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Figure 12: We apply the rounding scheme of [Bommes et al. 2009] to
remesh surfaces into quadrilateral meshes whose edges are aligned
with our fields. The graphs show the normalized difference of the
per-corner (u, v ) coordinates before and after the integer rounding.
The x axis shows the number of quads per unit-length vector, which
directly correlates to the quad grid resolution.

tionally, we also run our iterations until the average of the Poisson
error is lower than 0.005, which, according to our experiments, is a
reasonable threshold to avoid any visible misalignment between the
field and the parameterization. Our method succeeds on all models,
which we attach in the supplemental material, together with our
fields, parameterizations and their screenshots. Our numerical algo-
rithm behaved well in the examples shown, reducing the objective
function and its gradient by at least 8 orders of magnitude (from 1e4
to 1e � 4).

7 Conclusion

Our algorithm is a first attempt to design integrable PolyVector
fields that trivially induce field-aligned, inversion-free, global pa-
rameterizations. We apply our theory and algorithm to the design
of quadrangulations, where the user-given directional constraints
directly control the edge alignment. In addition to integrability, our
formulation supports a novel way to adhere to partial directional
constraints, without having to choose the specific isoline a priori.

While our optimization does not rely on integer variables, it is still
nonlinear and non-convex, and we cannot formally prove its conver-
gence or guarantee that the result will in fact induce a completely
inversion-free parameterization. However, we empirically find our
algorithm to be very robust: using default parameters, we obtain
integrable fields on hundreds of models without experiencing any
convergence issues.

When applied to creating quadrangulations, our fields cannot be
immediately used: the boundaries of our parameterizations still need
to be rounded to guarantee seamless transitions on the cuts. Tackling
this problem without resorting to integer variables is an interesting
topic for future theoretical research. In practice, we observe that the
rounding has a minor effect when applied to our integrable fields,
especially if the output mesh has a high resolution. Finally, it would
also be interesting to integrate additional quality criteria, such as an
angle bound or anisotropy bound, or to devise additional constraints,
such as vector conjugacy for planar-quad meshing.

We note that our definition of inversion-free parametrization opti-
mizes for a positive Jacobian in each face; it is a necessary, but not
sufficient condition for true local injectivity [Weber and Zorin 2014],
since the boundary can intersect itself in theory. Nevertheless, we
conjecture that this not possible with our framework, since such a

situation is probably the result of integer-valued singularities. We
do not witness this case in practice, and leave the formal proof for
future work.

Our paper focuses on frame fields for the purpose of quadrangulation.
Nevertheless, our theory and algorithms readily extend to general
N -PolyVectors. We are currently investigating other problems that
can benefit from the design of integrable N -PolyVector fields, such
as hexagonal remeshing, physically-based simulation and surface
deformation.

input field our field parameterization from our field

Figure 13: Sample results from the benchmark. From left to right:
reference field, output of our method and parameterization. All three
results contain no flips in the parameterization.
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KNÖPPEL, F., CRANE, K., PINKALL, U., AND SCHRÖDER, P.
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