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Abstract. Modeling and understanding complex non-manifold shapes
is a key issue in shape analysis and retrieval. The topological structure of
a non-manifold shape can be analyzed through its decomposition into a
collection of components with a simpler topology. Here, we consider a de-
composition of a non-manifold shape into components which are almost
manifolds, and we present a novel graph representation which highlights
the non-manifold singularities shared by the components as well as their
connectivity relations. We describe an algorithm for computing the de-
composition and its associated graph representation. We present a new
tool for visualizing the shape decomposition and its graph as an effective
support to modeling, analyzing and understanding non-manifold shapes.

1 Introduction

Non-manifold models have been introduced in geometric modeling long time ago.
They are relevant in describing the shape of mechanical models, which are usu-
ally represented as volumes, surfaces and lines connected together. Informally,
a manifold (with boundary) M is a compact and connected subset of the Eu-
clidean space for which the neighborhood of each points of M is homeomorphic
to an open ball (or to an open half-ball). Shapes, that do not fulfill this property
at one or more points, are called non-manifold.

Non-manifold shapes are usually discretized as cell or simplicial complexes
and arise in several applications, including finite element analysis, computer
aided manufacturing, rapid prototyping, reverse engineering, animation. In Com-
puter Aided Design (CAD), non-manifold shapes are usually obtained through an
idealization process which consists of operations, such as removal of details, hole
removal, or reduction in the dimensionality of some parts. For instance, parts pre-
senting a beam behavior in an object can be replaced with one-dimensional en-
tities, and parts presenting a plate behavior can be replaced by two-dimensional
surfaces. This process reduces the complexity of the object, thus resulting in a
representation which captures only its essential features.

A natural way to deal with the intrinsic complexity of modeling non-manifold
shapes consists of considering a topological decomposition of the shape into
manifold or ”almost” manifold parts. We consider here a decomposition of a
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non-manifold shape into what we call manifold-connected components, which
form a topological super-class of pseudo-manifolds [1]. Further investigation on
the properties of such decomposition, that we call an MC-decomposition, showed
that it is unique and is the discrete counterpart of Whitney stratification used
in the differentiable case.

We represent the structure of a non-manifold shape as a hypergraph, that
we call the MC-decomposition graph, in which the nodes correspond to the MC-
components and the arcs describe the connectivity among the components de-
fined by the non-manifold singularities. We have developed an algorithm for
computing the MC-decomposition, and its associated graph, based on a new
data structure for encoding the discretized input shape, that we have imple-
mented in a library, the IS library, for encoding and manipulating simplicial
complexes [2].

In our work, we have designed and developed a visualization tool for rendering
a segmentation of a shape into parts and its associated graph representation. The
tool is completely general and is not tailored to non-manifold shapes, or to the
specific MC-decomposition. A beta version of the decomposition software and
of the visualization tool can be downloaded from http://www.disi.unige.it/
person/PanozzoD/mc/.

The MC-decomposition and its associated graph is a very flexible tool for
shape analysis, shape matching and retrieval and shape understanding and an-
notation. We have applied such representation for the computation of topological
invariants of a shape, such as the Betti numbers, and for developing a taxonomy
for non-manifold shapes [3]. The basis for shape understanding and semantic an-
notation is extracting and recognizing the so-called form features of a shape, such
as protrusions or depressions, through-holes or handles. Since form features have
been classified in the literature only for manifold shapes, in our previous work,
we have extended such classification to non-manifold shapes [4]. The combina-
torial structure of the MC-decomposition graph and the topological structure of
the MC-components themselves are related to the topology of the original non-
manifold shape. Thus, its form features can be extracted through graph-theoretic
algorithms applied to the MC-decomposition graph.

The remainder of this paper is organized as follows. In Section 2, we review
some related work. In Section 3, we briefly discuss background notions on sim-
plicial complexes. In Section 4, we present the decomposition for non-manifold
shapes discretized through simplicial 3-complexes, i.e., the MC-decomposition,
and a graph-based representation for the MC-decomposition. In Section 5 we
describe an algorithm for computing the MC-decomposition and its associated
graph. In Section 6, we present the tool we have developed to view the MC-
decomposition and its decomposition graph, and we show some results. Finally,
in Section 7, we draw some concluding remarks and discuss current and future
development of this work.
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2 Related Work

Shape analysis is an active research area in geometric and solid modeling, com-
puter vision, and computer graphics. The major approaches to shape analysis
are based on computing the decomposition of a shape into simpler parts. Such
approaches are either interior-based, or boundary-based [5]. Interior-based ap-
proaches implicitly partition the volume of a shape by describing it as a geomet-
ric, or a topological skeleton [6]. Boundary-based methods provide a decompo-
sition of the boundary of an object into parts, by considering local properties
of the boundary of the shape, such as critical features or curvature. These lat-
ter methods aim at decomposing an object into meaningful components, i.e.,
components which can be perceptually distinguished from the remaining part
of the object. Boundary-based methods have been developed in CAD/CAM for
extracting form features and produce a boundary-based decomposition of a 3D
object guided by geometric, topological and semantic criteria [7].

All shape segmentation and feature extraction algorithms, however, work on
manifold shapes. Only few techniques have been proposed in the literature for
decomposing the boundary of regular non-manifold 3D shapes [8, 9].

The partition of an analytic variety into analytic manifolds, called a strati-
fication, has been studied in mathematics to investigate the properties of such
varieties [10]. A stratification expresses the variety as the disjoint union of a
locally finite set of analytic manifolds, called strata. Pesco et al. [11] introduced
the concept of combinatorial stratification as the basis for a data structure for
representing non-manifold 3D shapes described by their boundary. The combi-
natorial stratification for a cell complex is a collection of manifold sub-complexes
of different dimensions, the union of which forms the original complex. A com-
binatorial stratification as discussed in [11], however, is not unique.

3 Background Notions

In this Section, we introduce some background notions on simplicial complexes,
which will be used throughout the paper (see [12] for more details).

A Euclidean simplex σ of dimension k is the convex hull of k+1 linearly
independent points in the n-dimensional Euclidean space En, 0 ≤ k ≤ n. Vσ is
the set formed by such points. We simply call a Euclidean simplex of dimension
k a k-simplex. k is called the dimension of σ. Any Euclidean p-simplex σ′, with
0 ≤ p < k, generated by a set Vσ′ ⊆ Vσ of cardinality p+1 ≤ d, is called a p-face
of σ. Whenever no ambiguity arises, the dimensionality of σ′ can be omitted,
and σ′ is simply called a face of σ. Any face σ′ of σ such that σ′ 6= σ is called a
proper face of σ. A finite collection Σ of Euclidean simplexes forms a Euclidean
simplicial complex if and only if (i), for each simplex σ ∈ Σ, all faces of σ belong
to Σ, and (ii), for each pair of simplexes σ and σ′, either σ∩σ′ = ∅ or σ∩σ′ is a
face of both σ and σ′. If d is the maximum of the dimensions of the simplexes in
Σ, we call Σ a d-dimensional simplicial complex, or a simplicial d-complex. In the
following, we will restrict our consideration to simplicial 1-, 2- and 3-complexes
in the three-dimensional Euclidean space E3.
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The boundary of a simplex σ is the set of all proper faces of σ in Σ, while
the star of σ is the set of simplexes in Σ that have σ as a face. The link of
σ is the set of all the faces of the simplexes in the star of σ which are not
incident into σ. Any simplex σ such that star(σ) contains only σ is called a top
simplex. A simplicial d-complex in which all top simplexes are of dimension d
is called regular, or of uniform dimension. An h-path in a simplicial d-complex
Σ joining two (h+1)-simplexes in Σ, where h = 0, 1, ..., d− 1, is a path formed
by an alternating sequence of h-simplexes and (h+1)-simplexes. A complex Σ
is said to be h-connected if and only if there exists an h-path joining every pair
of (h+1)-simplexes in Σ. A subset Σ′ of Σ is a sub-complex if Σ′ is a simplicial
complex. Any maximal h-connected sub-complex of a d-complex Σ is called an
h-connected component of Σ.

4 The MC-Decomposition into Manifold-Connected
Components

In this Section, we describe a decomposition for non-manifold shapes discretized
through simplicial 2- and 3-complexes, first introduced in [1], called the MC-
decomposition and a graph representation for such decomposition.

The non-manifold singularities in the combinatorial representation of a non-
manifold shape are characterized by defining non-manifold vertices and edges.
A vertex (0-simplex) v in a d-dimensional regular complex Σ, with d≥ 1, is a
manifold vertex if and only if the link of v in Σ is a triangulation of the (d−1)-
sphere Sd−1, or of the (d−1)-disk Bd−1. A vertex (0-simplex) v in a 1-dimensional
regular complex Σ is a manifold vertex if and only if the link of v consists of one
or two vertices. A vertex is called non-manifold otherwise.

An edge (1-simplex) e in a regular 3-complex Σ is a manifold edge if and only
if the link of e in Σ is a triangulation of the 1-sphere S1, or of the 1-disk B1.
An edge (1-simplex) e in a regular 2-complex Σ is a manifold edge if and only if
the link of e in Σ consists of one or two vertices. An edge is called non-manifold
otherwise.

The building blocks of the decomposition are manifold-connected (MC) com-
plexes. We consider a regular simplicial d-complex Σ embedded in the three-
dimensional Euclidean space, where d = 1, 2, 3. In such a complex, we say that
a (d−1)-simplex σ is a manifold simplex if and only if there exist at most two
d-simplexes in Σ incident in σ. A (d−1)-path such that every (d−1)-simplex
in the path is a manifold simplex is called a manifold (d-1)-path. Thus, we say
that two d-simplexes in Σ are manifold-connected if and only if there exists
a manifold (d−1)-path connecting them. Then, we call a regular simplicial d-
complex Σ a manifold-connected complex if and only if any pair of d-simplexes
in Σ are manifold-connected. Figures 1(a) and 1(b) show examples of manifold-
connected 2- and 3-complexes, respectively. Note that manifold-connected 2- and
3-complexes may contain both non-manifold vertices and edges. It can be eas-
ily seen that a 1-dimensional manifold-connected complex cannot contain either
non-manifold vertices or edges.
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(a) (b) (c)

Fig. 1. (a) Example of a manifold-connected 2-complex; (b) example of a manifold-
connected 3-complex; (c) MC-decomposition graph for the complex in Figure 1(a):
non-manifold edges e1, e2 and non-manifold vertices v1, v2, v3 define the non-manifold
singularity in the pinched torus of Figure 1(a).

A simplicial 3-complex Σ embedded in the three-dimensional Euclidean space
can be decomposed into manifold-connected one-, two- and three-dimensional
complexes, called Manifold-Connected (MC) components. Recall that a subset
Σ′ of a complex Σ is a sub-complex if Σ′ is a simplicial complex. Intuitively, a
decomposition ∆ of Σ is a collection of sub-complexes of Σ, such that the union
of the components in ∆ is Σ, and any two components Σ1 and Σ2 in ∆, if they
intersect, intersect at a collection of non-manifold vertices and edges. An MC-
decomposition is constructively defined by applying the following property: two
k-dimensional top simplexes σ1 and σ2 belong to the same MC-component if and
only if there exists a manifold (k−1)-path that connects σ1 and σ2 in Σ. It can
be proved that the MC-decomposition is unique and that the MC-decomposition
is the closest combinatorial counterpart of a Whitney stratification.

The MC-decomposition ∆ can be described as a hypergraph H =< N,A >,
called the MC-decomposition graph, in which the nodes correspond to the MC-
components in ∆, while the hyperarcs correspond to the non-manifold singular-
ities common to two or more components, or within a single component. The
hyperarcs that connect distinct components are defined as follows: any k com-
ponents C1, C2, · · · , Ck in the MC-decomposition, with k > 1, such that the in-
tersection J of all such components is not empty, and J is common only to the k
components, defines one or more hyperarcs with extreme nodes in C1, C2, · · · , Ck.
The intersection of components C1, C2, · · · , Ck consists of isolated non-manifold
vertices, or maximal connected 1-complexes formed by non-manifold edges. A hy-
perarc is a connected component of such intersection. Thus, we classify hyperarcs
as 0-hyperarcs, which consist only of one non-manifold vertex and as 1-hyperarcs,
which are maximal 0-connected 1-complexes formed by non-manifold edges. Fig-
ure 2(b) shows the MC-decomposition graph of the simplicial 2-complex depicted
in Figure 2(a). The complex is formed by three triangles incident at a common
edge e1 and by a dangling edge C4 incident at one extreme of e1. The MC-
decomposition graph consists of four nodes that represent the four components,
each of which is made of a single top cell, and of two hyperarcs. A 1-hyperarc is
associated with vertex v1 and edge e1, and a 0-hyperarc is associated with vertex
v2. Since a component C may contain non-manifold singularities, we represent
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Fig. 2. A simplicial 2-complex (a), its corresponding MC-decomposition graph (b) and
the exploded version of the MC-decomposition graph (c).

C in the decomposition graph with a node and with self-loops corresponding
to the non-manifold vertices and non-manifold edges. A 0-hyperarc corresponds
to a non-manifold vertex belonging to C, while a 1-hyperarc corresponds to a
maximal connected 1-complex formed by non-manifold edges and vertices all
belonging to C. Figure 1(c) shows the MC-decomposition graph for the pinched
torus depicted in Figure 1(a): the graph contains one self-loop corresponding to
the non-manifold edges and vertices forming the non-manifold singularity in the
shape.

5 Computing the MC-decomposition Graph

Our algorithm for computing the MC-decomposition of a simplicial 3-complex
Σ extracts first the maximal connected k-dimensional regular sub-complexes of
Σ of dimensions 0, 1 and 2, and then computes the MC-decomposition of each
k-dimensional regular sub-complex. To compute the MC-decomposition of a k-
dimensional regular complex, we use the property stated above that any pair
of manifold simplexes belonging to the same k-dimensional manifold-connected
component (for k= 1, 2, 3) must be connected through a manifold (k−1)-path.
This means that every MC-component C can be traversed by following the man-
ifold (k−1)-paths connecting the k-simplexes in C. We consider then a graph
G in which the nodes are the top k-simplexes, k = 1, 2, 3, and the arcs connect
any pair of top k-simplexes which share a manifold (k − 1)-simplex. The con-
nected components of such a graph are the manifold-connected components in
the MC-decomposition.

We compute first an exploded version of the MC-decomposition graph, that
we call the expanded MC-decomposition graph. In the expanded MC-decomposition
graph, that we denote as HE = (NE , AE), the nodes are in one-to-one corre-
spondence with the MC-components, while the hyperarcs are in one-to-one cor-
respondence with the non-manifold vertices and edges. A hyperarc corresponding
to a non-manifold vertex v (or to a non-manifold edge e) connects all the MC-
components that contain vertex v (or edge e). Figure 2(c) shows the expanded
MC-decomposition graph of the simplicial 2-complex depicted in Figure 2(a). A
hyperarc is associated with each non-manifold singularity of the complex.
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The MC-decomposition graph H is then computed from its expanded ver-
sion HE by merging in a single hyperarc connecting components C1, C2, ..., Cq
all the hyperarcs of G which connect all such components and correspond to
non-manifold vertices and edges which form a connected 1-complex. In other
words, if we consider the connected components of the 1-complex formed by the
non-manifold vertices and edges shared by C1, C2, ..., Cq, then the hyperarcs in
H joining C1, C2, ..., Cq are in one-to-one correspondence with such connected
components.

Our implementation of the MC-decomposition algorithm is based on the IS
library, which implements the Incidence Simplicial (IS) data structure together
with traversal and update operators. The IS data structure is a new dimension-
independent data structure specific for d-dimensional simplicial complexes, that
encodes all simplexes in the complex explicitly and uniquely, and some topolog-
ical relations among such simplexes [2]. We use such information to detect non-
manifold singularities in the input complex and to perform an efficient traversal
of the complex. By using the IS data structure, the computation of the MC-
decomposition graph has a time complexity linear in terms of the number of
simplexes in Σ.

6 Visualizing the MC-decomposition and the
MC-decomposition Graph

We have developed a tool for visualizing a decomposition of a simplicial com-
plex and its decomposition graph. This tool is called Graph-Complex Viewer
(GCViewer) and can visualize d-dimensional simplicial complexes, with d =
1, 2, 3, embedded in E3. GCViewer can be used as a stand-alone viewer for a
simplicial complex, or as a C++ library. GCViewer is general and is not tailored
to a specific decomposition. Thus, it is intended as a support to the development
and analysis of any graph-based representation for discretized shapes. Right now,
it is restricted to 3D shapes discretized as simplicial complexes, but it can be eas-
ily extended to deal with cellular shape decompositions. The MC-decomposition
algorithm, described before, has been developed as a plug-in for GCViewer.

GCViewer allows the user to specify a set of graphs, embedded in E3, and
provides a rich set of visualization capabilities to personalize the rendering of
both the complex and the graph. The user interface of GCViewer allows gener-
ating one or more views of the complex. For each view, it is possible to show,
hide, or personalize the rendering options of each component and graph that has
been defined. In GCViewer, we have developed a new technique for an effective
visualization of the graph representing the decomposition of a shape, that we
have applied in rendering both the MC-decomposition graph and its expanded
version. The issue here is that the graphs are not planar. Since the tool should
be a support for an effective shape analysis and semantic annotation, the lay-
out of the graph nodes should visually reflect the position of the components in
the shape decomposition (in our case, in the MC-decomposition). We have used
the Cartesian coordinates of the vertices in each MC-component of the original
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complex to compute an embedding of the nodes of graph in 3D space. We place
each node at the barycenter of its associated component. This greatly improves
the readability of both the MC-decomposition graph and of its exploded version
by also showing visually the correspondence with the shape decomposition.

Figure 3 depicts a screenshot from GCViewer showing the original shape, its
MC-decomposition (into twelve MC-components), the MC-decomposition graph
and its exploded version. The MC-decomposition is shown in the original shape
by assigning different colors to the components. Note that the MC-components
are the back, the seat, the two armrests, the four legs and four pieces which
connect the legs to the seat.

(a) (b) (c)

Fig. 3. A screenshot from GCViewer, that shows a complex representing an armchair,
highlighting its twelve MC-components (a), its MC-decomposition graph (b) and the
exploded version (c).

Figure 4(a) shows a shape formed by two bottles connected by two laminas
(2-dimensional MC-components), plus the caps, each of which consists of two
MC-components. The two bottles with the two laminas form a 1-cycle in the
shape. This is reflected in the cycle in the MC-decomposition graph, shown in
Figure 4(c). As shown by this example, there is a relation between the cycles in
the graph and the 1-cycles in the original shape which is not, however, a one-to-
one correspondence. Not all the cycles in the graph correspond to 1-cycles in the
shape, as shown in the example of Figure 3. 1-cycles in the shape that appear
as cycles in the MC-decomposition graph are those containing non-manifold
singularities. We are currently investigating the relation of the 1-cycles in the
shape with the properties of the MC-decomposition graph.

Beta binary versions of the visualization tool and of the MC-decomposition
algorithm are available at http://www.disi.unige.it/person/PanozzoD/mc/.
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(a) (b) (c) (d)

Fig. 4. A complex representing a pair of bottles connected by two laminas (a); an
expanded version of the complex that shows its internal structure (b); the corresponding
MC-decomposition graph (c) and the corresponding exploded graph (d).

7 Concluding Remarks

We have presented a decomposition for non-manifold shapes into manifold-
connected components. We have discussed the MC-decomposition graph as a de-
scription of the connectivity structure of the decomposition and we have shown
through examples how the combinatorial properties of the MC-decomposition
graph are related to the topology of the decomposed shape. We have also de-
scribed an innovative tool for visualizing the decomposition and its associated
graph.

The MC-decomposition and its graph representation are the basis for ap-
plications to the analysis, understanding, retrieval and semantic annotation of
non-manifold shapes. In our current work, we are using the MC-decomposition
as the basis for computing topological invariants of a non-manifold shape, like
the Betti numbers. These latter are computed by reconstructing from the MC-
decomposition what we call a shell-based decomposition. The shell-based de-
composition is obtained by combining together into closed components the MC-
components that form a 2-cycle in the shape. Betti numbers are an important
topological shape signature to be used for shape classification and retrieval.

Another important application is detecting form features in a non-manifold
shape, based on the structure of the single components and on the combinatorial
structure of the decomposition. This is a very relevant issue in CAD, where non-
manifold shapes are helpful in describing mechanical models, often obtained as
the idealization of manifold ones.

In our future work, we plan to use the MC-decomposition as the basis for
shape matching and retrieval. This unique topological decomposition can be
combined with unique descriptions of the manifold parts, like the Reeb graph,
thus forming the basis for a two-level shape recognition process. Moreover, an
important issue is to study how the MC-decomposition is affected by updating
the underlying shape and its simplicial discretization. In this context, we plan to
analyze and classify operators for modifying a non-manifold shape and to develop
algorithms for efficiently updating the decomposition based on such operators.
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