrhs = εfmm. Left: for
polynomial approximation of degree 6 for the Laplace kernel with and without regularization. Right: for polynomial approximation of degree 6 for
the Stokes kernel with and without regularization.

24

We notice that for εfmm > 10−7, the effect of not employing regularization is equivalent to using regularization
for both the Laplace and Stokes operators. However, as εfmm decreases, the number of sample points on the equivalent
and check surfaces increases, resulting in larger linear systems, which as mentioned earlier, may be poorly conditioned.
Indeed, for such larger systems resulting from εfmm ≤ 10−7, it is necessary to regularize the systems to achieve
desirable results.

8.4 Shared-Memory Parallelization and Load-Balancing
As indicated in section 7, we have designed the code to take advantage of shared-memory architectures through the
use of OpenMP. In particular, we highlight the steps to accelerate the various major steps in Algorithm 1. For details
on the nature of OpenMP and its usage, we refer the reader to [18].

S2M and M2M Computations In the upward pass (step 2 of Algorithm 1 and section 4.2), we begin by building a
list of all leaf boxes, B in the octree T , which have sources. We then do a simple OpenMP parallelization step over
these boxes for the S2M step. As all components of equation (23) are of the same size for each leaf box, there is no
need to rebalance the load among threads

In order to ensure proper order of computation, we proceed by sorting all non-leaves in reverse-order by depth. For
each non-leaf level in T , beginning at the deepest level, we translate a box B’s children’s upward equivalent densities
to its own through the M2M computation in (25). Again, as each of the components is of the same size, there is no
need to rebalance among threads. As we parallelize only among boxes at the same depth in T , level ` is not processed
until ` + 1 has completed. Further, once we have reached coarse level ` = 1 (which only occurs for periodic or
Dirichlet boundary conditions), we discontinue the parallelization.

M2L, L2L, and L2T Computations In the downward pass of Algorithm 1 (section 4.3), we perform a similar
operation as above for the M2M step. First, we sort all boxes B in T from the shallowest to deepest levels in the tree.
For each level, `, we parallelize among the boxes being processed at that level for the M2L and L2L computations.
The L2L components in equation (29) are of equivalent size for each box B; however, for each box B, the size of LB

V
vary greatly from other boxes (for example, this list is much smaller for boxes on the edge or corners of our domain).
In order to ensure proper balancing among threads, we further sort all boxes for each level, ` by the size of LB

V and
then reorder the boxes such that the sum of all LB

V for each thread is of roughly the same size.
For the L2T computations in equation (31), we once again build a list of only leaf boxes, for which the target

solution is desired, and we parallelize the computations in this list. The components of the discretized equation are all
the same size, as with the S2M computation, so there is no need to rebalance among threads for this step.

Near-Field Computations We focus our discussion here on the U -list computations. Parallelizing the near-field
computations in equation (34) is the most straightforward in that no leaf box B is dependent on the completion of
computations by any other box. That is, we can simply parallelize the computations among leaf boxes, for which the
LB

U exists. However, even more so than with the M2L computations, the sizes of LB
U can be very different among

leaf boxes (especially in the most adaptively-refined octrees). Thus, we sort all leaf boxes B in T by the size of LB
U

and reorder the list of leaves such that the sum of the size of LB
U among each thread is roughly equivalent, ensuring a

relatively well-balanced load among threads. The size of the components and operators are the same for each box B,
so balancing by list sizes is optimal. We note that this rebalancing is largely unnecessary for uniformly-refined trees.

Additionally, for matrix kernels (e.g. Stokes) and larger orders of polynomial approximation, constantly loading
large matrices into memory results in little speedup as we increase the number of processes. In order to correct this, for
each equivalence class as described in section 5, we perform all of the operations involving a single class first before
performing all computations for other classes of operators. Hence, we only load each matrix operator at most once per
processor.

We note that for the M2L step, as we have to process level ` before moving to level `−1, operators will constantly
have to be reloaded. Performing all computations in order for each equivalence class at each level is done, but we have
seen little time savings for this in practice as opposed to the near-field computations, where it is essential for good
speedup.

Remark As with the near-field computations, for adaptively-refined trees, we rebalance the loads among threads for
the X and W lists, which involve additional near-field S2T , M2T and S2L computations in equations (40) and (39),

25

based on the sizes of LB
X and LB

W , respectively. Additionally, we perform all computations in order of equivalence
class, again loading each matrix operator at most once.

Timing Results Versus Number of Processors In order to see the effect of our use of OpenMP and load-balancing
strategies, we investigate the strong scaling of two fixed problems. First, from Example 1 in section 6, we set the
polynomial order, εrhs, and εfmm to 8. The reasoning behind this is to ensure that for a single processor, neither the
near-field nor far-field computations fully dominate the timings. In table 10 we look at the timings for the different
algorithmic steps (note that the near-field computation times include U ,W ,and X list computation times) as well as
plot the decreasing times in figure 9a).

Nprocs S2M/M2M Near M2L L2L/L2T TFMM Rate

1 1.1257E + 00 8.5343E + 00 1.4642E + 01 9.3401E − 01 2.5236E + 01
2 5.8800E − 01 5.1123E + 00 7.2851E + 00 4.7791E − 01 1.3463E + 01 1.8744E + 00
4 3.7504E − 01 2.3771E + 00 4.5594E + 00 2.9275E − 01 7.6042E + 00 1.7705E + 00
8 1.8386E − 01 1.2319E + 00 2.2799E + 00 1.4595E − 01 3.8416E + 00 1.9794E + 00
16 9.7009E − 02 6.8944E − 01 1.2409E + 00 8.5467E − 02 2.1128E + 00 1.8183E + 00

Table 10: Timings (all in wall-time seconds) for the various components of the FMM volume solver for a fixed problem size for the Poisson
equations. The polynomial-order, εrhs, and εfmm are set to 8. The number of leaves, M` = 5440, the tree level, LT = 7, and Npts = 2785280
as seen in Example 1. Nprocs indicates the number of processors, which we scale linearly. We separate the S2M/M2M , Near (U ,W ,X-list
computations), M2L (V -list computations), L2L/L2T timings with the total shown as TFMM . The scaling Rate is shown last.

For our second study of the effect of shared-memory parallelization, we look at the Stokes kernel tests from
Example 5 in section 6. We fix the polynomial order to 8 and look at εrhs = εfmm = 6, again in an effort to not have
one step fully dominate the computational time, allowing us to look at the effect of scaling the number of processors.
Timing results can be seen in table 11 and figure 9b.

Nprocs S2M/M2M Near M2L L2L/L2T TFMM Rate

1 8.7946E + 00 5.4169E + 01 9.4023E + 01 6.8327E + 00 1.6382E + 02
2 5.1822E + 00 2.8574E + 01 5.2139E + 01 3.6178E + 00 8.9513E + 01 1.8301E + 00
4 2.8669E + 00 1.3076E + 01 3.0299E + 01 1.7337E + 00 4.7976E + 01 1.8658E + 00
8 1.5697E + 00 6.7810E + 00 1.6137E + 01 8.3674E − 01 2.5325E + 01 1.8944E + 00
16 8.2480E − 01 3.6117E + 00 9.4520E + 00 3.9180E − 01 1.4287E + 01 1.7726E + 00

Table 11: Timings for the various components of the FMM volume solver for a fixed problem size for the Stokes equations. The polynomial-
order, εrhs, and εfmm are set to 6. The number of leaves, M` = 4894, the tree level, LT = 7, and Npts = 2505728 as seen in Example 5.
Nprocs indicates the number of processors, which we scale linearly. We separate the S2M/M2M , Near (U ,W ,X-list computations), M2L
(V -list computations), L2L/L2T timings with the total shown as TFMM . The scaling Rate is shown last.

As can be seen in tables 10 and 11, our scheme exhibits the desirable result of nearly-linear speedup as we scale
the number of processors. As indicated in the conclusion, current work is being done to incorporate this work with
[42] in order to achieve parallelization on a significantly larger scale.

References
[1] M. F. Adams and J. Demmel. Parallel multigrid solver algorithms and implementations for 3D unstructured finite element problem. In

ACM/IEEE Proceedings of SC99: High Performance Networking and Computing, Portland, Oregon, November 1999.

[2] M.J. Aftosmis, M.J. Berger, and J.E. Melton. Adaptive Cartesian mesh generation. In J.F. Thompson, editor, The Handbook of Grid Genera-
tion, pages 22–1–22–26. CRC Press, 1998.

[3] C.R. Anderson. A method of local corrections for computing the velocity field due to a distribution of vortex blobs. J. Comput. Phys.,
62(1):111–123, 1986.

[4] G.T. Balls and P. Colella. A finite difference domain decomposition method using local corrections for the solution of Poisson’s equation. J.
Comput. Phys., 180(1):25–53, 2002.

[5] J. Barnes and P. Hut. A hierarchical O(N log N) force calculation algorithm. Nature, 324:446–449, December 1986. Technical report.

[6] R. Beatson and L. Greengard. A short course on fast multipole methods. In M. Ainsworth et al., editors, Wavelets, multilevel methods and
elliptic PDEs, pages 1–37, Walton Street, Oxford OX2 6DP, UK, 1997. Oxford University Press.

26

✲�

✲✁

✵

✁

�

✻

✵ ✵✂✄ ✶ ✶✂✄ ✁ ✁✂✄ ✸ ✸✂✄ �

▲
☎
✆

☎
✝

✞
✟
✠
✡
☛
☞
✌

✍✎✏ ✎✑ ✒✓✔✕✖✗ ✎✑ ✘✗✎✙✖✚✚✎✗✚

✘✎P✚✚✎✛ ✜✢✓✣✤P✎✛

Total
M2L
Near

S2M/M2M
L2L/L2T

✲�

✵

�

✹

✻

✽

✵ ✵✁✂ ✶ ✶✁✂ � �✁✂ ✸ ✸✁✂ ✹

▲
✄
☎

✄
✆

✝
✞
✟
✠
✡
☛
☞

✌✍✎ ✍✏ ✑✒✓✔✕✖ ✍✏ ✗✖✍✘✕✙✙✍✖✙

❙✚✍✛✕✙ ✜✢✒✣✚✤✍✥✙

Total
M2L
Near

S2M/M2M
L2L/L2T

Figure 9: a) Log-log plot for timings from table 10, b) Log-log plot for timings from table 11.

[7] M.J. Berger, M. Aftosmis, and J. Melton. Accuracy, adaptive methods and complex geometry. In 1st AFOSR Conference on Dynamic Motion
CFD, 1996.

[8] J. Berntsen, T.O. Espelid, and A. Genz. Algorithm 698; dcuhre: an adaptive multidemensional integration routine for a vector of integrals.
ACM Trans. Math. Softw., 17(4):452–456, 1991.

[9] S. Börm. H2-matrix arithmetics in linear complexity. Computing, 77(1):1–28, 2006.

[10] S. Börm and W. Hackbusch. Hierarchical quadrature for singular integrals. Computing, 74(2):75–100, 2005.

[11] A.H. Boschitsch, M.O. Fenley, and W.K. Olson. A fast adaptive multipole algorithm for calculating screened coulomb (yukawa) interactions.
J. Comput. Phys., 151:212–241, 1999.

[12] A. Brandt. Multilevel adaptive solutions to boundary value problems. Math. Comp., 31:333–390, 1977.

[13] L. Briggs, V. Emden Henson, and S. F. McCormick. A Multigrid Tutorial. SIAM, Philadelphia, 2000.

[14] B.L. Buzbee, G.H. Golub, and C.W. Nielson. On direct methods for solving Poisson’s equation. SIAM J. Numer. Anal., 7:627–656, 1970.

[15] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral Methods in Fluid Dynamics. Springer–Verlag, New York, 1987.

[16] T. Chan, R. Glowinski, J. Périaux, , and O. Widlund. Domain decomposition Methods. SIAM, Philadelphia, 1989.

[17] T. Chan and B. Smith. Domain decomposition and multigrid algorithms for elliptic problems on unstructured meshes. Electron. Trans. Numer.
Anal., 1994:171–182, 1994.

[18] B. Chapman, G. Jost, and R. Pas. Using OpenMP: Portable Shared Memory Parallel Programming (Scientific and Engineering Computation).
The MIT Press, 2007.

[19] H. Cheng, W.Y. Crutchfield, Z. Gimbutas, L. Greengard, J.F. Ethridge, J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao. A wideband fast
multipole method for the Helmholtz equation in three dimensions. J. Comput. Phys., 216:300–325, 2006.

[20] H. Cheng, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys., 155:468–498, 1999.

[21] H. Cheng, J. Huang, and T. J. Leiterman. An adaptive fast solver for the modified Helmholtz equation in two dimensions. J. Comput. Phys.,
211(2):616–637, 2006.

[22] G. Chesshire and W. Henshaw. Composite overlapping meshes for the solution of partial differential equations. J. Comput. Phys., 90:1–64,
1991.

[23] F. Ethridge and L. Greengard. A new fast-multipole accelerated Poisson solver in two dimensions. SIAM J. Sci. Comput., 23(3):741–760,
May 2001.

[24] L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems: ACM Distringuished Dissertation. MIT Press, 1988.

[25] L. Greengard. Fast algorithms for classical physics. Science, 265(5174):909–914, August 1994.

[26] L. Greengard and J. Huang. A fast direct solver for elliptic partial differential equations on adaptively refined meshes. SIAM J. Sci. Comput.,
21:1551–1566, 1999.

[27] L. Greengard and J. Huang. A new version of the fast multipole method for screened coulomb interactions in three dimensions. J. Comput.
Phys., 180:642–658, 2002.

[28] L. Greengard, M.C. Kropinski, and A. Mayo. Integral equation methods for Stokes flow and isotropic elasticity in the plane. J. Comput. Phys.,
125:403–414, 1996.

[29] L. Greengard and J.Y. Lee. A direct adaptive Poisson solver of arbitrary order accuracy. J. Comput. Phys., 125:415–424, 1996.

27

[30] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 73:325–348, August 1987.

[31] L. Greengard and V. Rokhlin. The rapid evaluation of potential fields in three dimensions. In C. Anderson and C. Greengard, editors, Vortex
Methods, Lecture Notes in Mathematics. Springer Verlag, N.Y., 1988.

[32] L. Greengard and V. Rokhlin. A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer.,
6:229–269, 1997.

[33] N.A. Gumerov and R. Duraiswami. Fast multipole method for the biharmonic equation in three dimensions. J. Comput. Phys., 215:363–383,
2006.

[34] W. Hackbusch. A sparse matrix arithmetic based on h-matrices. part i: introduction to h-matrices. Computing, 62(2):89–108, 1999.

[35] W. Hackbusch and S. Börm. H2-matrix approximation of integral operators by interpolation. Appl. Numer. Math., 43(1-2):129–143, 2002.

[36] W. Hackbusch and Z.P. Nowak. On the fast matrix multiplication in the boundary element method by panel clustering. Numerische Mathe-
matik, 54(4):463–491, 1989.

[37] W. Hackbusch and U. Trottenberg. Multigrid Methods, Lecture Notes in Mathematics Volume 960. Springer-Verlag, 1st edition, 1982.

[38] J. Helsing. Fast and accurate calculations of structural parameters for suspensions. Proc. Roy. Soc. Lond. A, 445:127–140, 1994.

[39] H. Johansen and P. Colella. A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains. J. Comput. Phys.,
147:60–85, 1998.

[40] R. Kress. Linear Integral Equations: Applied Mathematical Sciences 82. Springer-Verlag, 2nd edition, 1999.

[41] O.A. Ladyzhenskaya. The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, 2nd edition, 1964.

[42] I. Lashuk, A. Chandramowlishwaran, M.H. Langston, T.A. Nguyen, R.S. Sampath, A. Shringarpure, R.W. Vuduc, L. Ying, D. Zorin, and
G. Biros. A massively parallel adaptive fast-multipole method on heterogeneous architectures. In SC’2009 Conference, Portland, OR, nov
2009. IEEE/ACM SIGARCH.

[43] D. Martin and K. Cartwright. Solving Poisson’s equations using adaptive mesh refinement. Technical Report M96/66, University of California,
Berkeley Electronic Research Laboratory, 1996.

[44] D.J. Mavripilis. Unstructured grid techniques. Annu. Rev. Fluid Mech., 29:473–514, 1997.

[45] A. Mayo. Fast high order accurate solution of Laplace’s equation on irregular regions. SIAM J. Sci. Comput., 6(1):144–157, January 1985.

[46] P. McCorquodale, P. Colella, G.T. Balls, and S.B. Baden. A local corrections algorithm for solving Poisson’s equation in three dimensions.
Comm. Appl. Math. Comput., 2(1):57–81, 2007.

[47] A. McKenney, L. Greengard, and A. Mayo. A fast Poisson solver for complex geometries. J. Comput. Phys., 118:348–355, 1995.

[48] M.L. Minion. A projection method for locally refined grids. J. Comput. Phys., 148(1):81–124, 1999.

[49] Lord Rayleigh. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Phil. Mag., 34:481–502, 1892.

[50] V. Rokhlin. Rapid solution of integral equations of classical potential theory. J. Comput. Phys., 60:187–207, 1985.

[51] V. Rokhlin. Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys., 86:414–439, 1990.

[52] M.C. Strain, G.E. Scuseria, and M.J. Frisch. Achieving linear scaling for the electronic quantum Coulomb problem. Science, 271:51–53,
1996.

[53] H. Sundar, R. Sampath, and G. Biros. Bottom-up construction and 2:1 balance refinement of linear octrees in parallel. Submitted: SIAM J.
Sci. Comput., 2007.

[54] A.K. Tornberg and L. Greengard. A fast multipole method for the three-dimensional Stokes equations. J. Comput. Phys., 227(3):1613–1619,
2008.

[55] L.N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, 1997.

[56] H. Wang, T. Lei, J. Li, J. Huang, and Z. Yao. A parallel fast multipole accelerated integral equation scheme for the 3d stokes equations. J.
Numer. Methods Engrg., 70:812–839, 2007.

[57] C.A. White, B.G. Johnson, P.M.W. Gill, and M. Head-Gordon. The continuous fast multipole method. Chem. Phys. Lett., 230:8–16, November
1994.

[58] G.J. Rodin Y. Fu. Fast solution method for three-dimensional Stokesian many-particle problems. Comm. Numer. Methods Engrg., 16(2):145–
149, 2000.

[59] L. Ying, G. Biros, and D. Zorin. A fast solver for the Stokes equations with distributed forces in complex geometries. J. Comput. Phys.,
194(1):317–348, 2004.

[60] L. Ying, G. Biros, and D. Zorin. A kernel-independent adaptive fast multipole method in two and three dimensions. J. Comput. Phys.,
196(2):596–626, 2004.

[61] L. Ying, G. Biros, D. Zorin, and M.H. Langston. A new parallel kernel-independent fast multipole method. In SC’2003 Conference CD,
Phoenix, AZ, November 2003. IEEE/ACM SIGARCH.

28

	Introduction
	Equations and Kernels
	Analytic Fast Multipole Method
	3D Kernel-Independent FMM Volume Integral Solver
	Equivalent Densities
	Upward Pass
	Downward Pass
	Near-Field Interactions
	Polynomial approximation of the solution
	Polynomial force approximation from grid samples
	Non-Uniform Source Distributions and Adaptive FMM
	Pseudocode and Complexity for Kernel-Independent FMM Volume Solver

	Symmetries for precomputed interaction operators
	Numerical Results
	Conclusions
	Appendix
	Equivalent Density Accuracy
	Polynomial Basis and Grid Spacing
	Tikhonov Regularization
	Shared-Memory Parallelization and Load-Balancing

