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Abstract

Many applications require the extraction of isolines and isosurfaces from scalar functions defined on regular grids. These scalar functions may
have many different origins: from MRI and CT scan data to terrain data or results of a simulation. As a result of noise and other artifacts, curves
and surfaces obtained by standard extraction algorithms often suffer from topological irregularities and geometric noise.

While it is possible to remove topological and geometric noise as a post-processing step, in the case when a large number of isolines are of
interest there is a considerable advantage in filtering the scalar function directly. While most smoothing filters result in gradual simplification of
the topological structure of contours, new topological features typically emerge and disappear during the smoothing process.

In this paper, we describe an algorithm for filtering functions defined on regular 2D grids with controlled topology changes, which ensures that
the topological structure of the set of contour lines of the function is progressively simplified.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Many types of data are defined as scalar functions on
unstructured or structured meshes. Such scalar fields are
produced by MRI and CT scanners, scientific computing
simulations, extracted from databases, or obtained by sampling
distance functions to pointsets or surfaces. Quite often it is
necessary to extract geometric information from such scalar
fields, most commonly contour lines and isosurfaces, to
which we will refer as contours. Contours often have to be
extracted for multiple scalar function values, which motivates
considering the topology of the complete set of contours, rather
than that of an individual contour.

A variety of applications perform various types of
processing either on the original scalar function data or on
individual extracted isosurfaces. For example, the scalar field
of an extracted contour can be smoothed to eliminate noise or
to obtain a simplified representation of the object of interest,
or enhanced to emphasize features of interest. The advantage
of applying such processing operations to the scalar function,
rather than to an extracted contour represented by a mesh, is
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that all contours are processed simultaneously and topology
modification is possible. For example, spurious small-scale
blobs due to noise in the scalar data can be eliminated.

While certain types of topology changes are desirable,
other changes may have to be avoided. For example,
if a blood vessel network is extracted from an image,
breaking connected components of the isosurface is highly
undesirable. Unfortunately, topological changes resulting from
the application of a filter are difficult to control: even a
simple Laplacian smoothing filter can result in undesirable
disconnected components emerging (Fig. 8).

It is desirable to be able to control the topology changes
occurring during the filtering process. In the extreme case, all
changes can be disallowed, resulting in topology-preserving
filtering; in other cases, certain types of topology changes
are allowed while other changes are not. For example, if
topological simplification is desired, merging components is
acceptable while creating components is not.

One possible approach to the problem is to perform a
complete topology analysis using contour trees or discrete
Morse—Smale complexes, construct a topology hierarchy when
topology simplification is desired, and design filters respecting
the constraints (for example, maximal descent paths in the
Morse-Smale complexes). The advantage of this approach
is complete and entirely predictable control over topology. At


http://www.elsevier.com/locate/cad
mailto:gingold@mrl.nyu.edu
mailto:dzorin@mrl.nyu.edu
http://dx.doi.org/10.1016/j.cad.2007.05.010

Y1 Gingold, D. Zorin / Computer-Aided Design 39 (2007) 676—684 677

the same time, the filter construction is far more complicated,
as relatively complex constraints need to be imposed (cf.
Bremer [1]). The other approach is to augment a filtering
technique with topology control by detecting and preventing
topological changes by local modifications to the filter. With
the latter approach, one hopes that differences with the
uncontrolled process can be minimized.

In this paper we describe an algorithm of the second type.
Our algorithm adds topology control to flow-type filters which
define a parametric family of results p(¢), t = 0...# where
p(0) is the vector of initial values of a scalar function defined
on a two-dimensional regular grid. The idea of the algorithm
is straightforward. The algorithm tracks critical points of the
scalar function field to predict and determine the type of
topology changes and locally adjust the rate of change of the
scalar field to prevent disallowed changes. We consider three
examples: Laplacian smoothing, sharpening, and anisotropic
diffusion, and demonstrate that the algorithm makes it possible
to control topology changes while retaining overall filter
behavior and introducing relatively small errors.

Depending on problem semantics, the algorithm can either
ensure complete topology preservation (e.g. for sharpening) or
reduction in the number of topological features (for smoothing
algorithms). The algorithm does not depend on dimension or
structure of the grid in a fundamental way, and can be extended
to three dimensions and unstructured grids.

2. Previous work

Analysis and simplification of the topology of vector
fields and surfaces is a recurring topic in visualization,
computational geometry and computer graphics. While many
mesh simplification algorithms have allowed topology changes,
in most cases these were unpredictable. One of the earliest
examples of controlled topology simplification is He et al. [2],
in which filtering on volume rasters is used to simplify
objects. Alpha shapes were used in subsequent work [3].
These approaches use a reasonable algorithmic definition of
topology simplification but do not track feature changes and
focus on individual surfaces or solids enclosed by surfaces.
Other work focusing on surfaces includes Guskov and Wood [4]
and Wood et al. [5]. Our work is more similar to analysis and
simplification of the structure of height fields and vector fields,
for which complete collections of contours and stream lines are
considered. The foundation of a significant fraction of recent
work in this area is Morse theory (e.g. Milnor [6]), which relates
the topology of smooth manifolds to critical points of functions
defined on these manifolds. Helman and Hesselink [7] applied
critical point analysis to flow visualization. de Leeuw and
van Liere [8] was one of the first examples of topology
simplification for vector fields. The simplification of de Leeuw
and van Liere [8] is discrete rather than continuous: whole
regions were removed from the field. An alternative approach
was proposed in Tricoche et al. [9], which merges critical
points into higher-order points. Tricoche [10] and Tricoche
etal. [11] describe how topology can be continuously simplified
by removing pairs of critical points.

Two important approaches to analyzing topological structure
of a scalar field are contour trees [12—15] and structures based
on Morse—Smale complexes [1,16-18].

The contour tree is a data structure that fully describes the
topology of a scalar field, with contours passing through critical
points as nodes. Contour trees have been extensively used
for fast isosurface extraction and define a natural topological
hierarchy. The 2D Morse—Smale complex has vertices at
critical points which are connected by maximal descent paths:
similar structures are also defined for an arbitrary number of
dimensions. A topological hierarchy can also be defined using
Morse—Smale complexes and feature persistence.

Both types of structures were used for topological
simplification of scalar fields using associated hierarchies and
different types of persistence functions, e.g. in recent papers [1,
19]. In both cases, the scalar field function values are updated
to eliminate features locally. In Bremer et al. [1], smoothing is
performed with constrained Morse—Smale complex boundaries,
and the boundaries themselves are adjusted using smoothing.

While our algorithm can be used to construct topological
hierarchies, this is not our primary goal. We aim to provide
a tool that adds topology control to a variety of processing
techniques for scalar data. Our primary concern is not
visualization and analysis of a scalar field topology; rather,
we aim to augment existing image processing tools with
topological guarantees, while preserving the basic behavior of
the tool.

The recent work by Sohn and Bajaj [20] on time-varying
contour topology deals with similar types of evolving scalar
data. The goal of this work is accurate feature tracking in a
given dataset, while our goal is to alter a time-dependent dataset
to eliminate certain types of topological events.

The topological evolution resulting from filtering, smooth-
ing in particular, is often considered in vision and medical
imaging literature. The concept of scale space based on Lapla-
cian smoothing (heat flow), proposed in Witkin [21], is used in
a variety of applications, and one can consider similar types of
constructions based on different flows, such as anisotropic dif-
fusion [22] or curvature flow. The topology of scale spaces was
studied in Damon [23], from a mathematical point of view, and
more recently in Florack and Kuijper [24].

3. Topological preliminaries

Our algorithm is based on the correspondence between
topological features and pairs of critical points. Topological
events, i.e. the changes in the topology of the sets of contours,
are associated with changes in these pairs. For example, a new
connected component appears if a pair of critical points appear,
and an existing component vanishes when two critical points
merge.

In this section, we briefly review relevant definitions and
facts from differentiable and discrete topology, which are used
by our algorithm.

Smooth Morse theory. We restrict our attention to the case of
functions defined on the plane. A function f is called a Morse
function if it is at least twice differentiable, its values at critical
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points defined by V f = 0 are distinct and its Hessian, i.e. the
matrix of second derivatives, has nonzero determinant at critical
points. Critical points with nondegenerate Hessian are called
simple. If the Hessian vanishes at a critical point, it is called
complex.

The Morse lemma states that for a suitable choice of
coordinates the function has the form +x? + y? in a
neighborhood of any critical point. The number of minuses is
the index of the critical point. Saddles have index 1, maxima
have index 2, and minima have index 0. For functions defined
on planar domains, it is convenient to add a point at infinity
to the plane and assign a minimum to it with infinite negative
value.

The indices of critical points x of functions defined on a
sphere are known to satisfy

Z(_l)index(x) — 2 (1)

X

The quantity (—1)M9*®) js called the topological charge of a
critical point.

Critical points can be used to describe the topological
structure of the contour lines of the function f. The level set
f~1(c) is a smooth curve unless ¢ is a value at a critical
point. Furthermore, if we consider an interval of values [c1, ¢3]
not containing any critical point’s value, the level sets for all
¢ € [c1, c2] have the same topology. Thus, the critical points
define all topological changes of level set curves.

The singular level sets corresponding to maxima and min-
ima consist of isolated points and correspond to vanish-
ing/appearing features if we regard the traversal of increasing
values of f(x) as advancing in time. Saddles correspond to the
merging/splitting of features.

Multiple simple, closed contours meet at a saddle. (Exactly
two if the saddle is simple.) We define a feature to be the interior
of one of these contours pairing an unpaired extremum in the
interior with the saddle. The nesting structure of the feature
contours implies a feature hierarchy. (There are many possible
pairings and hence many possible feature hierarchies for a given
topology.)

Discrete Morse theory. While one can define C? interpolants for
functions especially on regular grids, studying critical points
of such functions is difficult. It is preferable to generalize the
notions of smooth Morse theory to piecewise-linear functions.
We mostly follow Edelsbrunner et al. [17] in our definitions.
A critical point of a piecewise linear function is always at
a vertex. Its type can be inferred from comparing the values
of the critical point with adjacent values. We consider lower
and upper stars of a vertex. The lower star consists of all
simplices incident to v whose vertex faces have function value
f(w) < f(v), and the upper star consists of all simplices whose
vertex faces have function value f(w) > f(v). (Fig. 1, based
on Edelsbrunner et al. [17]). Each star can be decomposed
into continuous wedges. If one of the stars coincides with the
entire neighborhood the point is a local minimum (upper star)
or maximum (lower star). If each star has exactly one wedge,
the point is considered regular. If the number of wedges in each
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Fig. 1. Different vertex types [17].

star is k + 1 for £k > 1, then the star is a k-fold saddle (simple
saddle for k = 1). Unlike the smooth case, complex saddles
are stable. The type of a vertex can be determined by the vertex
signature i.e. a sequence of ones and zeros corresponding to the
adjacent points, ordered counterclockwise, with one indicating
that the value at the adjacent vertex is higher than the value at
the center.

A discrete Morse function is any piecewise linear function
for which the values at critical points are distinct. To operate on
arbitrary piecewise linear functions, we require a tie-breaking
scheme such as Simulation of Simplicity [25]. As we only use
value comparisons in our algorithm, it is sufficient to simply
assign an ordering based on indices of vertices to break ties.
However, it is necessary to use first-order perturbations to
resolve ties for calculated event times (Section 4).

Singularities of parametric families of functions. Smoothing a
function using a flow equation, e.g. df/dt = Af, leads to
a solution f(x, ), which can be regarded as a one-parameter
family of functions. While complex critical points of functions
can be eliminated by small perturbations, this is no longer true
for parametric families. To clarify this, consider any family of
functions of one argument f(x,t), such that f(x, —1) has a
maximum and a minimum and f(x, 1) has no extrema. In the
beginning, the derivative of the function has two roots, and at
t = 1 it has no roots. Therefore, no matter what perturbation
we use, there is a parameter value #; such that the derivative has
exactly one root. One can easily see that this extremum cannot
be generic: as the extrema merge, the Hessian is always positive
at one and negative at the other. This implies that it is zero at
the moment they merge.

By choosing a suitable coordinate system, a generic
singularity with one parameter in one dimension can be reduced
to the form

flx,t) = x> + xt.

Stable complex singularities arising in parametric families of
functions are studied in singularity theory. It turns out that in
two dimensions a single parameter singularity has a similar
form

x>+ xr+ ayz. 2)

One can see (Fig. 2) that it corresponds to two critical points
(a saddle and a minimum) merging at a point (annihilation) for
t increasing and a saddle-minimum pair appearing at a point
(creation) for t decreasing. For ¢t = 0 the critical point is always
complex.

Discrete case. Next we consider the discrete analogs of creation
and annihilation events. Because of the presence of complex
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Creation

Fig. 2. Annihilation and creation events.

saddles, more event types are possible (Fig. 3). In addition,
because of the piecewise linear nature of the functions, the
singularities do not move continuously but in discrete jumps
from one vertex to another. So we introduce one more event
type corresponding to singularities changing locations.

We consider piecewise linear functions evolving piecewise
linearly in time. The topological picture for such function
changes discretely. Each change corresponds to a value flip at
an edge (v, w), i.e. transition from configuration f(v) > f(w)
to the configuration f(v) < f(w), with the relative order of all
other adjacent functions remaining unchanged. Again, one can
assume that two elementary value flip events never coincide in
time by simple tie-breaking.

Merge/Annihilation. We use the term merge events to denote
any events which result in a critical point disappearing.
Due to the presence of k-fold saddles, many variations
of events are possible, with only the one involving a
simple saddle and a maximum or minimum resulting
in annihilation. Other types of events include saddle
merges and a maximum or minimum absorbed by
a saddle with a change in the number of folds. We
consider all these events admissible.

Creation. Similarly, creation events are the events resulting
in creation of a critical point, and can be of
many types. Only one type (emergence of a
saddle-minimum/maximum pair) results in critical
points created from a regular point. We forbid all
events that involve the creation of a maximum or a
minimum. We allow saddle separation, as we view
k-fold saddles as k-simple saddles merged together.

Exchange. Adjacent k-fold saddles may exchange folds; no

critical points move in this case.

This type of event corresponds to the situation when

a critical point vanishes at one end of an edge with a

point of the same type appearing at the other.

Non-event. Some value flip events may result in no changes in
the type of endpoints of the edge.

Move.

For each of our filter examples all event types are present for
sufficiently complex images, unless topology control is applied.

Creation events in smoothing. Intuitively, one would think that
at least for Laplacian smoothing no creation events can occur.
However, it is known not to be the case, and indeed creation
events can be observed if Laplacian smoothing is applied to real
datasets (Fig. 4). A typical local configuration resulting in such
events is shown in Fig. 5.

Merge

Creation

Move

Nothing

Fig. 3. Discrete topological event types resulting in changes in critical point
locations.

> v

[
v
(C]

Fig. 4. A magnified fragment of the Puget Sound dataset, for several steps of
Laplacian smoothing. Note a pair of critical points appearing, moving apart,
and then merging.

Fig. 5. A typical creation event for Laplacian smoothing: a thin ridge
connecting two bumps. The new maximum-saddle point is quite stable and
disappears only after the shorter bump is almost entirely smoothed out.
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4. Algorithm

The algorithm operates on scalar values p(v) defined at
vertices v € V of a mesh which evolve over time. We assume
that there is a monotonic ordering of values at any fixed time,
breaking ties in a uniform way using vertex indices. We use data
defined on regular grids in our examples, but the algorithm can
be used for arbitrary meshes.

In addition to the input data, the user defines the set of
disallowed topological events.

The filter, which is separate from the topology control
algorithm, for a given time step Ar and data pl (v)
corresponding to time # produces proposed values p'*(v) =
F(p' (v), At) for the moment r't1 = ¢/ 4+ Az. The algorithm can
be applied to any evolving scalar field. We have considered the
following filter examples: linear diffusion (Laplace filtering),
sharpening, and anisotropic edge-enhancing diffusion [22].

The choice of disallowed topological events depends on
the semantics of the filter. When sharpening one wishes to
exaggerate existing features, so all topological events are
prevented. For the other two filters, we wish to reduce
topological complexity by smoothing, so creation events are
prevented. For diffusion, the updates are computed using either
explicit or implicit time stepping, the latter allowing large time
steps At.

A single step of the outer loop of the algorithm requests
the proposed values p**!(v) from the filter and assumes linear
evolution between pl (v) and ﬁl“ (v) for each value. The time
of all possible topology events is computed, and the proposed
values are adjusted to ensure that disallowed events do not
occur. After adjustment, events need to be recalculated, and
further adjustments may be necessary. The process is iterated
until there are no disallowed events.

The algorithm may fail to produce progress, if for all points
v computed update is below a threshold e, which for any point
v may be due to two reasons: either the local time step or
p'T1(v) — pl(v) is too small, which means that the filter has
converged to a limit value. The algorithm terminates if it either
reached the target time, or failed to produce progress.

One iteration of the algorithm in detail. The algorithm uses two
maps:

— Critical point map status(v) indicating if a vertex is a
(discrete) maximum, minimum, saddle or regular point, and
storing a critical point’s ID. This map is initialized using the
original data and incrementally updated at every step.

— Value flip map £lip(v,w), where (v, w) is an edge,
recording value flips observed at the current step, and the
time for each flip (the timestamp).

Step 1: Obtain proposed values. Compute trial point positions
ﬁl“ (v) using the uncontrolled filter:

P = F(ar, pl(v)).

If no progress is made, i.e. the difference |p'*! — p!| does not
exceed a user-defined threshold, the algorithm terminates.

Step 2: Identify and sort the value flip events. We regard the
evolution of the mesh as linear between p' and p'*!. This

guarantees that each edge may flip value no more than once
during a time step. For each edge (v, w) we determine whether
or not it flips value during the trial step and store the result in
flip(v, w).

Then for all value flip events we compute the exact time
of the value flip f1ip.time(v, w), using linearity and our tie-
breaking scheme, and sort the value flipping edges according to
this time.

Let a, b, c, d be four points, such that the pairs (p(a), p(b))
and (p(c), p(d)) both change order between p! and
p't1. We assign unique infinitesimal perturbation scales
e(a), e(b),e(c), e(d) to each vertex, i.e. we regard the value
atavertex v € {a, b, ¢, d} as a polynomial p(v) + ge(v) in ¢.

Let ¢ be the solution of p!(a)(1 — 1) + tp' (@) = p'(b)
(1 — 1) +tp'1(b), and let ¢’ be the solution of p’(c)(1 — 1) —
tp () = pld)r — (1 — 1)p!T1(d). We assume that both
solutions exist (otherwise there are no events that need to be
ordered). Then

_ P = pl@ tee(b) — ee(a)

(P'*a) = pl(@) — (p'+1(b) — pl (b))
and
P = pl(o) +ee(d) —e(o)

(P1(e) = pl(e) — (P - pl(d))
To compare ¢ and ’, we consider f(g) =t —¢.If f(0) > 0
then no tie-breaking is necessary. However, it is possible that
f(0) = 0. This is the case where perturbation is necessary: we
break the tie by computing the first-order term of f (¢), which

determines the sign of f(¢) for all sufficiently small ¢ > 0.
If £(0) =0, then f(¢) is given by

Fe) = ¢ ( e(b) —e(a)
(p*(a) — pl(a)) — (p+1(b) — pl(b))
B e(d) —e(c) >
(p'*1(e) — pl©) — (p!*(d) — pl@d) )

Step 3: Detect disallowed events. Next, we traverse the event
list ordered by time, detecting creation events. For each value
flip event (v, w), we determine its type based on the changes of
signatures of endpoints v and w in the critical point map for p'
and p'*!, as explained in Section 3.

If we find a disallowed event (v, w) at a time t =
flip.time(v, w) < #j41, we set

P ) < =8 W) — pl) + Pl

and
P w) < (0 =8 (T (w) — p'(w)) + pl(w)

and return to Step 2. In so modifying p'*!, we set the proposed
values for v and w to § before the value flip along the line from
pl to ﬁl+l .

Thus the value flip no longer occurs as the values of v and w
evolve from p' to p'*!. In other words,

sign(p' (v) — p'(w)) = sign(p' ™ (v) — p (w)).

This ensures that undesired topological events never occur. An
example is shown in Fig. 6.
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Fig. 6. Without topology control, a maximum-saddle pair is created. With
topology control, the creation event is suppressed.

uncontrolled filtering -

controlled filtering

Fig. 7. Temporary local artifacts in the smoothing process due to topology
control, magnified image.

If no creation events are found at the end of the event list
traversal, then the inner loop is terminated, p'*!(v) is set to
ﬁl“ (v), and the next increment is obtained from the filter.

We are guaranteed to exit the inner loop. Every time we
disallow an event, the proposed values p't! approach the
current values p’. Because this process is monotonic, eventually
p'T1 will not contain any disallowed events. This may occur
because p't!' no longer differs from p'; a small difference
|p'T! — p!| is a termination condition for the algorithm.

The pseudocode for the algorithm is as follows.

repeat
for all veVv do
PI(v) — F(Ar,p ()
end for
repeat
status' | « status/
flip « all value flipping edges (v, w), sorted
by time
for all f(v,w) € flip do
update status' ' (v) and Status ' ' (w)
if f is a disallowed event then
modify 5! (v), p'*! (w)
break
end if
end for
until no undesired event is found
pitl e gl
status'!
l—1+1
until no progress possible or target time reached

— status”l

Depending on the type of the filter, the algorithm behaves in
different ways: if locally the filter smooths the values, it still
may create features. However, these features are short-lived,
so the values frozen by the algorithm are likely to be released

quickly (see the discussion of the Laplacian smoothing example
in Section 5). On the other hand, if the filter is locally enhancing
and tends to create new features, the algorithm will prevent
it from altering the image, which we consider the desirable
behavior in such cases.

The return to Step 2 after modification of the proposed
values is essential, as the value modification results in
rearrangement of critical points. This results in a considerable
increase in time vs. simple application of a filter for initial steps.
However, following a sufficiently large number of smoothing
steps, few critical points interact with each other in a given step,
so fewer inner cycles are necessary for each time advance.

5. Results

We show the results of our algorithm for three different
filters:

— Discrete Laplacian smoothing (diffusion):

P =po+ar Y (¢l -po).
edges(v,w)

— Sharpening, for a fixed n,
P @) = ') + Ar(p ) = p°)).
— Discrete anisotropic diffusion [22]:
p'w) - p'(w)
L+ pl(w) = pr)I12/k>

For diffusion, we have implemented both explicit and
implicit time stepping, the linear systems solved using
SuperLU [26] in the latter case.

Note that for the sharpening filter for any time ¢ is a linear
interpolation between p°(v) and i (v).

We use two artificial datasets for comparison: a ridge,
showing the emergence of a high-persistence saddle for
Laplacian smoothing without topology control, and a pure noise
image, which almost entirely consists of critical points in the
beginning.

We use several real datasets: the Puget Sound terrain map, a
CT scan slice of a cow brain, a retina image, and a CT scan slice
of a human torso. In the images showing critical points, crosses
denote saddles, empty circles denote minima, and circles with
dots denote maxima.

Fig. 8 (right) compares the behavior of the Laplacian
smoothing filter for artificial data with and without topology
control. Note that while the topology change is prevented, there
is little impact on the overall surface smoothness. Fig. 4 shows
a similar event in the Puget Sound dataset.

Fig. 9 shows that even for very complex topologies (in the
initial image almost every point is critical) the algorithm does
not get stuck because of excessive numbers of frozen values.

The analysis of the topology of the scale space provides
intuition into why this is the case: in Damon [23] it is shown
that, unlike the general case, there is an asymmetry between
creation and annihilation events in the evolving data resulting
from Laplace smoothing. In this case, the two types of events
can be described by different normal forms and further analysis

PR =pw+ar Y
edges(v,w)
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no topology control topology control

Fig. 8. Comparison of our topology controlled smoothing algorithm with
uncontrolled Laplacian smoothing for a simple artificial dataset.

Fig. 9. Topology controlled Laplacian smoothing for random initial data.
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Smoothing steps

Fig. 10. Algorithm performance: CPU time per smoothing step, for implicit
Laplacian smoothing, running on a Xeon 2.4 GHz.

shows that newly created critical points have long expected
lifetime only on ridges, i.e. on a small subset of the image.
Thus, on average, the lifetime of created topological features
is short, and values need to move only slightly slower to avoid
feature creation entirely.

Next, we compare the results for three filters (Fig. 13).
For each filter we show five images: the original image, the
filtered image without topology control, the filtered image with
topology control, the relative magnitude of difference in each
case, and the map of all created features without topology
control. Note that most if not all created features are small,
and hard to see in the image, and the filtering results in both
cases are visually similar. We also observe that errors are small
and localized for two filters (the maximal error is approx. 2%
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Fig. 11. The number of critical points (y-axis) as functions of the iteration
number (x-axis) for four datasets undergoing Laplacian smoothing (red line)
and topology controlled Laplacian smoothing (purple dotted line). Upper row:
artificial datasets. Lower row: the cow brain CT scan and Puget Sound dataset.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Wiy

Fig. 12. Several highest-persistence features, cow brain dataset. Left:
persistence measured by difference of values of control points for a feature.
Right: persistence measured by feature lifetime under anisotropic diffusion (in
this case, stable features with infinite lifetime are shown).

for Laplacian smoothing and 6% for anisotropic diffusion).
While overall the changes introduced by topology control are
small, for smoothing filters one can sometimes observe artifacts
near values which are prevented from changing. In these areas
the surface appears less smooth than in adjacent areas—for
example, in the sharp ravines visible in the terrain in Fig. 13
(left column) shown magnified in Fig. 7. These artifacts exist
for a relatively short time and are eliminated in subsequent
filtering steps.

The errors are much higher and spread out for sharpening.
This is not surprising as sharpening directly increases function
value at locations with high-frequency detail, and our algorithm
prevents the creation of some of these spurious features.

Fig. 11 shows the numbers of critical points as a function of
Laplacian smoothing iteration for several models. Note that the
numbers oscillate for Laplacian smoothing but monotonically
decrease with topology control. Significant oscillations early in
the process of Laplacian smoothing are also present, although
not visible because of the large total number of critical points.
One can observe that while creation events are clearly a small
fraction of the total number of events they have a visible impact
on the topological evolution.
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Fig. 13. Filter examples for Laplacian (first column), sharpening (second column) and anisotropic diffusion (third column) filters. The images are: original, filtered
without topology control, filtered with topology control, the difference between two filtered images, and the map of new features created without topology control
(shown in red). For the anisotropic diffusion only a fragment of the complete image is shown, to make the small-scale features in the original more visible. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10 illustrates the algorithm performance (256 x 256
data, Laplacian smoothing, implicit time stepping). One can
observe that a significant fraction of the time is spend on the
first several steps, due to the need for a large number of inner
loop iterations to resolve all topological events, mostly due

to small scale noise. Although topology control increased the
total time compared to uncontrolled Laplacian smoothing by a
factor of 2.22, the first three steps accounted for 43.95% of the
difference. Each uncontrolled smoothing step took, on average,
3.10 s; the data set required 128 total smoothing steps. (Results
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were generated on a 2.4 GHz Xeon.) For later steps, more than
one inner loop iteration is rarely needed. If it is acceptable to
pre-smooth the image without topology control or otherwise
eliminate small-scale features e.g. by setting all values inside
the critical contour bounding the feature to the contour value,
one can drastically reduce the overhead of iterations in the
first few steps. This is true as well for anisotropic diffusion.
Sharpening, on the other hand, takes more time per step
as virtual time increases. This is because we prevent any
topological changes; the sharper the image becomes, the more
undesired critical point changes sharpening attempts to affect.

Finally, we observe that by disallowing feature creation
events we implicitly obtain a complete or partial topological
hierarchy and a measure of feature persistence which can be
used for topology visualization and simplification (cf. Carr
etal. [19]).

Recall that each topological feature is associated with a
pair of critical points (in 2D a saddle and a minimum or
maximum). By observing annihilation events, we can establish
a feature hierarchy, and use the critical point lifetime as
feature persistence. This defines alternative feature persistence
measures associated with different filter types. For example,
anisotropic diffusion filters would give high persistence to
features bounded by well-defined edges. Fig. 12 compares the
highest-persistence features given by the simplest persistence
definition (value difference at the two critical points defining
a feature) with the same number of high-persistence features
given by anisotropic diffusion (specifically, stable features with
infinite lifetime).

6. Conclusions and future work

We have presented a simple algorithm that ensures that
filtering results in topology preservation or monotonic topology
simplification in the sense of the reduction of the number of
critical points in a scalar field. We have demonstrated that
for three filters and a number of test images, the constraints
imposed by the topology control algorithm do not significantly
affect the filtering process.

Clearly, our algorithm is a first step in this direction. While
we have applied it to data sets defined on regular 2D meshes,
there are no fundamental limitations on either mesh structure or
the dimension of the problem. We plan to explore the behavior
of the algorithm in 3D where creation events are more common
and more types of topological events may occur. Specifically,
critical points have indices O through 3; topological events
occur between minima and index-1 saddles, index-1 and index-
2 saddles, and maxima and index-2 saddles. It is these events
that must be detected when a value flips at an edge in a
3D mesh. The structure of the algorithm remains the same.
It may, however, be necessary to find ways of improving the
algorithm’s efficiency.

One significant downside of approaches of this type is that
artifacts are hard to predict. While we have observed very few,
it would be desirable to have an algorithm which can alter the
filter behavior in advance, spreading the modification necessary
to prevent disallowed events to a larger number of points and
reducing the necessary modification for each point.
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