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Abstract

We present a framework using the Tensor Train decomposition (TT) to accurately and efficiently
solve volume and boundary integral equations in three dimensions. We describe how the TT decom-
position can be used as a hierarchical compression and inversion scheme for matrices arising from
the discretization of integral equations. For a broad range of problems, computational and storage
costs of the inversion scheme are extremely modest O

�

log N
�

and once the inverse is computed, it
can be applied in O

�

N log N
�

.
We analyze the TT ranks for hierarchically low rank matrices and discuss its relationship to

commonly used hierarchical compression techniques such as FMM, HSS, and wavelets. We prove
that the TT ranks are bounded for translation-invariant systems and argue that this behavior extends
to non-translation invariant volume and boundary integrals.

For volume integrals, the TT decomposition provides an efficient direct solver requiring signifi-
cantly less memory compared to other fast direct solvers. We present results demonstrating the re-
markable performance of the TT-based solver when applied to both translation and non-translation
invariant volume integrals in 3D.

For boundary integral equations, we demonstrate that using a TT decomposition to construct
preconditioners for a Krylov subspace method leads to an efficient and robust solver with a small
memory footprint. We test the TT preconditioners in the iterative solution of an exterior elliptic
boundary value problem (Laplace) formulated as a boundary integral equation in complex, multiply
connected geometries.

Keywords: Integral equations, Tensor Train decomposition, Preconditioned iterative solver,
Complex Geometries, Fast Multipole Methods, Hierarchical matrix compression and inversion

1. Introduction

We aim to efficiently and accurately solve equations of the form

aσ(x) +

∫

Ω

b(x)K(x , y)c(y)σ(y) dΩy = f (x), for all x ∈ Ω, (IE)

where Ω is a domain in R3 (either a boundary or a volume). When a 6= 0, the integral equation is
Fredholm of the second kind, which is the case for all equations presented in this work. A large class
of physics problems, typically formulated as PDEs, may be cast in this form. This approach is gen-
erally advantageous, garnering as much gains in dimensionality reduction and conditioning as the
physics of the problem allows. Generally, K(x , y) is a kernel function derived from the fundamental
solution associated with the relevant elliptic PDE—e.g. the Laplace, Helmholtz, or Stokes equations,
etc. The kernel function is typically singular near the diagonal (as y approaches x) but is smooth
otherwise. For the purposes of this paper, we also assume it is not highly oscillatory.

A discretization of Eq. (IE) produces a linear system of equations

Aσ = f, (LS)
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where A is a dense N×N matrix. Krylov subspace methods such as GMRES [SS86] coupled with the
rapid evaluation algorithms such as FMM [GR87] are widely used to solve this system of equations.
However, the performance of the iterative solver is directly affected by the eigenspectrum of Eq. (IE).

The eigenspectrum of the system, while typically independent of the resolution of the discretiza-
tion, can greatly vary, depending, in particular, on the geometric complexity of Ω and the kernel
K . The cases when conditioning and spectral clustering are good are common, and the system is
solved in a few iteration using a suitable iterative method. This however ceases to be the case for a
number of problems of interest (e.g., when different parts of the boundary approaching each other
closely). Such problems may either be solved by constructing an effective preconditioner for the
iterative solver or by using direct solvers, in which the system is solved in fixed time independent of
the distribution of the spectrum.

There have been a number of efforts to develop robust, fast direct solvers with linear complexity
for systems given in Eq. (LS). When Ω is a contour in the plane, extremely efficient O (N) algorithms
such as [MR05] exist. These algorithms may be extended to volumes in 2D and surfaces in 3D, pro-
ducing direct solvers with complexity O

�

N3/2
�

[Gil+12, HG12, Gil11]. More recently, approaches
that aim to extend linear complexity to Hierarchically Semi-Separable (HSS) matrices have been
developed [Cor+14, HY15]. Furthermore, a general inverse algorithm has been proposed for FMM
matrices [AD14].

These approaches have many advantages, and when feasible, yield compressed representations
of the inverse of A which can be efficiently applied, often many times faster than an FMM matrix-
vector multiply. For 2D problems, this type of methods have excellent performance and remain
practical even at high target accuracies, e.g 10−10.

For volume or boundary integral equations in 3D, especially in complex geometries, algorithmic
constants in the complexity of these methods grow considerably as a function of accuracy. In partic-
ular a large amount of memory is needed, limiting the range of practical target accuracies one can
achieve for a given problem, and complicating efficient parallel implementation, due to the need
to store and communicate large amounts of data. This also undermines their efficiency in terms of
ratio of the size of the problem solved to the amount of memory and computation required by the
solver [Wil+09].

These two solution schemes, i.e. simple iterative solvers (requiring only matrix-vector multipli-
cation) and direct solvers, represent two extremes of the spectrum of preconditioned iterative solvers.
In terms of computational cost and required memory, a direct solver produces an expensive pre-
conditioner that requires a single solver iteration to achieve the desired accuracy. On the other
extreme, a non-preconditioned iterative solver requires only the precomputation and storage of the
compressed form of the matrix, but may require a large number of iterations for each solve. Within
this spectrum lies preconditioned iterative solvers, where an approximate low accuracy inverse is
used as a preconditioner, requiring less memory and precomputation time than a direct solver, at
the expense of multiple iterations to achieve the desired accuracy.

By choosing the accuracy of the approximate inverse, the preconditioned solver approach makes
it possible to find a “sweet spot” for a particular type of problem and let the practitioner strike a
reasonable trade-off between precomputation time and solve time, within the available memory
budget.

This paper describes how the tensor train decomposition (TT) [OT10] can be used as a hierar-
chical compression and inversion scheme for matrix A. We show that for a range of accuracies of
the inverse, TT decomposition achieves significantly higher compression by finding a common basis
for all interactions at a given level of the hierarchy. For volume and boundary integrals in simple
geometries and for target accuracies up to 10−8, TT provides a direct solver offering a significant
advantage in memory consumption, at the expense of a moderate increase in computation time,
compared to other fast direct solvers. Additionally, we demonstrate that using the TT framework to
construct preconditioners for a Krylov subspace method leads to an efficient and robust solver with
a small memory footprint for boundary integral equations in complex geometries.

The main features distinguishing the TT framework from existing fast direct solver techniques
are:

• Logarithmic scaling. Given a target accuracy, the matrix compression and inversion steps based
on rank-revealing techniques as well as the storage are observed to scale as O

�

log N
�

. This
sublinear scaling, remarkably, implies that the relative cost of the computation stage prior to a
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solve (direct or preconditioned iterative) becomes negligible as N grows.

• Memory efficiency. One of the main issues of current fast direct solvers is that even when they
retain linear scaling, they require significant storage per degree of freedom for problems in
3D. Due to its logarithmic scaling, the TT decomposition completely sidesteps this, requiring
no more than 100 MB of memory for the compression and inversion of systems with a large
number of unknowns (N ∼ 107 to 108).

• Fast matrix-vector and matrix-matrix applies. If both of the operands are represented in the TT
format, O

�

log N
�

matrix-vector and matrix-matrix apply algorithms are available. Further-
more, O

�

N log N
�

matrix-vector apply algorithm exists for the multiplication of a matrix in
the TT format with a non-TT-compressed vector.

1.1. Related work

Solution of Eq. (LS) is computed with low computational complexity either iteratively leverag-
ing rapid evaluation algorithms such as FMM combined with Krylov subspace methods or directly
using fast direct solvers. At the heart of rapid evaluation or fast direct inversion algorithms lies the
observation that, due to the properties of the underlying kernel, off-diagonal matrix blocks have low
numerical rank. Using a hierarchical division of the integration domain Ω—represented by a tree
data structure—these algorithms exploit this low rank property in a multi-level fashion.

1.1.1. Iterative solvers for integral equations
During the 1980s, the development of rapid evaluation algorithms for particle simulations such

as the Fast Multiple Method [Rok85, GR87, GR97], Panel Clustering [HN89], and Barnes-Hut [BH86]
as well as the development of Krylov subspace methods for general matrices such as GMRES [SS86]
or Bi-CGSTAB [Vor92] provided O (kN) or O

�

kN log N
�

frameworks for solving systems of the form
Eq. (LS), where k is the required number of iterations in the iterative solver and directly depend on
the conditioning of the problem.

1.1.2. Direct solvers for integral equations
To avoid the issues related to conditioning of the system, researchers focused on the development

of fast direct solvers. Direct solvers also lead to substantial speedups in situations where the same
equation is solved for multiple right-hand sides.

The work on fast direct solvers for HSS matrices can be traced back to [SR94, GL96], and more
recently to [MR05], in which an optimal-complexity solver for boundary integrals in the plane was
presented. Extensions of this solver to surfaces in 3D were developed in [Gil+12, HG12, Gil11] and
in the related works of [Cha+06a, Cha+06b, Xia+10]. As we mentioned earlier, for 3D surfaces, the
complexity of inversion in these algorithms is O

�

N3/2
�

. Since this increase is due to the growth in
rank of off-diagonal interactions, additional compression is required to regain optimal complexity.
Corona et al. [Cor+14] achieved this for volume integral equations in 2D by an additional level of
hierarchical compression of the blocks in the HSS structure. While a similar approach can be applied
to surfaces in 3D, it results in a significant increase in required memory for the inverse storage as
well as longer computation times.

Ho and Ying [HY15] proposed an alternate approach using additional skeletonization levels
and implemented it for both 2D volume and 3D boundary integral equations using standard direct
solvers for sparse matrices in an augmented system. While the structure of the algorithms suggests
linear scaling, for 3D problems the observed behavior is still above linear.

In a series of papers on H- and H2-matrices, Hackbusch and coworkers constructed direct solvers
for FMM-type matrices. The reader is referred to [Bör+03, Beb08, Bör10] for in depth surveys.
The observed complexity for integral equation operators, as reported in [Bör10, Chapter 10], is
O
�

N log4 N
�

for matrix compression, O
�

N log3 N
�

for inversion, and O
�

N log2 N
�

for solve time
and memory usage, with relatively large constants.

More recently, a promising inverse FMM algorithm was introduced [AD14, Cou+15], demon-
strating efficient performance and O (N) scaling for 2D and 3D volume computations.
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1.1.3. Preconditioning techniques for integral equations
The convergence rate of GMRES is mainly controlled by the distribution of the eigenvalues in the

complex plane [Nac+92, Ben02] and preconditioning techniques aim to improve the rate by clus-
tering the eigenvalues away from zero. The distinguishing factors among preconditioning schemes
are the setup cost, the cost of apply, the potential for parallelization, and, needless to say, their effec-
tiveness in reducing the number of iterations. For excellent reviews on the general preconditioning
techniques the reader is referred to [Ben02, Wat15]. Here, we focus on the preconditioners tailored
for linear systems arising from the discretization of integral equations.

The bulk of preconditioning techniques for integral equations can be categorized as sparse ap-
proximate inverse (SPAI) or multi-level schemes. SPAI seeks to find a preconditioner M that satisfies
min‖I−M~A‖F subject to some constraint on the sparsity pattern of M—typically chosen a priori.
Here ~A denotes an approximate to A to make the optimization process economical. Multi-level
preconditioning methods include stationary iteration techniques like multigrid and single-grid low-
accuracy inverse.

Apart from SPAI and multi-level methods, some authors used incomplete factorizations as pre-
conditioner for integral equations [Wan+07, and references therein]. But because of their potential
instabilities, difficulty of parallelization, lack of algorithmic scalability, and non-monotonic perfor-
mance as a function of fill-ins [Ben02] they are less popular for integral equations.

Sparse approximate inverse preconditioners (SPAI). Motivated by their low computation and appli-
cation cost and their potential for parallelism, SPAIs with sparsity and approximation based on ge-
ometric adjacency (e.g. FMM tree) are the popular choice for boundary integral equations [Vav92,
Nab+94, TW96, Gra+96, TW97, Cha+97, Car+03, Car+05, Wan+07].

Vavasis [Vav92] introduced multiple SPAI schemes for boundary integrals. The schemes include
mesh-neighbor and hierarchical clustering. In mesh-neighbor, the sparsity pattern for M is the FMM
box and the matrix ~A is self and near neighbors. Hierarchical clustering improves ~A by including
first-order multipoles from far boxes.

Later, different flavors of mesh-neighbor scheme were used by other authors in similar contexts
[Nab+94, TW96, Pis+06]. For certain problems, mesh-neighbor is effective in reducing the number
of iterations but it does not exhibit grid independence in any case and is most effective when the
far interactions are negligible, e.g. [Pis+06]. Moreover, the effectiveness of SPAI preconditioners
(including diagonal and mesh-neighbor), with sparsity pattern based on FMM adjacency and fixed
number of points per leaf box, deteriorates with increased tree depth [Car+03, Car+05], because
the preconditioner becomes sparser and fails to capture exchange of global information.

To improve the performance of the mesh-neighbor scheme, Tausch and White [TW97] attempted
to incorporate the far field by including a first order multipole expansion in both M and ~A, which
requires solving a system of size O

�

log N
�

for each set of target points in a box. The resulting
preconditioner is not sparse but has constant blocks for far boxes and can be applied fast.

Carpentieri et al. [Car+03] and Giraud et al. [Gir+07] observed that the SPAI preconditioners
are effective in clustering most of the eigenvalues but leave a few close to the origin and removing
them needs problem-dependent parameter tuning. To remedy, these authors proposed low-rank
updates to the preconditioner using the eigenvectors corresponding the smallest eigenvalues of MA.

Note that, there are other sparsification schemes that can perceivably be applied to integral
equation. For example, Chan et al. [Cha+97] used discrete wavelet transform in the context of SPAI
as an improved sparsification tool for PDE matrices.

Multi-level methods. These schemes were introduced to address the shortcomings of SPAI. Grama et
al. [Gra+96] proposed a low-order and low-accuracy iterative inner solver as a multi-level precondi-
tioner, which was very effective in reducing the number of iterations. However, the ill-conditioning
of the system caused high number of inner iterations and consequently the scheme was not time
effective. Carpentieri et al. [Car+05] pursued this direction further and used a mesh-neighbor SPAI
as the preconditioner for the inner solver. Gürel and Malas [GM10] used a similar approach for
solving electromagnetic scattering problems.

Authors have opted for SPAI or iterative multi-level methods mainly because these methods have
O (N) complexity in time and memory by construction. Recently, leveraging randomized algorithm
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and fast direct solver schemes, preconditioners with competitive complexity and much better eigen-
spectrum clustering1 have been proposed [Beb05, QB13, Yin14, Cou+15].

Bebendorf [Beb05] and Benedetti et al. [Ben+08] constructed compression schemes for bound-
ary integral equations based on H-matrix approximation. To solve the resulting system, a low accu-
racy H-LU with accuracy εp was used as preconditioner for the iterative solver. The complexity of
H-LU is O(N | logεp|4 log2 N). In [Ben+08], the best speedup was achieved when using precondi-
tioner with εp = 10−1 and higher accuracies did not improve the time due to preconditioner setup
and apply overhead.

Quaife and Biros [QB13] proposed FMM- and multigrid-based preconditioners for the second-
kind formulation of the Laplace equation in 2D. They demonstrated that even with the exact in-
version in constructing the mesh-neighbor preconditioner, GMRES still requires many iterations.
To construct a better preconditioner, another level of neighbors were included and inverted using
ILU(10−3) combined with Sherman–Morrison–Woodbury formula. The preconditioner was further
improved by including a rank O

�

log N
�

approximation of the residual matrix A−Anear, where Anear
denotes the sparsified matrix (approximately) inverted to construct the preconditioner.

Ying [Yin14] constructed a very effective preconditioner for the iterative solution of integral
equation formulation of the Lippmann–Schwinger equation. The asymptotic setup and application
time of the preconditioner as well as its memory requirement are similar to those of direct solvers
but the preconditioner has a smaller prefactor. The proposed algorithm proceeds by numerically
constructing sparsifying operators for the system matrix. The sparsifying operators are applied in
linear time (by construction) and the resulting system can be inverted efficiently because of their
local nature using nested dissection or multifrontal methods. The preconditioner is then the inverse
of the sparsified system.

Coulier et al. [Cou+15] presented IFMM as a fast direct solver, where the matrix is converted to
an extended sparse matrix and its sparse inverse is constructed by careful compression and redirec-
tion of the fill-in blocks resulting in O (N) complexity for the algorithm. To achieve high-accuracy
solutions in a cost-effective way, the authors proposed using a low-accuracy IFMM as a precondi-
tioner in GMRES and demonstrated its effectiveness in reducing the number of iterations and the
computation time for different distribution of points in 3D.

1.1.4. Low-rank tensor approximation of linear operators
Tensor factorizations were originally designed to tackle high-dimensional problems in areas of

physics such as quantum mechanics. To be able to perform computations for these problems, the
curse of dimensionality needs to be addressed. The tensor train decomposition, is one of the tensor
representation methods developed for this purpose. Other factorization methods include the CP
(CANDECOMP/PARAFAC), Tucker, and Hierarchical Tucker [Hac+05] decompositions. For a general
survey of techniques and applications, see [Gra+13, Gra10].

Interestingly, it was observed that schemes of this type can be useful for low-dimensional prob-
lems, recast in the tensor form. Quantized-TT (QTT) algorithms reshape vectors or matrices into
higher dimensional tensors (i.e. tensorize or quantize) and then compute a TT decomposition
with low tensor rank. This was first proposed in [Ose09, Ose10] and more generally discussed
in [Kho11].

As we explain in §2 and Appendix A, the approximation of these tensorized arrays by a low-rank
TT decomposition corresponds to an approximation of the original systems by sums of Kronecker
products and can be seen as a generalization of [VLP92].

The observation that certain kinds of structured matrices may be efficiently represented using
the QTT format has been made for Toeplitz matrices [Ols+06, Ose+11], the Laplace differential
operator and its inverse [KK12, Ose10], general PDEs and eigenvalue problems [Kho11], convolu-
tion operators [Hac11], and the FFT [Dol+12], amongst others. In the context of boundary integral
equations, it has been used to speed up the quadrature evaluation for BEM [Kho+01].

Given a linear system whose corresponding matrix can be efficiently represented with TT, there
exist several algorithms to compute a TT representation for its inverse. In this work, we use the

1 With a simple calculation, it can be seen that any preconditioned system that satisfies ‖I−MA‖1 ≤ ε < 1 has bounded
condition number κ1(MA) ≤ (1+ ε)/(1− ε). Furthermore, Gershgorin’s theorem implies that the eigenvalues of MA are
within the ε-disc centered at 1 [GH97].
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alternating minimal energy (AMEN) and the density matrix renormalization group (DMRG) meth-
ods as proposed in [OD12, DS13a, DS13b]. Another such method is the Newton–Hotelling–Schulz
algorithm [Hac+08, Ols+08].

There are also various software toolboxes for low rank tensor approximation. We make use of
the Matlab TT-Toolbox [Ose12] for all tensor computations discussed in this article.

1.2. Contributions and outline

We present the tensor train decomposition as an effective and memory-efficient framework to
accelerate the solution of Eq. (LS). We present this algorithm as an alternative approach for the
hierarchical compression and inversion of such linear operators and discuss its relationship to com-
monly used hierarchical compression techniques such as FMM, HSS, and wavelets. Furthermore, we
demonstrate that the TT ranks are bounded for translation-invariant systems and we argue that this
behavior extends to non-translation invariant volume and boundary integrals.

In §4, we introduce strategies to generalize the TT inversion process as a product of matrix
factors in the TT form to achieve faster TT inversion. In §5.1, we present results demonstrating the
astounding performance of the TT (in terms of inversion costs and solve times) when applied to both
translation and non-translation invariant volume integrals in 3D, for which existing direct solvers
are generally not practical. Variable coefficient elliptic PDE problems in three dimensions often arise
when dealing with heterogeneous media in Stokes flow, electrostatics (Poisson–Boltzmann), or low
frequency scattering (Lippmann–Schwinger). The results in §5.1 suggest that the TT decomposition
might be highly effective in solving these problems quickly and accurately.

In §5.2, we test a TT-based preconditioner in the iterative solution of an exterior elliptic boundary
value problem (Laplace) formulated as a boundary integral equation in complex, multiply connected
geometries. The problems presented in that section are close to a broad range of boundary value
problems with low frequency kernels, particularly for the simulation of rigid bodies in magnetostat-
ics, electrostatics, and particulate Stokes flow. We compare the performance of the preconditioner
with a Matlab implementations of preconditioners based on multigrid and Hierarchical Interpola-
tive Factorization (HIF) [HY15]. We show that the TT decomposition approach, while providing
speedups similar to that of HIF and other fast direct solvers, has significantly smaller and better
scaling in the setup costs and memory footprint.

1.3. Scope and limitations

In this work we only consider linear systems from Fredholm integral equation of the second
kind. Also, we will not consider adaptive hierarchical decomposition of the domain giving rise
to non-uniform trees. Therefore the distribution of sample points in volume integral equations is
isotropic in our examples. All our numerical experiments are performed sequentially in Matlab.
Extension of some of the TT compression and inversion algorithms to obtain good parallel scaling is
an interesting research direction in its own right.

The main limitation of the current framework as a hierarchical inversion tool of linear operators
is the quartic2 dependence of the algorithmic constant on the TT ranks in the inversion algorithm,
see §4.1. In our experiments, when the linear system is non-translation invariant due to the ge-
ometry (the case of surfaces in 3D), the required TT ranks for a desired accuracy grow and slow
down the inversion algorithm as well as the inverse apply for accuracies larger than 10−4. The high
TT ranks for these cases is due to the fact that, unlike other techniques, TT compresses all inter-
actions at each level. While this is enormously advantageous in simple geometries, certain parts
of the operator may become relatively incompressible in complex geometries (e.g. so-called self or
near-interactions). We believe the TT decomposition may be extended to overcome this limitation
but such extension is beyond the scope of this work.

2. Mathematical and algorithmic preliminaries

In this section, we briefly describe the tensor train (TT) decomposition and its application to
the approximation of tensorized vectors consisting of samples of functions with hierarchically subdi-
vided domain. Matrices arising from the discretization of Eq. (IE) in this setting are interpreted as

2Assuming the inverse has similar TT ranks to that of A, which is the case for systems arising from integral equations.
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tensorized operators acting on such tensorized vectors. In this section as well as in §3, we outline
how this interpretation allows us to effectively use the TT as a tool for hierarchical compression of
integral operators.

2.1. Nomenclature

We use different typefaces to distinguish between different mathematical objects, namely we
use:

− Roman letters for continuous functions: f (x), K(x , y);
− calligraphic letters for multidimensional arrays and tensors: f (i1, . . . , id), K (i1, j1, . . . , id , jd);
− sans-serif for vectors and matrices: f(i), K(i, j); and
− typewriter for the TT decompositions of tensors: f, K.

We use Matlab’s notation for general array indexing and reshaping. Given a multi-index (i1, . . . , id),
we will denote the corresponding one-dimensional index obtained by ordering multi-indices lexi-
cographically, by placing a bar on top and removing commas between indices: i = i1i2 · · · id . This
mapping from multi-indices to one-dimensional index defines a conversion of a multidimensional
array to a vector which we denote b= vec(b), with b(i1i2 · · · id) = b(i1, i2, . . . , id).

2.2. Tensor train decomposition

The tensor train decomposition is a highly effective method for compact low-rank approximation
of tensors [OT10]. For a d-dimensional tensor A(i1, i2, . . . , id), ik ≤ nk, sampled at N =

∏d
k=1 nk

points, the TT decomposition has the form

A(i1, i2, . . . , id) :=
∑

α1,...,αd−1

G1(i1,α1)G2(α1, i2,α2) . . . Gd(αd−1, id), (2.1)

where, each two- or three-dimensional Gk is known as a tensor core. The ranges of auxiliary indices
αk = 1, . . . , rk determine the number of terms in the decomposition. We refer to rk as the kth TT-
rank, the analog of the rank in a low-rank factorization of a matrix. For algorithmic purposes, it is
often useful to introduce dummy indices α0 and αd , and let the corresponding TT ranks r0 = rd = 1;
in this way, we can view all cores as three-dimensional tensors.

For a tensor of dimension d, the kth unfolding matrix is defined as

Ak(pk, qk) = Ak(i1i2 · · · ik, ik+1 · · · id) = A(i1, i2, · · · , id) for k = 1, . . . , d, (2.2)

where pk = i1 · · · ik and qk = ik+1 · · · id are two flattened indices. Using Matlab’s notation

Ak = reshape

 

A,
k
∏

`=1

n`,
d
∏

`=k+1

n`

!

. (2.3)

The ranks of the TT decomposition are related to the ranks of unfolding matrices. A low-rank
TT decomposition can be obtained by a sequence of low-rank approximations to Ak (e.g. using a
sequence of truncated SVDs). More generally, given a low-rank approximation routine, a generic
algorithm to compute the TT decomposition proceeds as in Algorithm 1.

Using the notation given in Algorithm 1, a low-rank decomposition of the unfolding matrix
Ak ≈ UkVk may be obtained by multiplying Uk by the first k − 1 cores Gk already computed and
setting Vk = Vk. Oseledets and Tyrtyshnikov [OT10] show that in SVD-based TT compression, for
any tensor A, when the low-rank decomposition error for the unfolding matrices is optimal for rank
rk,

εk =


Ak −UkVk




F = min
rank (B)≤rk



Ak −B




F , (2.4)

the corresponding TT approximation A satisfies

‖A − A‖2
F ≤

d−1
∑

k=1

ε2
k . (2.5)
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Algorithm 1 TT DECOMPOSITION.
Require: Tensor A, and target accuracy ε

1: M1 = A1 // First unfolding matrix
2: r0 = 1
3: for k = 1 to d − 1 do
4: [Uk,Vk] = lowrank_approximation(Mk,ε)
5: rk = size(Uk, 2) // kth TT rank
6: Gk = reshape

�

Uk, [rk−1, nk, rk]
�

// kth TT core

7: Mk+1 = reshape
�

Vk, [rknk+1,
∏d
`=k+2 n`]

�

// Mk+1 corresponds to the (k+ 1)th
unfolding matrix of A

8: end for
9: Gd = reshape

�

Md , [rd−1, nd , 1]
�

// Set last core to the right factor in the
low rank decomposition

10: return A

Given a prescribed upper bounds rk for the TT ranks, there exists a unique optimal approximation
in TT format Aoptimal and the approximation A obtained by the SVD-based TT algorithm is quasi-
optimal, i.e.

‖A − A‖F ≤
p

d − 1


A − Aoptimal





F . (2.6)

The direct application of Algorithm 1, where the ranks rk are obtained using a rank-revealing
decomposition still leads to relatively high computational cost, O (N) or higher, which is exponential
in the dimension d. The key advantage of the TT approximation is the multi-pass AMEN (Alternat-
ing Minimal Energy) Cross algorithm of [OT10], in which a low-TT-rank approximation is initially
computed with fixed ranks and is improved upon by a series of passes through all cores.

The analysis and experiments in [DS13a, DS13b] show that both the approximation and the
inverse compression AMEN algorithms exhibit monotonic, linear convergence. We observe this
throughout all experiments presented in this work as well. The resulting algorithm typically scales
linearly with dimension.

Quantized-TT: rank and mode size implications. While the algorithms and the analysis for the TT de-
composition are generic, our work focuses on their application to function and kernel sampled in two
or three dimensions by casting them as higher dimensional tensors. This type of TT decomposition
is usually referred to as Quantized-TT or QTT. In the process of tensorization, QTT splits each dimen-
sion until each tensor mode nk (k = 1, . . . , d) is very small in size. For instance, a one-dimensional
vector of size 2d is converted to a d-dimensional tensor with each mode of size 2 implying that
d ≈ log N .

Computational Complexity and Memory Requirements. Because AMEN Cross and related TT rank
revealing approaches proceed by enriching low-TT-rank approximations, all computations are per-
formed on matrices of size rk−1nk×rk or less. Performing an SVD on such matrices is O

�

r2
k−1n2

k rk + r3
k

�

[GVL12]. Other low-rank approximations such as the ID [Che+05] have similar complexity. As a
consequence, computational complexity for this algorithm is bounded by O

�

r3d
�

or equivalently

O
�

r3 log N
�

, where r = max(rk) is the maximal TT-rank that may be a function of sample size N
and accuracy ε.

In some cases, as we will discuss in more detail below, the maximal TT-rank r can be bounded as
a function of N . For differential and integral operators with non-oscillatory kernels, as well as their
inverses, r typically stays constant or grows logarithmically with N [KK12, Ose10, Ose+11]. If this
is the case, the overall complexity of computations is sublinear in N .

2.3. Applying the QTT decomposition to function samples

Our goal is to use the QTT decomposition to compress matrices in Eq. (LS). In this section,
we cast QTT as an algorithm operating on a hierarchical partition of the data, providing a better
understanding of its performance. In the next section, we formally prove that such decompositions
indeed have low TT-ranks.
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Let f : Ω → R be a function on a compact subset Ω of RD. We consider hierarchical partitions
of Ω into disjoint sets; at each level of the partition, each subset is split into the same number of
subsets n.

This partition can be viewed as a tree T with domains at different levels as nodes, and edges
connecting a domain to all subdomains it is split into. We number levels from 2 to d, starting with
the finest level—we use the first index for indexing samples in each domain. The domains at the
finest level can be indexed with a multi-index (i2, . . . id) where i` indicates which of n branches was
taken at level `. For each leaf domain we pick n1 sample points x i1,i2...,id , adding an additional index
i1 ≤ n1 to the multi-index. Thus, we defined a tensor

fT (i1, i2, . . . , id) = f (x i1,i2,...,id ), (2.7)

with each index corresponding to a level of the tree. Flattening this tensor yields a vector of samples
f = vec(fT ).

If we compute the TT decomposition given in Eq. (2.1) for this d-tensor, we obtain an approxi-
mation to f as a sum of the terms of the form

G1(α0, i1,α1)G2(α1, i2,α2) . . . Gd(αd−1, id ,αd), (2.8)

where each factor G` corresponds to a level of the hierarchy in T .

QTT decomposition as a hierarchical adaptive filter. To gain further intuition about the compression of
function samples using the QTT decomposition, it is instructive to consider how the decomposition
operates step by step in Algorithm 1. The matrix compression is illustrated in Fig. 1 and is discussed
later in this section, nevertheless the structure of decomposition shown in the lower part of the figure
is identical for both vectors and matrices. At the first step, column c j of the matrix M1 consists of n1
samples of the finest-level domain indexed by i1. The low-rank factorization of this matrix with rank

A =

A1 =
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16× r1
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4r1 × r2
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r2 × 4
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4r2 × 1

M3 = U3⇒ G3
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Figure 1: STEPS FOR THE TT DECOMPOSITION GIVEN IN ALGORITHM 1 FOR A MATRIX WITH d = 3. For
clarity, the colors of the blocks in the unfolding matrices match that of the blocks in the tree. The
main steps of the algorithm are (i) computing a low rank decomposition UkVk for the corresponding
unfolding matrix Mk; (ii) taking Uk (in orange) as the kth TT core; and (iii) interpreting the right
factor Vk as a matrix in level k+ 1 to form Mk+1. If the low rank decomposition used is interpolatory
(as implied in the figure by the uniform subsampling of the tree nodes), this process corresponds to
finding a hierarchical basis of matrix block entries.
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r1 can be viewed as finding a basis of r1 ≤ n1 vectors forming matrix V1, such that all vectors c j
can be approximated by linear combinations of this set of row vectors with a given accuracy. If the
decomposition is interpolatory, this corresponds to picking a set of rows in M1 (that is, subsampling
each leaf domain in the same way), such that remaining samples can be interpolated from these
using the same (n1 − r)× r interpolation operator.

At the next step, the subvectors for each tree node at the coarser level 2, are arranged into
vectors, which form columns of the new matrix M2, and compressed in the same manner. Thus, if
interpolatory decomposition is used, each step of the process can be viewed as finding the optimal
subsampling of the previous level and an interpolation matrix.

Computing a QTT decomposition of a signal can be viewed as a process of computing a set of
adaptive filters, depending on the signal the QTT is applied to. These filters can be viewed as similar
to the analysis low-pass filters in a wavelet transform. We discuss this analogy briefly, as it provides
intuition why QTT is effective for integral operator matrices [Bey+91]. More details on QTT-based
wavelets can be found in [OT11].

The simplest wavelet transform for a vector s0 of length N = 2d , the Haar transform, is de-
termined by two filters, L = [ 1p

2
, 1p

2
] and H = [ 1p

2
,− 1p

2
]. These filters are applied to generate a

sequence of smooth and detail vectors sk and dk, of lengths 2d−k, k = 0, . . . , d. A single step of the
wavelet transform at a level ` amounts to splitting the signal into subvectors of length 2, arranging
them into a 2× 2d−`−1 matrix, and multiplying this matrix on the left by row vectors L and H re-
spectively, to obtain the vector of length 2d−`−1 of smooth coefficients s`+1 to be passed to the next
level, and a vector of detail coefficients d`+1 of the same length.

The reconstruction proceeds using two synthesis filters eL = [ 1p
2
, 1p

2
] and eH = [ 1p

2
,− 1p

2
], sat-

isfying LT
eL+ HT

eH = I, which for the Haar wavelets coincide with L and H, respectively. Conse-
quently, s` = eLs`+1+ eHd`+1. We observe that if all detail coefficients are discarded, then the formula
s` = eLs`+1 is similar to the formula Mk = UkVk, with nk = 2, rk = 1, and Uk playing the role of the
low-pass reconstruction filter eL and Vk corresponding to smooth coefficients.

Thus, one can view the QTT decomposition as structurally similar to a discrete wavelet trans-
form, with the following differences: (i) the reconstruction low-pass filters are computed adaptively
on each level to minimize reconstruction error, (ii) all detail coefficients are discarded and effectively
all information about the signal is encoded in the computed filters, (iii) the subsampling factor at
each level is determined adaptively, instead of being fixed at 2. While the standard wavelet theory
clearly does not apply in this setting, and separate analysis is needed (see §3), the wavelet anal-
ogy provides a connection to the previously proposed method [Bey+91] for compressing integral
equation matrices.

Remark 2.1. The inverse of flattening (i.e., reshaping the one-dimensional vector to a d-dimensional
tensor) applied to a vector of samples of size n1nd−1, yields a tensor, so formally we can start with a
suitably-sized unorganized sequence of samples of a function and tensorize it. Implicitly, this defines a
hierarchical partition of this set of samples; reordering the input vector changes the partition, and gives
a different tensor, with a one-to-one correspondence between different partitions and permutations of
the elements of the input vector.

The ranks of TT factorizations of the resulting tensors strongly depend on the choice of permutation.
A bad choice (e.g. with distant points grouped in leaf nodes) may yield large TT ranks. For instance, for
D > 1, sampling f : [0,1]D → R on a regular grid and indexing according to the dictionary order will
yield suboptimal ranks. To obtain good compression, the ordering needs to represent a geometrically
meaningful partition.

2.4. TT for samples of an integral kernel
Consider the matrix A in Eq. (LS), with entries sampled from the integral kernel K(x , y)

A(i, j) = K(x i , y j), x i , y j ∈ Γ⊂ RD (D = 1,2, or 3). (2.9)

for a set of M targets {x i} and N sources {y j}. This is a particular instance of the setting described
above, with f = K and Ω = Γ×Γ.

Let the target and source trees on Γ be denoted by Ttrg and Tsrc. Both of the trees are of depth
d and the number of children at all non-leaf levels of the trees is m and n respectively. There are
respectively m1 and n1 points in the target and source tree leaf nodes and the total numbers of
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points are M = m1md−1 and N = n1nd−1. Also, let T denote the product tree Ttrg × Tsrc, whose
nodes at each level consist of pairs of source and target nodes.

Current fast solvers exploit the fact that matrix blocks representing interactions between well-
separated target and source nodes at a given level are of low numerical rank. One can interpret T
as a hierarchy of matrix-blocks, and in §3 we show that the TT structure for this hierarchy can be
inferred from the standard hierarchical low rank structure.

At a given level ` (recall that levels are numbered starting at the finest) each node corresponds
to a matrix block with row indices corresponding to a node of Ttrg and column indices of a node
in Tsrc, indexed by integer coordinate pairs (ik, jk) with k ≤ `. Equivalently, we can consider block
integer coordinates bk ∈ {1, · · · , mknk} for T such that bk = ik jk.

We can then apply the TT decomposition to the corresponding tensorized form of A, AT , a
d-dimensional tensor with entries defined as

AT (b1, b2, . . . , bd) = AT (i1 j1, i2 j2, . . . , id jd) = A(i1i2 · · · id , j1 j2 · · · jd) = K(x i , y j), (2.10)

and obtain a TT factorization A. Each core of A, Gk(αk−1, ik jk,αk) depends only on the pair of source
and target tree indices at the corresponding level of the hierarchy. For matrix arithmetic purposes,
such as the matrix-vector product algorithms in §4.2, the cores are sometimes reshaped as mk × nk
matrices parametrized by αk−1 and αk.

In Fig. 1, we illustrate the TT decomposition algorithm applied to a matrix A for binary source
and target trees (n = m = 2) with depth d = 3 and four points in the leaf nodes n1 = m1 = 4,
implying N = M = 16. In this example, the tree T is equivalent to a matrix-block quadtree.

3. Tensor-Train rank behavior of integral equation operators

In this section, we present an analysis of the TT ranks of QTT-compressed form of matrices
obtained from integral kernels. As indicated in §1, integral equation formulation of PDEs often
involves an integral kernel K(r) with a singularity at r = 0, and are usually of the form

aσ(x) +

∫

Ω

b(x)K(||x − y||)c(y)σ(y) dΩy = f (x), (IE)

where Ω is a domain in RD for D = 1, 2,3 (either a boundary or a volume). After we discretize the
integral (e.g. with Nyström discretization using the appropriate quadrature), this becomes a linear
system of the form

N
∑

j=1

w j

h

aδ(x i − y j) + b(x i)K(||x i − y j ||)c(y j)
i

σ(y j) = f (x i), (3.1)

where w j denotes the appropriate quadrature weight. We can write the system in matrix form as

Aσ = f, (LS)

where A := aI+BKC, in which B and C are diagonal matrices with entries b(x i) and c(y j), respec-
tively.

3.1. Translation invariant kernels
If b ≡ c ≡ 1, then the kernel becomes translation invariant in RD. The extent the corresponding

matrix inherits this property depends on the geometry of Γ and on how targets x i and sources y j
are sampled. One example where we can exploit this to great advantage is when Ω is a box in RD

sampled on a uniform grid. To understand the rank behavior of the TT decomposition, we explore
the relationship between the hierarchical low-rank structure exploited by the FMM, H , or HSS
matrices and the matrix-block low rank structure exploited by the TT decomposition.

We begin by recalling a common classification for pairs of boxes on Ttrg ×Tsrc.

Definition 3.1. A pair of boxes (Bi , B j) ∈ Ttrg ×Tsrc is said to be well-separated if

dist(Bi , B j)≥max(diam(Bi), diam(B j)). (3.2)
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Definition 3.2. We define the far field F`(Bi) of target box Bi as the subset of boxes in Tsrc at level `
such that (Bi , B j) is well-separated. Similarly, we define its near field N`(Bi) as the subset which is not
well-separated.

In a uniformly refined tree,
�

�N`(Bi)
�

� ≤ 3D for all Bi ∈ Ttrg. For the case of adaptive trees, it is
common practice to impose a level-restricted refinement, making the number of target boxes in the
near field bounded even if neighbors at multiple levels are considered.

For all B j ∈ F`(Bi), given a desired precision ε, standard multipole estimates [GR87] show
that for a broad class of integral kernels K the matrix block Ai, j corresponding to the evaluation of
Eq. (3.1) with (x i , y j) ∈ Bi × B j has numerical low rank ki, j . This rank is bounded by a constant kε
depending only on the kernel and ε.

In fact, for kernels that arise in integral formulations of elliptic PDEs, multipole expansions or
Green’s identities may be used to prove a stronger result: that the rank of a block with entries
evaluated at (x , y) ∈ S × T is bounded by kε for any well-separated sets S and T . This implies that
interactions between a box B and any subset of its far field have bounded rank.

Definition 3.3. For a matrix A given in Eq. (LS) generated by the partitions of Ω corresponding to
Tsrc and Ttrg, we say A is FMM-compressible if for a given accuracy ε, any matrix sub-block AS,T
corresponding to evaluation at (x , y) ∈ S×T for well-separated sets S and T is such that rank ε(AS,T )≤
kε.

Theorem 3.4. Let K(r) be a translation-invariant kernel in Eq. (IE), for a box Ω ⊂ RD. Let A be the
corresponding matrix in Eq. (LS), sampled on a translation invariant grid. If A is FMM-compressible,
then the tensorized form AT for the product tree T = Tsrc ×Ttrg has bounded TT ranks

r =max(rk)≤ k2
ε + 2D− 1. (3.3)

Proof. In order to prove the theorem, we need to find an upper bound for the ε-rank of the unfolding
matrices. This bound is then valid for the corresponding TT rank, as indicated in §2. Lets consider
the unfolding matrix A`T corresponding to interactions of boxes in level ` of the tree T . As it
was mentioned in §2.4 and Remark 2.1, columns of A`T are vectorized matrix blocks {vec(Ai, j)}
comprising all near and far interactions between boxes at that level. We can permute the columns
to place those corresponding to the near-field interactions first

A`T =
�

Anear
T Afar

T

�

. (3.4)

The key observation is that, because boxes at a given level are translations of a reference box, due
to translation invariance, if the sampling is the same across boxes, we need only consider inward
and outward interactions for one box per level. This is also why fast solvers based on hierarchical
structures such as HSS need only compute one set of matrices per level.

For near interactions, that means only one set of interactions between a representative box and
some of its neighbors (including itself) is needed. This implies rank (Anear

T )≤ 2
�

�N`[B]
�

�−1, since all
columns in this subset are identical to the outgoing or incoming interactions of that representative
box. For the case of a uniformly refined tree

�

�N`[B]
�

� ≤ 3D, and due to symmetries, rank (Anear
T ) ≤

2D− 1.
For columns in Afar

T , we use an interpolative decomposition (ID) to compute a low rank approxi-
mation for the matrix blocks

Ai, j ≈ LiMi, jR j , (3.5)

where Li and R j are interpolation matrices and Mi, j is a sub-block of Ai, j corresponding to skeleton
rows and columns [Che+05, Mar+07, Tyr00]. Given that |Bi | =

∏

i≤` ni , |B j | =
∏

j≤` m j , Li is of
size |Bi | × ki, j and Rk is of size ki, j × |B j | and Mi, j of size ki, j × ki, j . Substituting Eq. (3.5) for each
vectorized column Ai, j , we have

vec(Ai, j) = vec(LiMi, jR j) = (RT
j ⊗ Li)vec(Mi, j). (3.6)

Due to translation invariance, we may construct a matrix of all far-field interactions with a model
target box B, and apply an ID to obtain an interpolation matrix L and corresponding row skeleton
set which are valid for all boxes at level `.3 An analogous computation for a model source box may

3Equivalent densities may be used to accelerate this computation, as it is done in [Cor+14] for HSS matrices.
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be used to obtain R and the corresponding column skeleton set. By assumption, the corresponding
ranks will be bounded by kε. As a consequence, the pre-factor on the vectorized interpolation
formula in Eq. (3.6) becomes the same for all far-interaction blocks. If we define Mfar

T as the matrix
with columns vec(Mi, j), this means

Afar
T = (R

T ⊗ L)Mfar
T . (3.7)

This gives us a low rank decomposition of Afar
T , with rank at most k2

ε .
Hence, the rank of the unfolding matrix A`T is bounded by a constant k2

ε + 2D− 1.

Remark 3.5. For an interval (D = 1), we can reduce this to 2kε + 2D − 2 arguing that the matrix
with blocks Mi, j (with near-field interactions zeroed out) is block-Toeplitz. Experiments with unfolding
matrices for D = 2,3 and observation of the resulting TT ranks and column basis using an ID (as
schematically depicted in Fig. 1) suggest a similar bound (with linear dependence on kε) is true for
D > 1.

3.2. Non-translation invariant kernels

The (discrete) integral operator can be non-translation invariant either due to nontrivial b(x)
or c(y), e.g. in Lippmann–Schwinger, Poisson–Boltzmann or other variable coefficient elliptic equa-
tions, or due to the geometry of the discretization (in the sense that Tsrc and Ttrg correspond to non-
translation invariant partitions). For the former case, we can also conclude TT ranks are bounded
as a direct corollary of Theorem 3.4.

Corollary 3.6. Let K(r) be a translation invariant kernel in Eq. (IE), for a box Ω ⊂ RD. Let A :=
aI + BKC be the corresponding matrix, sampled on a translation invariant grid. Let K be FMM-
compressible, with TT ranks bounded by the constant rK

ε . Further, let b(x), c(y) both admit com-
pact TT representations with rank bounds rb

ε , rc
ε . Then the tensorized form AT for the product tree

T = Tsrc ×Ttrg has bounded TT ranks

rA
ε =max(rk)≤ rb

ε rK
ε rc
ε + 1. (3.8)

Proof. By Theorem 3.4, we know that K being FMM-compressible ensures the corresponding ten-
sorized version on T has bounded TT ranks. Regarding b(x) and c(y), by assumption, they are
smooth, non-oscillatory functions, and therefore their TT ranks are expected be small (see [KS15,
Big+14, Hac+05] for rank estimates of functions).

Further, we can readily observe that, the diagonal matrices B and C have TT structure essentially
the same as the TT structure of b and c. Looking at the first unfolding matrix of the tensorized B, if
we ignore columns with all zero elements,

B1
T (i1 j1, i2 j2 . . . id jd) =











1 0
0 0
0 0
0 1











�

b(x1) b(x3) . . . b(xN−1)
b(x2) b(x4) . . . b(xN )

�

, (3.9)

where the second factor on the right hand side is the first unfolding matrix of b. Hence, the TT ranks
of both decompositions are the same.

Following the structure of the TT matrix-matrix product algorithm, which is essentially identical
to that of the TT compressed matrix-vector product in §4.2, it is apparent that the ranks of the
tensorized form of BKC, before any rounding on the TT cores is performed, is equal to the product
of the corresponding ranks (as the new auxiliary indices are a concatenation of those of each factor).

We can thus bound each the ranks of our matrix by the product of the corresponding ranks of
B, K and C. Adding an identity matrix aI, which is of rank 1 in TT form (a Kronecker product of
identities), adds at most 1 to this bound. Taking a maximum over all TT ranks, we obtain the desired
bound

rA
ε =max(rk)≤ rb

ε rK
ε rc
ε + 1. (3.10)
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Non-translation invariance due to complex geometry. The general and harder to analyze case is when
the operator is non-translation invariant due to Γ. This is often because the geometry of Γ makes
it impossible to partition it into a spatial hierarchy of translates. This is indeed the general case for
linear systems coming from boundary integral equations defined on curves in R2 or surfaces in R3.

From our experiments with boundary integral operators defined on smooth surfaces in R3, which
we present in §5.2, we observe that TT ranks are still bounded or slowly growing with problem size
N , although they are generally much larger than the corresponding ranks for the volume in R3.
Further, we have observed that compressing only far-field interactions at a given level leads to
substantially reduced TT ranks.

Although further analysis and experimentation are needed, we conjecture that for kernels which
are translation invariant in the volume, the rank of far-field interactions will remain bounded. Near
and self interactions are evidently dependent on surface complexity, although we expect that if the
discretization is refined enough for a smooth surface, a relatively small basis of columns of Anear

T
may still be found.

These findings suggest that a more general factorization based on TT compression of only far
field interactions may be useful, especially for operators defined on complex geometries.

4. TT-compressed approximate inverses

In this section we describe how an approximate inverse of a matrix in the TT format can be
constructed, and how a matrix in the TT format can be applied efficiently to an arbitrary vector.
These are the two essential components of a direct solver based on TT factorization (respectively,
corresponding to matrix factorization and solve in sparse solvers) and of a TT-based preconditioner,
when the inverse is computed with low accuracy and applied at each iteration of an iterative solver.

4.1. TT matrix inversion

TT inversion methods provide efficient ways to compute a TT decomposition of A−1 given the
TT decomposition of A. In these algorithms, the matrix equation for the TT cores of the inverse
is solved iteratively. Starting from an initial guess for the inverse in the TT form, these algorithms
proceed by iteratively cycling through the cores (freezing other cores) and solving a linear system
to update the current core of A−1. Since the TT ranks of the inverse are not known a priori, what
distinguishes the inversion algorithms are the strategies employed to increase the ranks of the cores
as needed to accelerate convergence to an accurate representation of the inverse. Further details
about these algorithms can be found in Appendix B, Appendix C. and [OD12, DS13a, DS13b].

We note that, except for the case where the maximum TT rank rA for matrix A is 1, there are
no guarantees that the TT ranks of A−1 will be small even if TT ranks of A are small. In [Tyr10],
for rA = 2, it is proven that rX ≤

p
N , and this inequality is shown to be sharp. Nonetheless, for

the integral kernels considered in this work, extensive experimental evidence shows that they are
within a small factor of each other. This observed correlation in rank behavior is also evident in the
experimental scaling of the inverse compression and inverse apply, as shown in §5.

Inverting a matrix in the TT form. Given a representation of a matrix A in the TT form, we want
to produce a TT representation for the inverse A−1. The approximate inversion schemes have a
common starting point where they consider the matrix equations AX= IN or AX+XA= 2IN and
extract a TT decomposition for X. If we vectorize AX= IN using the identity for products of matrices,
vec(ABC) = (CT ⊗A)vec(B), we obtain

(IN ⊗A)vec(X) = vec(IN ). (4.1)

In [OD12, DS13a, DS13b], DMRG (Density Matrix Renormalization Group) and AMEN (Alternating
Minimal Energy) minimization methods are proposed.

Given an initial set of cores {Wk}dk=1 and corresponding TT ranks {ρk}dk=1 for X, fixing all but
Wk, turns Eq. (4.1) into a reduced linear system, with a matrix of size nkρk−1ρk × nkρkρk−1. All
methods cited above solve each one of these local systems in their descent step towards an accurate
TT decomposition for X.
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Preconditioning local systems. The condition number of the original linear system directly affects the
performance of iterative solvers used to solve the local systems outlined above. When the original
linear system is not well-conditioned, e.g. due to complex geometry [QB13], it is highly desirable
to precondition them so that performance of the inversion algorithm does not degrade.

The matrices in each local system have tensor structure—as described in [DS13a, DS13b], and
Appendix C—that can be exploited to construct preconditioners for each of these local systems.
However, we found the block-Jacobi preconditioners available in the TT Toolbox to be ineffective
for matrices obtained from integral equation formulations. More general preconditioners based on
low-rank tensor approximation were too expensive to compute on the fly.

Instead, we solve for A−1 in a different form, using an auxiliary right preconditioner (i.e., boot-
strap our approximate inverse computation with an initial, even coarser, inverse) M. Specifically, we
apply the TT inversion algorithm to the matrix equation

vec(AMY) = (IN ⊗AM)vec(Y) = vec(IN ),

which implies A−1 =MY. The matrix M is computed in TT form, which allows for efficient matrix-
matrix products. This preconditioner may be the inverse of a block-diagonal or block-sparse version
of A (such as the sparsifying preconditioners in [QB13, Yin14]) or a low accuracy hierarchical
factorization of A−1.

In all experiments of §5.2, we compress a block-diagonal system for spheres and use it in the TT
form to precondition the subsystems arising from the boundary integral equations defined on lattices
of surfaces with spherical topology. This provides a significant acceleration for both the inversion
algorithm and the resulting inverse apply.

Computational complexity. Most of the computational cost in the inversion algorithm lies in solving
the local linear systems until the desired accuracy in TT approximation for the inverse is achieved.
As mentioned in §2, these algorithms exhibit linear convergence similar to that of the AMEN com-
pression algorithms, and so the number of cycles through the cores of A−1 is typically controlled by
the maximum TT rank for the inverse with the desired target accuracy. For all examples considered
in §5, experimental evidence suggests ranks are bounded.

Let the TT ranks of A be bounded by rA, n denote the tensor mode size, and rX bound the TT
ranks of A−1. The size of local systems is then bounded by nr2

X×nr2
X, and the cost of inverting them

directly is at most O
�

n3r6
X

�

. Using an iterative algorithm to solve local systems, the complexity for

well-conditioned matrices goes down to O
�

r3
XrA + r2

Xr2
A

�

, i.e. the cost of applying the associated
matrix in the tensor form. Since a system is solved for each of the d cores of A and A−1, an estimate
for the complexity of the whole algorithm is O

�

(r3
XrA + r2

Xr2
A) log N

�

.

4.2. TT Matrix-vector products

The second component needed by solver or a preconditioner is a matrix-vector product for a
matrix represented in the TT format. In the cases where the vector can be compressed well in the
TT form (e.g., for smooth data), additional benefit may be derived from computing matrix vector
apply in this format.

TT Compressed matrix-vector Product. Let A be a matrix and b a vector with TT decompositions
consisting of cores GA

k (αk−1, ik jk,αk) and Gb
k (βk−1, jk,βk), respectively. Cores for a TT decomposition

of the product c= Ab is computed as

Gc
k (αk−1βk−1, ik,αkβk) =

∑

jk

GA
k (αk−1, ik jk,αk)G

b
k (βk−1, jk,βk). (4.2)

That is, each core of C involves the contraction over the auxiliary index jk, and a concatenation
of the two pairs of auxiliary indices (αk−1,βk−1) and (αk,βk). This is a special case of the matrix-
matrix product in which b and its cores run only over the jk indices, instead of a corresponding pair
of row and column indices. If the TT ranks for the matrix and the vector are bounded by rA and rb,
respectively, the overall computational complexity of this structured product is O

�

r2
Ar2

b log N
�

.
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Algorithm 2 TT MATRIX BY UNCOMPRESSED VECTOR PRODUCT.
1: Inputs: TT decomposition A with cores Gk, column vector b
2: Output: vector y = Ab
3: Initialize y0 = bT , and α0,αd as size 1 trivial indices.
4: for k = 1 to d do
5: Permute core dimensions and reshape as a matrix of size rkmk × rk−1nk:

Mk

�

αk ik,αk−1 jk
�

= Gk

�

αk−1, ik jk,αk

�

6: Reshape yk−1 to merge columns from the nk children of each source box B, indexed by jk:

bk

�

αk−1 jk, JBOX
k I LC L

k−1

�

= yk−1

�

αk−1, JBOX
k−1 I LC L

k−1

�

7: Obtain data for each target children, indexed by ik:

φk =Mkbk

8: Permute φk (separate rows from the mk children of a target box B):

yk(αk, JBOX
k I LC L

k ) = φk(αk ik, JBOX
k I LC L

k−1 )

9: end for
10: return y = yT

d

Matrix-vector product for an uncompressed vector. The algorithm for this case is given in Algorithm 2.
In this case, the complexity of the algorithm increases to O

�

r2
AN log N

�

.
Given a TT decomposition for a matrix A, the algorithm proceeds by contracting one dimension

at a time, applying the kth TT core. For efficiency, it is much faster to do this contraction as a matrix-
vector operation and most of the work in Algorithm 2 is to prepare the operands for this in line 7. In
the context of the matrix-block tree, sequentially contracting indices implies an upward pass through
the tree, in which one level of the hierarchy is processed at a time, eliminating one source index jk
to compute the part of the matrix-vector product corresponding to the target index ik. This upward
pass produces a series of intermediate arrays indexed by {i1, . . . , ik} and { jk+1, . . . , jd}. As remarked
before, the first set determines local coordinates at each box of the target tree, and the second set
corresponds to a box index at level k of the source tree. To reflect this, we use the following notation

ILCL
k = i1 · · · ik, JBOX

k = jk+1 · · · jd . (4.3)

Notice that, by definition, ILCL
k = ILCL

k−1ik and JBOX
k−1 = jkJBOX

k .
When Algorithm 2 initializes, the vector that core G1 acts upon is the first unfolding matrix of b

b1( j1, j2 . . . jd) = b( j1 . . . jd) (4.4)

For each k > 1, we reshape the result yk−1 from the previous step in line 6 in order to apply the core
Gk. For each source box B at level k, the nk columns of size rk from its children are merged.

The reshaped core Mk consists of mk × nk blocks each of size rk+1 × rk. By applying it to bk, we
obtain rk+1 results for each of the mk boxes on Ttrg at level k. In line 8, we separate each block row,
so that the last column indices of yk correspond to box indices in the target tree.

The matrix vector product in line 7 is between a matrix of size rk+1mk × rknk and a vector of
size rknk ×

N
nk

, and so it requires 2mk rk+1rkN operations. If mk = nk = n and rk ≤ r for all k,

this computation is O
�

r2N
�

. Since there are d = logn N cores, the total computational cost is

O
�

r2N log N
�

.
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5. Numerical experiments

In this section, we present the results of a series of numerical experiments quantifying the per-
formance of the TT decomposition and inversion algorithms discussed in §2 and §4. As our model
problem, we use the linear system of equations arising from the Nyström discretization of volume
and boundary integral operators in three dimensions, Eq. (IE) and Eq. (LS). For each kind of op-
erator, we construct TT based accelerated solvers and compare them to some of the other existing
alternatives.

The results in §5.1 demonstrate that for volume integral equations with non-oscillatory kernels,
the TT inversion is cost-effective for moderate to high target accuracies (ε ≤ 10−6). Accordingly,
we propose using the TT inversion combined with the fast matrix-vector algorithms (§4.2) as a
fast direct solver. We examine the performance of the TT based direct solver on translation and
non-translation invariant integrals.

In §5.2, we explore the application of the TT in inversion of matrices arising from boundary in-
tegral equations in complex geometries. For these systems, we demonstrate that using low-accuracy
TT compression as a preconditioner for a Krylov subspace iterative methods such as GMRES is a cost
effective approach with respect to time and memory requirements.

We make use of the Matlab TT-Toolbox [Ose12] for all tensor computations, and FMMLIB3D
[GG11] as an accurate and fast matrix-vector apply. All experiments are performed serially on
Intel Xeon E–2690 v2(3.0 GHz) nodes with 64 GB of memory.

In the experiments of this section, unless otherwise stated, we take the kernel K(r) to be the
free-space Laplace Green’s function K(r) = 1

4πr
.

5.1. Volume integral equations

We test the performance of the TT decomposition as a volume integral solver for a box domain.
We discretize the integral kernel on a regular grid with N = 2d points (for both sources and targets),
indexing them according to successive bisection of the domain along each coordinate direction. This
corresponds to a uniform binary tree with d−1 levels. TT decompositions obtained for the resulting
matrix and its inverse correspond to tensors of dimension d and mode sizes nk = 4.

For problem sizes ranging from N = 4 096 to 16777216, we report the time it takes to compress
and invert the matrix in the TT form, the resulting maximum TT ranks, and the storage requirements
for the inverse. For the application of the TT inverse, we test both of the apply algorithms in §4.2.
We report the time it takes to apply the TT inverse to a random, dense vector of size N (denoted as
“solve”) as well as the time it takes to compress a vector of size N sampled from a smooth function
and then apply the inverse to it (denoted as “TT solve”). From the analysis in §4.2, we conclude
that applying the TT inverse to compressed right-hand-sides (“TT solve”) will be most advantageous
if they have small maximum TT ranks.

As mentioned in §1, state-of-the-art direct solvers for HSS and other hierarchical matrices when
applied to volume integrals in 3D exhibit above linear scaling, as well as significantly high setup
and storage costs, limiting their practicality. This makes the TT an extremely attractive alternative
in this setting. For example, for N = 262144 = 643, solving the translation invariant problem in
§5.1.1 using the HIF solver for a target accuracy of ε = 10−6 requires a setup time of 32 hours, as
well as 40 GB of memory. Setting up the corresponding TT inverse takes 86 seconds, and requires
only 2 MBs of memory (See Table 1). (We emphasize that the solve times for arbitrary right-hand
sides still scale as O

�

N log N
�

).

5.1.1. Translation invariant kernels in 3D
We first consider the three dimensional unit box and solve the translation invariant system corre-

sponding to the Laplace single-layer kernel. In Table 1, we report the results of this experiment. We
set a target accuracy of algorithms involved to ε = 10−6. For each experiment, we test the accuracy
of both forward and inverse apply against random, dense vectors, obtaining residuals ranging from
1.5× 10−7 to 5.5× 10−7 and 1.0× 10−6 to 1.3× 10−6, respectively.

Rank behavior and precomputation costs. We see in Table 1 that the maximum TT rank for the system
matrix given a target accuracy is bounded, which is consistent with our argument in §3. As noted
in §4, although we have no concrete estimate for the rank behavior of the inverse, in all cases
considered in this work we observe that the maximum rank of the inverse is proportional to that
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N
Time (sec) Max Rank Inverse

Memory
(MB)

Inverse Apply (sec)

Compress Invert Forward Inverse Solve
TT Solve

Compress & Apply

163 2.79 118.19 103 144 2.60 0.07 0.72 2.41
323 2.89 141.27 106 125 2.86 0.76 1.19 4.87
643 4.35 82.07 99 97 2.29 4.41 4.40 4.79

1283 5.69 60.23 90 74 1.68 29.31 27.52 3.80
2563 6.04 33.53 80 57 1.19 189.53 31.93 2.39

Table 1: TRANSLATION INVARIANT 3D VOLUME LAPLACE KERNEL. Compression and Inversion times, max-
imum TT ranks, memory requirements and solve times for the TT decomposition algorithms applied to
the 3D Laplace single-layer kernel. The problem sizes range from N = 4 096 to 16 777216, and the
target accuracy for all algorithms is set to ε = 10−6. Achieved accuracies for the solve match this target
accuracy closely, ranging from 1.0×10−6 to 1.3×10−6. For “TT Solve” we report the time required for
the compression of the right-hand-side and the application of the TT inverse to the compressed vector.
In this case, the right-hand-side is f (x , y, z) = φ(x)φ(y)φ(z) with φ(t) = diric (t, 10) (Dirichlet pe-
riodic sinc function), which is a smooth, oscillatory functions whose TT ranks are observed (see §5.1.3)
to be bounded (r ≤ 75) for the case considered in this experiment.

of the original matrix. For a wide range of integral kernels in 1,2, and 3 dimensions, we in fact
observe inverse ranks decrease with N . Moreover, even though additional levels (and corresponding
tensor dimensions) are added as N increases, the decrease in TT ranks is substantial enough to bring
down the inversion costs, as well as the storage requirements for the inverse in TT form, as shown
in Table 1. We investigate this behavior in §5.1.3.

Since forward ranks are bounded, the time it takes to produce the TT factorization (Compress
column in Table 1) displays logarithmic growth with N . In contrast, while we observe that the
inversion time is also proportional to the maximum TT ranks, the inversion algorithm has a more
complex relationship with the resulting rank distribution. Perhaps the most outstanding conse-
quence of this is how economical the computation and storage of the inverse in the TT format is.
For N = 16 777216= 2563, with a target accuracy of ε = 10−6, it takes only 34 seconds to compute
the inverse using 1.2 MBs of storage.

When the target accuracy is increased to ε = 10−8, the results of experiments exhibit similar
rank behavior and scaling of the computational costs to those reported in Table 1. However, the
maximum TT ranks for the matrix and its inverse increase to 200 and 300, respectively. The higher
ranks imply higher algorithmic constant for compression, inversion, and apply steps but these costs
stay quite economical for this case as well.

Inverse apply. As noted in §4.2, the application of a matrix in the TT form has computational com-
plexity dependent on the structure of the operand. If the operand is compressible in the TT format,
the inverse apply is O

�

log N
�

and otherwise O
�

N log N
�

. In Table 1, we report timing for both
types of right-hand-side. When the right-hand-side is compressible in TT form, we report timings
for right-hand-side compression (“Compress”) and TT matrix-vector multiply (“Apply”) in the last
two columns of the table.

We choose a tensor product of periodic sinc functions as a compressible right-hand-side. It
is observed in §5.1.3, that these are smooth, oscillatory functions whose TT ranks are bounded
(rb ≤ 75) for the case considered in this experiment. As indicated in the complexity analysis in
§4.2, computation for this inverse apply depends on both the ranks of the inverse and of the right-
hand-side. Given rank bounds rA for the matrix and rb for the right-hand-side, the complexity is
O
�

r2
Ar2

b log N
�

. Here, the decrease in the inverse ranks of A brings down the cost of the apply.

5.1.2. Non-Translation invariant kernels in 3D
Here we test the ability of the TT decomposition to handle non-translation invariant kernels by

choosing b(x) and c(y) in Eq. (IE) to Gaussians of the form

b(x) = 1+ e−(x−x0)T (x−x0), c(y) = 1+ e−(y−y0)T (y−y0), (5.1)
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N
Time (sec) Max Rank Inverse

Memory
(MB)

Inverse Apply (sec)

Compress Inverse Forward Inverse Solve
TT Solve

Compress & Apply

163 42.51 2510.38 386 209 5.33 0.14 0.73 5.65
323 62.67 1787.77 364 161 5.04 1.13 1.16 15.45
643 71.18 647.40 301 113 3.30 6.33 2.93 12.79

1283 48.84 234.96 232 81 2.03 35.84 27.32 7.54
2563 13.35 64.90 130 62 1.37 219.63 32.20 3.71

Table 2: NON-TRANSLATION INVARIANT 3D VOLUME LAPLACE KERNEL. Compression and Inversion times,
maximum TT ranks, memory requirements and solve times for the TT decomposition algorithms ap-
plied to the non-translation invariant 3D Laplace single-layer kernel. Problem sizes range from
N = 4 096 to 16 777216, and target accuracy ε = 10−6. Achieved accuracies for the solve match
this target accuracy closely, ranging from 1.2 × 10−6 to 2.0 × 10−6. Timings under “TT solve” in-
clude compression of right-hand-sides obtained from the sampling of f (x , y, z) = φ(x)φ(y)φ(z) with
φ(t) = diric (t, 10) (Dirichlet periodic sinc function) and the TT apply.

N
Maximum forward (inverse) ranks

K(r) = r r1/2 r−1/2 log(r) diric (r, 10)

4 096 3 (5) 12 (51) 13 (59) 11 (52) 10 (10)
65536 3 (5) 11 (47) 12 (55) 11 (46) 10 (10)

1 048576 3 (5) 11 (45) 12 (49) 10 (41) 10 (10)
16 777216 3 (5) 10 (42) 12 (44) 10 (38) 10 (10)

Table 3: FORWARD AND INVERSE MAXIMUM TT RANKS FOR 1D EXAMPLES. The
behavior of the maximum TT ranks of matrices and their inverses (in paren-
thesis) for different integral kernels. The compression and inversion accuracies
are both set to ε = 10−10.

as it was done in [Cor+14]. We report the results in Table 2. We again test the accuracy of both
forward and inverse applies, obtaining residuals ranging from 1.1×10−6 to 1.4×10−6 and 1.2×10−6

to 2.0× 10−6, respectively.
For non-translation invariant kernels such as the one tested in Table 2, the ranks of the matrix is

expected to increase as a function of the TT ranks of b and c (rB, rC ' 30, in this case). However,
it’s interesting to note that the ranks of the inverse do not seem to increase much compared to the
corresponding translation-invariant case, Table 1. This is reflected in the performance of both kinds
of inverse applies. Comparing the corresponding columns of Table 2 and Table 1, we observe that
the difference in performance between both experiments decreases as N increases.

5.1.3. Rank behavior of integral kernels and their inverses
Throughout our experiments with volume integral equations of the form given in Eq. (IE), includ-

ing those presented in §5.1.1 and §5.1.2 as well as analogous examples in one and two dimensions,
we observed that while the maximum TT rank of the matrix A is relatively constant for different
problem sizes N , the maximum TT rank of the corresponding inverse A−1 typically decreases.

While further analysis is needed to explain this phenomenon, we conducted a series of exper-
iments for 1D kernels to better understand this behavior and confirm that it is not a side effect
of different numerical algorithms we used. In Table 3, we report the maximum TT ranks for the
matrices and their inverses arising from the discretization of different 1D kernels.

Separable kernels such as K(r) = r, cos(r), sin(r), or er and their inverses are known to have
exact TT ranks, which is confirmed in our experiments. Periodic kernels like the Dirichlet periodic
sinc, diric (r, k), make the convolution circular, and result in circulant matrices. We observe that in
this case, TT ranks for the matrix and its inverse are identical, and they remain stable as N grows.
Non-periodic integrable kernels, like K(r) = r1/2 or log(r) display TT rank behavior similar to that
of volume integral experiments in §5.1.1 and §5.1.2. Ranks for the forward matrix decrease, albeit
slowly, and ranks for the inverse show a steady decrease for the problem sizes tested. TT rank

19



(a) (`, m) = (4, 3) (b) (`, m) = (8, 7) (c) (`, m) = (16,15) (d) Irregular Lattice

Figure 2: EXAMPLE OF TEST GEOMETRIES. (a)–(c) Example surfaces used in our experiments. The chart
for surfaces is given by ρ(θ ,φ) = 1+ 0.5Y`m(θ ,φ) where Y`m denotes the spherical harmonics. The
shading is the signed mean curvature. (d) A random lattice of 64 shapes (shading base color is varied
to help better distinguish different surfaces).

distributions seem to vary with smoothness and integrability, in accordance to estimates in [KS15].
We also note that, as is the case for the volume experiments in 3D, the steady decrease of inverse

ranks results in a decrease in storage. Even though increasing N implies an increase in tensor
dimensions (and in the number of cores), this effect does not seem to overcome the decrease in
ranks or storage for the cases observed.

Note that, since this rank behavior is also present in 1D cases, it is not likely to be a side effect of
how the matrix indices are tensorized (see Remark 2.1). Also since the same behavior is observed
in a variety of smooth kernels, weakly singular nature of the kernel or the numerical quadrature are
not expected to cause the rank behavior.

We also confirmed that different inverse algorithms (AMEN or DMRG) as well as direct com-
pression for moderate problem sizes (using AMEN cross or TT-SVD as in Algorithm 1) yield almost
identical rank distributions.

5.2. Boundary integral equations in complex geometries

Except for simple surfaces, it is generally the case that for a given target accuracy, applying the
TT decomposition and inversion algorithms as described in the previous sections will yield TT ranks
higher than in the volume cases described in §5.1. As indicated in §3, this is likely due to the loss of
translation invariance, which makes self and near interactions less compressible.

As is the case for other fast direct solvers, the increase in TT ranks implies higher algorithmic
constants, and so it becomes more practical to compute the TT compression and inversion at low
target accuracies and use them as robust preconditioners for an iterative algorithm such as GMRES.
In this section, we demonstrate the application of the TT decomposition as a cost effective and
robust preconditioner for boundary integral equations.

5.2.1. Experiment setup
In order to build an example closer to boundary value problems encountered in applications,

we pose an exterior Dirichlet problem for the Laplace equation on a multiply-connected complex
domain with boundary Γ

1

2
σ(x) +

∫

Γ

D(


x − y


)σ(y) dΓy = f (x), (IE)

where D(r) is the Laplace double-layer kernel in 3D. We modify this kernel by adding rank one
modifications per surface to match the far-field decay [Kre+89]. For Γ, we choose an irregular cubic
lattice of closed surfaces Γi (i = 1, . . . , q3) of genus zero (spherical topology). Examples of such
shapes and their distribution are shown in Fig. 2. We discretize each surface using a basis set of
spherical harmonics of order p, and compute singular integrals using fast and spectrally accurate
singular quadratures [GS02]. This setup, while being relevant to problems in electrostatics and fluid
flow (particulate Stokes flow), enables us to study the effects of individual surface complexity as
well as of interactions between surfaces on the performance of the TT preconditioner.
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N
Time (sec) Max Rank Inverse Memory

(MB)Compress Invert Forward Inverse

3 840 27.75 375.49 117 86 (49) 8.56
30 720 34.80 512.18 133 90 (49) 11.73

245 760 45.42 630.46 144 93 (50) 14.25
1996 080 49.50 732.21 150 95 (50) 18.75

Table 4: TT PRECONDITIONER RANKS AND PRECOMPUTATION COSTS FOR THE BENCHMARK

CASE. Compression and Inversion times, maximum TT ranks, and memory requirements
for the TT decomposition algorithms for benchmark case on a regular cubic lattice. The
TT inverse is a product of two TT matrices, block-diagonal system for spherical surfaces
M and the solution for the right-preconditioned system X, as in §4. We include maxi-
mum ranks for both TT matrices, reporting those for block-diagonal M in parentheses,
and reporting the aggregate memory requirements for both under Inverse Memory. The
problem sizes range from N = 3 840 (n = 8, p = 15) to 1 996080 (n = 4096, p = 15),
and the target accuracy for all algorithms to construct the TT preconditioner is set to
εp = 10−3. Model surface has radius ρ = 1+ 0.5Y4,3.

In all experiments in this section, we compress a corresponding block-diagonal system M for
spheres in TT form, effectively preconditioning the original linear system as in §4. The TT precondi-
tioner is thus the product of two TT matrices M and X. This provides a significant acceleration for the
inversion algorithm, improving the conditioning of the local linear systems within it. It also provides
an acceleration for the resulting inverse apply, as the resulting ranks of M and X are observed to be
smaller than those of their product.

For the sake of comparison with the volume integral experiments in §5.1, in Table 4 we report
results for matrix compression and preconditioner setup in TT form for εp = 10−3, for a regular
lattice of surfaces with spherical topology and radius ρ = 1+ 0.5Y4,3. Unlike the cases in Table 1
and Table 2, maximum ranks for both the forward matrix A and the matrix X in the preconditioner
show a relatively slow but steady increase with problem size N . As a consequence, both timings and
inverse memory display sublinear growth with N . We note that in terms of rank behavior and the
scaling of precomputation costs, the results presented in Table 4 are representative of all experiments
presented in this section.

5.2.2. Comparison with other preconditioners
Multigrid, sparsifying preconditioners [QB13, Yin14], and hierarchical matrix preconditioners

(using HSS-C, HIF, IFMM [Cou+15], or H inverse compression at low target accuracies) are a few
options available for this type of problem.

We compare TT’s setup costs (inversion time and memory requirements), its effectiveness in
terms of iteration count for the iterative solver, and total solve time with those of multigrid and
HIF. We use a two-level multigrid V-cycle, considered in [QB13], as preconditioner. Levels in this
context are defined by the spherical harmonic order p. In our experiments, we choose pcoarse =
dp/2e as the coarse level. We use the natural spectral truncation and padding for restriction and
prolongation operators, and for smoothing, we use Picard iteration. The coarse-grid problems are
solved iteratively using GMRES with tolerance εp. For HIF [HY15], we use a Matlab implementation
kindly provided to us by Kenneth Ho and Lexing Ying.

For elliptic PDEs, multigrid provides an acceleration to the iterative solvers with almost negligible
setup costs and storage requirements; however, its performance for integral equations is understood
less. Fast direct solvers based on hierarchical matrix compression like HIF, on the other hand, have
significantly large setup costs. Nevertheless, when the latter kind of preconditioners are affordable
to construct for low accuracies, they present an effective preconditioner, reducing the number of
iterations while incurring small cost associated with the application of the preconditioner, because
of their quick apply.

Since the TT algorithms also provide a hierarchical decomposition of the inverse, we expect their
performance to be similar to fast direct solvers such as HIF. We also anticipate that, due to its modest
setup costs, it will enable the solution of problems with a large number of unknowns.
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p n N
Unpreconditioned Multigrid TT HIF

`= 4 8 16 4 8 16 4 8 16 4 8 16

15 8 3 840 129 401 1001 25 (140) − − 9 9 9 7 7 7
15 64 30 720 153 255 991 25 (140) − − 11 11 9 7 7 9
15 512 245 760 141 277 788 25 (140) − − 11 11 11 7 11 7

24 8 9 600 153 229 617 21 (92) 37 (180) − 9 13 11 7 7 7
24 64 76 800 141 207 677 21 (114) 37 (180) − 11 13 15 9 7 7
24 512 614 400 141 205 577 21 (103) 37 (180) − 11 11 15 15 13 13

35 8 20 160 139 429 601 17 (16) 25 (84) 25 (140) 9 11 11 7 7 9
35 64 161 280 143 187 651 17 (16) 25 (73) 25 (140) 9 11 11 9 7 9
35 512 1290 240 137 193 595 17 (16) 25 (79) 25 (140) 9 11 11 − − −

Table 5: MATRIX-VECTOR APPLY COUNT FOR THE BENCHMARK CASE. Comparison of unpreconditioned GM-
RES and preconditioned GMRES using multigrid, TT, and HIF preconditioners for the exterior 3D Laplace
problem over a regular lattice of n model surfaces each with radius ρ = 1+0.5Y`m where `= {4, 8,16}
and m = `− 1. Surfaces are represented in spherical harmonics basis and discretized with 2p(p + 1)
collocation points. The relative residual tolerance for GMRES is set to ε = 10−8 and GMRES is not
restarted. For multigrid, the number of applies in the coarse GMRES solver (with εp = 10−2) is reported
in parentheses. TT and HIF approximate-inverse preconditioners are constructed with a target accuracy
of εp = 10−3. Empty entries correspond to experiments in which either the preconditioned GMRES failed
to converge in 100 iterations or preconditioner setup costs were excessive.

5.2.3. Benchmark
We test a cubic lattice of q × q × q surfaces, for n = q3 ∈ {8, 64,512, 4096}, discretizing each

surface using spherical harmonic basis of order p ∈ {15, 24,35}, which requires p + 1 collocation
points in the latitude direction and 2p collocation points in the longitude direction. The total number
of unknowns for each problem is then N = 2p(p+ 1)n.

In this initial experiment, we make all surfaces translations of a single shape on a regular lattice
with spacing of 4, which implies the closest distance between surfaces is slightly smaller than their
diameter. To control surface complexity, we make their radius ρ(θ ,φ) = 1+ 0.5Y`m(θ ,φ), where
Y`m is the spherical harmonic function of order (`, m).

For the matrix-vector apply, we use the FMMLIB3D library [GG11] for interactions between
surfaces, and spectral quadrature for interactions within each surface [GS02]. We test three surfaces
of increasing complexity by setting ` ∈ {4, 8,16} and m= `− 1, shown in Fig. 2.

The results of the test with different preconditioner are reported in Table 5. For all problem
sizes, we compare the number of matrix-vector applications for the unpreconditioned solve with
those of the preconditioned solve with three different types of preconditioners (multigrid, TT, and
HIF). Each approximate-inverse preconditioner is constructed for a target accuracy of εp = 10−3 and
is used within a GMRES solve with a tolerance of ε = 10−8 for relative residual and no restart.

From the results in Table 5, it can be readily observed that in this configuration the condition
number of the problem, implied by number of iterations of the unpreconditioned solve, mostly
depends on the individual surface complexity and not the problem size.

As we increase surface complexity (controlled by `), the average number of matrix-vector ap-
plies goes from 140 to 240 to 600, rendering the unpreconditioned solve impractical. The multigrid
preconditioner is easy and inexpensive to setup, but, as it is mentioned in [QB13], its performance
suffers when the geometry is not resolved in the coarse grid, i.e. pcoarse is not large enough. In Ta-
ble 5, we observe that after the individual surface geometry is resolved in the coarse grid, multigrid
leads to a reduction in the iteration counts. However, this requires unnecessary over-resolution in
the fine grid that is not cause by the setup of the problem but by the preconditioner.

Furthermore, note that each multigrid cycle uses two matrix-vector applies at the fine level as
well as a number of applies at the coarse level, and so the observed speedups with respect to the
unpreconditioned solve are moderate. Additionally, for cases where both fine and coarse levels
are resolved, such as p = 35 and ` = 4, the number of coarse applies is still higher than the
corresponding TT and HIF direct solvers at the coarse level (p = 15 and `= 4). Due to its mediocre
performance, we choose not to further consider multigrid for our comparisons, focusing instead on
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Figure 3: SOLVE TIME VS. PRECONDITIONER SETUP TIME AND MEMORY FOR THE BENCHMARK CASE. Semi-
log plots for solve times, normalized by the matvec time Tmv(N), vs. the required inversion time, also
normalized by Tmv(N), and storage requirements (in MBs) for TT and HIF preconditioners for p = 15,
n = {8, 64,512,4096} and εp = 10−1 to 10−3. Model surface has radius ρ = 1 + 0.5Y4,3. Because
of log(N) complexity of TT compression and inversion, TT scheme becomes cheaper for larger problem
sizes.

comparing TT and HIF direct-solver preconditioners.
As expected, both TT and HIF display consistent performance across all cases considered and

they display little to no dependence on surface complexity `, lattice size n, and number of unknowns
N . For both approaches, the cost of an iteration is one matrix-vector apply and one fast apply of
the corresponding compressed low-accuracy inverse. For most examples considered, applying the
preconditioner takes only a fraction of the matrix-vector apply, allowing for considerable speedups.

In the following section, we explore different aspects of TT and HIF preconditioners.

5.2.4. Comparison of direct-solver preconditioners
For a given model surface and problem size N , we report the setup costs (inversion time and stor-

age) and the solve times using both direct solvers with inversion accuracies from εp = 10−1 to 10−3.
In order to represent wall-clock time in a more meaningful way across experiments of different
sizes, we normalize it in terms of the O (N) matrix-vector applies for the system matrix through
FMM, hereinafter denoted by Tmv(N). For N > 500000, high inversion costs generally prevent us
from constructing the HIF preconditioner.

In Fig. 3, we plot solve times against setup costs (inversion time and storage) for both TT and
HIF preconditioners. This allows us to identify distinct trade-offs in performance and efficiency, as
well as to observe their scaling with respect to N and εp.

Solve time and speedup. As we increase the preconditioner accuracy εp, the number of iterations
for the solve decreases while the cost of applying the corresponding preconditioner increases as TT
and HIF ranks increase. Both direct solvers provide considerable speedup (the unpreconditioned
solve takes about 140Tmv(N)), with HIF mostly yielding higher speedups when available. The main
reason behind this is that the HIF apply has a more favorable dependence on εp than the TT apply.
This is evident by the fact that the rise in preconditioner application cost causes the TT solve time
to plateau but it does not significantly affect the speedups yielded by HIF for the range of accuracies
considered.

Inverse setup time. Fig. 3(a) shows the solve time versus the setup time as εp increases for different
N . While HIF setup costs relative to Tmv(N) increase as we increase the problem size, logarithmic
scaling of the TT inverse makes it more efficient (relative to Tmv(N)) as N grows. This is one of
the features that allows us to compute the TT for large N , and it implies that for sufficiently large
problem (N = 245760 in this example), inverse setup can become cheaper than one matrix apply.
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ε
Unprec.
Matvecs

TT HIF

εp = 10−1 10−1.5 10−2 10−2.5 10−3 10−1 10−1.5 10−2 10−2.5 10−3

10−4 81 13.2 9.2 8.4 6.1 7.4 7.3 6.5 5.7 5.7 5.7
10−6 107 19.4 14.8 13.3 11.1 10.6 13.5 10.9 8.0 5.7 5.7
10−8 141 25.5 20.9 18.2 13.7 13.8 17.7 15.3 10.3 8.0 8.0
10−10 165 33.2 25.4 23.0 17.2 17.0 22.4 16.6 12.7 10.3 10.3
10−12 187 39.0 30.5 27.9 20.9 20.2 28.9 22.8 17.0 12.6 10.3

Table 6: SOLVE TIME FOR VARYING TARGET AND PRECONDITIONER ACCURACIES. Comparison of solve
times relative to Tmv(N) for TT and HIF preconditioners for target accuracies ε = 10−4 to 10−12

and preconditioner accuracies εp = 10−1 to 10−3 for the model surface with radius ρ = 1+0.5Y4,3,
and problem size N = 245760 (n = 512, p = 15). Matvec counts for the unpreconditioned solve
are also included for reference.

Inverse storage. Fig. 3(b) depicts the required storage for each preconditioner as εp increases. In this
respect, TT is extremely efficient and memory requirements have logarithmic scaling with respect
to N and do not exceed 100 MB. On the other hand, the HIF inverse displays O

�

N log N
�

scaling
with large prefactor, requiring 10s to 100s of GBs of memory to solve problems larger than a quarter
million unknowns.

Dependence on surface complexity. As we increase the surface complexity by increasing the radial
perturbation, we observe little to no difference in iteration counts (Table 5) as well as the solve
times for both TT and HIF. Thus, both alleviate the increase in condition number, evident by the
increase in the corresponding number of unpreconditioned iterations.

We do observe an increase in ranks and consequently in setup costs for the TT inverse. However,
the difference in rank distributions sharply decreases with εp: maximum ranks for (8,7) case are
roughly 3× higher for εp = 10−1 to less than 1.5× for εp = 10−3. While there is also a slight
increase in costs for HIF, it is predictably small due to the fact that it focuses on compressing far
range interactions.

Effectiveness for different ε and εp. To investigate the robustness of the preconditioners for higher tar-
get accuracies, in Table 6, we report how solve times vary across a range of target and preconditioner
accuracies. Overall, the solve times (relative to Tmv(N)) for both solvers seem to be proportional
to log(ε), and their performance with respect to εp seems to replicate the case observed in Fig. 3
(which corresponds to ε = 10−8). This indicates that these direct solvers are extremely reliable as
preconditioners.

5.2.5. Perturbations of the benchmark
To further quantify the effectiveness of the TT preconditioner, we perform experiments in which

we perturb the uniform cubic lattice considered in the benchmark. Given the ineffectiveness of the
multigrid preconditioner presented above, we only focus on the HIF preconditioner for comparison.
Since one expects the TT decomposition to exploit regularities and invariances in the geometry, this
set of tests is aimed to measure its robustness when the regularity of the lattice is broken.

We construct each surface in the lattice with a radius of the form ρ = 1+ rY`m, where r is a
random number in (0, 1), and (`, m) is also randomly chosen between (4,3) and (8,7). Additionally,
we perturb the location of the center of each surface in a random direction by up to 50 percent of
its diameter. The results of this test are shown in Fig. 4.

In Fig. 4, we observe similar behavior to the one seen in Fig. 3 for both solvers in terms of
how solve times and setup costs behave as functions of the number of surfaces and preconditioner
accuracy εp.

Comparing the corresponding data for the TT solver in these two figures, we observe a moderate
increase in inverse setup times and storage for n= 256,4 096 (N ≥ 245 760). This has an impact on
the effective solve times in terms of matvecs, as the preconditioner apply is a bit more expensive.

We also observe that for both TT and HIF, εp ' 10−1 seems to be much less effective than in the
benchmark case. However, for εp ≤ 10−2, iteration counts and solve times in matvecs display similar
behavior to the benchmark case.
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Figure 4: SOLVE VS. PRECONDITIONER SETUP AND MEMORY COSTS FOR IRREGULAR LATTICE AND

SHAPES. Semi-log plots for Solve times, normalized by matvec time Tmv(N), for a given inversion time,
also normalized by Tmv(N), and storage requirements (in MBs) for TT and HIF preconditioners. Each
model surface has radius ρ = 1+ rY`,`−1, where ` is randomly chosen to be 4 or 8 and r is a random
number in (0, 1). The location of the surfaces is also randomly perturbed.
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Figure 5: SOLVE SPEEDUP VS. LOG DISTANCE BETWEEN SURFACES. Speedups, defined as the
ratio between unpreconditioned and preconditioned solves and excluding the precondi-
tioner setup time (see Fig. 6 for the setup costs), vs. log of the surface spacing in the
lattice for TT and HIF preconditioners with εp = 10−3.

Distance between Surfaces. As mentioned in §1, it is well known that conditioning of second kind
integral equations tends to deteriorate as surfaces come close to contact. In order to test robustness
in performance of the TT and HIF preconditioners, we perform a series of tests, comparing speedups
and setup costs as we draw surface centers in the lattice close to each other.

In Fig. 5, we report the speedups with respect to the average unpreconditioned solve, and plot
them against the logarithm of the distance between surfaces in the lattice. Here, we use the number
of unpreconditioned iterations as a surrogate for the problem conditioner number. As we draw
the surfaces together, we observe that iteration counts and solve times for both preconditioners
show a slight increase for low accuracy (εp ' 10−1), becoming almost independent of distance for
higher preconditioner accuracies (εp ≤ 10−2). This causes the effective speedup to increase as the
unpreconditioned solve becomes more expensive, due to the increase in condition number.

In Fig. 6, we plot setup costs against the log of the distance between surfaces. Although dis-
playing a sharp increase at first, preconditioner setup times increase at a pace much slower than the
cost of the unpreconditioned solve, becoming more efficient. We again observe that as N increases,
the TT preconditioner becomes more cost-effective, becoming just a fraction of an unpreconditioned
solve for N = 1 966080. The rate at which storage requirements increase for both solvers also slows
down as we reduce the distance, which means that they both display robust behavior in spite of the
added complexity.
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Figure 6: PRECONDITIONER SETUP AND MEMORY VS. LOG DISTANCE. Log of setup costs (in unprecondi-
tioned solves) and storage requirements vs. log of the surface spacing in the lattice for TT and HIF
preconditioners with εp = 10−3.

5.2.6. Final remarks
The results presented here display the effectiveness of the TT preconditioner when applied to

boundary integral equations in complex, multiply-connected geometries. Similar to the volume
integral equations presented in §5.1, the TT decomposition is able to exploit regularities in the
geometry and to retain robust performance and practical efficiency when these regularities are not
present.

Both HIF and the TT preconditioners produce approximate inverses based on hierarchical com-
pression and thus provide robust and reliable performance; substantially reducing iteration counts
and solve times regardless of problem complexity. This is particularly remarkable for the tests in
which surfaces come close to contact, as iteration counts and solve times for both solvers remain
essentially unchanged in a regime where other classes of preconditioners become ineffective.

Between these two solvers, we observe a trade-off in terms of performance and efficiency: while
the obtained speedups are generally higher for the HIF due to a faster inverse apply (although the
difference decreases with problem size) the modest memory footprint and sublinear scaling of the
setup cost for the TT make it extremely efficient, allowing the solution of problems with millions of
unknowns. Hence, the choice between these and similar direct-solver preconditioner is problem and
resource-dependent. For problems in fixed geometries involving a large number of right-hand-sides,
the additional speedup provided by HIF might be desirable. For problems in moving geometries or
with a large number of unknowns, TT provides an efficient, cost-effective preconditioner that can
be cheaply updated.

6. Conclusions

Motivated by the ongoing challenges to produce memory-efficient and reliable fast solvers for
integral equations in complex geometries, we presented a robust framework employing the Tensor
Train decomposition to accelerate the solution of volume and boundary integral equations in three
dimensions.

In the context of volume integral equations on a regularly sampled domain, even for problems
with up to 10 million unknowns and for relatively high target accuracies (ε = 10−6 to 10−10), we
are able to produce a compressed inverse in no more than a few minutes and store it using tens of
MBs of memory, When compared to the current state-of-the-art direct solvers in three dimensions,
TT is the only such fast direct solver to retain practical performance for large problem sizes.

In §5.2, we showed that the TT framework is applicable to matrices arising from the discretiza-
tion of boundary integral equations in complex, multiply-connected geometries. Nonetheless, for
a given target accuracy, the TT ranks are considerably higher than the volume integral case, ren-
dering high target accuracies impractical. We thus proposed using a low target accuracy (e.g. εp

between 10−1 and 10−3) version of the TT-based inverse as a preconditioner for the GMRES. We
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compared its effectiveness and cost against two alternative preconditioners, a simple multigrid and
a low-accuracy HIF inverse.

By virtue of being a multilevel, low-accuracy direct solver, the TT preconditioner matches the
HIF in terms of reliable and robust performance across all examples presented. We observe a clear
trade-off between these two solvers: while HIF generally provides higher speedups, modest setup
costs and storage requirements for the TT make it extremely cost-effective. This is particularly the
case for problems with a large number of unknowns, as setting up the TT preconditioner typically
becomes comparable to one solve for the range of target and preconditioner accuracies presented. In
§5.2, this allowed us to solve an external Dirichlet problem for the Laplace equation in an irregular
domain composed of 4096 surfaces. The setup time for the TT preconditioner for this example is as
small as a few FMM applies and has a memory footprint of less than 10 MBs.

There are several extensions of this work that can be pursued. Here, all presented examples used
a uniform hierarchical partition of the domain, corresponding to a uniform tree. We believe it is pos-
sible to extend the current implementation of the TT algorithms to adaptive decompositions, using
the connections between Tensor Train and other hierarchical decomposition techniques. Another
research direction is generalizing of the TT algorithms to obtain effective parallel scaling. It would
be interesting to see whether the compute-bound nature of the TT algorithms could be exploited to
obtain good practical scaling.

7. Acknowledgments

We extend our thanks to Sergey Dolgov, Leslie Greengard, Ivan Oseledets, and Mark Tygert for
stimulating conversations about various aspects of this work. We are also grateful to Michael O’Neil
and Shravan Veerapaneni for critical reading of this work and providing valuable feedback.

Appendix A. Approximation with Kronecker products (Van Loan and Pitsianis)

In §2, we presented the application of the TT decomposition to a tensorized version of a matrix A,
in which row and column indices are permuted to correspond to a matrix block hierarchy, encoded
by the product tree T . This means we are compressing a d-dimensional tensor with entries

AT (i1 j1, . . . , id jd) = A(i1 . . . id , j1 . . . jd). (A.1)

The TT decomposition exploits the fact that the unfolding matrices of AT are of low rank. One
interesting question is what this means for the original matrix A.

This idea can be traced back to a paper by Van Loan and Pitsianis [VLP92] on the approximation
of matrices with Kronecker products. That is, given an M × N matrix A, with M = m1m2 and
N = n1n2, they consider the problem of finding the solution to

min‖A−B⊗C‖F , (A.2)

with B of size m1 × n1 and C of size m2 × n2. A slight generalization of this is to attempt an
approximation by the sum of r such products

min











A−
r
∑

k=1

Bk ⊗Ck











F

, (A.3)

where r is known as the Kronecker rank.
If we consider the corresponding partition of row and column indices i = (i1, i2) and j = ( j1, j2),

this means the approximation is a sum of terms Bk(i1, j1)⊗Ck(i2, j2), that is a separable approxima-
tion into two “levels” in the same sense we outlined for the TT algorithm in §2.

In [Hac+05], it is shown that if one rearranges the indices to produce the unfolding matrix
AT (i1 j1, i2 j2) = A(i, j), an equivalent problem is

min











A−
r
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k=1

Bk ⊗Ck











F

=min











AT −
r
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k=1

vec(Bk)vec(Ck)
T











F

. (A.4)
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That is, finding the best approximation of A with Kronecker products is equivalent to finding a
rank r approximation of the corresponding unfolding matrix AT . The best such approximation is
given by the SVD of AT = UΣV?, truncated to r terms. Therefore, if this unfolding matrix is of low
rank

AT ≈
r
∑

k=1

σkuk(i1 j1)vk(i2 j2)
?, A≈

r
∑

k=1

σkUk(i1, j1)⊗Vk(i2, j2), (A.5)

with Uk = reshape(uk, [n1, m1]) and Vk = reshape(vk, [n2, m2]). Furthermore, {Uk ⊗Vk}rk=1 is
an orthogonal set of matrices with respect to the Frobenius vector product, and this decomposition
is generally known as a truncated Kronecker product SVD.

The TT decomposition can be interpreted as one of several possible multi-level generalizations
of this matrix approximation problem. That is, we now have indices i = i1i2 . . . id and j = j1 j2 . . . jd ,
and after performing the low rank approximation of the first unfolding matrix A1

T , we have

A≈
r1
∑

α1=1

U1
α1
(i1 j1)⊗σα1

V1
α1
(i2 . . . id , j2 . . . id) (A.6)

Stacking the r1 matrices σα1
V1
α1

and merging the first index into α1i2, we can perform the next
round of Kronecker product approximation to obtain

A≈
r1
∑

α1=1

U1
α1
(i1 j1)⊗

 

r2
∑

α2

U2
α1,α2
(i2 j2)⊗σα2

V2
α2
(i3 . . . id , j3 . . . id)

!

. (A.7)

We continue this procedure for each pair (ik, jk) until we obtain the TT decomposition.

Appendix B. TT decomposition as a hierarchical linear filter

In [OT11], the TT decomposition is interpreted as a subspace approach, and in the case of the
SVD based TT decomposition (or more generally, when tensor cores are orthogonalized), as a fast
method to compute a reduced orthogonal basis for structured tensors. We first show that the TT
decomposition can be viewed as a linear filter with respect to each of its cores. We recall from §2
that the compression algorithm proceeds by computing a sequence of low rank decompositions of
unfolding matrices. For the (k− 1)th unfolding matrix, we have the low rank decomposition

Ak−1
T (i1 . . . ik−1, ik . . . id) = Uk−1(i1 . . . ik−1,αk−1)Vk−1(αk−1, ik . . . id). (B.1)

We then vectorize AT , using the formula for products of matrices vec(ABC) = (CT ⊗A)vec(B),
to obtain

vec(AT ) = (Imk−1
⊗Uk−1)vec(Vk−1), (B.2)

where Imk−1
is the identity of size mk−1 =

∏

q≥k nq, and so the left factor is in fact a block-diagonal
matrix of mk−1 copies of Uk−1. If Uk−1 is orthogonal this factor is orthogonal as well, and we also
have that Vk−1 = U?k−1A

k−1
T and vec(Vk−1) = (Imk−1

⊗U?k−1)vec(AT ). Applying this same identity, we
obtain

vec(AT ) = (VT
k−1 ⊗ Ipk−1

)vec(Uk−1), (B.3)

where pk−1 =
∏

q<k nq, and again if VT
k−1 is orthogonal, Uk−1 = (VT

k−1)
?Ak−1
T and vec(Uk−1) =

(VT
k−1 ⊗ Ipk−1

)?vec(AT ).
Since the TT compression algorithm can proceed via sweeps of low rank decompositions of

unfoldings for Vk (left to right) or of Uk (right to left), we can iterate Eq. (B.2) and Eq. (B.3)
separating one core at a time. Let Gk denote the kth core of the TT decomposition of A, and
Gk = reshape(Gk, [rk−1nk, rk]). If we apply Eq. (B.2) k− 1 times, we obtain

vec(AT ) = (Im1
⊗G1)(Im2

⊗G2) . . . (Imk−1
⊗Gk−1)vec(Vk−1). (B.4)

If we apply Eq. (B.3), we can write an explicit formula for the kth core Gk

vec(AT ) = (Im1
⊗G1) . . . (Imk−1

⊗Gk−1)(GT
d ⊗ Ipd rk−1

) . . . (GT
k+1 ⊗ Ipk+1 rk−1

)vec(Gk) (B.5)
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Following notation from [DS13a], we denote the product of the d−1 matrix factors in Eq. (B.5)
as P6=k(A). Its columns form a reduced tensor basis generated by {Gq}q 6=k, and vec(Gk) corresponds
to the coefficients that reconstruct A. If a correction step (e.g using QR) is implemented to make
{Gq}q<k and {GT

q }q>k orthogonal, then P 6=k(A) is orthogonal as well, and we have

vec(Gk) = (GT
k+1 ⊗ Ipk+1 rk−1

)? . . . (Im1
⊗G1)

?vec(AT ) = P 6=k(A)?vec(AT ) (B.6)

Finally, we note that from Eq. (B.6) an identity for vec(A) can be readily found, as there exists a
permutation matrix ΠT such that vec(A) = ΠT vec(AT ).

Appendix C. Setup of local linear systems for TT inversion algorithms

The approximate inversion seeks to find X that satisfies AX= IN or AX+XA= 2IN and to extract
a TT decomposition for X. Given a set of proposed cores {Wk}dk=1 for X and fixing all but Wk,
Eq. (B.5) provides an explicit formula to interpret the TT decomposition as an expansion in an
orthonormal basis, with elements that depend on {W j} j 6=k and coefficients vec(Wk). That is, we can
write vec(X) = P 6=k(X)vec(Wk) where P 6=k(X) is orthogonal. Eq. (4.1) then becomes

(IN ⊗A)P 6=k(X)vec(Wk) = vec(IN ). (C.1)

From this one may readily notice that fixing all cores but Wk yields an overdetermined linear
system. Applying P 6=k(X)?, we obtain the equivalent reduced system

P 6=k(X)?(IN ⊗A)P 6=k(X)vec(Wk) = P 6=k(X)?vec(IN ). (C.2)

The matrix in the linear system above is of size nk rk−1rk × nk rk rk−1. Eq. (C.2) allows us to solve for
each core Wk by projecting X onto this reduced basis in which Wk is the only degree of freedom. We
note that this necessarily leaves the size and rank of Wk fixed, and as a consequence, some strategy
must be implemented to increase ranks and accelerate convergence towards the solution.

• In DMRG methods, this issue is resolved by contracting two cores Wk, Wk+1 at a time into a
supercore

Sk(αk−1, ik ik+1,αk+1) =Wk(αk−1, ik,αk)Wk+1(αk, ik+1,αk+1), (C.3)

and solving the corresponding reduced system for Sk. The kth rank is now free (it was con-
tracted in merging both cores) and it will be determined when newly computed Sk is split into
cores.

• In AMEN-type methods [DS13a, DS13b], the residual R of this system is approximated in TT
form, and then it is used in an enrichment step to expand the reduced basis and allow for
ranks to increase.

We also note that even though we present these reduced systems explicitly, in both DMRG and
AMEN methods a recursive formula is employed to construct them as they cycle through the cores
of X. In fact, it is shown in [OD12] that if Gk(αk−1, ik jk,αk) is the kth core of the TT decomposition
of (IN ⊗A), then we can write the left-hand side of Eq. (C.2) in the following form

∑

α,γ, j

Ψk−1(αk−1,βk−1,γk−1)Gk(αk−1, ik jk,αk)Φk(αk,βk,γk)Wk(γk−1, jk pk,γk), (C.4)

where Ψk−1 is a function of {G j}k−1
j=1 and {W j}k−1

j=1 , and Φk a function of {G j}dj=k+1 and {W j}dj=k+1.
Moreover, recursive formulas ψ and φ exist such that

Ψk =ψ(Ψk−1, Gk, Wk) and Φk+1 = φ(Φk−1, Gk, Wk). (C.5)

Finally, we note that Eq. (C.4) may be interpreted as a compressed form of the matrix in the reduced
linear system with a 3-dimensional TT decomposition with cores Ψ, G , and Φ. If this linear system
is relatively small, the matrix in Eq. (C.2) may be formed to solve this system densely. Otherwise, it
is preferable to use the fast TT matrix vector apply on the tensor decomposition in Eq. (C.4) to solve
this system using an iterative algorithm such as GMRES or Bi-CGSTAB.
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