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ABSTRACT
The creation of most models used in computer animation and
computer games requires the assignment of texture coordi-
nates, texture painting, and texture editing. We present a
novel approach for texture placement and editing based on
direct manipulation of textures on the surface. Compared
to conventional tools for surface texturing, our system com-
bines UV -coordinate specification and texture editing into
one seamless process, reducing the need for careful initial
design of parameterization and providing a natural interface
for working with textures directly on 3D surfaces.

A combination of efficient techniques for interactive con-
strained parameterization and advanced input devices makes
it possible to realize a set of natural interaction paradigms.
The texture is regarded as a piece of stretchable material,
which the user can position and deform on the surface, select-
ing arbitrary sets of constraints and mapping texture points to
the surface; in addition, the multi-touch input makes it possi-
ble to specify natural handles for texture manipulation using
point constraints associated with different fingers. Pressure
can be used as a direct interface for texture combination op-
erations. The 3D position of the object and its texture can be
manipulated simultaneously using two-hand input.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Algorithms, Design, Human Factors.

Keywords: Texturing, surface parameterization, multi-touch
interface.

INTRODUCTION
The goal of 3D texturing is to enhance object appearance by
using images to modify surface material attributes, for exam-
ple, colors, reflection coefficients, or normals.

In existing computer animation and computer-aided design
systems, a typical pipeline for adding textures to surface
meshes includes several stages, as shown in Figure 1, top
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row. These stages often correspond to separate tools or
views.

First, the user selects a region of mesh to work with. The user
then assigns texture coordinates to the mesh, using a combi-
nation of basic projection operations, more advanced auto-
matic algorithms for mapping meshes to the plane, and man-
ual adjustment of vertex positions. Once the texture coordi-
nates are established, the polygons corresponding to this part
of the mesh can be drawn in the image plane and used as a
guide for constructing the texture map by adding, distorting,
and blending preexisting images, as well as painting directly
into the texture. The tools for establishing parameterization,
editing the texture, and rendering a complete 3D model are
often logically separate, and the user needs to switch between
these three views multiple times during the process. The tex-
ture placement and painting process is indirect, as it happens
not directly on the three-dimensional geometry but in texture
space, where the shapes and sizes of surface triangles are of-
ten distorted. The user must mentally invert the map from
the 3D mesh to texture space, adjusting for this distortion.
Photographs and other images need to be warped in texture
space to achieve good results in 3D; defining a suitable wrap-
ping requires considerable experience and careful layout of
texture coordinates.

We describe a system which eliminates the separation be-
tween these stages and enables direct manipulation of tex-
tures on surfaces (Figure 1, bottom row). All texture editing
can be done directly on the 3D model, similar to 3D painting
systems.

In our interaction metaphor, the texture can be thought of as
a malleable thin sheet of material that clings to the surface
and can be arbitrarily moved and deformed by constraining
and moving points and areas of the texture. This directly
corresponds to the intuitive idea behind texture mapping: the
surface is decorated with textures. Traditional approaches
often require the user to do the opposite: determine how to
flatten parts of the surface to the plane of the texture. Our
system allows multiple textures to be placed separately and
then blended together by specifying the location and size of
blend regions directly on the surface.

Our approach to texturing works particularly well with multi-
touch and pressure-sensitive hardware. This type of input de-
vice allows the user to manipulate multiple points on the tex-
ture simultaneously, greatly enhancing his ability to specify
complex deformations directly, rather than in multiple stages.



Sensitivity to pressure provides a natural framework for ad-
justing the size of texture areas affected by deformations and
blending multiple textures.

We consulted with artists and found that the most cum-
bersome aspects of the texturing process are establishing a
satisfactory parameterization and juggling the three views
(3D model, parameterization, and texture editor). We inter-
viewed, at length, an artist from Maxis/Electronic Arts. He
characterized the problem of painting into a distorted, flat-
tened region of mesh as surmountable, given training. How-
ever, he noted that he had no easy way to map or remap ex-
isting textures and photographs onto different models. He
also described the iterative process of establishing a satisfac-
tory parameterization: artists make minor adjustments to the
parameterization in tandem with texture editing. Finally, he
stated that he would prefer as much of the texturing process
as possible to take place in the 3D view.

RELATED WORK
Our work builds on research in mesh parametrization, paint-
ing on 3D meshes, and multi-touch interfaces.

Parameterization. Mesh parametrization (i.e. computing a
map or a collection of maps from a mesh to the plane) is fun-
damental to a broad range of applications, and we cannot do
justice to the spectrum of work in the area. We focus primar-
ily on the work most closely related to ours—specifically, on
techniques which emphasize high performance and the abil-
ity to add constraints.

Most common techniques for parameterization of disk-like
mesh areas rely on minimizing some measure of mesh dis-
tortion. A measure of distortion based on elasticity was in-
troduced in Maillot et al. [28]; related stretching techniques
are described in Piponi and Borshukov [30], Sander et al.
[34], and Yoshizawa et al. [43]. Elasticity-based formula-
tions are most commonly nonlinear, although Yoshizawa et
al. [44] describe an approach which yields good results while
solving only two linear systems. A different class of meth-
ods is based on solving a single linear system; these ap-
proaches are particularly suitable for interactive applications.
A commonly-used general form with variable weights was
described in Floater [9]; specific geometrically-motivated
choices of weights were proposed in Desbrun et al. [7] and
Lévy et al. [26]. An alternative approach (directly minimiz-
ing angle distortion) was proposed in Sheffer and de Sturler
[38]; while the original method requires the relatively expen-
sive solution of a nonlinear problem, a more efficient and
robust version is described in Sheffer et al. [39]. Zayer et
al. [45] introduce a boundary-free parameterization method
that achieves good results by solving several linear systems.
Parametrization based on tracing geodesics is described in
Lee et al. [24].

A number of papers introduce various types of constraints
into the parameterization. Lévy [25] uses penalty terms in
the energy to approximate constraints. We propose a dif-
ferent energy that matches constraints exactly, which is im-
portant for usability, while Lévy weights smoothness of pa-
rameterization versus exactness of constraint-matching. We
ensure smoothness with a higher-order energy and gradient-

matching. Most importantly, our approach to incremental
solution updating enables interactive texture manipulation.
Desbrun and Alliez [7] suggest using the Lagrange multi-
plier formulation; Kraevoy et al. [22] point out that not all
constraints for a given mesh can be satisfied by a one-to-one
mapping and describe an algorithm for adding points to the
triangulation so the constraints can be met. A number of pa-
pers consider the more difficult problem of consistently pa-
rameterizing several surfaces [32, 21, 36]; while these tech-
niques can also be specialized to constrained parameteriza-
tion, they are relatively expensive.

An important problem, not addressed in this paper, is par-
titioning the surface into patches that can be mapped to the
plane, or finding the best way to cut the surface such that a
single patch is formed. Many authors have developed differ-
ent automatic approaches to this problem [31, 10, 20, 37, 35,
19, 47]. Yamauchi et al. [42] describe a complete automated
texturing pipeline, largely following the traditional stages we
have described above.

It is possible to avoid the parameterization problem entirely
by storing texture information in a volume data structure (e.g.
DeBry et al. [6]).

Finally, we note that our approach to texturing can be re-
garded as using image warping on a mesh [4], and that the
incremental matrix inversion formula we use was applied in
James and Pai [18] to interactive simulation.

3D painting. As introduced in Hanrahan and Haeberli [14],
painting directly on the surface is a natural way to create
textures from scratch. In Agrawala et al. [1], a tracker is
used to “paint” on a real object; the paint appeared in the tex-
ture of the corresponding scanned computer model. Carr and
Hart [5] show how texture resolution can be increased when
painting on a surface. Igarashi and Cosgrove [16] discuss
an adaptive technique for parametrization while 3D painting.
In contrast, our emphasis is on the application and modifica-
tion of preexisting textures, rather than creating textures from
scratch.

Multi-touch interfaces. There is a large body of relevant
work exploring two-handed input. Most of this work pre-
cedes the recent advent of practical multi-touch input devices
and uses multiple mice/pucks or multimode Wacom tablets.
Guiard [11] presents a theoretical framework for asymmetri-
cally assigned roles in two-handed interaction, including the
natural partitioning of a graphical task into view manipula-
tion with the non-dominant hand and simultaneous editing
or object manipulation with the dominant hand. 3D camera
control and object manipulation with two mice was explored
in Balakrishnan and Kurtenbach [3] and Zeleznik et al. [46],
and with 6-DOF trackers in Hinckley et al. [15].

Graphical modeling operations using two hands in a sym-
metric manner have also been explored. This approach has
been applied to simultaneously pan, zoom, or rotate the view
context in a 2D map setting in Kurtenbach et al. [23], to
alignment tasks in Balakrishnan and Hinckley [2], and for so-
phisticated 3D mesh modeling operations, as in Twister [27]
which uses a pair of 6-DOF trackers.
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Figure 1: (top) The stages of traditional texturing, where the artist must switch contexts between 3D viewing and 2D texture
painting and alignment [images courtesy of Jiri Adamec]. (bottom) Our proposed texturing allows the user to manipulate
texture parameterization directly on the model.

While our texturing system can be used with a traditional
input device and display, direct-display multi-touch interface
devices are a natural match for its capabilities. These devices
[8, 33, 40, 13] provide the advantage of direct graphical in-
teraction, as well as benefits similar to those found in the
literature on bi-manual input using multiple-mice: Wu and
Balakrishnan [41] demonstrate two-finger rotation and scal-
ing operations, while Igarashi et al. [17] describe a system
for interactively applying complex free-form deformations of
2D models in the plane, where an arbitrary number of fingers
each provide an additional 2-DOF control.

In this work, we use a multi-touch sensing technique recently
introduced by Han [13], based on frustrated total internal re-
flection. Our system is implemented in a 36” drafting table
form-factor, with a sensing resolution of approximately 20
ppi at 50 Hz. The system uses a compliant surface layer to
provide reliable pressure sensitivity, which enables the use of
passive styluses. As a result, users are free to use fingers or
styluses as they see fit, for precision as well as comfort.

USER INTERFACE
Next, we describe the interaction operations supported by our
system. Our system supports the following modes: texture
placement, texture deformation, gluing, and blending.

Texture placement mode. The first step in the texturing pro-
cess is to establish an initial mapping to the mesh which we
adjust and refine. First, a texture is mapped to the mesh
using an automatic distortion-minimizing parameterization
with free boundaries, such that the texture patch is in the in-
terior of the mesh. The user can then use a two-point texture
placement scheme: two points are placed on the mesh to de-
fine the texture’s translation, rotation, and scale, as shown
in Figure 2. Using the multi-touch interface, users can ad-

just the points simultaneously with two fingers, continuously
adjusting texture position on the surface.

This is the only operation in our system that requires multi-
touch and can’t be performed with a mouse. When using a
mouse, the user must separately translate, rotate, and scale.

Figure 2: Two fingers completely determine the tex-
ture’s translation, rotation, and scale.

Texture deformation mode. Once the initial location of the
texture is defined, we fix the texture boundary and deform the
texture on the surface in order to bring features of the texture
into alignment with features on the mesh. This is achieved
by defining a set of live constraints, which are points on the
texture moved around by the user. The rest of the texture
follows the live constraints; the influence of the constraints
gradually decreases with distance. The influence of live con-
straints is further restricted by constraints defined in the glue
tool, described below.

Once the user stops manipulating a live constraint, it converts
into a pushpin, or dead, constraint. A pushpin constraint can
be removed later; texture coordinates then elastically bounce
back to their unconstrained positions. We find this behavior
to be useful for undoing changes.



Alternatively, the user can choose to convert the deformation
fixed by pushpins to plastic. As a result of this transforma-
tion, the current state of the texture does not change; how-
ever, pushpin constraints are no longer necessary to maintain
the current mapping and are removed. All subsequent defor-
mations are composed with the current deformation. This is
useful for gradual, precise adjustment of textures without in-
troducing excessive numbers of pushpin constraints, which
may prevent smooth texture deformations. Figures 3 and 4
compare two types of deformations.

a) b)

c) d)

Figure 3: Plastic deformations: a) Undeformed param-
eterization. b) An initial plastic deformation by squeez-
ing. c) A subsequent plastic stretching of the texture.
d) A final deformation demonstrates the parameteriza-
tion’s plastic memory.

a) b)

c) d)

Figure 4: Elastic deformations: a) Undeformed pa-
rameterization. b) First, two live constraints squeeze
the texture. c) Second, two additional live constraints
stretch the texture. d) Finally, the pushpin constraints
added in b) have been removed and the texture under-
neath bounces back to its unconstrained configuration.

Deformable regions: gluing mode and radius widget. We
provide several tools for defining regions on the mesh.

We provide a glue brush to restrict deformations to particular
areas of the mesh. In this mode, hidden pushpin constraints

are applied to the vertices of triangles traversed by the brush.
Glued areas can be used to separate regions of the mesh, act-
ing as ‘walls’ across which changes cannot propagate. By
completely encircling an area of the mesh, we limit the effect
of edits inside to the interior region and, likewise, protect it
from changes made outside. This is convenient for protecting
local adjustments.

Alternatively, the user can specify a radius for the deformable
area with a simple radius widget. Any constraint point auto-
matically limits its influence approximately to the specified
radius. (This is implemented by gluing the ring of triangles
lying under a screen space circle of given radius.) Distant
such constraint points have non-overlapping regions of influ-
ence that divide the mesh into multiple independent circles.
These regions can be adjusted simultaneously, which is help-
ful in situations where multiple edits are taking place at once.

Figure 5: (left) Small and (right) large regions of influ-
ence.

Combining multiple textures, blending. Our texture adjust-
ment naturally extends to multiple textures. For example, we
may take multiple source photographs of an object to cap-
ture surface details from different directions. The user can
adjust them separately to determine their relative alignment
directly on the mesh geometry. This is convenient for accu-
rately merging a number of source textures where the original
alignment is not known.

Once relative positioning has been defined, we use an air-
brush interface to blend out unnecessary or overlapping por-
tions of the source textures, as illustrated in Figure 6. If the
user wishes to have continuous, fine brush radius control with
his non-dominant hand, the user can place two fingers on the
radius widget to “pick it up” (demonstrated in the supple-
mentary video).

Figure 6: (left) Small and (right) large areas of texture
can be blended with the transparency airbrush.



Object positioning. In multi-touch settings, we can use a
second hand to position the object while adjusting constraints
with the other. This considerably simplifies texturing, as no
mode switches are needed to change the orientation of the
object, its scale, or its location on the screen.

Figure 7: Tiltpad control: (left) On-screen interaction
and (right) tiltpad interpretation.

The tiltpad is a disk-shaped isotonic pan-zoom-rotate con-
trol augmented by an isometric ‘tilt’ measurement, shown in
Figure 7 (left). We first determine orientation in the plane,
using the least-squares solution for translation, uniform scal-
ing, and rotation. Then, we apply a ‘tilt’ rotation about an
axis r in the view plane, calculated using terms indicated in
Figure 7 (right). For the three contact points A,B, C (white)
falling in the control area, we interpret pressure as ‘depth’ be-
low the surface, and find the normal n of the best-fit plane p
to the projected points A′, B′, C ′ (black). The ‘tilt’ transform
is applied as an incremental rotation around the in-plane axis
r that maps the z-axis to n. To ensure that n is well-defined,
we add a set of weak constraint points k (grey) around the
circular boundary of the control with depth equal to zero.

For consistency, we adjust solution parameters when points
are added or removed in order to maintain a constant transfor-
mation. Pressure values are thresholded using a ‘deadband’
model, providing a transition from purely planar motion to
tilt-sensitive manipulation.

ALGORITHMS
Next we describe essential algorithms used to implement the
user interface described in the previous section.

Basic parameterization. At the heart of our system is an ef-
ficient algorithm for mapping a part of the mesh to the plane.
It is similar to a widely used class of algorithms that solve a
positive-definite linear system of equations.

However, we have observed that commonly used Floater-
type algorithms, while performing well with either fixed or
natural boundary constraints, do not perform as well in the
setting with constrained interior points, especially for large
distortion. Large deformations in this case result in mesh
fold-overs in the texture domain, causing the same area of
texture to be mapped onto multiple surface areas. Intuitively,
this can be explained as follows. Qualitatively, the behavior
of each coordinate obtained using a parametrization of this
type is known to be similar to the behavior of the solution of
the Laplace equation, which, in turn, is similar to the behav-
ior of a soap film. For a point constraint in the interior of the
domain, the solution will have a sharp point, thus likely to
create a fold for small displacements.

While there are relatively complex approaches allowing for
the complete elimination of the problem [22], we have found
that switching the energy type to the linearized analog of
bending energy significantly improves the behavior. One
can think of this energy as the energy of flattening a mem-
brane which resists bending to the plane (ignoring stretch-
ing). Mathematically, the discretization of this energy can be
expressed as

E =
∑

i

1
8 areai




∑

j∈N(i)

(cot αij + cot βij)(ti − tj)
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where ti = [ui, vi] is the 2D position of vertex i in the tex-
ture domain; i varies over all vertices and N(i) is the set
of vertices adjacent to i; areai is computed as described in
Meyer et al. [29]; and the angles αij and βij are those shown
in Figure 8. This energy is based on the discretization for
mean curvature presented by Meyer et al..

i ij

j

ij

Figure 8: Angles referenced in the energy equation.

We observe that E is a quadratic function of the texture co-
ordinates. To minimize this energy, we solve the system of
linear equations with matrix A obtained by differentiating E
twice with respect to all nonfixed points. For boundaries,
we use two types of constraints: simple fixed constraints
(in deformation mode) as well as natural constraints for free
boundaries (see Desbrun et al. [7]) when the texture is ini-
tially placed on the surface.

Constraints. As described above, a constraint is a point cor-
respondence between an arbitrary point in the texture chosen
by the user and a point on the mesh. The point on the mesh
need not be a vertex, so we express this constraint as a linear
combination of the texture coordinates of the vertices of the
triangle in the mesh containing the constrained point:

α1t1 + α2t2 + α3t3 = tfixed

where α1 + α2 + α3 = 1 are the barycentric coordinates
of the constrained point and ti, i = 1, 2, 3, are the texture
coordinates of the three vertices of the triangle. In a more
concise form we can write these constraints as two equations
(one each for u and v) of the form cT t = d, where t is the
vector of texture coordinates for all points, cT is the vector
of coefficients with only three nonzero entries, and d is the
fixed value.

To ensure the constraints are specified precisely, we use the
standard Lagrange multiplier approach, i.e. we add extra
variables and equations to our system. Instead of minimizing



the original quadratic functional E, for each constraint equa-
tion cT

i t = di we add a term λi(cT
i t − di). This leads to a

linear system with the matrix

Aext =
(

A CT

C 0

)

where C is a matrix composed out of vectors ci. If we have
M constraints, then the size of C is M × N , where N is
the number of vertices. In particular, this means the matrix
changes whenever constraints are added and removed, and
the linear system has to be solved from scratch. However,
we minimize the amount of needed computation by using in-
cremental inverse updates based on the Sherman-Woodbury-
Morrison formula, discussed in more detail below.

Incremental matrix updates. All deformations resulting from
live constraints are elastic, i.e. are computed using fixed
cotangent coefficients in the energy E. We use the fact
that only a relatively small part of the system matrix Aext

changes to incrementally compute the inverse whenever the
constraints change. Here we briefly summarize the proce-
dure, described in more detail in the appendix. We rely on
the following facts. The crucial observation is that the ma-
trix Aext can be written as

Aext =
(

A 0
0 IM×M

)

−
(

0 −CT

IM×M
1
2IM×M

) (
−C 1

2IM×M

0 IM×M

)

= A0 − UV

where A0 does not depend on constraints, U and V have di-
mensions (N +M)×2M and 2M × (N +M), respectively,
and IM×M is the identity matrix of size M ×M .

The classic Sherman-Morrison-Woodbury formula [12] makes
it possible to solve the inverse system with matrix Aext with
M live constraints at the cost of solving 2M systems with
matrix A0 and different right-hand sides. This yields a sub-
stantial increase in performance if M is not very large and
the matrix A0 can be prefactorized. That is, the cost of solv-
ing 2M systems with a prefactorized matrix is substantially
lower than the cost of assembling and solving a single system
from scratch. We have observed this to be the case if we use
an efficient direct solver and assume that M is no more than
10 (the maximum number of live constraints when using the
multi-touch interface with two hands) and typically less.

On a 2.8 GHz P4, the seconds per update of a 2138 vertex
mesh is, for 1 through 8 live constraints: .022, .026, .030,
.033, .038, .043, .048, .056. The speedup over re-solving the
system is between 7 and 9 times.

Plastic deformation. In plastic deformation mode, once a
deformation is completed (in the case of the mouse-based in-
terface, on the button-up event; for the multi-touch interface,
when the last finger leaves the table), the entries of matrix
A are updated using areas and cotangent weights computed
from the texture coordinates. This mimics the plastic defor-
mation of materials such as clay: the undeformed state is

tracking the deformation, so when constraints are released
the material does not spring back to the original position but
stays in the deformed state.

Texture blending implementation. To implement our trans-
parency airbrush tool, we start with a point C in screen space
and pick the corresponding point on the mesh. We construct
the matrix converting the picked triangle’s texture coordi-
nates to screen (pixel) coordinates. We use the inverse of
this mapping to find a rough bounding box of the airbrush
in texture coordinates. We then iterate over every texel in
this rectangular bounds and, using our texture-to-screen map-
ping, project the texture coordinate onto the screen and com-
pute its new α value based on its screen space distance from
C (the place the user clicked/touched). We use the following
α update formula

α← α− flow
(
1− 1/(2− s)2

)

where s is the normalized distance from C to the texel such
that s = 1 when the distance equals the airbrush radius and
flow is the rate of airbrush “spray.”

RESULTS
To demonstrate our system in action, we texture map an ex-
isting mesh geometry using casual photographs of a subject
(Figure 9). We show a simplified workflow to quickly and
easily produce a parameterized texture from snapshots taken
from a family photo album. By aligning the different pho-
tographs directly on the mesh geometry, we avoid awkward
operations in 2D space in which the user must map source
images to the flattened representation of texture space.

Our workflow is illustrated in Figure 10 as well as the supple-
mentary video. We load the mesh geometry, along with the
first photograph from our set. Our first photograph is a por-
trait view, so we adjust the mesh orientation to roughly corre-
spond to that viewing angle. In the two-point affine mapping
stage, we align the two eyes to determine boundary condi-
tions (a). From there, we use elastic deformation operations
to move different features, such as the mouth, nose, and eye-
brows, into alignment with the mesh geometry (b).

In (c), we move to a view of the left side and load in the
second photograph. From this view, we can establish a base
parameterization using the eye and ear. We move to a partial
frontal view (d) to further refine the alignment of features
around the lips and eye. We have now brought the sepa-
rate textures into alignment for their appropriate regions. To
eliminate the overlap between the two, we switch to texture
blending mode (e), erasing areas of the textures which con-
tain off-angle features or background imagery. Finally, we
load the third image, taken from the right side, align it, and
blend overlapping regions (f).

We have now obtained (g), a relatively uniform texture map-
ping on the model from three separate photographs. The rela-
tive mappings of the mesh to the separate texture UV spaces
of the photographs are shown in Figure 11. Some artifacts
exist from lighting difference in the original snapshots; these
could be adjusted in a secondary image processing iteration.
The major task of aligning feature data from the three im-



Figure 9: Geometric model and source photographs.

a) b) c)

d) e) f) g)

Figure 10: A sequence of steps showing the texturing of a model using our system. See the Results section for a
description.

Figure 11: Texture maps generated by the system for the model shown in Figure 10.



ages to the mesh has been accomplished straightforwardly
with our direct-manipulation interface.

CONCLUSIONS
Our experiments suggest that the interface for texturing de-
scribed in this paper makes it possible to create textured mod-
els faster and requires less skill from the user than conven-
tional techniques.

Artists typically use professional image editing software to
edit textures. A limitation of our approach is that the large
variety of tools already available in such systems cannot be
leveraged directly. Thus, one needs to have a far more exten-
sive collection of image-editing tools in the application itself.
Our blending tool is just a first step in this direction.

In the current implementation, we use multitexturing to com-
bine several textures on a model. For many applications this
can be regarded as a limitation; it is often desirable to com-
bine all color textures into a single texture for each part of
the mesh. To do this, our interface needs to be combined
with global parametrization tools. Texture resolution also
may require adjustment, and the approach proposed in Carr
and Hart [5] is likely to be a useful addition to the system.
Increasing the robustness of the parametrization, e.g. by re-
fining the mesh when necessary as in Kraevoy et al. [22],
is another important direction for improving the back-end of
our system.

Acknowledgments. We would like to thank Mike Khoury
for his insights into the texturing process; NYU Computer
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mous reviewers for their helpful suggestions.

Appendix: Sherman-Woodbury-Morrison formula
We follow Hager [12] to update the inverse of an n×n matrix
A with a low-rank modification of the form UV , where U is
n × m, V is m × n, and m is much smaller than n. The
Sherman-Morrison-Woodbury formula

B−1 = [A−UV ]−1 = A−1+A−1U(I−V A−1U)−1V A−1

leads to the following algorithm for solving a system of equa-
tions Bx = b:

1. Solve Ay = b for y.

2. Compute the n × m matrix W = A−1U by solving m
linear systems Awi = ui, where wi and ui are columns of
W and U .

3. Form a small m × m matrix C = I − V W and solve
Cz = V y for z.

4. Set x = y + Wz.

This algorithm yields a considerable speedup if A can be fac-
torized to a form which makes it possible to solve the system
Ay = b for different right-hand sides as needed in step 2.
This is typical for direct solvers; e.g. we use the PARDISO
solver, a part of the Intel MKL, which prefactors the matrix
A as LDLT , where L is a lower triangular and D is a diago-
nal matrix. Solving a system with A represented in this form
is an order of magnitude faster than the cost of factorization.
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