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Abstract

Various applications of global surface parametrization benefit from the alignment of parametrization isolines with principal
curvature directions. This is particularly true for recent parametrization-based meshing approaches, where this directly trans-
lates into a shape-aware edge flow, better approximation quality, and reduced meshing artifacts. Existing methods to influence
a parametrization based on principal curvature directions suffer from scale-dependence, which implies the necessity of param-
eter variation, or try to capture complex directional shape features using simple 1D curves. Especially for non-sharp features,
such as chamfers, fillets, blends, and even more for organic variants thereof, these abstractions can be unfit. We present a novel
approach which respects and exploits the 2D nature of such directional feature regions, detects them based on coherence and
homogeneity properties, and controls the parametrization process accordingly. This approach enables us to provide an intuitive,
scale-invariant control parameter to the user. It also allows us to consider non-local aspects like the topology of a feature, en-
abling further improvements. We demonstrate that, compared to previous approaches, global parametrizations of higher quality
can be generated without user intervention.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—

1. Introduction

Global parametrizations of surfaces have been made widespread
use of in recent years for the purpose of high-quality remeshing,
in particular with semi-structured quad meshes [KNP07, BZK09,
MPKZ10,KMZ11,PTSZ11,BCE∗13,PPTSH14,CK14b,ECBK14,
MPZ14, JTPSH15, CBK15]. It is well-known that aligning the
edges of such meshes with the surface’s principal curvature di-
rections is beneficial [BLP∗13, CK14b, LRL06, ACSD∗03]; it can

Figure 1: Aligning a global parametrization to principal curvature
directions everywhere is not reasonably possible in general – it
often implies severe distortion. Only certain regions should thus be
chosen to enforce alignment in. Colored here are the important,
alignable regions automatically selected by our method.

improve approximation quality [D’A00], reduce aliasing [BK01],
and enhance planarity [LXW∗11]. Besides these technical reasons,
aesthetics are a common additional motivation. Therefore, in the
context of parametrization-based meshing, there is a strong need
for alignment of parametrization isolines (which induce the mesh
edges) with principal curvature directions.

On the other hand, it is also known that enforcing strict align-
ment (wherever the curvature directions are well defined) can im-
ply arbitrarily large length distortions and even degeneracies or in-
versions. In the context of quad-dominant meshing, this is usually
dealt with by introducing non-quad elements [ACSD∗03, MK04,
JTPSH15] that effectively absorb the changes in vertex density.
While a similar effect can be achieved in quad-only meshing
through the introduction of clusters of singularities (or T-junctions),
this can be contrary to the goal of yielding a highly regular mesh.

Weighted Alignment. A commonly chosen approach therefore is
to strive for alignment of a parametrization to principal directions
only through soft constraints (i.e. objective terms rather than hard
constraints), possibly using varying weights, or using (soft or hard)
sparse constraints, restricted to certain prominent surface regions.
We can subsume both strategies under the notion of weighted align-
ment, with a weight field that varies over the surface and may also
assume values 0 and∞ (the latter denoting a hard constraint).

A number of methods have been described in the literature that
effectively design such weight fields – though this is not always ex-
plicitly phrased in this form. They decide whether and where the
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weight field should vanish, where it should be infinite, and how
it should behave otherwise. The use of these methods in practical
meshing applications revealed a number of significant shortcom-
ings, in particular related to undesirable scale dependence, inco-
herence, and over-abstraction.

Contribution. We present a novel algorithm for the construction
of a weight field that is

• scale invariant,
• coherent,
• non-abstractive,
• non-local.

We discuss these properties in detail in Section 1.1. This combi-
nation of desirable properties is not offered by any previous ap-
proach. We demonstrate the beneficial effect on parametrization
quality in Section 5. Due to the scale invariance of our approach, we
are able to expose an intuitive parameter to the user. It can be un-
derstood as a generalization of the dihedral angle threshold, com-
monly employed for the detection of sharp feature edges, to the case
of smooth directional features such as chamfers, fillets, blends, and,
even more importantly, organic freeform variants thereof.

1.1. Desired Properties

We identified the following four properties of a weighting scheme
to be important for use in parametrization alignment.

Scale Invariance. The weights computed by almost all available
methods are scale dependent. Directional features of a surface
might thus receive very different weights if they are of a different
scale, even though they are similar in shape and effectively look the
same to a user; the weights might even change when the model is
simply rescaled globally. This turns out to be a problem in practice,
especially on organic models, because often some obvious, signifi-
cant features receive a very low (or zero) weight, while some “false
positives” receive a high weight, just because they happen to be on
different scales (cf. Figure 2). In methods that can be controlled via
a parameter, this behavior could potentially be ameliorated by vary-
ing the parameter(s) according to the local surface shape, but this
turns out to be a major burden in practice. Some form of automatic
adaptation mechanism based on scale-space techniques [PKG03]
might be possible, but has not been demonstrated for this specific
purpose yet.

We overcome these issues by proposing a weighting scheme
that is scale invariant. In the
schematic on the right this means
that the three smooth features
(blue) are treated equally by our
approach, based on the fact that
they all correspond to a, in this
case, 90◦ bending of the surface.
The fact that they differ in relative
scale, and the question of what ab-
solute scale they have, which with
other methods leads to the abovementioned issues, does not play a
role for our scale-invariant approach. In fact, a binary weight field

is built, which only distiguishes between regions important and rea-
sonable for alignment, and regions unimportant for alignment.

Coherence. Many previous approaches are local: the weight at a
point (usually a vertex or a face) is computed from local properties
such as the principal curvatures κmax and κmin at that point. We ob-
serve that often isolated or scattered points receive a high weight,
as well as points very close but with largely differing principal di-
rections (cf. Figure 3). Especially this lack of directional coherence
between neighboring points of high weight can be problematic in
applications. In the context of quad remeshing it can, for instance,
induce an excessive amount of undesirable irregular vertices (cf.
Figures 11 and 10). Our approach takes spatial relationships into
account, so as to design an inherently coherent weighting.

Non-abstraction. The design of a binary weight field can be
phrased as a feature detection problem: set the weight to 1 (or any
constant w>0) where the surface contains some kind of directional
feature, set it to 0 everywhere else. In this context of directional
feature detection, several methods try to abstract from the poten-
tially complex geometric nature of non-sharp feature regions and
represent them using one-dimensional curves. While a curve-based
representation is clearly suitable for sharp features, it can be quite
problematic for soft features. For relatively simple, man-made ge-
ometries (with chamfers, fillets, rolling-ball blends), a precise defi-
nition of representative curves may exist, but for more organic ob-
jects, ambiguities are unavoidable. The common consequence are
unintuitive, low-quality results (cf. Figure 4). We respect and ex-
ploit the two-dimensional nature of such smooth directional shape
features. This not only avoids the abovementioned issues, it is the
key to achieving scale invariance and coherence.

Non-locality. Considering the blue and the green regions depicted
on the right, one can argue that
aligning to principal curvature di-
rections in the blue region is more
important than alignment within the
very narrow green region. Locally,
however, the surface is indistin-
guishable at points in these two re-
gions (with identical curvature ra-
dius). Our method takes non-local
measures into account, allowing to
distinguish these regions. This non-locality furthermore allows us
to take topological aspects of such regions into account for further
improvements.

2. Related Work

2.1. Aligned Parametrization

Alignment to principal curvature (or other) directions has been
considered in a variety of global parametrization approaches. The
alignment terms or constraints can directly be integrated into the
parametrization objective itself; this is usually done to achieve
strict alignment with sharp feature edges or boundaries [BZK09,
MPKZ10, BCE∗13]. Another common, more indirect way of in-
fusing directional information into the parametrization process is
via a guiding field. So-called cross or frame fields are commonly
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Figure 2: Scale-dependent threshold parameters easily lead to un-
intuitive results. For a chosen global threshold, some obvious fea-
tures may already be missing, while false positives are still present
(left: [WG09], right: [BZK09]).

Figure 3: Pointwise feature detection, in this case [NPPZ12], eas-
ily leads to noisy and contradictory results because no notion of
coherence is involved.

used to A) determine a suitable set of parametrization singularities
or cones which keep the overall distortion at a low level, and B)
directionally influence the parametrization by optimizing its iso-
lines for alignment with the field directions via a Poisson formula-
tion [RLL∗06, KNP07, BZK09]. Most of the methods for the con-
struction of such guiding fields offer possibilities to (hard or soft)
align the field to prescribed directions [VCD∗16], which then car-
ries over to an indirect alignment objective for the parametrization.

2.2. Binary Weight Fields

Many previously proposed methods for the computation of a
weight field compute a binary weighting, which assigns to every
surface point either a value of 0 or a constant w > 0. Feature detec-
tion approaches implicitly fall into this category: a point is assigned
0 iff it is not considered part of a feature. As we are interested in
directional alignment to principal curvature directions, only detec-
tors for directional, edge-like feature are of interest, not detectors
for corner-like point features such as variants of SIFT [DK12] or
point-centric shape classifiers [MPS∗04].

In the special case of sharp features, where infinite curvature
is concentrated on a curve on the surface, the situation is simple,
detection nearly trivial. Only discretization (by means of a triangu-
lation) introduces a degree of complication and requires the speci-
fication of, e.g., a threshold on the dihedral angle.

For smooth features, however, the situation gets much more com-
plicated. In this case, ambiguities are not only due to discretization,
and many different definitions of the notion of smooth directional

Figure 4: In contrast to sharp features, smooth features cannot
always be well-represented by curves. Consequently, methods that
try to do so, in this case [WG09], sometimes generate unexpected
results. A regional representation is more appropriate in such cases
(compare, e.g., the fingers with Figure 1).

Figure 5: Several methods are restricted to feature curve networks
(black). Fading smooth features (and cyclic features) are neglected
(left: [NSP10], right: ours, which can handle fading and cyclic fea-
tures).

feature are possible. This led to the development of a variety of
feature detectors.

Pointwise Detectors. Pointwise feature detection, based on prin-
cipal curvatures, has been used to determine a binary {0,∞}-field
to align guiding fields [BZK09, NPPZ12]. In both works, a shape
anisotropy threshold and a flatness threshold are used combinedly.
The threshold on shape anisotropy, measured in terms of the princi-
pal curvatures, is meant to discriminate regions which are close to
cylindrical (i.e. where principal curvatures are significantly distinct
in magnitude) from regions which are closer to spherical or hyper-
bolic. The threshold on flatness is meant to discriminate regions
with high from regions with low curvature.

As can be seen in Figures 2 and 3, often isolated or scattered
points are detected as features, as well as points very close but
with largely differing principal directions. The inherent scale de-
pendence of the thresholds likewise is an issue.

Curve based Detectors. So-called ridge and valley lines can be
detected based on third- and fourth-order differential surface prop-
erties [Thi96, OBS04, YBS05, HPW05]. These lines can then be
filtered to obtain so-called crest lines, representing certain sur-
face feature curves, which in turn can be filtered to discard non-
salient or noisy curves. This is generally performed based on in-
tegral measures of curvedness or extremality over the individual
crest lines. Another class of methods is based on skeletonization.
First, regions where the maximum curvature exceeds a thresh-
old are labelled as “curved”. These regions are then thinned to a
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curve skeleton representing the feature curve structure of the sur-
face [RKS00, KVSM11, NSP10]. Also, a dual strategy can be fol-
lowed: patches are grown on the surface, and the boundaries where
these patches meet are defined to be feature curves [NSP10]. This is
a common approach for the feature-sensitive segmentation of sur-
faces [WHL∗13]. Finally, there are topological approaches based
on Morse-Smale theory [SWPL08, WG09]. The separatrices of the
Morse-Smale complex of a curvature-based scalar field on the sur-
face are considered potential feature curves. They are filtered using
topological simplifications based on persistence measures [WG09].

In all cases, the resulting feature curves usually are non-smooth,
mainly due to discretization. Some form of post-processing can be
necessary to smooth the curves [HPW05,NSP10], which introduces
additional parameters and can be a source of robustness issues.

In the context of aligned parametrization one can make use of
such curves by setting the weight field to w > 0 for the vertices or
faces crossed by these curves, or, more directly, by explicitly align-
ing an isoline of the parametrization with such a curve [CK14a],
analogous to the way sharp feature edges are taken into account.
However, it can be observed that the abstraction to curves can be
problematic in principle (cf. Figure 4), and the scale dependence of
most of the threshold or filter parameters likewise is an issue (cf.
Figure 2). The methods based on skeletonization are furthermore
restricted to closed curve networks. Smooth features that fade into
a non-feature region are thus generally ignored (cf. Figure 5).

Region based Detectors. There are a few methods which classify
regions of a surface according to some predefined set of primitive
shapes, for instance based on RANSAC [SWK07], slippage anal-
ysis [GG04], or segmentation [WK05]. These are targeted at the
detection of, e.g., cylindrical or spherical parts of a surface; appli-
cability to feature detection in a more general sense is limited, in
particular on organic shapes.

2.3. Continuous Weight Fields

In the context of cross field alignment, some non-binary weight
fields with continuous values, typically based on local principal
curvature values κmax and κmin, have been proposed: |κmax −
κmin| · (κ2

max + κ
2
min)
− 1

2 [KNP07], |κmax /κmin| [RLL∗06], or
(κmax −κmin)

2 [KCPS13]. One recent method [JTPSH15] uses an
objective function for alignment that is non-linear in the deviation
from the principal curvature directions (of the elementary edge cur-
vature tensors [ACSD∗03,CSM03]), i.e. the corresponding weights
cannot be expressed simply as a field of scalars.

Notice that the former two are mostly scale invariant (although
especially the second requires special treatment when the denomi-
nator vanishes). The purely local nature of these approaches makes
the weights agnostic about the difference between the blue and
green region depicted in Section 1.1; for instance, the first method
assigns a weight of 1 to both of them. In fact, any point where
κmin = 0 and κmax = ε > 0 receives a weight of 1. This is a ma-
jor problem in practice, because points in (nearly) planar regions,
where the principal directions are effectively random, receive a
high or even maximum weight, just due to numerical inaccuracies.
Note that this is not a specific issue of this one measure; for any
measure that is scale invariant and local, this is necessarily the case.

This is the reason why some more recent methods discussed ear-
lier, [BZK09, NPPZ12], add an additional planarity cut-off param-
eter – which, however, breaks the scale invariance. In our method
this problem is solved instead by the use of non-local measures.

2.4. Principal Curvatures

A number of methods for the estimation of principal curvatures
and principal curvature direction on discrete surfaces have been
described, e.g. [CSM03,ACSD∗03,MOG09,HPW05]. Most of the
discussed methods for weight field generation, just like our method,
are complementary to this process, i.e. the curvature values and di-
rections are taken as input with no regard to their origin. Dealing
with discretization artifacts or data noise is due to the principal cur-
vature estimator in this context – most of the discussed papers, like
ours, do not make a contribution in this regard, the provided curva-
ture values and directions are taken as is.

3. Smooth Regions

Let κmin(x) and κmax (x) be the principal curvatures on a surface,
with |κmax (x)| ≥ |κmin(x)|, i.e. κmax refers to the principal cur-
vature with largest absolute value. The unit tangent vector fields
amin(x) and amax (x) with amin = a⊥max are the corresponding prin-
cipal curvature direction fields, with vector orientation chosen con-
sistently in a neighborhood of a non-umbilical point x. By γmin and
γmax we denote lines of curvature, i.e. integral curves of amin, amax .

One can measure the rate of change κ
g
v of a unit vector field

a at a point p in unit tangent direction v using the norm of the
covariant derivative: κ

g
v = ‖∇va‖ [dC76, §4.4, §5.10]. Note that

in directions v = amin,amax it corresponds to the tangential or
geodesic curvature of the lines of curvature; we generally call κ

g
v

the geodesic curvature in direction v. Note that due to amin = a⊥max
(and the fact that the Levi-Civita connection ∇ inducing the co-
variant derivative is a metric connection [Spi79, §6]) the rate of
change in a given direction v is the same for both fields, i.e. we have
‖∇vamin‖= ‖∇vamax ‖. The maximum geodesic curvature κ

g at a
point p is defined as the maximum of the geodesic curvature κ

g
v

over all tangent directions v at p:

κ
g = max
‖v‖=1

‖∇vamin‖= max
‖v‖=1

‖∇vamax ‖. (1)

At umbilical points, where the principal directions are not well-
defined, we can assume κ

g =∞ for our purposes.

Informally, maximum geodesic curvature measures how much
the network of curvature lines near a point deviates from a grid of
straight geodesic lines. For example, it is exactly zero for a cylinder.

3.1. Definition

We define a smooth region as a connected component of the sur-
face where (for coherence) the maximum geodesic curvature is (in
a scale invariant sense) low, as defined more precisely below. Us-
ing an additional definition of a region significance, which involves
a user-adjustable threshold, we identify (in a non-local manner) a
subset of the smooth regions, corresponding to regions deemed im-
portant and suitable for alignment.
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Smooth Regions If we would require κ
g to be 0, only perfectly

linear smooth features, e.g. regions of cylindrical shape, would be
captured as smooth regions. As one is also interested in non-linear
“bent” regions, e.g. of toroidal shape, regions with κ

g >0 must be

κg = 1
30 |κmax |

κg = 1
3 |κmax |

κg = |κmax |

κg = 3|κmax |

considered, too. To
achieve scale-invariant
behavior, we con-
sider κ

g in relation to
|κmax |, i.e. tangential
curvature in relation to
normal curvature. The
inset shows a prototyp-
ical situation (the blue
region on a toroidal
surface, with constant
κmax as indicated by
the osculating circles)
under increasing de-
gree of “bending” κ

g

(as indicated by circular arcs). The point where the torus collapses
to a topological sphere is where κ

g matches |κmax |. We define a
smooth region as a maximal connected region S with

κ
g(x)< |κmax (x)|, for all x ∈ S. (2)

This natural criterion turns out to perform so well in general that an
additional (adjustable) factor proved to be superfluous.

Significance As outlined above, we deem particularly important
that the significance measure is scale-invariant. Therefore, we con-
sider how much the surface “bends across the region” – indepen-
dent of how smooth or sharp its shape is. Our significance value is
the angle through which the surface normal maximally varies along
any streamline of amax (red) across the
smooth region (90◦ in the inset). More
specifically, consider all curvature lines
γmax on a region, each parametrized by a
unit-speed parameter s. We define the sig-
nificance of a smooth region F as

](F) = max
γmax

max
s0<s1

∣∣∣∣∫ s1

s0

κmax (γmax (s))ds
∣∣∣∣ . (3)

The integral measures the deviation between normals at s0 and s1
on the curvature line γmax . This notion of significance can be seen
as a generalization of the intuitive dihedral angle measure often
used for sharp feature detection. Some average over all the γmax
could be chosen as well, but we found taking the maximum to be-
have more intuitively, in particular on fading features.

A threshold on ](F) is offered as filter parameter by our
method. Figure 6 illustrates the effect of it. In all following ex-
periments, we used a setting of 70◦; model-dependent tuning is not
necessary mainly due to scale invariance. Figure 1 shows the fil-
tered smooth regions on a number of models.

Note that the smooth regions, filtered by significance, fulfill the
four properties initially set forth: 1) they are defined scale invari-
antly, 2) the field of principal directions is coherent (bounded κ

g)
within the regions by definition, 3) the significance measure is non-
local, and 4) we do not abstract regions to mere curves.

3.2. Discretization & Implementation

Principal Curvature In our implementation, we use the tech-
nique described by Alliez et al. [ACSD∗03] to estimate curvature
tensors from which principal curvature directions amin and amax ,
normals, and magnitudes κmin and κmax can be extracted through
eigendecomposition. The normal and amax can, however, be un-
stable where their eigenvalues are close. We thus estimate surface
normals n separately: in line with the curvature tensor integration,
face normals are averaged to obtain n′, which is then made orthog-
onal to amin via n = amin×n′× amin. Finally, amax is determined
as the direction orthogonal to amin and n.

For the purpose of representation and computation, we consider
the line fields amin and amax as unit vector fields, with one vec-
tor per face each. Note that these fields are not tangent in general.
Where we need these directions to lie in the supporting planes of
the triangles (specifically: when tracing streamlines and when set-
ting up constraints) we use orthogonal projections onto the planes.

Geodesic Curvature We approximate the curvature κ
g per tri-

angle. For each triangle, we take the maximum over a directional
(covariant) derivative across each of its edges. We evaluate these
directional derivatives using finite differences on the barycentric

f1

f2

d

e

dual mesh. For an edge e, with d
being the distance of the two adja-
cent faces’ f1 and f2 barycenters,
the discrete directional derivative
of amin across e is easily calcu-
lated as κ(e) = min‖amin( f1)±
amin( f2)‖/d (where the sign in-
variance accounts for the arbitrarily chosen orientation of the amin
vectors). Note that the tangent vectors amin living in different tan-
gent spaces first need to be transformed into a common one using
the Levi-Civita connection. In the discrete case, this amounts to a
simple rotation about the axis n1×n2 by arccos(n1 ·n2).

If this value κ(e) exceeds the threshold (|κmax ( f )|) for any one
of the three adjacent edges, the triangle f is not part of a smooth
region (“non-smooth”); otherwise, it is (“smooth”). The smooth re-
gions are the connected components of the set of smooth triangles.

Note that a smooth region can be arbitrarily large or small, even
consist of a single triangle. Such
small regions may appear in near-
umbilic regions, where the prin-
cipal directions are basically just
noise, as shown here on a dis-
cretized sphere (amax red, smooth
regions blue). Such regions are
naturally discarded by the signif-
icance threshold (here the signifi-
cance of each one is less than 1◦).

Significance We approximate ](F) in (3) based on a finite sam-
ple of curvature lines γmax : starting from each vertex on the bound-
ary of a smooth region, a streamline of amax is traced by following
the piecewise-constant field amax face-by-face until a boundary is
reached again.

For each one of these streamlines, the inner maximum of (3)
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](F)> 20◦ ](F)> 50◦ ](F)> 80◦ ](F)> 150◦

d

Figure 6: Effect of the significance angle threshold on ](F) used to filter smooth regions in a non-local, scale invariant manner.

needs to be evaluated. Based on the equivalence

max
s0<s1

∣∣∣∣∫ s1

s0

g
∣∣∣∣= max

s0,s1

∣∣∣∣∫ s1

s0

g
∣∣∣∣= max

s0,s1

∣∣∣∣∫ s1

0
g−

∫ s0

0
g
∣∣∣∣= max

s

∫ s

0
g−min

s

∫ s

0
g,

this is easily done as follows. Let fi, i ∈ {0, . . . ,n} be the se-
quence of faces crossed by a streamline γmax . The signed nor-
mal change from fi to fi+1 is βi = ±arccos(ni · ni+1). With∫ s

0 κmax (γmax (s))ds ≈ ∑
j(s)
i=0 βi the inner maximum is computed as

](γmax ) = max j ∑
j
i=0 βi−min j ∑

j
i=0 βi .

Topology This way of computing ](F) is appropriate for
smooth regions with disc topology. Note, however, that also topo-
logically more complex regions can arise, e.g. around cylindrical
shapes like extremities of char-
acter models. Such cyclic re-
gions can contain cyclic (or
nearly cyclic, helical) stream-
lines. The same is possible if the
amax field contains a singularity
within a region (which could occur at the tip of pointed, needle-like
shapes). As the above significance angle computation technique
does not capture cyclic streamlines (since they do not intersect the
region’s boundary), we detect such configurations in advance in a
conservative manner and assign ](F) = 360◦:

The field’s turning number along a cyclic (or short-cut helical)
streamline is necessarily zero. Thus only around a region boundary
loop (or singular vertex) with turning number
zero (or, theoretically, a set of boundaries and
singularities with a combined turning number of
zero) a cyclic or near-cyclic streamline can be
contained in a region. The inset shows an illustra-
tion of region (blue) boundaries (black) with turn-
ing number zero (top) and one (bottom). We thus
compute the turning number [RVLL08, CDS10,
PZ07] of the amax field around every boundary
loop and every vertex of a region and consider a
region cyclic if one or more of these turning numbers is zero.

Run Time Note that none of the steps in the determination of
the smooth regions and the computation of the significance angles
is computationally intensive. For instance, on a large mesh with
500K triangles and ∼2000 smooth regions, our implementation
runs for about 1s.

4. Parametrization Alignment

In this section, we show how the filtered smooth regions can be
used to create weight fields for parametrization alignment to prin-
cipal curvature directions, and how the specific properties of our
method provide additional advantages in this context.

4.1. Cross Field Constraints

Most obviously, smooth principal curvature directions inside the
filtered smooth regions can be directly used to directionally
hard-constrain the optimization of global direction (cross) fields
[BZK09,RVAL09,DVPSH14]. This means we use a {0,∞}-weight
field, with a value of∞ in the filtered smooth regions. Due to di-
rectional coherence, otherwise common artifacts like high distor-
tion or implausible singularities are generally not caused by these
hard constraints. Using algorithms for field-guided parametrization
(cf. Section 2.1), these aligned direction fields can be exploited to
generate parametrizations P = (u,v) whose u- and v-isolines (indi-
rectly) have a tendency for alignment to principal curvature direc-
tions in the detected smooth regions. This is achieved by optimizing
the parametrization’s isolines for being parallel to the guiding field
directions (i.e. its gradients for being orthogonal to them).

4.2. Parametrization Constraints

When using the method described in Section 4.1, the guiding field
exactly follows the principal directions in the filtered smooth re-
gions, but the parametrization’s isolines only follow the guiding
field as well as possible (in a least squares sense). Effectively, a
compromise between isometry and alignment of the parametriza-
tion is made in this way, and it is made in a globally uniform way.

One may argue that in the filtered smooth regions alignment is
more important. However, strict alignment of the parametrization
to principal directions using hard-constraints (like typically done
for sharp features [BZK09, MZ13]) throughout larger regions (in
contrast to just along infinitesimal sharp features) is problematic,
or even impossible in the discrete setting:

To achieve strict alignment one would need to constrain ∇u =
λamax (or∇v = λamax , depending on the local parametric orienta-
tion) within the filtered smooth regions to make the parametriza-
tion’s gradient coincide with amax (thus its isolines align with
amin). Here the vectors amax are assumed to be oriented consistenly
(up to a cut graph where they, like the parametrization, undergo
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transitions [KNP07, BZK09]). λ > 0 is a free, variable scalar field.
This constraint system can be infeasible for non-simply connected
regions, or even for simply-connected ones in the discrete piece-
wise linear setting. Allowing non-positive λ guarantees feasibility,
but those imply parametrizations with degeneracies and inversions.

As a workaround, one could strive to compute an approximation
of amax which can be aligned to with λ > 0, e.g. through Hodge de-
composition, but the result might contain arbitrarily large paramet-
ric distortions – additional measures to find a compromise would
be necessary. We thus favour the following, more direct approach:

In addition to the {0,∞}-weight field used for the guiding
cross field optimization, we employ a {0,w}-weight field in the
parametrization computation (with a constant w), adjusting the
isometry/alignment balance towards a stronger alignment objec-
tive within the filtered smooth regions. Let unit vectors ui and vi
represent the two orthogonal directions of the cross field in face i.
Assume, w.l.o.g., cross field direction v is always the one aligned
with the line field amin of minimum principal curvature direction in
the filtered smooth regions, u is orthogonal to amin. Ai is the area
of face i. We take the usual Poisson term [BZK09]

EPoisson(u,v) = ∑
i

Ai(‖∇u−ui‖2 +‖∇v−vi‖2)→min,

and add to it the alignment term

Ealign(u) = ∑
i

wiAi(∇u ·amin)
2→min,

controlled by the binary weight field wi. Note that, as in the case
of sharp feature curves, alignment of isolines to the direction of
minimum absolute curvature, i.e. along the feature, is the crucial
aspect. The alignment term thus propagates orthogonality of the
gradient∇u to amin, i.e. alignment of u-isolines with amin.

We point out that, as the cross field is aligned in the strip regions
(vi = u⊥i = amin), the combination of both terms is equivalent to

EPoisson(u,v)+Ealign(u) = ∑
i

Ai(‖∇u−ui‖2
1,wi+1 +‖∇v−vi‖2),

where ‖∇u− u‖2
α,β = α((∇u− u) · u)2 + β((∇u− u) · u⊥)2 =

α(∇u · u− 1)2 + β(∇u · u⊥)2 is an anisotropic norm (relative to
frame (u,u⊥)). A norm of this kind was used by Bommes et al.
[BZK09] globally. In our case it comes into effect locally and only
with respect to the direction of minimum curvature.

Figure 7: Left: alignment to soft features can be poor with the tra-
ditional approach of constraining a cross field which then guides
the parametrization. Right: with our dual weight field approach,
better alignment is achieved.

We observe a factor of 5 to be a good general setting, i.e. we use
a {0,5}-weight field for the parametrization (the wi in the above
terms), in addition to the {0,∞}-weight field used for the guiding
cross field (cf. Section 4.1).

Figure 7 demonstrates the alignment improvement achieved by
this dual strategy of using a weight field for the guiding field as
well as for the parametrization, relative to the results obtained by
only explicitly aligning the guiding field followed by a global least-
squares fit of the parametrization gradients to the guiding field.

4.3. Topology Constraints

In addition to the geometrical principal direction constraints,
we can automatically derive topological constraints for the
parametrization from the filtered smooth regions. For cyclic smooth
regions (cf. Section 3.2), we can require that the parametrization be
cyclic as well – in the sense that isolines form closed loops in these
regions. This automatically prevents so-called helices, which have
been identified as the structurally most problematic configurations
in quad meshes [BLK11], from occurring across the cyclic regions.

Technically these topological constraints are implemented in
analogy to the cone alignment constraints described in [MPKZ10]:
a path’s end point is constrained to get the same u (or v) coordinate
as the path’s start point, taking the transition functions of the global
parametrization along the path into account. In our case, the paths
are closed loops, i.e. start and end point are identical. We set up
such a constraint for each smooth region boundary loop with turn-
ing number zero. It is important to note that this loop’s geometry,
thus the shape of the smooth region’s boundary has no effect – it
is only the loop’s homotopy class that matters for this topological
constraint. In particular does this type of constraint not fix an iso-
line to a prescribed curve (in contrast to geometric loop alignment
constraints [CK14a]), it only enforces the existence of cyclic iso-
lines. Figure 8 demonstrates the effect of these constraints. Previous
weight field computation approaches (cf. Section 2) provide no im-
mediate means to address this topological aspect.

5. Comparison

We already discussed a variety of qualitative arguments for our ap-
proach (scale-invariant, coherent, intuitive, no curve abstraction is-
sues) and illustrated these advantages on several examples.

Figure 8: Left: parametrization result without, right: with topo-
logical constraints. Some isolines are highlighted: simple cycles
(blue) and helices (red). The problematic helical isolines are au-
tomatically avoided by the constraints derived from cyclic smooth
regions. Note that they do not necessarily prevent all such helices.
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Performing a quantitative comparison of the weight field gener-
ation (and related alignment) approaches is not an easy task. There
is no generally accepted quality metric – in particular not a generic,
application-agnostic one. What we can do is assess the impact of
using different methods based on various properties of the resulting
parametrization. In detail, we use the guiding field and parametriza-
tion optimization technique of [BZK09] (noting that recent devel-
opments [BCE∗13, ECBK14, PPTSH14, DVPSH15] relying on the
same basis could also be used) and measure the following:

• stretch: average (unsigned) relative magnitude deviation of the
u- and v-gradients from unity.
• shear: average deviation of the angle between u- and v-gradients

from 90◦.
• curvature: average geodesic curvature of the u- and v-gradient

fields.
• misalignment: avg. weighted deviation from the principal direc-

tions, (κmin−κmax )
2-weighted as in [KCPS13, CK14b].

• singularities: number of guiding field singularities (i.e.
parametrization cones).

We compare against the pointwise binary weigh field generation
techniques [BZK09, NPPZ12] outlined in Section 2.2 – the curve-
based ones generally proved too problematic for the purpose of
constraining the parametrization due to the issues (e.g. jaggedness)
discussed in Section 2. Let us stress that here we are not referring
to the parametrization optimization techniques presented in these
papers [BZK09, NPPZ12], but specifically to the feature discrim-
inators they propose. For comparability, we do not perform man-
ual individual parameter tuning but use the default settings rec-
ommended in the respective papers, as well as our default angle
threshold of 70◦. For plain comparison of the weight field quality,
the topological constraints have not been used here. The same input
(the fields amax , amin, κmax , κmin) has been used for each method.

Figure 9 shows the obtained values, averaged over 20 example
models (among others, all the models shown throughout the pa-
per). We see that, except for very small differences in stretch, lower
values of shear, curvature, and misalignment are achieved by our
approach, at the same time yielding a lower number of singulari-
ties. Figure 11 shows a close-up comparison on one of the models,
demonstrating the typical differences observed: rather large fea-
tures are often missed by [NPPZ12], whereas [BZK09] filters less
aggressively by default, often not discarding spurious and noisy
constraints, leading to distortions and excess singularities.

Figure 10 shows the resulting parametrizations on further mod-
els. Notice that large scale features (e.g. in the middle column: the
foreleg of the elephant or the brim of the vase) are often ignored
by the scale-dependent detectors, leading to major misalignment.
The generally much larger number of singularities (red and blue
dots in Figure 10) and occurrence of singularity clusters in the mid-
dle [NPPZ12] and right [BZK09] column can be explained by the
fact that small, high frequency details (large κmax) are considered
to be the most important features by scale-dependent methods. We
emphasize that, while a higher number of singularities can some-
times be advantageous [MZ13], these additional singularities are
truly spurious artifacts here: in Figure 12 we visualize the paramet-
ric distortion of the same examples and observe that these addi-
tional singularities rather reduce than improve the quality.
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Figure 9: Comparison of various parametrization quality aspects
depending on the method that is employed for weight field compu-
tation. Our Smooth Regions, [NPPZ12], [BZK09]. With our
method, all properties but stretch are improved: lower shearing,
lower parametrization curvature, better principal direction align-
ment, lower number of singularities (cones).

6. Limitations & Future Work

Multiple, semantically distinct smooth regions may be captured by
one common region if they happen to be adjacent or in close prox-
imity. It would be advantageous if they could automatically be sep-
arated, such that each one of them is assigned its own significance
value and is filtered accordingly. This will require the consideration
of some kind of higher level structural information.

Our construction ensures intra-region coherence of principal di-
rections. The difference of principal directions in different smooth
regions in close proximity, however, is not bounded, i.e. there is no
guaranteed inter-region coherence. The benefit of some kind of re-
gion pruning approach which removes inter-region incoherent parts
could be investigated in future research, though our experiments did
not reveal undesirable effects related to this matter.

In surface regions with mean curvature very close to zero, where
κmax ≈ −κmin, the principal directions might be well-defined and
stable, while the absolute principal directions amax and amin “in-
terchange”, in extreme cases erratically switching between the two
principal directions [NPPZ12]. This ex-
treme is illustrated here (amax on a min-
imal surface with light noise added). The
smooth regions typically do not extend
across the curves where these switches
happen (κg� 0). In areas with such dis-
continuities our approach may thus un-
derestimate the significance intuitively expected. While we are in-
terested specifically in the use of the smooth regions for alignment
to the absolute direction amin (cf. Section 4.2), in other cases it may
thus be advisable to define κ

g based on the non-absolute directions,
so the smooth regions do not get partitioned by the switching.

While our method itself only has a single intuitive angle parame-
ter, further parameters inevitably come into play when considering
the big picture. For instance, prior to application of our method,
principal direction estimators may need to be used. Afterwards,
e.g., parametrization objectives need to be tuned to get the desired
balance between alignment and isometry, etc. Reducing the effort
that needs to be spent in this regard would be of great value, but
probably requires focusing on concrete application scenarios rather
than the abstract generic setting.
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Ours [NPPZ12] [BZK09]

Figure 10: Global parametrizations aligned using weight fields
determined by different methods: ours, [NPPZ12], and [BZK09].

Figure 11: Parametrization based on [BZK09], with differing
alignment weight fields. Left: our method. Middle: [NPPZ12].
Right: [BZK09]. Due to the lack of scale-invariance, in the middle
and on the right some obvious features are not aligned to, or some
unimportant features are detected, inducing excess singularities.
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