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Abstract

Subspace techniques greatly reduce the cost of nonlinear simula-
tion by approximating deformations with a small custom basis. In
order to represent the deformations well (in terms of a global met-
ric), the basis functions usually have global support, and cannot
capture localized deformations. While reduced-space basis func-
tions can be localized to some extent, capturing truly local defor-
mations would still require a very large number of precomputed ba-
sis functions, significantly degrading both precomputation and on-
line performance. We present an efficient approach to handling lo-
cal deformations that cannot be predicted, most commonly arising
from contact and collisions, by augmenting the subspace basis with
custom functions derived from analytic solutions to static loading
problems. We also present a new cubature scheme designed to fa-
cilitate fast computation of the necessary runtime quantities while
undergoing a changing basis. Our examples yield a two order of
magnitude speedup over full-coordinate simulations, striking a de-
sirable balance between runtime speeds and expressive ability.
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1 Introduction

The simulation of nonlinear deformations is expensive. In particu-
lar, simulations involving 3D volumetric elements are particularly
costly, and the resolution of such simulations in computer graphics
applications often has to be kept low for performance reasons. To
address this concern, many methods use model reduction to con-
struct a set of basis vectors which span the space of interesting de-
formations. These bases allow the simulation of linear and nonlin-
ear deformation with far fewer degrees-of-freedom (DOFs) than a
full finite element simulation, while maintaining high discretization
resolution needed for graphics applications.

Constructing a good basis is difficult without a priori knowledge of
the system dynamics. Common approaches yield global bases, with
non-zero displacements of all mesh vertices, e.g., low-frequency
eigenmodes. Most simulations of interest result in deformations
with a significant smooth global component, which a globally sup-
ported smooth basis captures well.

However, this approach excludes interesting phenomena involving
spatially-localized, rapidly varying components of deformations,
such as those induced by collisions and persistent contact. Rep-
resenting these deformations with global bases would require such
a high number of DOFs that any computational advantage would
quickly be negated.

Figure 1: Global subspace methods cannot capture fine scale be-
havior, such as these indentations where the Cheburashka mesh is
hit by a series of projectiles.

In this paper, we present a simple method for dynamically aug-
menting a basis with vectors that allow representation of local de-
formations, such as those resulting from collisions and contact. Ba-
sis augmentation for resolving detail is well-known in simulation
applications: in its simplest form, it means simply refining and
de-refining a finite element mesh, effectively adding and remov-
ing small-scale basis functions. Our goal is to demonstrate how the
same general idea can be applied to bases adapted to reduced model
simulations, which uses orders of magnitude fewer basis functions.

Overview. The basic idea of our approach is to decompose elas-
tic deformations of an object into two parts: the global smooth de-
formation and localized deformations near loaded surface points.
The former, as confirmed by numerous previous studies, is approx-
imated well by a small basis of precomputed modal deformations.
To deal with the latter we approximate the deformation near the
load by a localized version of a precomputed linear deformation in
response to a force applied at the point of interest. As the number
of loaded regions in a mesh is typically small, the number of active
local functions needed for the simulation is also likely to be small.

Dynamically introducing additional basis functions for local defor-
mations poses a problem with precomputation: unlike global defor-
mation modes, a separate basis function would have to be precom-
puted for every surface point, or small groups of points, which re-
sults in a very high cost in precomputation and storage. On the other
extreme, using completely local basis functions (e.g., p.w. linear
functions) requires adding a large number of additional DOFs. In-
stead, we observe that point-load deformations decay quickly, and
for most surface points, the dominant part can be well approximated
by on-demand analytic functions. These functions are fast to con-
struct and do not require additional precomputation (§4.1); yet far
fewer are required compared to the finite element basis.
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Prior work in subspace integration has taken great pains to maintain
a computational complexity that is a small power of the number of
basis vectors. This is made possible by significant precomputa-
tion that can easily be ruined by the introduction of dynamic bases
(85.1). We show that for the problem of local deformations we can
maintain the reduced complexity needed for interactive simulations
in two ways: our subspace DOFs are output-sensitive to the number
of loaded regions in the model, which is in most cases small (§4.2),
and we use a novel cubature sampling strategy that takes advantage
of the structure of loaded surfaces (§5.2).

We demonstrate dynamically generated subspace bases for defor-
mations arising from transient collisions and persistent contact. Our
local subspace addition introduces only a modest computational
burden, yielding a two order of magnitude speedup speedup over
full-coordinate simulations for our examples (§7).

2 Related work

Subspace integration techniques have a long history in engineer-
ing [Nickell 1976; Bathe and Gracewski 1981], with modal analy-
sis a popular method for construction of a reduced basis [Thomson
2004]. Later, these ideas were introduced to the graphics commu-
nity by Pentland and Williams [1989], and extended to the non-
linear regime by Barbi¢ and James [2005], which built on similar
work from engineering [Idelsohn and Cardona 1985b].

Moving beyond linear modal analysis, Barbi¢ and James [2005]
expanded the concept of modal derivatives to represent large defor-
mations and experimented with custom bases derived from sample
forces and offline static solutions. Example-based shape synthesis
has been a popular research topic [Koyama et al. 2012; Martin et al.
2011], however these methods are dependent on the quality of the
training data provided.

Kim and James [2011] perform a domain decomposition with
modal analysis on each domain, which are then coupled together
at boundaries, allowing restricting deformations to precomputed
domains. Truly local displacements, however, cannot be repre-
sented unless decomposition is performed at a prohibitively fine
level. Barbi¢ and Zhao [2011] build a hierarchy out of mesh com-
ponents, with impulses transferred through the (small) interfaces
down the hierarchy. This allows somewhat local displacements, but
again limited to the mesh partitioning and specific mesh types that
admit this type of substructuring.

Idelsohn and Cardona [1985a] compute new basis vectors dynami-
cally, while Kim and James [2009] perform online model reduction
to adaptively sample a precomputed basis. While not intended for
local deformations, we make use of several ideas from this paper to
dynamically adapt a basis on-the-fly to external stimulii.

Ogot et al. [1996] proposed a hybrid simulation that uses rigid body
dynamics for free flight and explicit finite elements during the con-
tact phase. At a high level this is similar to our approach, but we
are not limited to purely rigid motion and do not resort to full finite
elements during contact, avoiding the limitations of both ends.

Adaptive refinement in finite element simulations has been an ac-
tively studied topic in both engineering and graphics [Debunne
et al. 2001; Wu et al. 2001; Grinspun et al. 2002]. In contrast to
these methods, which begin with a full-coordinate basis and then
refine/coarsen, we begin with a modal basis and then dynamically
build local modes from displacement fields. Our approach requires
significantly fewer basis functions (Fig. 3), and is not as dependent
on the underlying mesh geometry.

An et al. [2008] developed a cubature scheme for approximating
integrals across a mesh using a small set of representative ele-

ments. Our work uses cubature as well, but instead of an expensive
precomputation, we construct our representative set and cubature
weights dynamically.

In graphics, simulating elastic objects independent of an underly-
ing mesh has been an active topic of research. Point-based meth-
ods [Gerszewski et al. 2009] as well as meshless methods [Faure
et al. 2011] are popular alternatives. Previous work in precomputed
Green’s functions [James and Pai 2003], analytic solutions, such as
the Boussinesq solution [Pauly et al. 2004], and fundamental so-
lutions to Navier’s equations [James and Pai 1999] are all similar
in spirit to our method: using precomputed (or analytic) response
functions to accelerate online computation.

3 Subspace integration

The second order Euler-Lagrange equations describe the motion of
a deformable object:

Mii + D(u, 1) + R(u) = f, (1)

where M is the system mass matrix, u is the vector of displace-
ments, D, R, and f denote damping, internal, and external forces,
respectively, and dots denote time derivatives.

In model reduction, the displacement vector is represented in a re-
duced set of coordinates,

u = Uq,

where U € R3*™" is a matrix with columns corresponding to the
vectors of the reduced displacement basis and q € R" is the vector
of reduced coordinates. The dimension of the subspace r is chosen
to be much less than 3n. Substituting u = Uq into Eqn. (1) we
arrive at the reduced equations of motion, approximating (1) with
far fewer degrees-of-freedom:

M4 + D(q,q) + R(q) = f, @)

where a tilde denotes a reduced quantity, obtained by projecting into
the chosen subspace: M = UT MU, D(q,q) = UTD(Uq, Uq),
R(q) = UTR(Uq) and f = UTf.

All good reduced bases have global support, as most significant
elastic deformations tend to be global. This comes at the cost of be-
ing unable to represent local deformations, which not only improve
visual quality (Fig. 1), but can also influence the dynamic behavior
(Fig. 2).

3.1 Augmenting basis vectors

For any given simulation step, any r’ < r subset of a precomputed
basis may be chosen for simulation, temporarily disabling represen-
tation of the remaining r — 7’ basis vectors. Kim and James [2009]
use this observation to precompute a basis and decide on-line which
basis vectors to consider based on error metrics. We note that this
approach could be reversed: we can think of the pre-selected r ba-
sis vectors as a subset of a larger, unknown basis 7’ > 7. Theo-
retically, there are an infinite number of such unrepresented vectors
(r’ = o0), but during runtime we have the advantage that we can
augment the basis with those vectors which are most likely to cap-
ture the physics of the system, rather than adding basis vectors from
a precomputed set.

We denote the matrix of r precomputed global basis vectors as V
and the matrix of additional s local deformation basis vectors as W,
sothat U = [V W] € R*" withr’ = 7+ s. V will be precom-
puted using existing methods (e.g., [Pentland and Williams 1989] or
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Figure 2: Local deformations can also significantly effect the simulation dynamics. A spikey box is dropped under gravity between two
unfortunately-spaced cylinders. A global subspace cannot represent the local deformations needed to allow the box to slip between the
obstacles. The local subspace method better approximates the overall behavior of the full-coordinate simulation.
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Figure 3: Representing the 1D function f(x) using a hierarchical
or subdivided basis would require an excessive number of basis
functions, whereas a global basis combined with a shape-aware
local basis can accurately capture the configuration with only a
few basis functions.

[Barbi¢ and James 2005]). W will be dynamically updated based
on the forces present in the system. Our focus is on deformations
due to local forces, hence in the next section we show how to com-
pute basis vectors in W in response to locally applied loads.

4 Local basis functions

We consider the specific case of augmenting a basis in order to rep-
resent displacements from surface loads on the boundary of an ob-
ject. This includes many interactive tools as well as deformation
arising from collisions and contact. The only restriction we place
on these loads is that the resulting displacements are small enough
to be described by linear elasticity. Note, however, that this dis-
placement is relative to existing modal deformations, so that in ag-
gregate any node may experience quite large displacements.

4.1 Generating local basis vectors

The most direct way to augment a basis with local basis functions
is to use a local finite element basis, e.g., adding hat functions at
the nodes in the region of interest. The main problem of such a
strategy is the number of basis functions that would be required to
represent even modest displacements (see Fig. 3). Not only would
three degrees of freedom be required per displaced surface node,
but interior nodes must also be included for a reasonable represen-
tation of displacement dynamics. In many cases these additional
bases have to cover a significant fraction of the mesh for faithful
representation of deformations. Instead, we observe that the loads

of interest are often localized, thus, the load can be approximated
well by a small number of local functions, while the deformation
response can be approximated by the solutions of static elasticity
problems with point loads. Our idea is to adapt solutions to such
problems, in the cases when these can be obtained analytically, for
use as additional basis functions.

Solutions to boundary load problems. Let f be a given load
on a single vertex, i.e., zero everywhere except for the vertex of
interest. The exact solution for a given load f of a linear elasticity
problem is the solution u to the following linear equations:

Ku =T, 3)
where K is the 3n x 3n Jacobian of R (Eqn. (1)), the FEM stiffness
matrix. As this is the static solution for the given load, we expect
that u would form a good basis vector in W' to represent displace-
ment in response to loads in the direction of f, similar in manner to
Barbi¢ and James [2005], which utilizes static solutions to external
forces to construct basis vectors in an off-line process.

Analytic solutions. Eqn. (3), can be factored during pre-
computation and solved at runtime in O(n) time, while caching ba-
sis vectors should they be needed again. Nevertheless, for meshes
that are very large (n > r*), this expense can cause considerable
slowdown. To ease this burden we adapt analytic solutions to static
loading problems on a half-space to arbitrary volumes.

Analytic solutions under linear elasticity for a loaded half-space
have been well-studied since Boussinesq, and can be found in stan-
dard texts on linear elasticity and contact mechanics (e.g., John-
son [1987]). In graphics, Pauly et al. [2004] used the Boussinesq
solution for describing contact in point clouds. The solution for a
normal load f on the half-space bounded by the xz plane is:
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where p = /22 4+ y? + 22 and G and v are the shear modulus and
Poisson ratio for the material. The actual basis vector is constructed
as a linear approximation to the analytic expression Eqn. (4)-(6) by
aligning a coordinate frame at the vertex with the surface normal
and sampling it at the volume vertices. These functions are singular
at the origin (the point around which the basis is being constructed);
we used a “regularized” version, with values at the central vertex
computed as a weighted average of the displacements of the neigh-
boring element centroids.
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Figure 4: The analytic function for a half-space adapts to non-
smooth geometry, such as this box edge being pressed by a block.

A basis vector constructed for a force f can represent response to
that specific load, yet we wish our basis vectors to represent more
general dynamics. Hence, we will compute three basis vectors:
bi,b?, and b}, where b}, for j = x,v, z, is the analytic solu-
tion under loading f, with f/ non-zero in the j-th DOF of vertex
¢ and zero elsewhere. For completeness, the analytic solution to a
tangential load of magnitude f in the z-direction is as follows:
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Linear combinations of this triplet can represent an arbitrary load-
ing of vertex ¢, and overall, we find that these analytic func-
tions work well for general shapes, including non-smooth geometry
(Fig. 4).

Co-rotated basis. The above-defined basis functions are suffi-
cient for representing local displacements relative to small global
deformations. However, practical simulations often require large,
non-linear deformations, such as in Barbi¢ and James [2005], which
introduced a model reduction method for these types of dynamics.
To be able to use our basis functions in this context, we need to ro-
tate the frame so that local displacements are relative to these defor-
mations. We follow the development of co-rotated basis functions
for a finite element basis, such as in Hauth and Strasser [2004].

We extract the rigid rotation of the one-ring of the vertex central
to the basis by solving the Procrustes problem and computing the
SVD of the 3 x 3 matrix XTX, where each row of X is x; — x;
for each neighbor j of vertex i. We store this rotation T; = UV”
(where SVD(XX™) = UXVT) as associated with the i-th basis
vector, and co-rotate any quantities before projection:

—1
q; =b,T; "u;.

4.2 Grouping basis functions

Although three elasticity-based basis functions per loaded surface
node is far more efficient than using hat basis functions directly, for
large contact regions, or equivalently a high-resolution mesh, the
number of basis functions can grow large. One primary benefit of

subspace simulation is the system in Eqn. 2 has dimension r and
can be solved quite efficiently. We investigate options for grouping
nearby basis functions when the number of loaded surface nodes ex-
ceeds C'r, for a constant C', without sacrificing a noticeable amount
of visual fidelity.

Our approach is to cluster the loaded nodes into patches of uniform
size, and retain three DOFs per patch. Let S be a loaded surface
patch. We define three basis functions for this patch as

b3(p) = /  bi)is

where bg, a = z,, 2, is the basis function for coordinate « for
the patch, v is a point on the patch and p is a 3D point where we
evaluate bs. Physically speaking, for sufficiently flat patches S,
these basis functions correspond to unit load over an area, instead
of a single point.

The discrete approximation of this integral is simply

b = ) bjA;. (10)

JES;

Here S; is the set of vertices in a surface region and A; is the
barycentric surface area around node j. Replacing per-node func-
tions b; with a sparser set of b; amounts to subsampling of local
deformations, so the tradeoff in the choice of C' is between per-
formance and fidelity of the solution. We use C' = 3 for all our
examples.

Partitioning regions. To arrive at the sets S;, we partition the en-
tire set of active nodes into C'r regions. Nodes are considered active
if undergoing an external force, or if either velocity or displacement
of the local basis DOF that the node is grouped in are greater than
€. We use ¢ = 10~ "y, where ~ is the radius of the sphere enclos-
ing the mesh, and divide by At when comparing against the DOF
velocity.

First, we partition the set of active surface nodes into connected
components, typically this number is less than r (if it is not, then
we define at least one basis function per component). Each set is
further partitioned into domains of approximately uniform size us-
ing k-means clustering with & = [rA;/A], where A is the total
surface area of S = Y .S; under consideration and A; is the sur-
face area of this region. This way, each set is allocated basis vectors
proportional to its area contribution. We create three basis vectors
per sub-region, which, in addition to the original  global vectors
results in a total of (3C' + 1)r basis vectors.

Projecting basis vectors. Our basis vectors, and the regions
they affect, are changing over time. To ensure consistent dynamics,
we must project subspace vectors q and q into the new basis each
time the basis changes. If the modified basis coefficient matrix is
U, the new DOFs g minimize

T a—-U"ql*
This results in the normal equations for new DOFs
q=1UU"q,
and similar for §. Timesteps must be small enough to capture the

local, small-scale dynamics, which also ensures sufficient temporal
coherence for minimal energy loss in this projection.
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Figure 5: We press a circle into a 2d gelatinous block. The full
simulation produces a local displacement which cannot be repli-
cated with a small number of subspace vectors. Our local subspace
augments the global basis to accurately reproduce this behavior.

5 Computing runtime quantities

The dominant cost in geometrically nonlinear simulation is the
computation of the stiffness matrix K(u), which must be re-
evaluated with changes in configuration.

In order to obtain significant speedups, previous work expressed the
entries of K, the reduced r x r stiffness matrix, as cubic polyno-
mials of the reduced coordinates q [Barbi¢ and James 2005]. This
reduced runtime computation of the stiffness matrix from O(n?)
to O(r4)—a significant improvement that often allows for interac-
tive simulation. Later work on cubature schemes reduced this even
further to O(r?) for stiffness matrix construction (solving the linear
system of equations remains O(7-®)). For the local subspace method
of §4 to be a competitive alternative to full FEM simulations, it too
must offer runtime complexities of O(r?) or better.

5.1 Error and computational complexity

Fig. 5 compares using full coordinate basis, global subspace ba-
sis, and global subspace augmented with a local basis for a simple
test of a circle pressed into a gelatinous block. While improving
appearance, dynamically generated basis vectors introduce a tech-
nical problem: polynomial coefficients or cubature weights can no
longer be precomputed and the full stiffness matrix, mass matrix,
and force vector must be computed, then projected into the reduced
subspace each timestep:

S _( VIKV WTKV

= UKU= ( VIKW WTKW ) (I
~ viMv wTmv
M = U'MU= ( VI MW WTMW> (12)
- T
F = U'F= ( XVTFF ) . (13)

While the top-left block of Eqn. 11, VI KV, remains the same and
can continue to take advantage of precomputation, the top-right and
bottom-right blocks rely on the changing basis vectors in W (the
matrix is symmetric so the bottom-left block can be ignored).

To combat this issue, we reduce computations by building on pre-
vious work in cubature optimization. Unlike previous work, we use
sampling and construct cubature weights dynamically, to achieve
O(r®) runtimes for the computation of Eqns. (11)—(13).
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Figure 6: The basis generated from Eqn. (5). The mesh is the 2d
mesh shown in Fig. 5, with the load applied to the center vertex at
the top with coordinates (2.5,2). Each vector is the displacement
for the vertex at that location.

5.2 Cubature sampling

To begin, we note that Eqn. (13) (and similarly, Eqns. (11)—(12))
can be written as the sum of contributions over the mesh elements
E:

F=> Ult. (14)

f, is the 12-vector of forces for a single tetrahedral element and U7
is the 7’ x 12 sub-block of U7 for the respective element nodes.
Rather than computing the full 3n vector F and projecting as in
Eqn. (13), we will reduce the set of elements over which the above
summation is required.

Basis truncation. Fig. 6 shows a 2d basis function from the an-
alytic solution. We can see clearly that the influence of the basis
decreases rapidly away from the loaded surface point. This sug-
gests that the basis can be truncated, by ignoring the influence
of elements outside some radius of interest, k., and interpolating
smoothly to zero for distances between x, and some inner radius,
e.g., ki = 0.9K,. ko could be chosen to remove elements with con-
tribution less than some magnitude, but we choose a radius that con-
tains O(r?) elements, noting that even for high resolution meshes,
the influence decays faster than this radius, except in the case of in-
credibly stiff materials, which exhibit no local displacements any-
way (e.g., steel). Let d be the average density (d = 1/(>_ Vi/ne),

or the inverse of average element volume). Then k, = ¥/r2/d.
This chooses k, so that O(r?) elements are in the sampling sphere.

The first r entries of F are computed via precomputed polynomial
coefficients or cubature sampling, as in prior work. After trunca-
tion, however, most elements in £ will have no contribution to the
tail s entries of the summation in Eqn. (14), since their respective
sub-blocks in the matrix W are now zero. These elements can thus
be excluded from the summation.

Even after truncation, the computation of Eqns. (11)—(13) can dom-
inate runtime. Following ideas developed in An et al. [2008], we
can only compute the force (stiffness, mass) on a subset of ele-
ments, and with the appropriate weighting accurately approximate
the exact reduced force vector:

Fow=WFxY wW!f. (15)
ceC

Here, C C £ is a set of representative elements drawn from the full
set, and w. € R is a weighting that should be chosen to minimize
error and increase stability.

In An et al. [2008], the set C and weightings are obtained as a
nested preprocess that iteratively attempts to find the best next sam-



Figure 7: Sampling pattern for a simple 2d example. Contiguous,
same-colored triangles are grouped together in sets E;. Black dots
indicate key elements in the set C.

ple element, and then solves an optimization problem to minimize
the error. This process is terminated when the error falls below a
given threshold. Unfortunately, since W is generated at runtime,
we cannot take advantage of this preprocessing. We will consider
the process of selecting sample elements and computing weights
separately.

Sampling elements. Solving a large optimization problem dur-
ing runtime is inpractical. At the other extreme, randomly choosing
elements for the sample set requires an unnecessarily large number
of samples to ensure stability. As an alternative, we investigate an
importance sampling strategy that utilizes the shape of the solution
for loaded elastic materials to guide the sampling process.

In importance-based sampling, samples are chosen based on a prob-
ability function p(x), which is similar in shape to the function being
integrated. For our application, we do not know the exact shape of
I*N“, but we do know that contributions from the basis functions de-
crease rougly cubicly as a function of distance from the surface load
(Eqn. (4)), and thus 1/p® can give a better probability distribution
than uniform sampling.

Since we will sample at most Cr regions (§4.2), we limit the num-
ber of samgpled elements to r per region. This gives a complex-
ity of O(r*) for evaluating Eqns. (11)-(13). During precomputa-
tion, we sample 7 points in p(z) and insert them into a uniform
grid [Teschner et al. 2003]. For each sample point, we generate
three random numbers: two uniformly random numbers between 0
and 7/2 and one number between 0 and x, with an inverse cubic
power distribution. This samples one octant of a sphere with radius
Ko. These sample points are duplicated for the remaining octants,
to prevent a sampling bias in any particular octant.

During runtime sampling, we traverse the mesh elements away
from the center of the region, translate them to the origin, and query
against the precomputed grid to see if they contain a sample point.
This traversal ends when we have r samples or we have reached
the radius ,. This process is O(r?), since querying the grid is a
constant operation.

Computing weights. With the key element set C selected, we
still need the weights w.. to compute Eqn. (15). In our experiments,
we found that error in the reduced force computation were most
likely to affect stability, followed by mass, with the stiffness matrix
the most resilient to error. For this reason we have focused our
sampling and weighting strategy to minimize error in the forces,
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Figure 8: We plot the relative error in forces for different sampling
amounts, given as a fraction of total elements (i.e., 1 means all ele-
ments are sampled and the error is O for any sampling strategy).
We compare our guided sampling strategy and a strategy which
randomly chooses elements out of those within a given radius. We
compute weights in the same manner for both strategies.

and re-used the weights for other computations.

In contrast to An et al. [2008], we treat this as a local problem in
the sense that each weight is solved for individually, by minimizing
|C| equations of the form

E W; = WiWj,

JEE;

where &; is the subset of elements whose centroids are closest to
the element 7 in the set C (Fig. 7), and w are the 3 x r’ basis en-
tries for the element centroid flattened into a single 3r” vector. This
equation can be solved directly for w;, giving a weighting that at-
tempts to best approximate the basis function magnitudes for all el-
ements that this representative element substitutes. Intuitively, this
approach chooses the best weight that, on average, represents the
basis contribution of each element in the set.

Our results show this approach is a good compromise for online
computation speed and relative accuracy. Fig. 8 shows relative er-
ror in the reduced force vector for different size samples versus a
random sampling strategy (within the s, sphere). For this test we
used a 3d version of Fig. 5, i.e., a sphere pressed into a gelatinous
block. We also tested greedily using the r closest elements to the re-
gion center, but surprisingly this performed worse than the random
strategy.

As a rough heuristic, our measurements revealed that stability is
maintained when the relative error in reduced forces is less than
1. Future work could investigate adaptive strategies intended to
maintain relative error below such a threshold. In our examples
we adjust sampling so that C contains O(r?) elements, even when
fewer may suffice.

6 Modified algorithm

Alg. 1 shows the subspace integration algorithm modified to sup-
port local basis vectors, and the following subsections describe the
functions needed to update vectors and compute reduced quantities.
We used one step of Backward Euler for integration in all our ex-
amples, although any method could be used. We solve the linear
system of equations in Line 6 using Conjugate Gradient. For ad-
ditional details, we include the source code for the full reference
implementation used to generate all examples.



Algorithm 1 Use Backward Euler integration to step subspace po-
sitions and and velocities by time h = ¢t" "1 — ¢"

: STEP(q", 4", h)

a=q" +hq"

¢ (Fexi, £) = getSurfaceLoads(q) {§6.1}

U = updateBasis(L) {§6.2}

. (Fin, K, M) = computeReducedQuantities(q, U, £) {§6.3}
AGUH = (M + h2K) ™ (Fin + Feu)h

an = A

q =q +q
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Figure 9: In addition to the change in sphere radius introduced
by global deformations, we add an additional, small change due to
local displacements without degrading bound quality.

6.1 Surface loads

Algorithm 2 Get the reduced external forces and the set of loaded
vertices L.

1: GETSURFACELOADS(q)
¢ (Feontact; Leontact) = getCollisionLoads(q)
(Fother, Lomer) = getOtherLoads(q)
[: - Eccmacl ) Lother
forl € Ldo
Fexl = UlT(Fionlact + F(l)ther)
end for
: return (Fey, £)

S A A

In our examples, surface loads come in the form of collisions and
contact, although any source could be used, e.g., interactive tools.
We compute the forces present and store the set of full-coordinate
vertices at which they are applied. As new local forces are applied
throughout the simulation, we sparsely project these into the sub-
space using the respective blocks of U (Line 5). Uj is the 3 x 7’
block of U corresponding to vertex I. F' denotes the 3-vector block
of a 3n vector F.

Collisions and contact. In the special case of collisions and con-
tact, it is possible to find the set £ in sub-linear time. James and
Pai [2004] obtain reduced collision times using a bounded defor-
mation, or BD-Tree. Bounding volumes in this tree are efficiently
updated using only subspace coordinates q. While we cannot pre-
compute the necessary values, we can do an efficient update that
accounts for any (small) change in radius due to deformations in
our local basis.

Following §3.5 from the aforementioned paper, as the local basis

W is updated, we compute the scalar
O0R = max;||Wy.||

where W, are the s-vectors of the rows corresponding to vertices
I € L. Then, when updating the bounding sphere radius, an ad-
ditional change d R||qs|| is added, where qs is the s-vector repre-
senting displacements in the local basis. Please consult the original
paper for full BD-tree implementation details.

In practice, our experiments show that this additional change is
quite small, comprising less than a 5% change in sphere radius,
and causes essentially no additional false positives. Fig. 9 shows a
simple example of this change in radius

Algorithm 3 Update the basis W C U based on the active vertex
set L.
1: UPDATEBASIS(L)
U=U
: R = getDisjointSets(L)
: forr € Rdo
V = clusterSubRegions(r, r x A; /A)
forv € V do
Bf ; banalylic (Fi)
B;{ ; bi\nalytic(Fg)
9: Bf‘ ; banalytic(Fi)
10:  end for
11: U=UU(Bf B! Bj)
12: end for
13: q= UTUq
14: ¢ =UTUq
15: return U

® J LD

6.2 Basis updates

This function describes how to update basis functions based on the
set L of vertices actively deformed via a dynamic local basis.

In Line 3 we split £ up into disjoint sets based on 1-ring connec-
tivity. This defines the loaded regions. Then, for each region we
cluster the nodes further based on how many basis vectors we can
allocate to this region, based on relative surface area (A4;/A).

In our implementation, basis vectors at a node v are cached, then
we check the cache to see if this node’s vector has already been
computed before proceeding with Lines 7-9.

6.3 Computing reduced quantities

Algorithm 4 Compute the subspace quantities necessary to perform
time integration.

: COMPUTEREDUCEDQUANTITIES(q, U, £)
: (F, K) = evaluatePolynomials(q)
(C,w) = sampleElements(U, £) {§5.2}
f0r~e € Cdo

Ktr ; 'U_)EVZKeWE

IAi(br ; weWZKewe
M[r ; weVZMeWe

M = w. WM. W,

F. £ w.WTF,
end for
return (F, K, M)
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In Alg. 4, the function evaluatePolynomials uses precomputed
data [Barbi¢ and James 2005] or cubature optimization [An et al.
2008] to evaluate the first 7 sub-vector of F' and the (r, ) top-left
sub-block of K. The subscripts tr and br denote the (r, s) top-right
and (s, s) bottom-right sub-blocks of the respective matrices.

7 Results

Our results demonstrate displacement due to local basis vectors in
a variety of commonplace situations. While not indistinguishable
from full-coordinate motion, the resulting dynamics are plausible
and achieve a reasonable trade-off between visual quality and run-
time speed. See Table 1 for full simulation parameters and timings,
and the accompanying video for animations.

full-coordinate

subspace

local subspace

Bunny. In this example of a cylinder repeatedly pressing into a
bunny’s back, we see a noticeable difference, not just in the lo-
cally deformed region, but also in the entire dynamics of the bunny
motion. The local subspace method affects the global behavior by
absorbing energy that would have induced global displacement.

Fig. 10 shows the timing information plotted over simulation time.
We see that computing the reduced quantities dominates runtime,
and cost of updating basis functions is negligible, especially as it is
amortized over the entire simulation costs. The algorithm is output-
sensitive, so as external loads are removed and local vibrations set-
tle, runtime returns to that of ordinary subspace simulation. About
half of the time for reduced quantities is assembling the top- and
bottom-right stiffness matrix (Eqn. (11)), about 10% is computing
key element force and stiffnesses (they are computed simultane-
ously), and about 35% in assembling the global basis components.

Falling block. Local displacements add visual detail not possible
with global subspace methods. In some cases, such as the bumpy
block in Fig. 2, it can significantly affect the entire motion of the
object. Timings for this example only include from the moment the
block hits the cylinders until the last local mode dissipates.

With global subspace methods, the small bumps on the block ex-
terior cannot deform without introducing a significant number of
basis vectors. As a result, the block cannot pass through the two
unfortunately-spaced cylinders. By adding local basis vectors spe-
cific to the forces induced by the cylinders, our method allows the
block to pass in the same manner as the full-coordinate simulation.

Cheburashka. InFig. 1 we show a mesh that has been repeatedly
fired upon by projectiles. The mesh exhibits plastic deformation
in the local basis vector coordinates. We use a non-physical form
of plasticity, and simply transfer a small fraction (1/100) of Aq
into the rest position each timestep. This is a simple extension that
expands the capabilities of the presented method.

20 ; ;
total time em—
reduced quantities e
contact forces s
update basis =——
15
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£
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©
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0 2 3 4 5 6 7 8

simulation time

Figure 10: The total cost per frame as well as the cost for com-
puting reduced quantities, contact forces, and updating basis func-
tions during the bunny simulation. This method is output-sensitive,
reverting to global subspace runtimes in the absense of local defor-
mations.

8 Discussion

We have presented a straightforward addition to existing subspace
methods that allows the representation of truly local deformations
with a minimal addition of basis functions, increasing the expres-
sive ability of subspace simulations. We also investigated the as-
sociated problems with a dynamic basis, and presented a cubature
scheme that allows local dynamics with alleviated runtimes.

The primary limitation of this work is in the size of the available
displacements The superposition of our linear modes can approxi-
mate some non-linear behavior, but as the deformation region ap-
proaches the size of the object, computational benefits can quickly
be diminished as an excessive number of samples are required for
stable simulation. The result is a method that works very well for
a global basis combined with very local modes, but poorly for the
intermediate regime.

One secondary limitation of local displacements is the restriction
on timestep size. While a few global modes can be simulated at
large timesteps, adding local modes imposes a limit in order to rep-
resent the physics of the system. This is unavoidable, and the user
should bear in mind the limits imposed by the CFL condition for
the dynamics of interest.

Future work. Barbi¢ and James [2010] precompute possible de-
formations of modes that cause (self-)collisions, allowing for in-
credibly fast self-collision detection. We do not explore local dis-
pacements due to self-collisions in this paper, but since deforma-
tions due to our local bases are quite small, an extension to this
work would be straight-forward, for example by following a similar
treatment to that in §6. Likewise, augmenting the work of Kim and
James [2011] and Barbi¢ and Zhao [2011] with local displacements
would provide the user with a full-range of deformations, from truly
local, through intermediate and up to global deformations.

Formulating a theoretical basis for cubature sampling remains an
open problem with many practical benefits, since any improve-
ments in sampling yield runtime improvements, both in stability
and simulation time. Furthermore, a cubature theory would unify
sampling for arbitrary basis functions, such as those presented here
and in An et al. [2008], a well as opening the door for dynamically
computing basis functions of arbitrary physical phenomena.



Scene Vertices Tets E v P FPS At r Full  Subspace Local Speedup
GPa (kg/ m®)  (1/sec) (sec) (sec) (sec) (sec)

Bunny 8372 44757 0.05 025 1.0 120 2.5 x 10*‘% 28 2193 0.57 1.60 137x

Bumpy 13156 45495 0.5 035 0.92 720 107 16 168.5 0.166 2.25 75x

Cheburashka 11989 43813 0.005 0.25 1.0 300 2x107* 32 1116 0.007 0.183 610x

Table 1: All examples were run as a single thread on a 3.6GHz i5 with 12GB RAM. Simulation times are average times per frame.
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