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Fig. 1. Given a cross field (green) with arbitrary topological structure (in terms of extraordinary points and global holonomy), using a novel algorithm we
compute a compatible global conformal parametrization with particular (seamless similarity) transitions (blue). Spline domains are derived from this global
parametrization in the form of aligned T-meshes, and adapted to specific needs (gray). Using a novel halfedge-knots concept, a T-spline function space can be
built on these base meshes and, for instance, be used to define, fit, and evaluate a smooth piecewise rational surface (golden). The construction is backward
compatible with classical NURBS, T-Splines, and T-NURCCS, while enabling full algorithmic control over extraordinary points and global structure.

A variety of techniques were proposed to model smooth surfaces based on

tensor product splines (e.g. subdivision surfaces, free-form splines, T-splines).

Conversion of an input surface into such a representation is commonly

achieved by constructing a global seamless parametrization, possibly aligned

to a guiding cross-�eld (e.g. of principal curvature directions), and using this

parametrization as domain to construct the spline-based surface.

One major fundamental di�culty in designing robust algorithms for this

task is the fact that for common types, e.g. subdivision surfaces (requiring a

conforming domain mesh) or T-spline surfaces (requiring a globally consis-

tent knot interval assignment) reliably obtaining a suitable parametrization

that has the same topological structure as the guiding �eld poses a major

challenge. Even worse, not all �elds do admit suitable parametrizations, and

no concise conditions are known as to which �elds do.

We present a class of surface constructions (T-splines with halfedge knots)
and a class of parametrizations (seamless similarity maps) that are, in a sense,

a perfect match for the task: for any given guiding �eld structure, a com-

patible parametrization of this kind exists and a smooth piecewise rational

surface with exactly the same structure as the input �eld can be constructed

from it. As a byproduct, this enables full control over extraordinary points.

The construction is backward compatible with classical NURBS. We present

e�cient algorithms for building discrete conformal similarity maps and

associated T-meshes and T-spline surfaces.
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1 INTRODUCTION
The topic of surface parametrization over planar domains has re-

ceived considerable attention as it, very generally speaking, enables

concepts from the Euclidean world to be employed on a Riemannian

surface. Challenges arise when surfaces of arbitrary topology are

to be dealt with, where such parametrizations globally inevitably

exhibit discontinuities, or need to be de�ned chart-wise. Fortunately,

if the concept to be employed on the surface is invariant to a certain

class of parameter transformations, it can nevertheless be used obliv-

iously if the parametrization is related across the discontinuities

(the cuts or chart borders) by transitions from exactly this class.

An important transition class is that of translations composed

with rotations by multiples of
π
2

. Perhaps somewhat misleadingly,

the term seamless parametrization was coined for this case, inte-
ger grid map for the special case of integer valued translations.

Such parametrizations, for instance, enable bivariate spline function

spaces to be extended from the plane to manifold surfaces, or regu-

lar grids to be mapped to structured quad meshes on surfaces—due

to certain translational and rotational invariances of spline basis

functions and lattices, respectively (cf. Proposition 2).

The class of seamless transitions is small, constructing a global

surface parametrization with transitions from only this class a chal-

lenge. While signi�cant advances have been made in this regard

in recent years, no reliable solution is known that ensures local

injectivity and seamlessness while providing strict control over the

parametrization’s topological structure. This control is important
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as it concerns such signi�cant features as the parametrization’s sin-

gularities (which, e.g., imply extraordinary points in spline surfaces

or irregular vertices in quad meshes) as well as its global holonomy

(cf. Section 2). The latter is of particular relevance when the global

directional �ow of the parametrization’s isolines is sought to be

in�uenced, e.g. using a guiding cross �eld (cf. Figure 1 left). Further-

more, even when a reliable, practical solution becomes available, it

is known that not every cross �eld can be matched topologically by

a seamless parametrization. This is discussed in detail in Section 2.

Contribution
We introduce two new concepts which, in tandem, provide a remedy.

• Seamless similarity maps. This class of parametrizations has

transitions that are compositions of translations, rotations by

multiples of
π
2

, and (positive, isotropic) scalings. It thus forms

a superclass of seamless maps. This class is large enough that

for any surface and any �eld topology a matching seamless

similarity map exists. This statement even holds when we focus

speci�cally on conformal seamless similarity maps (cf. Figure 3).

This allows us to leverage results for conformal mapping and to

present a practical algorithm for the construction of maps from

this class, whose e�ciency and robustness we demonstrate on

a challenging benchmark.

• T-splineswith halfedge knots. This construction is a remark-

ably simple generalization of classical T-splines: instead of as-

signing a single knot interval per edge of the control mesh, we

assign two values, one for each side of the edge (subject to local

conditions, cf. Figure 2). This removes a non-inherent restric-

tion that limited applicability to domains built from the smaller

class of seamless maps. These splines can thus be de�ned based

on seamless similarity maps instead. We demonstrate that this,

for instance, opens up possibilities for piecewise polynomial

or rational smooth surface constructions with full structural

control (over extraordinary points and global ‘edge �ow’)

Herein we speci�cally focus on extending bi-cubic T-splines and

their more generic version T-NURCCS [Sederberg et al. 2003], and

demonstrate their use in the context of surface representation. Our

surfaces are piecewise rational bi-cubic and C2
away from extraor-

dinary points, andC1
at extraordinary points (or G2

and G1
, respec-

tively, in the terminology of geometric continuity). The approach is

more general, though, and other degrees and similar function space

constructions could be employed, as long as they support T-joints.

Our generalization does not obstruct common local control mesh

structure requirements such as well-separation of extraordinary

vertices [Li et al. 2010; Sederberg et al. 2003] or non-intersecting

T-extensions for analysis-suitable T-splines [Li et al. 2012].

Our algorithm for seamless similarity map construction extends

conformal maps to surfaces of arbitrary topology, using a special

type of cut conditions controlling global holonomy properties of

the map. We believe use cases other than T-splines can bene�t from

this, possibly with some changes, as well. Our scenario does not

require maps to be conformal; the initial map can thus be further op-

timized (within the class of seamless similarity maps), e.g. for other

distortion measures and directional alignment, using established

techniques with local injectivity constraints.

Fig. 2. Classically, knot intervals are assigned to edges of the spline control
mesh (le�). On opposite sides of each quad face, knot interval (sums) must
be equal. We assign knot intervals per halfedge instead (middle). The two
knot intervals thus assigned per edge may di�er, which globally provides
additional flexibility; only a cycle condition around each vertex needs to be
fulfilled: the cyclic product of interval ratios across edges (right) must be 1,
as in this example: 2

3
· 6
8
· 2
1
= 1.

2 BACKGROUND AND OVERVIEW
In order to de�ne spline function spaces (or similar constructions)

on surfaces, a global parametrization (that respects their respective

invariances) is required. While in theory any such parametrization is

su�cient, in practice it is often of signi�cant bene�t to use one of, in

some sense, high quality. A method that generates a parametrization

for this purpose should thus o�er control over this.

A particularly important aspect in this regard are the (often un-

favorable but topologically inevitable) extraordinary points, thus

control over their number, types, and locations is desirable. Control

over the directional orientation of parametric lines on the surface

is likewise of relevance. For instance, alignment with respect to

creases and principal curvature directions a�ects a spline surface’s

or mesh’s quality [Alliez et al. 2003; Kovacs et al. 2015; Li et al. 2006].

Both, extraordinary points and desired directional orientations, can

universally be speci�ed in the form of a cross �eld (cf. Figure 1 left)

serving as guidance for the parametrization [Vaxman et al. 2016].

2.1 Holonomy signature
The numbers of quarter rotations (by

π
2

) of a cross �eld (4-symmetry

direction �eld) around arbitrary loops on the surface are invariant

to local �eld perturbations; they describe the topology of the �eld

[Ray et al. 2008]. Due to homotopy, it is su�cient to consider one

contractible loop around each singularity and a pair of loops for each

surface handle (cf. Figure 3) to completely understand the �eld’s

topology. We call the collection of these integer numbers the �eld’s

(holonomy) signature. Note that this signature is relative to the set

of loops considered, and that on a genus 0 surface it only concerns

the singularities. The signature of a seamless parametrization can

be de�ned analogously, via the cross �eld formed by its parametric

lines. Note that not every collection of numbers can occur: a cross

−1 +1

0

+1

Fig. 3. Example of a holonomy signature for a genus 1 surface, with 2 singu-
larities and 2 homology basis loops. Right: seamless similarity parametriza-
tion with this signature (singularities colored).
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�eld (and thus its signature) ful�lls the Poincaré-Hopf theorem [Ray

et al. 2008]. We will tacitly make the standard assumption that the

�eld has no non-hyperbolic singularities (with index ≥ 1).

It is essential that the signature of the constructed parametriza-

tion matches that of the given guiding �eld. If there is a di�erent

rotation number on a loop, there is no hope that (even with any form

of local adjustment and optimization of the parametrization) good

directional alignment to the �eld, or the desired local parametriza-

tion structure at extraordinary points, can be achieved. Constructing

a parametrization that is topologically compatible (i.e. has the same

signature) with a given cross �eld (or even just with its singularities)

is an issue with available techniques:

(1) not all cross �elds can be matched by a seamless parametriza-

tion; obstacles can be the singularity con�guration ([Jucovič

and Trenkler 1973] show that no such parametrization is com-

patible with the con�guration in Figures 3 and 4) as well as the

global holonomy structure (cf. Figure 5, as shown in [Myles

et al. 2014, Appendix 1]).

(2) even if a compatible seamless parametrization exists, there is

not necessarily a known method that can reliably �nd it. Also,

there appears to be no complete understanding as to which

holonomy signatures actually do admit such a parametrization.

By working with seamless similarity parametrizations instead, we

are able to avoid these issues. This is illustrated in Figures 3, 4, and 5,

where we visualize seamless similarity maps (using a checkerboard

texture or derived T-meshes) computed for exemplary con�gura-

tions that are problematic for seamless maps, as discussed above.

Fig. 4. While a conforming quad mesh (or seamless map) of genus 1 with a
single valence 3 and a single valence 5 vertex is known not to exist, a T-mesh
can be constructed (le�). While this T-mesh does not allow for consistent
edge knot intervals, using our halfedge knot intervals a T-spline surface can
be defined and evaluated (right).

Fig. 5. T-spline surfaces (with superimposed images of the underlying con-
trol meshes) without extraordinary vertices. They di�er in their holonomy
signature (intuitively: the rotation of the control mesh ‘edge flow’ around
the object). Only the le�-most instance can be handled by seamless maps
and classical T-splines with edge knots. Our variant with halfedge knots
supports all three signatures (as well as any other).

ka kb

Fig. 6. Le�: a cylindrical control T-mesh. It is not possible to assign positive
knot intervals that are consistent in every face to the vertical edges. Middle:
halfedge knot intervals can be assigned such that they are consistent in
every face, as well as cycle consistent around every vertex. Right: on this
mesh not even positive halfedge knot intervals can be assigned consistently;
either per-face consistency needs to be violated, cycle consistency needs to
be violated, or knot intervals ka and kb need to be set to zero.

2.2 Knot consistency
Bivariate tensor-product splines are generally de�ned with respect

to an axis-aligned quad mesh in the parametric domain, in the

case of T-splines a non-conforming one (a T-mesh) [Sederberg et al.

2003]. The associated knots determine the parametric extent of the

individual quads. Vice versa, one can start by assigning extent values

(knot intervals) to the edges of an abstract control mesh and let them

implicitly de�ne the underlying parametric domain and its knots.

One, however, needs to ensure that the assigned knot intervals are

consistent: on opposite sides of a quad the (sums of) intervals must

be equal
1
; otherwise a corresponding axis-aligned domain rectangle

does not exist [Kovacs et al. 2015; Sederberg et al. 2003].

Not every T-mesh allows for the assignment of globally consistent

edge knot intervals—at least if we restrict ourselves to strictly posi-

tive values [Karciauskas et al. 2016]. Figure 6 left shows an example.

Allowing zero intervals of course always leads to feasibility (just

consider the trivial solution), but intervals may uncontrollably be

forced to be zero, inadvertently lowering continuity.

Meshes (whether conforming or non-conforming) that are de-

rived from (i.e. aligned with) a seamless map always allow for con-

sistent positive knots: just notice that each aligned quad is mapped

(modulo rigid transitions) to a rectangle by such maps. Hence, the

parametric lengths of edges are, prototypically, knot intervals that

are consistent.

Meshes aligned with a (more general) seamless similarity map,

by contrast, do not always allow for consistent edge knot intervals.

But one can more �exibly operate with knot intervals assigned

per halfedge (cf. Figure 6) if local cycle conditions (cf. Figure 2)

are ful�lled—which is always possible for meshes aligned with a

seamless similarity map. The importance of the cycle conditions is

discussed in Section 4.1.1.

While our generalization thus clearly enables a larger class of

T-meshes to be used, we point out that arbitrary T-meshes (e.g.

obtained by tracing in arbitrary cross �elds) are not suitable for our

construction: Figure 6 right shows an example where the per-face

consistency conditions and the per-vertex cycle conditions cannot

be met simultaneously with positive halfedge knot intervals.

1
One can extend splines to support inconsistent knots [Müller et al. 2006; Sederberg

et al. 2008], but this comes at the cost of losing compatibility with standard cubic

NURBS; the surface is no longer piecewise rational or polynomial, or is of signi�cantly

increased degree—both of which may hamper interoperability in practical work�ows.
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Overview
We begin by showing the following results:

• Piecewise rational bi-cubic spline surfaces can be de�ned based

on T-meshes with consistent halfedge knots (Section 4),

• T-meshes aligned with seamless similarity maps allow for such

consistent halfedge knots (Section 5),

• Such a seamless similarity map exists for any cross �eld’s holo-

nomy signature (Section 6).

We then exploit these results algorithmically, following these steps

in our construction, as illustrated in Figure 1:

(1) Compute a seamless similarity parametrization using a con-

strained conformal map, matching the desired holonomy sig-

nature. An optimization of this initial map for directional align-

ment and other objectives can follow (Section 7).

(2) Construct a suitable aligned control T-mesh, containing the

set of desired spline control vertices, out of isoline segments

of this parametrization and assign consistent halfedge knot

intervals (Section 8).

(3) Evaluate the T-spline using basis function domains, and tran-

sition functions between these domains, that are derived from

the consistent knot intervals (Section 4.2).

3 RELATED WORK
Seamless Parametrization. For global parametrizations to be of use

in the context of generating parametric domains for classical tensor-

product spline surfaces, they need to be seamless, as discussed in the

previous sections. A variety of methods have been described for the

generation of such parametrizations [Aigerman and Lipman 2015;

Bommes et al. 2009; Campen et al. 2015; Ebke et al. 2016; Kälberer

et al. 2007; Myles et al. 2014; Myles and Zorin 2012, 2013; Tong et al.

2006], often in the context of quad mesh generation or seamless

texturing [Ray et al. 2010].

Conformal Parametrization. For the construction of seamless sim-

ilarity parametrizations, we make use of conformal maps. There is

a variety of approaches to conformal map construction, based on

circle patterns [Bowers and Hurdal 2003; Kharevych et al. 2006],

discrete Ricci �ow [Chow and Luo 2003; Jin et al. 2007], or variations

thereof [Springborn et al. 2008]. Conformal maps have been used

in the concrete context of T-spline construction before [Gu et al.

2008; He et al. 2006]. These latter approaches are based on a speci�c

mapping technique [Gu and Yau 2003] that supports extraordinary

vertices of valence 8, 12, 16, . . . only.

Just like the above seamless metric parametrization techniques,

these conformal techniques cannot typically guarantee �nding a

valid map in general. Most importantly, there can be obstructions

to the existence of any proper map in the discrete setting, caused

by un�t tessellation. Few works have addressed this problem, e.g.

[Luo 2004], who shows that dynamic edge �ips can theoretically be

employed in the course of conformal �ow.

We have not seen the global map behavior (in terms of holonomy

or rotation around non-contractible loops) being addressed and

controlled in these works (as opposed to some works on seamless

parametrization, e.g. [Campen and Kobbelt 2014]). This control is

an essential requirement and core aspect of our method.

It is well known that any surface admits some conformal atlas

[Postnikov 2001, Ch. 14]. We show that this even holds for very spe-

ci�c conformal atlases, with seamless similarity transitions between

charts. These build the foundation of our spline construction.

Smooth Surfaces. Smooth surface representations based on poly-

nomial patches, NURBS, and, more generally, subdivision, were

traditionally based on control meshes which are conforming, most

prominently conforming quad meshes [Cashman 2012; Farin 2002],

which are closely related to seamless parametrizations. Some works

have addressed the problem of automatically constructing such

meshes for given shapes, e.g. [Boier-Martin et al. 2004; Eck and

Hoppe 1996; Panozzo et al. 2011]. Hierarchical control meshes later

provided more freedom (in terms of local resolution adaptation ca-

pabilities) in this context [Bertram et al. 2004; Khodakovsky et al.

2000; Lounsbery et al. 1997; Zorin et al. 1997].

Even more �exibility was gained through constructions based

on non-conforming quad meshes, so-called T-meshes. Examples

are T-splines [Sederberg et al. 2004], T-NURCCS [Sederberg et al.

2003], PHT-splines [Deng et al. 2008], GPT-splines [Li et al. 2010],

or dyadic T-subdivision [Kovacs et al. 2015]. Advantages due to this

more �exible structure, e.g. for isogeometric analysis, have been

demonstrated [Bazilevs et al. 2010].

Automatic T-Mesh Construction. The construction of arbitrary T-

meshes can be facilitated quite easily, for instance by tracing integral

curves of cross �elds [Myles et al. 2014], by growing patches [Carr

et al. 2006], or from isolines of periodic functions [Ray et al. 2006].

These T-meshes, however, are most often not suitable for spline

applications, because they do not allow for globally consistent knot

intervals (neither edge nor halfedge based).

T-meshes that allow for consistent edge-based knot intervals

have been obtained as a submesh of a conforming mesh [Eppstein

et al. 2008; Li et al. 2006; Myles et al. 2010; Sederberg et al. 2004],

as a subset of the isocurves of a seamless surface parameterization

[Campen et al. 2015; He et al. 2006], or by restricted local re�nement

as a supermesh of a conforming mesh [Sederberg et al. 2003; Wang

et al. 2012]. However, robustly constructing a conforming quad

mesh or a seamless surface map with the desired topology to start

with is a major issue, as discussed in Section 2.1.

4 SPLINE SURFACES WITH HALFEDGE KNOTS
In this section, we de�ne our version of T-spline surfaces with

halfedge knot intervals in detail. To simplify exposition, we focus

on surfaces without boundary and we do not consider zero inter-

vals here (which can be of interest to selectively lower the local

continuity order, e.g. for creasing).

T-meshes. A T-mesh is a mesh with quad faces; two quad faces of

a T-mesh may intersect over a part of a common edge (as opposed

to a conforming mesh, where faces only intersect over entire edges

or vertices). A vertex is a T-joint with respect to an adjacent quad if

it is contained in the interior of an edge of this quad. We de�ne the

extended valence of a vertex as the number of incident edges, plus

the number of quads for which the vertex is a T-joint. We say that a

vertex is extraordinary if its extended valence is di�erent from four.

All other vertices are called regular.
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Halfedge knots. To de�ne a T-spline we need to specify knot

interval values. Here our construction di�ers from the classical one

in a crucial way, as we do not assign a unique knot interval for

an edge. Instead, we assign a knot interval per halfedge h, i.e., a

(face, edge) pair. For a halfedge h of edge e , let h′ denote the other

(opposite) halfedge of e .

For each halfedge h of the T-mesh, corresponding to edge e and face
f , we assign a knot interval value k(h) = k(e, f ) ∈ R>0. These knot
intervals need to satisfy two requirements:
• the sum of the knot intervals of halfedges on a side of a quad is

equal to the sum on the opposite side (consistency condition),
• the ratios sh = k(h)/k(h′) of intervals of opposite halfedges satisfy∏

h∈Hv sh = 1 at every vertex v (cycle condition).

Above, the set Hv contains one halfedge of each edge incident

to v , chosen consistently (e.g. the ones associated with the faces

that lie clockwise of the respective edges around v). Notice that this

de�nition reduces to classical de�nitions of tensor-product spline

and T-spline control meshes, which carry knot intervals per edge, if

we require sh = 1 for each halfedge h.

Admissibility. We call an assignment of halfedge knot intervals

satisfying the above conditions admissible. A T-mesh is called admis-

sible if an admissible assignment of positive knot intervals exists.

4.1 Spline definition
We associate each quad face Qm of the T-mesh with a local coordi-

nate system (um ,vm ) and a parametric domain Fm (cf. Figure 7), of

size given by the knot intervals of its halfedges. One corner of the

quad is arbitrarily chosen as origin of Fm .

As with classical cubic B-splines or T-splines, each vertex v of

the mesh is associated with a basis function (also called blending

function) Bv and a control point pv . Each Bv is associated with a

parametric domainDv with a local coordinate system. We arbitrarily

designate one of the quads incident to v its anchor quad Qv , and

choose the system of Bv to coincide with that of Qv , except that its

origin is located at the corner ofv . As we will show, these choices of

local systems are truly arbitrary; they do not a�ect the �nal result.

Just like for other basis splines, evaluation at an arbitrary point

in a quad Qm , i.e. at (u,v) ∈ Fm , is performed simply by evaluating

each basis function at that point, and computing the accordingly

weighted sum of their associated control points (cf. Section 4.2).

What needs our speci�c attention in this regard is the following:

• how do we transform between di�erent coordinate systems, as

Bv does not generally live in Qm ’s local system?

• how is each Bv de�ned, i.e. how are their support regions and

their knot vectors determined by the T-mesh?

The same questions arise for previous spline constructions with

T-joints on manifolds; as the discussion in the literature is terse and

our halfedge knots add another detail to be considered, we explain

both aspects in detail in the following, and provide pseudo code in

Supplement Appendix C to ensure complete clarity.

4.1.1 Transitions. For two edge-adjacent quads Q1,Q2 sharing

an edge e , τ [F1, F2] is de�ned as the similarity transform mapping

points on e in Q1’s coordinates to Q2’s coordinates, i.e. from F1 to

τ
F1

F2

Q1

Q2

Fig. 7. �ads Qm (gray) (with halfedge knots) and their associated para-
metric domains Fm (white). Here the transition is τ (F1, F2)= 3

2
Rq +(1, − 3

2
),

with a rotation R by angle zero in this case.

F2 (cf. Figure 7). Note that the scaling factors s of τ are the halfedge

knot ratios, and that the composition of these transitions around a

regular vertex, due to the cycle condition, is the identity.

Let Sv denote the supporting submesh of Bv , consisting of those

quads that are (fully or partially) overlapped by the support of Bv . To

de�ne the in�uence of a control point pv (via basis function Bv ) at a

local parameter position (um ,vm ) in a faceQm ∈ Sv , i.e. to evaluate

Bv at that position, we need to know the transform τ [Fm ,Dv ] that

maps the Fm -coordinates (um ,vm ) to Dv -coordinates. Then we are

able to perform the required evaluation Bv (τ [Fm ,Dv ](um ,vm )).
By de�nition, the coordinate systems of Dv and its anchor quad

Qv ’s domain Fv di�er only by a (known) translation, de�ning

τ [Fv ,Dv ]. Through composition with the above transitions between

quad domains, this can now be extended to other domains F . Con-

cretely, we discover the entire supporting submesh Sv recursively,

e.g. using a breadth-�rst traversal, starting from Qv . For a quad

Qn adjacent to Qv that is reached in this process, the transform

τ [Fn ,Dv ] simply is τ [Fv ,Dv ] ◦ τ [Fn , Fv ]; for a quad Qo adjacent

to Qn it is τ [Fn ,Dv ] ◦ τ [Fo , Fn ], and so forth. The search stops at

quads not contained in the supporting submesh Sv anymore.

This recursive de�nition of τ is independent of traversal order—if

Sv is simply-connected and free of internal extraordinary vertices

(which we will ensure for all relevant cases, cf. Section 4.1.3). Assume

it was not well-de�ned, not path independent, i.e. there are two

di�erent directed paths π1,π2 from Qv to some Qo leading to di�er-

ent transforms τπ1 [Fo , Fv ] , τπ2 [Fo , Fv ]. These two paths, which

are sequences of edges in the quad adjacency graph, together form

a directed contractible cycle π12 enclosing only regular vertices,

around which τπ12 = τπ2 ◦τ
−1
π1 , I . Being contractible, this cycle π12

can be decomposed into directed elementary cycles (around single

vertices), such that τπ12 is the composition of the transitions around

them. As τπ12 , I , at least around one of these regular vertices they

must be non-trivial, contradicting our cycle condition assumption.

Remark. The above de�nition of τ between D and F extends to

transitions between overlapping domains Di , D j in the obvious

manner: τi j = τ [Di ,D j ] = τ [Fm ,D j ] ◦ τ [Fm ,Di ]
−1

, for any quad

Qm overlapped byDi andD j . Away from extraordinary points these

transitions satisfy the usual chart cycle conditions τjk ◦ τi j = τik ,

τi j = τ
−1
ji for overlapping domains Di , D j and Dk . The manifold

atlas with charts Di thus de�ned, with similarity maps as transition

maps, is a special case of a similarity structure on a surface.

4.1.2 Basis functions. It remains to determine the support and

the knot vectors, and thus the size of the domain Dv , of a basis
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function Bv . Note that these knots are relative to the local coordinate

system chosen for Bv .

The process of computing the knot vectors is described in [Seder-

berg et al. 2003]: in each parametric direction (four at regular ver-

tices, more or less at extraordinary ones), follow rays from v up to

the (for the cubic case) second intersection with a vertex or orthog-

onal mesh edge. The parametric distances to the �rst and second

intersections, together with the central zero, form the knots for Bv
(cf. Figure 8 left). In our generalized case we merely need to make

sure to apply the transition τ [F ,Dv ] for each quad domain F crossed

by a ray (for rays coinciding with edges one can arbitrarily consider

one of the two incident quads), so as to consistently measure dis-

tances in the common coordinate system of Dv . The extent of Dv ,

the parametric support of Bv , is de�ned by the range spanned by

these knots.

Note that the supporting submesh Sv consists of those quads Qm
for which τ [Fm ,Dv ](Fm ) ∩ Dv , ∅.

Invariance to choice of local systems. A di�erent choice of an-

chor quad Qv (thus local coordinate system) for basis function Bv
leads to di�erent knot vectors and a di�erent domain Dv (and ac-

cordingly di�erent transitions τ [F ,Dv ]). The di�erence, however,

is just a constant similarity transformation (e.g. for two adjacent

possible anchor quads Qm , Qn this transformation is just τ [Fm , Fn ]
composed with a translation). For illustration, Figure 8 shows an

exemplary T-mesh; for two di�erent anchor quad choices (blue), the

knot intervals mapped (using τ ) into the respective basis function

coordinate system are shown. Note that the two intervals associated

with the two halfedges of an edge are equal in this common system

(as the interval ratios are the scaling factors of τ ). In this sense, ad-

missible halfedge knots are locally equivalent to edge knots. Notice

that between these two anchor choices the resulting intervals di�er

by a constant factor (2 in this case), as expected from a constant

similarity transformation. As Bv is invariant to similarity transfor-

mation of knots and parameters (cf. Proposition 2), the resulting

spline surface is indeed invariant to the choice of local system.

4.1.3 Extraordinary vertices. In the above we have generally as-

sumed that τ [Fm ,Dv ] is well-de�ned for all Fm relevant to Bv . This

holds if the supporting submesh Sv is simply-connected and free

of internal extraordinary vertices. To help ensure these properties,

and generally deal with extraordinary vertices in the following,

we make the following additional assumptions on the connectivity

of the T-mesh (and show in Section 8 that they can easily be met

through local re�nement operations):

A) Each extraordinary vertex is surrounded by three regular rings

of conforming faces (no T-joints) with uniform knots.

B) For a regular vertex v the supporting submesh Sv does not

overlap a face incident to an extraordinary vertex w , unless v
is in the 1-ring or 2-ring of v .

C) Each Sv is simply-connected.

Herein we call an admissible T-mesh that meets these require-

ments spline compatible. We note that condition C is actually not

essential but simpli�es exposition and implementation (transitions τ
would need to be de�ned in a per homotopy class manner to handle

self-overlapping supports).

Fig. 8. Le�: T-mesh with admissible halfedge knot intervals around a central
vertex. Ray intersections that determine the knot vectors of the associated
basis function are marked by crosses. Middle and right: the intervals mapped
into a common coordinate system, for two di�erent choices of anchor quads
(blue). Only one interval per edge is depicted, because intervals of halfedge
pairs coincide in the common system. Notice that the two cases (middle
and right) di�er only by a constant scale factor of 2.

Due to assumptions A and B, the only basis functions whose

support contains an extraordinary vertex are the ones rooted at

vertices incident to a face which is incident to an extraordinary

vertex. The three possible con�gurations are depicted in Figure 9.

To avoid having to handle numerous special cases, we exploit the

symmetries of the basis function de�nition by conceptually splitting

each basis function into quadrants (four for basis functions at regular

vertices, more or less at extraordinary vertices), as indicated by

colors in Figure 9. In the above constructions (Sections 4.1.1 and

4.1.2), each quadrant can be treated separately, as long as they are

still associated with the same common control point p.

The individual quadrant basis functions obviously have a smaller

support; as can be observed in the �gure, this leaves us with only a

single case where the support (gray) of such a basis function contains

an extraordinary vertex in its interior. In this case, the quadrant

basis function is not well-de�ned. It can simply be ignored though,

since it (in contrast to the other cases) overlaps only 1-ring faces

of an extraordinary vertex—where the surface evaluation needs

to be performed in a generalized manner (using subdivision rules)

anyway. Condition A ensures that in these quads, where the usual

tensor-product structure does not hold, the surface can be evaluated

compatibly using uniform Catmull-Clark subdivision rules [Stam

1998] (or alternatively be capped [Peters 1992]). By adopting a more

Fig. 9. Considering each quadrant of a basis function’s support separately
(di�erent colors) allows to algorithmically handle regular vertices, extraor-
dinary vertices, and regular vertices near extraordinary vertices in a unified
way. In the case depicted on the right, one of the quadrants (in the gray
1-ring region) is irrelevant (and not well defined) because evaluation around
extraordinary vertices is performed by special subdivision rules.
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complex, non-uniform scheme, e.g. [Cashman 2012; Kovacs et al.

2015; Li et al. 2016; Sederberg et al. 2003], one could reduce the

required number of regular rings to two.

4.2 Spline evaluation
To de�ne precisely the evaluation of the surface at an arbitrary point

in a quadQm (not incident to an extraordinary vertex), i.e. at (u,v) ∈
Fm , let Cm be the set of all overlapping quadrant basis functions Bi
(for which Qm ∈ Si ); let pi be the control point associated with Bi .
Then we de�ne the surface evaluation as

F (u,v) =

∑
Bi ∈Cm pi Bi (τ [Fm ,Di ](u,v))∑
Bi ∈Cm Bi (τ [Fm ,Di ](u,v))

(1)

For a quad incident to an extraordinary vertex, we rely on Catmull-

Clark subdivision instead, to evaluate a C1
surface [Stam 1998].

Proposition 1. The surface F de�ned by (1)

• is invariant with respect to arbitrary seamless similarity trans-
forms applied to domains Di and their knot vectors, thus in par-
ticular to the choice of local coordinate systems,

• is a piecewise rational C2 (or “G2”) surface away from extraordi-
nary points.

A proof can be found in Appendix A; it is based on the following

observation of parametric similarity invariance of basis functions:

Proposition 2. Let the 2D tensor-product B-spline basis function
B[u, v](u,v) = B[u](u)B[v](v) be de�ned by knots u1, . . . ,uk and
v1, . . . ,vk ; u, v are vectors of knots for two coordinate directions. Let
(u ′,v ′) = τ (u,v) = sR[u,v]T + t be a similarity transformation of
the parametric domain B, where R is a rotation by kπ/2, k ∈ Z, s > 0

is a scale factor, and t a translation vector. De�ne u′ and v′ as vectors
of knots u ′i and v

′
i obtained as coordinates of τ (ui ,vi ). Then

B[u′, v′](u ′,v ′) = B[u, v](u,v) (2)

A proof can be found in Appendix A as well.

5 SPLINE-COMPATIBLE T-MESHES FROM SIMILARITY
MAPS

To simplify the seemingly complex problem of constructing an ad-

missible (or ultimately spline-compatible) T-mesh for a surfaceM

(the conditions on knot intervals are nonlinear), we �rst reduce it

to the problem of �nding a seamless similarity map. The construc-

tion of such a map is then addressed in the following Sections 6

(theoretical background) and 7 (computational algorithm).

Consider a surface M with an embedded set of curves that cut it

to a disk (cut graph). Denote the resulting cut surface with boundary

Mc . A continuous, locally injective map f (p) : Mc → R2 is a

seamless similarity map if for each two coinciding points q, q′ on

di�erent sides of the cut the parametric coordinates are related by a

seamless similarity transformation, i.e. f (q′) = σ (f (q)) = sR f (q)+t,
where R is a rotation by kπ/2, k ∈ Z, and these transitions σ ful�ll

the above mentioned cycle condition around any regular point. Note

that this in particular implies that s , R, and t are constant along each

branch of the cut graph (away from extraordinary points).

The proof of the following proposition is constructive, and de�nes

a way to generate T-meshes and assign admissible halfedge knot

intervals from a seamless similarity parametrization.

Proposition 3. For a seamless similarity parametrization f on
Mc , any T-mesh embedded in M whose edges follow f ’s parametric
lines and whose vertices include f ’s singularities is admissible, and
such a T-mesh always exists.

Proof. An algorithm demonstrating existence is given in [Myles

et al. 2014]: by tracing a general cross-�eld on a surface (in our

special case: the �eld de�ned by the parametric lines of f ) starting

from extraordinary points, one can obtain an embedded T-mesh

with the required properties, using a modi�ed motorcycle graph

algorithm [Eppstein et al. 2008]. As in our case parametric lines

rather than general cross-�elds need to be traced [Campen et al.

2015], in practice tracing is particularly simple compared to the

general setting of [Myles et al. 2014; Ray and Sokolov 2014].

For the �rst part of the proposition, assume the cut coincides with

edges of an embedded T-mesh, i.e. the cut nowhere runs through

faces. We assign as knot interval value to each halfedge its length

in parameter space, under f . As each face has a rectangular image

(due to f -aligned edges), these knot intervals are consistent per face.

Furthermore, the knot ratio at each edge equals the scale factor of

the similarity transition σ on the cut coinciding with the edge (or is

1 if there is no cut). Hence, as f is cycle consistent, so are the knot

intervals, proving admissibility of the T-mesh.

If the cut does not coincide with T-mesh edges, it can be deformed

to do so; then the above argument applies. This is possible in general

because the embedded T-mesh forms a cell decomposition of M (due

to all faces having disk topology), thus is homotopic to M . �

In practice, such a cut deformation does not need to be performed

explicitly. When computing parametric lengths of halfedges in a face,

one simply maps all parameter values into a common local system

(e.g. rooted at a corner of the face) by applying all cut transitions

σ encountered on a path (within the face) to that corner. Cycle

consistency of the map together with simple topology of the face

ensure that the result is unique, path-independent.

6 SIMILARITY MAPS VIA CONFORMAL MAPS
In this section we establish existence of seamless similarity maps

with arbitrary signature, using conformal maps. To this end, let us

�rst make precise the notion of a cross �eld and its signature. For

a background on the (discrete) exterior calculus notation we make

use of, we refer to [Abraham et al. 1988; Desbrun et al. 2008].

Cross �eld. An assignment of quadruples (e, e⊥,−e,−e⊥) of unit-

length vectors, separated by right angles, to all points on a surface,

possibly excluding a number of isolated extraordinary points (sin-

gularities), is called a cross �eld. It has an associated di�erential

quantity, the connection 1-form ω (from which it can be recovered

up to a constant global rotation). For the discrete case this view-

point was considered in [Crane et al. 2010]. The form ω is de�ned

by 〈ω, v〉 = e⊥ · ∇ve, where ∇v is the surface derivative of e in

the direction v. This form ω, evaluated on some tangent vector v,

produces the rate of rotation of the cross �eld in direction v. The

total rotation rγ along a curve γ (with tangent t) is thus given by

rγ =

∫
γ
〈ω, t〉 ds (3)
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The connection 1-form ω of a cross �eld is trivial [Crane et al.

2010], in the sense that this total rotation rγ plus the total geodesic

curvatureκtot [γ ] of the curve itself is a multiple of π/2 for any closed
curve (i.e. loop) γ . Note that the values kγ = (rγ + κ

tot [γ ])/ π
2

are

the integral quarter rotation numbers that make up the signature

introduced in Section 2.1. For a seamless (similarity) map f , the

signature can be de�ned analogously, via the cross-�eld (and its

di�erential ωf ) de�ned by the tangents to the parametric lines.

Proposition 4. For any admissible holonomy signature for a sys-
tem of homology loops γj , j = 1 . . . 2д and singularities pi , i = 1 . . .N
on a surfaceM , there is a seamless similarity map with this signature;
one such map is given by a conformal map f on the cut surfaceMc ,
de�ned by the conformal factor eϕ onMc , constructed as dϕ = ?ωf
from the unique co-closed 1-form ωf onM satisfying

?dωf = K − KG , (4)∫
γj
〈ωf , t〉 ds = kγj

π

2

− κtot [γj ], (5)

for each j ∈ {1, . . . , 2д}. KG is the Gaussian curvature of M , and
K = 2π

∑N
i=1 index(pi )δ (pi ), with δ a Dirac delta distribution.

Equation (4) is e�ectively the limit case of (5) for loops contracting

around every single point of M , thus, besides enforcing the desired

rotation numbers for singular points pi , also enforcing an index of

zero for any non-singular point [Bunin 2008].

We point out that this proposition in this form applies to the

smooth case only; the discrete setting is considered in Section 7.

Proof. Let ϕ ′ be a 0-form on the closed surface M that solves

the Poisson equation ∆ϕ ′ = ?d?dϕ ′ = K − KG . This equation has,

for the here relevant case of K being a sum of deltas, a unique

(up to an additive constant) solution ϕ ′ [Aubin 1998; Bunin 2008;

Troyanov 1991]. Note that ω ′ = ?dϕ ′ is co-closed and obviously

solves (4)—but not generally (5).

A closed genus д surface has a 2д-dimensional space of har-

monic 1-forms. Let {ω1, . . . ,ω2д} be a basis of this space, such

that

∫
γj
〈ωi , t〉 ds = δi j , i.e. the total rotation of ωi vanishes on all

loops but γi [Gu and Yau 2003; Tong et al. 2006, App. B]. Then

we have d(ω ′ + ciωi ) = dω ′ for any ci ∈ R due to harmonic-

ity of ωi , and

∫
γj
〈(ω ′ + ciωi ), t〉 ds =

∫
γj
〈ω ′, t〉 ds + ci

∫
γj
〈ωi , t〉 ds .

Hence, by choice of coe�cients ci , we can independently adjust

the rotation around the loops γj , without a�ecting (4), such that

ωf = ω
′ +

∑2д
i=1 ciωi uniquely solves (4) and (5).

As?ωf is closed, it is exact on the (simply-connected) cut surface

Mc , so it can indeed by integrated uniquely (up to constant global

scale), yielding the 0-form ϕ on Mc . Assuming the singular points

are contained in the cut, Mc is �at under the metric Ge2ϕ whose

Gaussian curvature isK [Aubin 1998; Schoen and Yau 1994], de�ning

a conformal map f . It is unique up to a rigid transformation. As

discussed in [Myles and Zorin 2013], ωf is indeed the di�erential of

f constructed in this way. Thus f respects the input signature.

It remains to show that f is a seamless similarity map. For this

we refer to Appendix A.

�

7 DISCRETE SIMILARITY MAPS
We now describe our algorithm to construct a discrete seamless

similarity map on a closed orientable triangle mesh M , respecting

a given signature. It is based on Proposition 4, although we do

not follow the constructive existence proof, but solve the equation

system (4) + (5) directly. This allows us to deal with discretization

issues (e.g. mesh connectivity changes) in a simpler, uni�ed manner.

7.1 Background
Solving this system (to then obtain ϕ via dϕ = ?ωf ) is similar to

other conformal mapping approaches, e.g. [Ben-Chen et al. 2008;

Springborn et al. 2008], though the focus typically is on simply

connected domains and thus (4) only. We need to employ an ap-

proach that supports taking (5) into account as well. We have chosen

to design an algorithm building on multiple ideas from previous

work, combining them in a novel way for the sake of generality,

performance, and robustness.

We combine three main ideas: (1) the idea of de�ning a discrete

�ow evolving the discrete 0-form ϕ (or, in our case, actually its dif-

ferential 1-form ξ = −?ωf ) according to deviation from the desired

curvature [Luo 2004], (2) performing triangle mesh connectivity

modi�cations as the �ow proceeds, to enable convergence to a

valid solution in the discrete setting [Gu et al. 2013; Luo 2004], and

(3) discretization of a single �ow step following a linear formulation

[Ben-Chen et al. 2008] which corresponds to choosing the descent di-

rection indicated by Newton’s method for the �ow [Springborn et al.

2008]. The resulting combination passes challenging stress tests as

detailed in Section 9, and, in cases that do not require numerous

mesh modi�cations, proves to be e�cient.

Setting. Given is M with discrete metricG , given by edge lengths,

and an admissible holonomy signature, e.g. one derived from a cross

�eld. The output is a piecewise-linear seamless similarity map f
on M ′ (a possibly modi�ed or re�ned version of M). This map f
is discrete conformal, but as we discuss in Section 7.4, it can be

taken as a starting point (with the correct signature, i.e. topology)

for optimization for other distortion measures, alignment, etc.

7.2 Solving for the 1-form ξ

We set up a system of linear equations discretizing (4) and (5). As

variables we use the discrete 1-form ξ , i.e. a scalar value ξi per

oriented edge i of the triangle mesh (the reversely oriented edge,

i ′, implicitly has the negated value, ξi′ = −ξi ), and de�ne ω = ?ξ .

Let the loops γj , j = 1, . . . , 2д, in the discrete case cyclic triangle

strips, be represented by the edges between successive triangles in

the strip, oriented consistently from left to right side of the strip.

Following [Crane et al. 2010; Myles and Zorin 2013] the integral in (5)

is discretized as

∫
γ 〈?ξ , t〉ds =

∑
i ∈γ ?ξi , and the Hodge star ? is

de�ned as?ξi =
1

2
(cotαi +cotαi′)ξi , where αi is the angle opposing

oriented edge i in the triangle left of i . The total geodesic curvature

κtot [γ ] is easily computed by summing up turning angles along the

path [Myles and Zorin 2013]. Thus, for each cycle γj , j = 1, . . . , 2д,

and each vertex (except one), we setup equations∑
i ∈Ov

?ξi = 2π − kv
π

2

−KG [v],
∑
i ∈γj

?ξi = kγj
π

2

−κtot [γj ], (6)
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where Ov is the set of outwards oriented edges incident to ver-

tex v , KG [v] is the discrete Gaussian curvature at v , and kv is the

quarter rotation number around this vertex (which is related to the

singularity index as index(v) = 1 − kv/4).

As ξ is required to be a closed 1-form, we furthermore add closed-

ness conditions, i.e. for each face (except one) with (counterclock-

wise oriented) edges i, j,k :

ξi + ξ j + ξk = 0. (7)

The one vertex and face that are skipped are chosen arbitrarily

(closedness and correct curvature (via Gauss-Bonnet theorem) are

implied there). The resulting linear equation systemAξ = b has 2д+
|V |−1+ |F |−1 equations, which, according to Euler’s formula, equals

the number of variables, |E |. The equations are linearly independent,

as a consequence of independence of loops (cf. [Ray et al. 2008]), so

the system has a unique solution ξ .

Due to closedness, ξ is integrable (exact) on a simply-connected

cut mesh Mc . Integration of ξ yields a logarithmic scale factor ϕ on

Mc , de�ned uniquely up to an additive constant. ϕ de�nes a discrete

metric G ′ [Luo 2004; Springborn et al. 2008] under which an edge

(v,w) that has length ` under G has length

`′ = e(ϕv+ϕw )/2` (8)

There are two problems with this linear method, cf. [Ben-Chen

et al. 2008; Springborn et al. 2008]: the resulting discrete metric G ′

is not exactly �at (away from singularities), due to discretization,

and the resulting edge lengths `′ may violate triangle inequalities.

We resolve these problems by the algorithm described in the follow-

ing, which employs the above linear solve iteratively, updating the

system at each step using the new metric, and applying adaptive

triangulation modi�cations, to maintain triangle inequalities. We

found the remeshing capability of our method to be critical (cf. Ta-

ble 1, column edge�ips), which is supported by the data of [Chien

et al. 2016] on the low success rate of a non-remeshing discrete

conformal parametrization approach on a benchmark data set.

7.3 Iterative Algorithm
The algorithm evolves the discrete metric G ′, i.e. the edge lengths

of the cut mesh Mc . By ϕ(ξ ) we denote ϕ obtained by integrating ξ
on Mc , and method rescale updates edge lengths as in (8).

G ′ ← G

while | |b(G ′)| |∞ > ε

ξ ← A(G ′)−1b(G ′)

λ ← firstDegeneracy(Mc ,G
′, ξ )

G ′ ← rescale(G ′, λϕ(ξ ))

For each triangle f degenerate under G ′: flip(f )

E�ectively, we view the evolution as piecewise-linear �ow: at

every step, we attempt to linearly evolve the metric from the current

metric G ′ to the rescaled metric with ϕ(ξ ) obtained from the linear

solve Aξ = b, stopping to modify the triangulation at intermediate

points where a degeneracy event occurs.

7.3.1 Degeneracy handling. Function firstDegeneracy(M,G ′, ξ )
determines the �rst triangle degeneration event (if any) when con-

tinuously evolving the metric as rescale(G ′, λϕ(ξ )), i.e. it determines

the smallest “time” λ ∈ (0, 1] for which there is one (or more) de-

generate triangle in M . Degeneration events are determined as the

roots of an indicator function Ii j,k (λ) per edge (i, j) of each triangle

(i, j,k):
Ii j,k (λ) = `jke

ξik λ/2+ `kie
ξ jk λ/2− `i j , (9)

where edge lengths ` are with respect to current metric G ′. It has

these properties: (1) for a triangle valid at λ, all three indicator

functions are positive; (2) for a degenerate triangle, the indicator

function of (at least) one edge vanishes; (3) for a triangle violating

the triangle inequality, one indicator function is negative; (4) the

function has at most two roots in λ, as shown in Appendix B.

We initially set λ0 = 1. Then, for an indicator function I with

I (λ0) < 0 (indicating a violation at time λ0), we �nd the root r in the

range (0, λ0) and set λ0 = r . Note that due to I (0) > 0 and property

(4) there is exactly one root in this range. This is repeated until all

I (λ0) ≥ 0, so as to determine the earliest degeneracy time λ0, which

is then returned by firstDegeneracy.

The method flip(f ) is used to cure the degenerate triangle f . Let

e be the longest edge of triangle f . Note that this edge is unique,

as there are no edges of length zero at any step. Edge e is �ipped

and its length computed intrinsically from the incident triangles, as

described in detail by [Fisher et al. 2007]. Notice that triangles can

never degenerate to a point (a situation that could not be resolved

by an edge �ip) as the factors e(ϕv+ϕw )/2 (cf. Equation (8)) applied

to edge lengths in each iteration are strictly positive for any choice

of ϕ. Figure 10 demonstrates the e�ect of this strategy.

Remark. One can perform �ips more generally to make the tri-

angulation intrinsically Delaunay [Fisher et al. 2007] after each

iteration. This can speed up the process in cases where otherwise

many degeneracy events would occur (cf. Table 1). Furthermore,

if required, in the end all edge �ips performed can be realized as

edge splits instead (by overlaying the meshes [Fisher et al. 2007]),

ensuring the output mesh is a re�nement of the input mesh.

7.3.2 Analysis and relation to other methods. Discrete Ricci or

Yamabe �ow [Luo 2004] can be viewed as a continuous gradient

descent of some convex energy E(ϕ) (in some instances called Ricci

energy or Yamabe energy), which describes the deviation from the

prescribed curvature (the right-hand side of (4)) under the metric

implied by ϕ. In practice very small step lengths need to be chosen

Fig. 10. Extreme example of automatic triangulation modification to support
a high valence cone. A cone of 14π , corresponding to an extraordinary
T-mesh vertex of valence 28, was prescribed at the central vertex of the
input triangle mesh, which had valence 6, which implied it cannot support
this cone (a total angle of 14π in the parametric domain). Remeshing has
increased it valence so that 14π becomes representable.
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for a proper �rst order discretization of this process. Signi�cantly

faster convergence can be achieved by using a second order, Newton

method [Springborn et al. 2008]. Convergence from any starting

point (any initial curvature/metric G) is guaranteed when using a

globally convergent variant (e.g. with adaptive step size based on

trust-region or line-search techniques) [Springborn et al. 2008]. Our

algorithm can be interpreted as a variant of this approach. While

in that approach the Newton update ϕ in each step is essentially

determined via the linear system (?d?d)ϕ = µb (for an appropriately

determined step size µ), our core iteration e�ectively just uses a

di�erent bracketing (?d?)(dϕ) = µb (and exploits the additional

degrees of freedom to add terms (5) for non-contractible loops to

this underdetermined system) to determine the update for ξ (= dϕ).

An extension of the convergence analysis of [Springborn et al.

2008] to this more general setting and a proof that in the case of

convergence the resulting discrete conformal metric does indeed

yield a discrete seamless similarity map with the desired signature

can be found in [Campen and Zorin 2017]. The main open question

is whether an in�nite sequence of edge �ips could occur and hinder

convergence [Luo 2004]. The observed behavior, demonstrated in

Section 9, has not yet indicated this.

7.4 Alignment Optimization
As T-mesh edges are aligned with isolines of the conformal map (to

guarantee admissibility), the map’s orientation (in terms of isoline

directions) directly determines T-mesh edge orientation. So far, our

focus was entirely on structure control: the map we are constructing

has exactly the signature of a guiding cross-�eld, but it may be mis-

aligned with the actual directions of the �eld. For some applications

this may not be of concern, but for others, like spline �tting, such

�eld alignment can certainly be of interest (cf. Section 2).

A very simple �rst adjustment one can make is applying a globally

constant rigid rotation to the map, such that its isolines align, as

well as rigidly possible, with the given guiding cross �eld.

To compute a further improved version of the map, we propose

to set up an optimization problem based on the quadratic cross �eld

alignment objective of [Bommes et al. 2009], with conservative con-

vex local injectivity constraints (as described by [Lipman 2012] or

[Bommes et al. 2013]), and linear constraints that �x the transitions

across cuts, thereby preserving seamless similarity.

The injectivity constraints are initialized (convexi�ed) with re-

spect to the initial conformal map’s parametric directions, insuring

feasibility. The constraints �xing the transitions are of the form

(v − w) = sR(v ′ − w ′) (for each triangle mesh edge on the cut),

where v and w are (the parametric coordinates of) the two vertices

of a cut edge, and v ′,w ′ their duplicates on the other side of the cut.

The scale factor s and the rotation R are read o� the initial confor-

mal map. Again, the initial map clearly satis�es these constraints,

guaranteeing feasibility.

The important key aspect here is that the initial conformal map we

computed provides a feasible solution (thus a valid starting point for

optimization) to the problem of �nding a locally injective seamless

similarity parametrization. Finding such a feasible solution is usually

the main challenge for the above methods in this context, which is

solved by our conformal map initialization.

An example result of this optimization is shown in Figure 11.

Fig. 11. Le�: seamless similarity parametrization, rotated for (as good as
rigidly possible) principal direction alignment. Right: optimized, deformed
map with improved alignment. Notice that the similarity transitions across
the cuts are preserved.

8 CONSTRUCTING THE T-MESH
Given a seamless similarity parametrization of the surface M , it

is easy to construct an admissible T-mesh on M . As Proposition 3

shows, it is su�cient to construct any T-mesh with edges following

the parametric lines of the similarity parametrization and vertices at

singularities. Its proof gives a constructive way of de�ning halfedge

knot intervals on such a T-mesh, and shows that this knot assign-

ment is admissible.

A particularly coarse partition that ful�lls the conditions can

be obtained as the parametrization’s motorcycle graph on M . It is

constructed by simultaneously tracing isolines from the singularities

(applying transition functions on the way so as to be independent

of cuts) [Campen et al. 2015]. The graph forms a homotopic cell

decomposition of M , whose cells are four-sided and aligned with

isolines by construction [Eppstein et al. 2008]. Figure 14 left and

Figure 20 show examples.

Once such a coarse T-mesh is available as starting point, one can

easily perform mesh modi�cations, such as face splits or parallel

edge shifts [Myles et al. 2010] to adapt it to speci�c needs, e.g. re�ne

it to a desired resolution (possibly adaptively, �tting error driven [Li

et al. 2006]). Unfortunately, the initial motorcyle graph, while having

a low number of faces, can contain some small, and in particular

long but narrow faces, making it not well suited for such re�nement

strategies. We thus apply a sequence of simple edge removals and

“edge �ips” to the initial mesh, with the goal of greedily maximizing

the minimal face aspect ratio. This is detailed in the following.

8.1 T-Mesh Regularization
It is important to note that we cannot perform arbitrary mesh mod-

i�cations; we need to preserve admissibility of the mesh. This is

guaranteed if we just keep edges aligned to isocurves, preserve

four-sidedness, and do not touch extraordinary vertices. We make

use of the following operations that respect this.

Narrow faces can be removed by merging them with a neighbor-

ing face. This entails the removal of the separating edge(s) (cf. Figure

12 left). An edge can, however, only be removed if four-sidedness is

preserved. Edges violating this can be removed anyway, if we insert

another (orthogonal) edge instead, establishing four-sidedness again

(cf. Figure 12 right). This can be interpreted as an edge �ip.

Furthermore, we do not want to remove edges incident to extra-

ordinary vertices as this would complicate processing in later stages.
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Fig. 12. Le�: an edge (red) that can easily be removed. Right: an edge (red)
whose removal leaves a non-foursided face (with a concave, L-joint corner).
This is remedied by inserting another edge (green) at the corner.

Fig. 13. Partial edge (red) removal with orthogonal edge (green) insertion
at extraordinary vertices (blue) where edges cannot be removed entirely.

Such edges can, however, be removed partially, as illustrated in Fig-

ure 13 left. Again, orthogonal edges (green) are inserted to ensure

four-sidedness. While partial removal might seem to be of limited

use, it in particular enables the removal of narrow faces commonly

found around extraordinary vertices, as depicted in Figure 13 right.

We apply these operations greedily in order of decreasing aspect

ratio of the incident faces, i.e. starting at the worst-shaped face. An

operation is only executed if it does not introduce new faces of

worse aspect ratio. Example results of this process are shown in

Figure 14 and in Figure 20.

8.2 Spline Compatibility
To make a T-mesh constructed in any of the above ways suitable for

the de�nition of a spline surface, we need an algorithm to modify

an admissible T-mesh into a spline compatible T-mesh, ful�lling

property A, B, and C.

Condition C. is easily met by locally re�ning the mesh, splitting

faces in supports which are initially of non-disk topology.

Condition A. (three regular rings) is ful�lled by determining the

parametric “clearance” c (the parametric length of the shortest in-

cident edge) around an extraordinary vertex v and inserting three

regular rings of quads of parametric size
1

4
c around v (cf. Figure

15 middle). As this initially leaves non-foursided faces, one edge

is extended at each outer corner of the 3-ring, splitting them into

Fig. 14. Le�: initial motorcycle graph T-mesh; numerous narrow patches
with aspect ratios up to 1:471. Right: using greedy edge removal and edge
flip operations, the faces can be made significantly squarer (aspect ratios at
most 1:5.5).

Fig. 15. Refinement around an extraordinary vertex (blue) of arbitrary va-
lence (le�) to ensure three regular and uniform rings of quads (middle) and
preserve four-sidedness of all faces (right).

two four-sided faces each (cf. Figure 15 right). Note that
1

3
c could be

used as well, but additional steps would need to be undertaken to

merge the outer quads with coinciding edges, vertices, and T-joints.

Condition B. is taken care of by checking if any Si with i out-

side the 3-ring of any extraordinary vertex v overlaps the 1-ring

quads of v . If this is the case, we extend the 2-ring edge chains

v

i

beyond the 3-ring as depicted in

the inset (red) until they inter-

sect the knot vector determina-

tion rays (cf. Section 4.1.2) of Si
(dashed). This alters the knot in-

tervals associated with Si , e�ec-

tively blocking it from reaching

the 1-ring (blue). It is due to the parametric convexity of each T-

mesh face (implied by four-sidedness) that at least one of the two

crossed knot rays already intersects some edge somewhere within

the shaded region. The intersection with the red extension is thus at

least the second, meaning that the support Si ends no further than

at this point, thus not reaching the 1-ring. Note that the support of

vertices lying in the white regions above or right of the 3-ring can

never reach the 1-ring due to the 3-ring and 2-ring.

9 RESULTS

9.1 Parametrization
As a stress test, we ran our conformal parametrization algorithm

on all the 88 closed models and cross �elds with admissible holo-

nomy signature from the data set published by Myles et al. [2014].

Due to containing numerous models with bad triangulation quality

(slivers, needles) as well as spikes, topological noise, etc., causing

points of very low or high concentrated curvature, this data set is

very challenging for parametrization methods. For instance, [Chien

et al. 2016] report that, while good success rates can be achieved

in the larger space of non-conformal parametrizations, a classical

conformal parametrization approach (without triangulation mod-

i�cation) fails on over 80% of these models. They also noted that

some exemplars do not admit any piecewise linear parametrization

(whether conformal or not) unless the triangulation can be adjusted.

Our global conformal parametrization method, with control over

global map signature and integrated adaptive triangulation modi-

�cation, succeeded in all cases. A selection of exemplars is shown

in Figure 16. Note that these are the direct results of our conformal

parametrization method; postprocessing such as described in Sec-

tion 7.4 was not applied here (nor in Figures 1, 17, or 18). The input

signatures’ numbers k ranged from −8 to +10 on this data set.
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Fig. 16. Examples of conformal seamless similarity parametrizations, visualized with a checkerboard texture, as computed by our method. The cuts (across
which the parameters are related by seamless similarity transformations) are highlighted in yellow.

Statistics are reported in Table 1. The most important aspect is

the residual, the max. and avg. curvature error, i.e. the deviation

from prescribed signature, in terms of | |b(G ′)| | (i.e. |Kv − KG [v]|
and |kγi

π
2
− κtotд [γi ]| over all vertices v and homology loops i) (cf.

Section 7.2). We cannot expect this residual to become exactly zero;

a perfectly planar mesh (e.g. lying in the z = 0 plane) typically

already has a curvature in the order of 10
−15

(if the mesh is very

nice and uniform) or even 10
−10

for less nice triangulations, if com-

puted with double precision �oating point arithmetic. This is due

to the limited precision when computing angles (curvature) from

lengths or coordinates. The quality of the result is thus to be inter-

preted relative to this. As can be seen, we arrive at a max. residual

−10−15

± 0

+10−15
of 10

−12
or less, for the depicted

cases as well as for every other

case of the test set. The inset

shows a visualization of the cur-

vature error residual per vertex

in the range (−10−15,+10−15).

What can be observed is that

the error indeed appears to be

noise, rather than systematic in

some form.

While the robust global seamless parametrization approach of

[Myles et al. 2014] reportedly has to insert additional singularities

not prescribed in the input signature in order to succeed in a few

cases, our algorithms always respects the input; Figure 17 shows

two of the pertinent models.

Another challenging test case is shown in Figure 18. Our algo-

rithm successively performs 698 edge �ips, and a seamless similarity

parametrization is successfully obtained 7 iterations thereafter (avg.

residual: 1.6×10−15, max. residual: 6.3×10−13, time:12min).

We also conducted tests with randomly generated input signa-

tures, with a hundred singularities of randomly chosen extraordi-

nary valence 2, 3, 5, or 6 distributed randomly, without any regard

Fig. 17. Models on which the method of [Myles et al. 2014] is not able to
respect the input signature. Shown are seamless similarity parametrizations
and exemplary derived coarse T-meshes (not optimized for alignment or
refined for any particular purpose) constructed by our method, with exactly
the prescribed extraordinary vertices.

Fig. 18. Visualization of resulting seamless similarity map on a challenging
model (courtesy of K. Crane): the mesh has edge lengths spanning 4 orders
of magnitude, face angles ranging from 0.08◦ to 179.76◦, face aspect ratios
up to 1:1073, genus 131, and 1777 singularities in the prescribed cross field.
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model |F | max. error avg. error edge�ips w/ iDT

(1) 50K 6×10−14 8×10−16 14 1

(2) 100K 2×10−14 7×10−16 1 1

(3) 100K 9×10−15 7×10−16 20 3

(4) 129K 2×10−14 7×10−16 2 2

(5) 100K 4×10−14 1×10−15 7 1

(6) 100K 5×10−14 8×10−16 16 3

(7) 100K 9×10−15 7×10−16 2 1

(8) 82K 6×10−15 6×10−16 0 0

(9) 50K 3×10−14 8×10−16 14 1

(10) 100K 2×10−14 8×10−16 5 1

(11) 20K 5×10−13 3×10−15 180 2

(12) 105K 5×10−13 8×10−15 18 1

(13) 100K 3×10−13 1×10−15 75 2

(14) 18K 2×10−14 9×10−16 26 2

(15) 10K 3×10−13 1×10−15 16 2

(16) 120K 5×10−14 7×10−16 13 1

Table 1. Statistics of similarity map computation. Models (1)-(13) are shown
in Figure 16 le� to right and top to bo�om, (14)-(15) in Figure 17, and model
(16) in Figure 1. The average and maximum of the curvature error that
remains a�er seven full iterations (a�er edge flips are done) is stated. We
found that further iterations do not typically lead to further improvements.
The number of edge flips executed to prevent degeneracies is also stated. In
the last column we show the (typically much smaller) number of degeneracy
events that need to be handled if we keep the triangulation intrinsically
Delaunay at each step (cf. Section 7.3). Note that every single edge flip
incurs another iteration, i.e. another linear system solve. One iteration on a
model with 100K faces takes about 1 second.

to surface geometry. This is to demonstrate that success does not

hinge upon benign input (e.g. signatures derived from smooth cross

�elds). The results are hard to visualize because the area distortion

factor often spans many orders of magnitude; Figure 19 shows some

of the clearer examples.

In the search for cases that numerically break the method, we

found that prescribing singularities of extraordinary valence around

30 or higher (e.g. just a single singularity on a genus 4+ surface)

commonly leads to higher residuals, thus to the cycle conditions

being ful�lled with insu�cient precision. This sometimes leads to

Fig. 19. Parametrizations obtained for randomly generated singularity dis-
tributions. The scale jumps across cuts can be very large in such cases, yet
the maps are valid, thus, e.g., suitable to define admissible T-meshes as
shown on the top (without regular refinement around extraordinary vertices
for clarity).

violations of local map injectivity during metric in-

tegration or makes a derived T-mesh inadmissible.

Shown here is an admissible T-mesh with a single

extraordinary vertex of valence 20 successfully con-

structed on a genus 3 surface. Already in this case

the practical relevance of such a signature prescrip-

tion in our context is questionable, though there

may be other use cases for such parametrizations.

9.2 T-Meshes, T-Splines, T-NURCCS
To demonstrate the validity of the smooth surface construction

based on seamless similarity parametrization, we generate T-meshes

from such parametrizations, computed by our method for a given

extraordinary vertex distribution (in form of a cross �eld). Halfedge

knot intervals are assigned to these as described in Section 8. Then

the thus de�ned T-spline or T-NURCC surface can be evaluated.

Figures 21 and 20 show example T-meshes and resulting surfaces,

for the case of T-splines (without extraordinary vertices) and T-

NURCCS (with extraordinary vertices). Figures 1, 5, and 4 show

further surfaces constructed this way.

We made use of simple greedy re�nement of the initial coarse

T-meshes to a given uniform resolution (using 1-to-2 face splits),

and of least-squares �tting [Greiner 1994; Li et al. 2006] to determine

appropriate positions for the control vertices. Note that the main

purpose here is to demonstrate the proper functioning of our ap-

proach; we do not make novel contributions in the �tting or control

mesh adaptation regime. Depending on the application scenario,

di�erent �tting and re�nement strategies will be preferable.

10 LIMITATIONS AND FUTURE WORK
Limitations. An inherent property of the proposed method is that

it invariably produces meshes with T-joints even in cases when con-

formal meshes do exist. This is due to the fact that we �x the scale

factors after computing the conformal map, and these are uniquely

determined by the choice of rotations on loops. These factors deter-

mine how many T-joints may be needed to obtain a T-mesh with a

su�ciently uniform size of patches on the surface. It is important

to notice, though, that T-joints, much unlike extraordinary vertices,

do not deteriorate surface quality in terms of continuity, but there

might still be reasons to prefer meshes with mostly regular joints.

So far, there is no complete proof guaranteeing convergence for

our discrete global conformal parametrization algorithm; particu-

larly the potentially adverse e�ects of triangulation modi�cation

are not yet fully understood [Campen and Zorin 2017].

Future work. The novel possibilities provided by a) our discrete

conformal parametrization algorithm with global holonomy control,

and b) our extended T-spline de�nition with halfedge knots, open

up a number of interesting avenues for future investigation.

We have made use of similarity transitions in our work; these

involve isotropic scaling. In theory, one can imagine the use of tran-

sitions that scale anisotropically, i.e. the two parametric dimensions

(u and v) di�erently. How domains with such transitions can be

constructed algorithmically, and where this increased �exibility is

of bene�t needs to be investigated.
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Fig. 20. T-meshes extracted from seamless similarity parametrizations. From le� to right: 1) the initial motorcycle graph, 2) the regularized version, 3) regular
layers inserted around extraordinary vertices, 4) a uniform refinement to a desired resolution, and 5) a rendering of the fi�ed T-spline or T-NURCC surface.

The scale factors determined by the conformal maps can be op-

timized in a variety of ways, most importantly, driving them to 1

Fig. 21. T-mesh and T-spline surface with no extraordinary vertices on a
genus 1 model, at two di�erent control mesh resolutions.

whenever possible to create conforming meshes with no T-joints,

or powers-of-two, to create dyadic T-meshes.

Conceptually, most of our considerations easily extend to sur-

faces with boundary or with sharp features (note that sharp feature

curves can be treated as interpolated boundaries for the purpose of

parametrization, mesh constructions, and evaluation). There are a

number of details though (e.g. related to the triangulation modi�ca-

tion or the T-mesh regularization) which need algorithmic attention.

We have seen that T-meshes with a variety of structural properties

can be derived. We consider important looking into further ways

to de�ne T-meshes of high quality based on a seamless similarity

parametrization, and investigating what actually makes a high-

quality control T-mesh for speci�c application scenarios.
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A PROOFS

Proof of Proposition 1
Proof. The invariance of F to seamless similarity transforms

applied to domains and knot vectors is a direct consequence of the

invariance of each basis function to such transforms, as established

by Proposition 2. As knot vectors are determined with respect to the

local systems in D, and these local systems di�er between di�erent

choices of anchor quads by seamless similarity transforms only

(namely compositions of τ [Fm , Fn ] and translations, all of which are

seamless similarity transforms), F is in particular invariant to the

choice of anchor quads and local coordinate systems. As a special

case, this implies that the quadrant basis functions of one basis

functions, even if de�ned with respect to individual anchors, thus

di�erent local systems, join in a C2
(or “G2

”) manner, just as if they

were de�ned with respect to the same system, thus were simply

restrictions of the same function.

Continuity orderC2
of F away from extraordinary points follows

from the C2
continuity of each basis function (composed of quad-

rants) and all applied transforms τ [F ,D] being smooth similarity

transformations. F is piecewise rational, away from extraordinary

points, because the underlying construction of T-splines (1) yields

piecewise rational functions [Sederberg et al. 2003]. �

Proof of Proposition 2
Proof. Indeed, nontrivial rotations by kπ/2 are a combination of

�ipping the signs of knots with possibly switchingu andv directions,

with ui = ±sui + tu or ui = ±svi + tu . Consider one of the one-

dimensional factors B[u](u) in the formula. Clearly, for a spline of

order 0, the proposition holds. Next, we substitute the transform

formulas into the recursive de�nition:

Bi,k (u) =
u − ui

ui+k−1 − ui
Bi,k−1(u) +

ui+k − u

ui+k − ui+1
Bi+1,k−1(u),

where the i-th basis function is supported on ui , . . . ,ui+k .

If u and v are not switched, we observe that the coe�cients

of the formula are invariant with respect to the transformation:

u′−u′i
u′i+k−1−u

′
i
=

u−ui
ui+k−1−ui

, and we conclude that B[u′](u ′) = B(u)(u) by

induction on order. The same holds for B[v]. If u and v are switched

by the rotation, in a similar way we observe that B[u′](u ′) = B[v](v)
and B[v′](v ′) = B[u](u). As B[u′, v′](u′, v′) = B[u′](u ′)B[v′](v ′),
this yields the formula in the proposition. �

Proof of Proposition 4
Proof. It remains to show that the conformal map f is a seamless

similarity map, i.e. the transition functions across cuts are similar-

ities that are constant on each branch (segment not containing a

singularity or branching point) of the cut graph.

As ξ = ?ωf , de�ned on M , is continuous on the cut, we have

dϕc
1
= ξ = dϕc

2
, where ϕci are the two values of ϕ on di�erent sides

of the cut. Integrating along the cut, we see that the changes of

ϕc
1

and ϕc
2

between two points p and q on a cut branch are the

same, i.e. ϕc
1
(q) −ϕc

1
(p) = ϕc

2
(q) −ϕc

2
(p). From this we conclude that

ϕc
1
(q) − ϕc

2
(q) = ϕc

1
(p) − ϕc

2
(p), i.e. jumps in ϕc at di�erent points

p and q on a branch are the same, i.e. the ratio of the scale factors

eϕ
c
1 /eϕ

c
2 is constant along a branch.

Concerning the rotational part, consider Df1[p] and Df2[p], the

di�erentials of the map f on the two di�erent sides of the cut at

a point p on the cut, and a loop γ that crosses the cut once at p.

As ωf measures the rate of rotation of the cross �eld de�ned by

Df −1(e1), and as its integral over any loop γ cancels its geodesic

curvature up to a multiple of π/2 by construction of f , the rota-

tion between Df −1
2
[p](e1) and Df −1

1
[p](e1) is a multiple of π/2, i.e.

Df −1
2
[p](e1) = sRD f −1

1
[p](e1), where R is a rotation by a multiple

of π/2. Note that Df (and thus Df −1) is a rotation + uniform scale

for a �xed pair of coordinate systems on the tangent plane and in the

parametric domain. De�ning a rotation + uniform scale transform

on a single vector (e1) completely determines it, so we conclude that

Df −1
2
[p] = sRD f −1

1
[p]. As two-dimensional rotations commute, we

obtain Df −1
2
[p]Df1[p] = sR, i.e. the di�erential of the transition

map from one side of the cut to the other is a kπ/2 rotation com-

posed with a uniform scale. As the rotation along the loop depends

on the regular homotopy class of the loop only, at all points of the

cut branch, the rotation and thus the di�erential of the map is the

same.

Finally, concerning the translational part, integrating di�erentials

from a point on a cut branch to any other point along the branch

by the same argument used for ϕ, we arrive at the conclusion that

the transitions per cut branch are constant similarity maps. �

B INDICATOR FUNCTION
Consider the function I ′i j,k (λ) =

`jke
(ϕj (λξ )+ϕk (λξ ))/2+ `kie

(ϕk (λξ )+ϕi (λξ ))/2− `i je
(ϕi (λξ )+ϕj (λξ ))/2.

It is a sum of (negated) edge lengths at time λ of the metric

evolution. It is negative if the triangle inequality of triangle ijk is

violated by edge ij being too long, vanishes if edge ij is as long as

the other two edges combined, and positive otherwise. It thus has

the desired degeneracy-indicating behavior. Division by the strictly

positive (thus root preserving) term e(ϕi (λξ )+ϕj (λξ ))/2 yields (9):

`jke
(ϕk (ξ )−ϕi (ξ ))λ/2+ `kie

(ϕk (ξ )−ϕj (ξ ))λ/2− `i j = Ii j,k (λ),

using ϕi (ξ ) − ϕ j (ξ ) = ξ ji for any two adjacent vertices i, j. No-

tice that Ii j,k can be evaluated locally directly based on ξ ; global

integration to obtain ϕ is not required.

Furthermore, the second derivative of (9) is strictly positive

d2

dλ2 Ii j,k = `jk
1

4
ξ 2ike

ξik λ/2 + `ki
1

4
ξ 2jke

ξ jk λ/2 > 0,

assuming that ξik , 0 or ξ jk , 0 (otherwise the corresponding

triangle remains constant and does not need to be checked for

degeneracy events anyway). This is due to `jk and `ki being positive

by construction. Thus I has at most two roots.
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