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Abstract

Triangle meshes have been nearly ubiquitous in computer graphics, and a large body of data structures and geometry processing
algorithms based on them has been developed in the literature. At the same time, quadrilateral meshes, especially semi-
regular ones, have advantages for many applications, and significant progress was made in quadrilateral mesh generation and
processing during the last several years. In this survey we discuss the advantages and problems of techniques operating on
quadrilateral meshes, including surface analysis and mesh quality, simplification, adaptive refinement, alignment with features,

parametrisation and remeshing.
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1. Introduction

Polygonal meshes are important representations with a large number
of applications in geometric modelling, computer graphics, mechan-
ical engineering, simulation, architecture, etc. Such representations
are based on the idea of cell decomposition: a complex object is
represented with an assembly of (possibly many) simple polygo-
nal cells. Triangles and quadrilaterals are the most common cells
used to for surfaces. Quad meshes, that is, meshes made entirely
of quadrilaterals, have been widely used for many years in CAD
and simulation, because a number of tasks are better suited to quad
meshes than to triangle meshes. While triangle meshes are much
more common in computer graphics, and most research in geome-
try processing has focused on them, the advantages of quad meshes
for graphics applications are also well understood.

This report provides a discussion of specific characteristics of
quad meshes, as well as a survey of recent research on quad mesh
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processing, covering topics such as mesh generation, mesh conver-
sion, simplification, parametrisation, alignment to guidance fields,
mesh optimisation, etc.

1.1. Terminology

The constituents of a two-dimensional polygonal mesh are:
vertices, edges and facets [a.k.a. elements, in the context of the
finite-element methods (FEM)]. Vertices are just points in space;
edges are straight-line segments bounded by pairs of vertices; and
facets are polygons bounded by cycles of edges.

Facets may share vertices and edges. We consider primarily con-
forming meshes, in which any two faces may share either a single
vertex, or an entire common edge. We also briefly discuss T-meshes,
which are a special case of non-conforming meshes: in a T-mesh,
there may exist some edge e of a face f that coincides with a chain
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Figure 1: Quad meshes categories. A: regular; B: semi-regular; C: valence semi-regular; D1-D2: unstructured (D2 being more irregular

than D1).

of edges of two or more faces glued to f along e: internal vertices of
such a chain (which implicitly split ¢) are called 7-joints of the mesh.

The valence of a vertex is the number of its incident edges, while
its star is the set of its incident facets and edges; the star of an edge
is the set of its incident faces. We assume all our meshes to have
a manifold configuration, that is: the star of any edge and of any
vertex is always homeomorphic to either a disk, or a half plane.
Informally speaking, this means that any edge may be shared by
either two incident facets, or just one incident facet; and the set of
facets connected to each vertex forms a single fan (i.e. there is no
‘bow tie’ configuration). An edge with two incident facets is said to
be internal, while an edge with just one incident facet is said to be
boundary; a vertex of a boundary edge is also said to be boundary,
otherwise it is said to be internal. If all edges are internal, then the
carrier of the mesh is a manifold surface; in this case the mesh is also
said to be watertight. In case there exist boundary edges, the carrier
of the mesh is a manifold with boundary (a.k.a. bordered surface)
and the boundary is composed of cycles of boundary edges.

A triangle mesh is a mesh in which all facets are triangles, while
a quad mesh is a mesh in which all facets are quadrilaterals. In some
cases, we consider quad-dominant meshes, in which the majority of
facets are quadrilaterals, while there may be a small fraction of non-
quadrilateral facets, typically triangles and/or pentagons. An internal
vertex in a quad mesh is regular if it has valence 4. For quad meshes,
three types of regular boundary vertices can be distinguished. A
regular non-corner boundary vertex of a quad mesh has valence 3,
and convex/concave corner boundary vertex have valences 2 and
4, respectively. A vertex v that is not regular is called irregular, or
extraordinary.

Discrete functions (either scalar, or vector, or tensor) on meshes
can be described by associating values either to vertices, or to facets.
In some cases, such functions can be extended to a continuous
setting by interpolation. Bi-linear interpolation is a common choice
for extending discrete functions defined at the vertices of a quad
mesh.

There is a natural relation between quad meshes and cross fields,
that is, an assignment of a pair of orthogonal directions to each
surface point: a cross field may be regarded as a quad mesh with
infinitely small quads with edges aligned with cross field directions;
conversely, given a quad mesh, a discrete cross field can be de-
fined at each facet, by taking the average directions of its edges.

Several mathematical notions relevant to the analysis of continuous
cross fields can be used in the context of quad meshes. The index
theory classifies the singularities of a vector field and studies their
relation with the topology of the underlying manifold (see [ Yau05]
for a historical perspective). Similar theory exists for cross fields
[RVLLO8]. In quad mesh context, field singularities correspond to
the extraordinary vertices of quad meshes, or extraordinary faces of
quad dominant meshes. Straightforward formulas relate the valence
of an extraordinary vertex (or the number of edges of an extraor-
dinary face) to the index of the corresponding singularity. Another
important concept in the vector and cross field setting is that of
separatrices, that is, integral lines starting at singularities. In the
cases when all separatrices also end at singularities, they define a
natural partition of the manifold. The quad mesh counterpart of a
separatrix corresponds to a path of edges crossing regular vertices
and connecting an extraordinary vertex to either another extraordi-
nary vertex, or to the boundary (see Figure 18 and Section 4.3.1 for
more details).

1.2. Classification

Quad meshes can be loosely classified into several classes, based on
the degree of regularity (Figure 1):

e A regular mesh, or a geometry image [GGHO2], can be glob-
ally mapped to a rectangular subset of a square tiling. Regular
meshes have a limited scope of applicability as these are suit-
able for surfaces of disk or toroidal topology only (a toroidal
topology mesh can be obtained by identifying the opposite sides
of a regular mesh without introducing irregular vertices).

e A quad mesh is semi-regular if it is obtained by gluing, in a
conforming way, several regular 2D arrays of quads side to side.
Each such regular submesh is called a patch, and the number of
patches is assumed to be much smaller than the total number of
facets. In the context of FEM, a semi-regular mesh is called a
multi-block grid (blocks corresponding to patches). In a semi-
regular quad mesh, all vertices that are internal to patches or lie
along their boundary edges are regular, while only vertices that
lie at corners of patches may possibly be extraordinary. Semi-
regular meshes represent the most important class in terms of
applications.

e A quad mesh is valence semi-regular if most of its vertices have
valence 4. All semi-regular meshes are valence semi-regular,
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but not every valence semi-regular mesh can be partitioned into
a small number of patches. While most authors conform to the
definition of semi-regular given above, some authors use the
term semi-regular to refer to valence semi-regular. However,
the distinction is important as the difference between these two
classes can be really dramatic (see Section 4.3) and has a sig-
nificant impact on possible applications. Differentiating these
two classes of quad meshes allows us to differentiate more pre-
cisely the algorithms that aim at producing meshes with a patch
structure, from those algorithms that minimise the number of
irregular vertices only.

e A quad mesh is unstructured if a large fraction of its vertices
are irregular. An unstructured mesh is obtained for instance
from splitting each facet of an arbitrary triangle mesh into three
quads.

Note that, while the first class has a precise definition, there is
a continuum of meshes joining the other three classes. The two
parameters of this continuum are the number of irregular vertices
and the minimal number of patches the mesh can be partitioned
into. Starting from an unstructured mesh (most vertices are ir-
regular), and decreasing the number of irregular vertices, results
in a transition to a valence semi-regular mesh. A valence semi-
regular mesh may have a large minimal number of patches, though,
which can be obtained by partitioning the mesh along all separa-
trices; modifying the valence semi-regular mesh structure to re-
duce the number of patches leads to a semi-regular mesh. For
any semi-regular mesh, the patches form a coarse unstructured
mesh.

If non-conforming (7-mesh) patch structures are allowed, the
relation between semi-regular and valence semi-regular meshes
changes: the minimal number of patches now is directly tied to
the number of irregular vertices [EGKTO08, MPKZ10], so the tran-
sition from valence semi-regular to semi-regular is characterised by
the decrease in the number of T-joints.

1.3. Applications

Quad meshes are preferred in many applications for several reasons:

(1) Most geometry has two dominant local directions, typically
associated with either principal curvature directions, or local
sharp features, to which quads can be aligned; use of triangle
meshes necessitates an arbitrary choice of a third edge direc-
tion. The alignment of elements of a mesh to given directions
is crucial in capturing shape features as well as the semantics
of modelled objects, especially if they need to be segmented
or animated.

(2) Tensor-product high-order bases, associated with quad meshes
are preferred for surface representation, tensor-product B-
splines and Catmull-Clark surfaces being the dominant in-
dustry standards.

(3) Patches of semi-regular quad meshes and, more generally, sub-
meshes of valence semi-regular meshes with a rectangular grid
topology, naturally match the sampling pattern of all types of
textures, from images to displacement maps.

Figure 2: A quad mesh for computer animation (courtesy of the
Peach project, Open Source ‘Big Buck Bunny movie). Note how
the mesh is ‘twisted’ around the arms. This facilitates animating the
character in a way that reflects his ‘don’t mess with me’ personality.

These properties are important in the context of a number of
common applications.

1.3.1. Polygonal modelling

Many objects and characters used for real-time rendering, for ex-
ample, in the context of video-games, virtual reality and CG anima-
tion, are represented as polygonal meshes, designed by artists using
interactive modelling systems. Careful design requires that mesh el-
ements be arranged to follow line features of the represented shape,
as well as to adapt to deformations imposed by animation (see
Figure 2). In this context, quad meshes are more convenient and
more intuitive to manipulate than triangle meshes.

1.3.2. High-order surface modelling

Semi-regular quad meshes are very useful as base meshes for fit-
ting tensor-product splines or NURBS: one spline patch is defined
for each regular patch of the mesh, and different patches are glued
together at common boundaries. Coarse quad or quad-dominant
meshes (not necessarily semi-regular) can act as control meshes
for subdivision surfaces that provide base shapes for arbitrarily
complex objects and characters. In general, tensor product patches
obtained from quad control meshes are much easier to manipulate
than triangle-based Bernstein/Bezier bases. These techniques are
important because Splines, NURBS and subdivision surfaces are
the modelling techniques that dominate some industrial applica-
tions (CAD/CAM for Splines and NURBS, and the entertainment
industry for subdivision surfaces).

1.3.3. Texturing

Semi-regular quad meshes are an excellent match for texturing, as
each patch can be trivially mapped to a rectangular texture. Nor-
mal mapping and displacement mapping techniques, supported in
hardware, provide means of adding fine details to such meshes.
These advanced texture mapping techniques can also be combined
with subdivision surfaces for both offline and real-time rendering in
the context of most recent GPU pipelines (DirectX 11 and higher),
which include the geometry shaders.
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1.3.4. Finite element simulation

Quad meshes are preferred in some numerical analysis, such as finite
element modelling within highly elastic and plastic domains, for
which they reduce both the approximation error and the number of
elements as compared to triangles [SJ08]. In iso-geometric analysis,
tensor product function bases are often easier to manipulate than
their triangular counterparts and have a better approximation power
[D’ A00], thanks to the ability of quad meshes to be aligned with the
principal directions of curvature.

1.3.5. Compression

The possibility to store a high resolution shape as a coarse quad mesh
(or quad-based higher order surface), plus compressed displacement
detail on regular grids associated to quads, may greatly reduce stor-
age space and transmission times. Since details are stored in image-
like 2D arrays (textures, normal maps, displacement maps), they
can be compressed with standard image compression techniques
(sometimes adapted to the geometric content).

Note that in most of the above applications mesh elements should
be nearly flat and nearly rectangular, and they should be arranged
properly in order to follow prescribed directions, or to form suitable
patches, or both. As we will see in the next sections, these re-
quirements make geometry processing on quad meshes much more
difficult than on triangle meshes.

2. Characteristics of a Quad Mesh

In order to exploit the desired features outlined in the previous
section, a quad mesh should feature a number of characteristics,
many of which are strongly related to each other.

Most quad mesh properties are related to the quality of the ap-
proximation of the original shape (in the case of remeshing) or the
desired shape (in the case of ab initio modelling or deformations),
or suitability for a particular task (deformation or simulation).

To estimate the shape approximation quality, symmetric Haus-
dorff distance is a standard measure (a good approximation of that
distance can be computed with the Metro algorithm[CRS98]). De-
pending on the application, other measures of approximation quality
may be equally important. For instance, since the normal affects the
shading, measures taking normal deviation into account are impor-
tant for appearance-preserving remeshing. Such measures are also
used in Finite Element Modelling[Mir11].

A set of quad mesh characteristics is related to shape approxima-
tion quality.

Some of these characteristics are related to individual quads, other
to the quad arrangements. We start with the former.

2.1. Quad quality

The properties of general quads make them a more difficult primitive
to handle compared to triangles. For example, a triangle is always
flat and convex; it supports linear interpolation of functions defined

at vertices; it can be easily projected to a plane; and triangle ras-
terization is straightforward, with all graphics hardware optimised
for triangle rasterization. There is effectively two simple charac-
teristics of triangle quality: the deviation from equilateral triangle
(measured, e.g. by the inscribed-to-circumscribed radius ratio) and
the largest angle.

In contrast, quad quality has many more aspects, and even simple
operations present a greater challenge. A quad is not necessarily flat;
planar quads may be non-convex; interpolating attributes on a quad
requires extending the definition of barycentric coordinates which
can be done in different ways (e.g. [MLBDOS5, Flo03]). Rendering
general quads is intrinsically more difficult compared to triangles,
and requires a more complex rasterizer, for example, [HT04].

Ideally, a quad should be as much as possible as a triangle: it
should be close to flat (this can be particularly crucial in archi-
tectural applications, where quad meshes featuring this property are
often categorised as PQ: Planar-Quad); facet corners should be close
to 90° and opposite sides of each quad should have approximately
equal length (this can be particularly crucial in contexts like phys-
ical simulation), or, for anisotropic approximation, a ratio best for
approximation quality.

2.2. Quad orientation and size

Several modelling contexts requires the quads to have a certain
orientation or change in shape or resolution along the mesh.

2.2.1. Feature and line and principal curvature alignment

Just as in triangle meshes, features lines, when present, should be
explicitly represented as edge sequences; for example, sharp crease
lines in mechanical objects, or lines where some attribute other
than normals (e.g. colour) varies. More generally, in the presence of
cylinder-like regions, alignment of edges with principal curvature
directions is beneficial, as this leads to better-shaped (e.g. flatter)
quads and improves surface approximation, especially as measured
by normal differences. A different type of feature lines are Langer’s
lines, for animatable human models [Fra09, BEMMO07].

2.2.2. Resolution adaptivity

It is sometimes beneficial to let the tessellation density vary over the
surface of the mesh (e.g. to allow tessellation density adapt to local
shape complexity, or to devote denser sampling to more important
parts of a surface). In order to allow for spatial transition through dif-
ferent levels of resolution, extra irregular vertices must be included
(see Figure 3, left-hand side), unless T-junctions are introduced (as
in [MPKZ10]). Therefore in many contexts it is desirable to achieve
the right trade-oft between adaptivity and regularity (see Figure 3,
right-hand side).

2.2.3. Anisotropy
A different form of resolution adaptivity is achieved by using

anisotropic quads. Approximation theory predicts that for a given
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Figure 3: Left-hand side: An otherwise semi-regular quad meshing of a bar includes two irregular vertices (in red) in order to change
tessellation density from six quads (left end of the bar) to five (right end of the bar). Right-hand side: A quad-mesh with adaptive density.
Adaptivity (i.e. quad size adapting to local shape complexity) is obtained at the expense of introducing many singular vertices (in red).

surface and a given budget of points, the best approximation will be
obtained with a mesh that has elements squeezed along the principal
direction of curvature [D’A00]. While this type of adaptivity may
result in optimal surface approximation, quads close to squares may
be preferable if the quad mesh is used, for example, for isotropic
finite-element simulations. At the same time, if the physical prob-
lem itself is anisotropic, it requires mesh generation to be guided by
a prescribed anisotropy field. For instance, in computational fluid
dynamics, it is desired to squeeze the elements in the direction nor-
mal to the wing of a plane since the mostly significant physics occur
in the limit layer.

2.3. Connectivity characteristics

A number of important quad mesh characteristics are related to
connectivity. Most of them (e.g. the number of irregular vertices and
their placement) are related to geometric approximation properties.

2.3.1. Regularity

In a sense, ‘unstructured’, ‘valence semi-regular’, ‘semi-regular’
and ‘regular’ meshes can be seen as a continuum of cases with an
increasing degree of regularity. Depending on the applications, an
either lower or higher degree of regularity is required. On the one
hand, in most applications irregular vertices constitute a complica-
tion, hindering usability to some extent. For instance, in subdivision
surfaces, they often cause some wrinkles or curvature irregularities,
and patches incident to them require special evaluation rules. On
the other hand, a certain number of irregular vertices is necessary,
depending on shape genus. Irregular vertices also play a role either
in improving shape quality (especially for complex surfaces con-
taining high variation of Gauss curvature, caused by bifurcations,
protrusions, depressions, handles, etc.), or to allow for changes in
tessellation densities.

2.3.2. Good placement of irregular vertices

Not only the number but also the positioning of irregular vertices is
crucial to achieve many objectives in this list. As a rule of thumb,
irregular vertices should appear in regions with a strong negative
or positive Gaussian curvature (other than where needed to change
resolution). An independent desiderata for positioning of irregular
vertices is that straight sequences of edges stemming from them
(a.k.a. separatrices) should connect them in a graph that is as simple
as possible, exhibiting few crossings; if this holds, the quad mesh
implies a simpler structure, and it is more likely to be semi-regular
(see later in Section 4.3.1 for more details).

2.3.3. Other connectivity constraints

In most contexts, quad mesh connectivity must be assumed to be:
two-manifold, closed, conforming (i.e. free from T-junctions) and
pure (i.e. all polygons are quads). Situations where a vertex has
valence 2 (sometime called a doublet) or, even more so, 1 (sometime
called a singlet) are usually considered inconsistent, but they can be
accepted in some specific contexts.

3. Quad Mesh Generation

Many manually created meshes are ‘born quad’. In several other
contexts (e.g. reverse engineering, range scanning, isosurface ex-
traction, etc.) a surface is typically first created in another form, a
triangle mesh being the most common case. A naive way to con-
vert any polygonal mesh into a quad mesh is to perform topological
Catmull-Clark subdivision [CC78]. The obtained quad mesh has the
desirable property of preserving all original edges, but it also has
several important drawbacks: it increases the number of elements
(splitting each k-gonal facet into k distinct quads), and it introduces
a large number of irregular vertices (one for each original facet that
is not a quad). This is a practical option only if the starting mesh is
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already quad-dominant and a increase in complexity is acceptable.
In most cases, more complex approaches are needed.

The task has been approached from different directions. In Ta-
ble 1, we summarise many of the methods usable to produce a
quad-mesh.

Quad conversion (Section 3.1) explicitly targets the problem of
converting a triangle mesh into a quad mesh, often working just on
connectivity. On the other hand, quad remeshing also implies a re-
sampling of the original surface (an overview of general re-meshing
methods, focussed on triangle meshes but also covering the quad
case, can be found in [AUGAO08]).

A popular class of quad-remeshing methods consists in param-
eterising the original triangle-mesh over a base domain, and then
regularly sampling over this domain (Section 3.3). The domain can
be created by partitioning the original surface into quadrilateral
patches and using the resulting coarse quad mesh as a domain (Sec-
tion 3.2). Alternatively, a base domain can be defined implicitly by
cutting the surface along a set of curves to a disk, and mapping the
disk to the plane, subject to certain boundary conditions at cuts that
ensure that the regular resampling pattern along parametric lines is
continued smoothly across cuts (Sections 3.4 and 3.5). Unlike patch-
based methods, this class of methods produces valence semi-regular
meshes, but not semi-regular meshes, in the general case. Additional
constraints and processing may be required to obtain semi-regular
meshes. In the case of field-aligned methods, remeshing can be done
by tracing field lines on the surface (explicit methods discussed in
Section 3.5). An independent path to quad remeshing is offered by
Centroidal Voronoi diagrams (Section 3.6).

While most techniques start with a manifold triangle mesh, sev-
eral recent methods bypass the triangle-mesh phase and strive to
obtain the quad mesh directly from raw data preceding it, for exam-
ple, a point cloud or a set of range scans (Section 3.8).

3.1. Tri-to-quad conversion

This class of methods combines a sequence of local operations
on connectivity to convert triangular meshes into quad meshes.
One main mechanism is to fuse two original triangles into one
quad; so basically the tri-mesh to quad-mesh conversion is based on
pairing original adjacent triangles. This class of methods can only
be expected to produce unstructured quad meshes, not regular ones.
To obtain a pure quad-mesh in this way, the original mesh must
have an even number of triangles. This is always the case for closed
meshes; otherwise it can be trivially enforced by splitting one border
triangle in two. Several of these methods have been presented, often
as side results in papers focussing in other parts of related areas:

SQuad [GLLR11] is designed to improve the internal represen-
tation of meshes but can be used to define a quad mesh out of a
triangle mesh.

BlossomQuad [RLS*11] exploits a perfect matching algorithm
from combinatorial optimisation that provably finds the global op-
timum, with the best element shapes through a sequence of local
operators on the connectivity; on the one hand, this approach of-
fers to solve the triangle pairing problem in a globally optimal way.
On the other hand, the algorithm complexity is quadratic with the

number of elements. This makes the method time consuming, and
mainly suitable to cases where the optimality of the result is more
important than the run-time.

In [VZ01] most eligible pairs are first identified, and the resulting
quad-dominant intermediate mesh is then subdivided into a pure-
quad mesh: first each face of the intermediate mesh is split into
triangles by barycentric subdivision; then, pairs of such triangles
are merged to form quads by deleting all edges that existed prior to
subdivision; overall the number of vertices increasing by less than
a factor of 2.

In [TPC*10] a greedy approach is presented where most eligible
pairs are first identified, and remaining triangles are brought together
by sequences of edge-flip operations and fused (an open source
implementation is available in MeshLab [CCRO08]); the number of
vertices is not increased; one example of result is shown in Figure 4.

One common problem with this class of approaches is that the
quality of results in terms of quad shape is strongly dependent on
the input, and it is often low. Similarly to what happens with quad
simplification (see Section 4.1), a popular partial countermeasure is
tangent space smoothing.

Note that these methods can only produce, in the general case,
unstructured meshes, even though each method strives to maximise
regularity either implicitly or explicitly.

3.2. Defining patches over the surface

The techniques described in this section work by constructing a 1-to-
1 mapping of the original surface onto a set of square patches. Then,
the final quad mesh is trivially generated by sampling regularly each
patch in parametric space (e.g. by subdivision, or by sampling each
quad with a regular grid). The resulting quad mesh is semi-regular
by construction.

This type of methods was initially developed for semiregular
triangle meshes (most importantly, in [EDD*95, GVSS00, PTC10,
KLSO03]). Many of these techniques can be adapted to work directly
on a quad-based domain. Alternatively, triangle base domains can be
converted to quad meshes by simple operations similar to triangle-
to-quad mesh conversion. However, this approach introduces angle
distortion and more irregular vertices in the final mesh.

Direct patch-based techniques for quad meshes include

3.2.1. Parameterization of Triangle Meshes over Quadrilateral
Domains

[BMRJ04]: This technique starts with a normal-based clustering
that classifies the input into flat regions, and uses a centre-based
clustering technique to extract the coarse mesh (see Section 3.6
below for more details). The base mesh is computed by a clustering
approach that attempts to place extraordinary vertices at regions of
high curvature. Further processing continues with cluster refinement
and cleanup. Once the clusters are finalised, the boundaries are
extracted, and a coarse quad mesh is generated which can be used
for parametrisation. A similar approach [CHCHO6] optimises the
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Figure 4: Tri-to-Quad conversion of [TPC*10]: Left panel: input
triangle mesh. Middle panel: quad mesh built with edge flip opera-
tions. Right panel: quad mesh built with one step of Catmull-Clark
subdivision.

Figure 5: Top panel: different phases composing [DBG*06]; given
a triangle mesh, an initial Morse-Smale complex is extracted, then
boundaries are improved thought a sequence of relaxation steps,
this finally allows to gather a high quality quadrangulated model.
Bottom panel: The step composing [DISCO9b]; a base domain is
obtained through a sequence of simplification operations, original
vertices were mapped to the base domain, then sampling the base
domain is possible to gather a semiregular quad mesh.

layout with a modified clustering approach tailored for rectangular
domains.

3.2.2. Semi-regular, Quadrilateral only Remeshing from
Simplified Base Domains

[DISCO9b]: This work is inspired by the well-known MAPS
[LSS*98] triangle remeshing technique. First, this technique gen-
erates a quad-only model through Catmull-Clark subdivision of the

input polygons, then it simplifies it to a base domain that is home-
omorphic to the original mesh using a variation of [DISSCO8].
During the simplification, a hierarchical mapping method, keyframe
mapping, stores specific levels-of-detail to guide the mapping of
the original vertices to the base domain. The algorithm implements
a scheme for refinement with adaptive resampling of the base do-
main and backward projects to the original surface. As a byproduct
of the remeshing scheme, a surface parameterisation is associated
with the remesh vertices to facilitate subsequent geometric process-
ing, that is, texture mapping, subdivision surfaces and spline-based
modelling (see Figure 5, bottom).

3.2.3. Polycube-maps

[THCMO4] are a special sub-class of global quad-based parameter-
isation where the layout of cone singularities is such that the para-
metric domain has a trivial, axis-aligned embedding in 3D. This is
designed to ease texture mapping, but the resulting re-sampling has
several good properties too: semi-regularity, few irregular vertices,
uniform tessellation density and well-shaped quads. On the other
hand, the task of automatically or semi-automatically producing
this kind of parameterisation in a robust way is a difficult problem,
still open despite intensive research [WHL*08, WIH*08, LIFWO08,
HWFQO09, XGH*11]. Some of the proposed methods target fully au-
tomatic construction [LJIFW08, HWFQO09], while others emphasise
user control [ XGH*11, WIH*08].

3.3. Parametrisation based methods

A formulation of the global parametrisation problem and constraints
needed for quadrangulation shared by both conformal/harmonic and
field-guided methods share a similar view of global parametrisa-
tion. We provide a brief description here and refer to [BZK09] and
[TACSDO06] for two closely related descriptions. An alternative view
based on 1-forms on covering spaces can be found in [KNPO7].

We assume that the surface is cut by a set of curves to a topological
disk or several disks.

The main principle of parametrisation based methods is the con-
struction of a mapping from the surface embedded in 3D to a do-
main in 2D such that the quadrangulation in the domain becomes
trivial. Usually the domain is tessellated by a regular tiling like the
canonical quad mesh formed by the Cartesian grid of integer iso-
lines. One example is shown in Figure 6 where a smoothed cube
is parametrised (a) such that the grid of integer isolines stitches to
a quad mesh on the surface (b). The tricky part in this setting is
the design of consistency conditions that ensure a correct stitching
of the isolines along the cut graph which is essential for non-disk
topologies. Those conditions are necessary to produce a consistent
quad mesh. Continuity of the isolines can be enforced by coupling
the position of points u on one side of a cut to points on the other
side u’ by transition functions of the form

u/ = g(u) = Ré()u + (]’ k)Ts (1)

where i, j, k € Z and Ry is the 2D matrix performing rotations
by 90°. These transition functions assure that when traversing the
cut graph, although the point position changes from u to g(u), the
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Figure 6: Parametrisation based approaches cut and flatten the
surface to the domain (a) such that a trivial quad tessellation of the
domain stitches to a valid quad mesh on the surface (b).

new position is similar with respect to the Cartesian grid of integer
isolines such that no distortion is introduced by the cut. Near points
where several cut curves meet, the regular sampling pattern may be
broken even if (1) is satisfied for each cut curve. The parametrisation
with constraints (1) defines a flat metric everywhere on the surface
away from these points (in this metric, distances are measured in
parametric domain). It turns out that near these points there is also
a natural metric, but it is not flat; rather, it corresponds to the metric
of a cone. For this reason, these points are called cones. Cone angles
in this metric are closely related to the valence of irregular vertices
appearing at cones after resampling: specifically a cone with cone
angle kr /2 corresponds to a vertex of valence k.

3.4. Conformal and harmonic global parameterization

Locally conformal parametrisations are good candidates for quad
mesh generation since they are angle preserving and in particular
maintain orthogonality; as a result, small quads in a quadrangula-
tion are close to squares. For an object that is homeomorphic to
a disk, a quad mesh can be obtained by contouring the iso-u and
iso-v curves of a parameterisation [Flo97]. Harmonic parametrisa-
tion can be viewed as as-conformal-as-possible for given boundary
constraints. In general, perfect conformality cannot be maintained
without severe restrictions on cone angles and without causing sig-
nificant area distortion, with the exception of objects of spherical
topology [SSP08, BCGBO8]. For an object with arbitrary genus,
conformal and harmonic parameterisation methods admit several
generalisations, such as [GY03, SFO5, DBG*06, TACSDO06]. The
method of [GYO03] yields discrete conformal parametrisations but
restricts the cone angles to be multiples of 27; and as a conse-
quence, the valence of irregular vertices in the quadrangulation to
be multiples of 4, leading to high area distortion of areas of positive
Gaussian curvature. [TACSDO06] lets the user define the placement
of cones and requires connecting them into quadrilateral patches,
which allows to infer the rotations and translation in 1. In order to
increase the flexibility, this setting can be further generalised to tran-
sition functions acting between arbitrarily shaped (non-rectangular)
patches as done in [BVKOS8]. [DBG*06] determines the parametri-
sation domain topology starting with a scalar field on the triangle
mesh, finding its critical points, which become cones and extracting
the Morse-Smale complex of that field (see Figure 5, top). The cells
of this complex are quadrilateral, and similarly to manually defined

cells of [TACSDO6] can be used to infer the rotations and translations
in 1. Although in principle, any scalar field should work, since we
need a sparse and well-sampled set of quads over the surface, the pa-
per proposes to explore Laplacian eigenfunctions as the scalar field.
Such functions locally resemble a product of sines, which forms a
mostly regular lattice of bumps and pits. A more recent variant of
the algorithm [HZM*08] introduces a degree of directional control.

3.5. Field-guided methods

This class of methods is characterised by explicit control over
local properties of quad elements in the mesh by means of

the guiding fields. Typically, the most interesting local proper-
ties are the orientation and the size of quad elements which
can be specified by a cross field, also called frame field,
which smoothly varies over the entire surface. A single cross
can be seen as the representative of a parallelogram which is
formed by parallel translation of both inters-

ecting lines, as illustrated on the right-hand

side. For each cross there are essentially fo-

ur degrees of freedom (DOF) that can be en-

coded in different ways. Often a cross field is given in a polar
representation where we split the cross into its angular and length
components which are then stored in two individual fields, namely
an orientation field and a sizing field. Important subclasses with a re-
duced number of DOF’s are 4-symmetric direction fields [RVLLOS,
LJX*10] which represent orthogonal crosses where both orienta-
tions are rigidly coupled and isotropic sizing fields where both
lengths are equal.

A cross field exhibits the same types of singularities that can
be observed in quad meshes and consequently the generation of a
highly regular quad mesh is strongly related to the generation of
a cross field with few singular points. Depending on the applica-
tion, a cross field can be either designed manually or generated
automatically. Automatic methods are typically driven by principal

curvature information which can be shown to optimise the approx-
imation quality [D’A00].

Apart from the pure guidance point of view, note that field guided
methods decompose the difficult quad mesh generation problem
into several simpler subproblems. This advantage alone motivates
their usage since in each sub-step different aspects of the quad mesh
can be optimised individually which turns out to be much more
tractable than optimising all aspects simultaneously. A prototypical
field guided method is depicted in Figure 7 which consists of three
steps:

(1) Orientation field generation
(2) Sizing field generation
(3) Quad mesh synthesis exploiting the results of 1 and 2.

One advantage of field guided methods is that in each step the
most suitable data representation can be chosen independently of
the other steps. For example, a polar representation is often more
powerful for steps 1 and 2 while a vector based representation
may be preferred in step 3. The downside of this decomposi-
tion is that it is more difficult to integrate direct optimisation of
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Figure 7: Prototype of a field guided method: Given an input triangle mesh (a) in the first step an orientation field (b) is computed which
represents the local rotation of quad elements. In the second step a sizing field (c) is determined which specifies the sample density, which in
this example is isotropic and close to uniform, with slight deviations colour coded from blue to red. In the third step, a consistent quadmesh

(d) is generated that closely reproduces both guiding fields.

quadrangulation quality measures into the choice of cone locations
which are determined at step 1. An iteration repeating the steps, and
using information from step 3 in step 1 and 2 offers one possible
solution.

Many published field guided methods are equipped with their own
methodology for the generation of a cross field. However, since the
cross field generation is typically independent of the actual quad
mesh synthesis, the pool of available algorithms can be seen as
the outer product of all orientation field generation methods with
all sizing field construction methods with all quad mesh synthesis
approaches. Accordingly, the following three sections are devoted
to the generation of orientation fields, sizing field construction and
quad mesh synthesis, respectively.

3.5.1. Orientation field generation

A typical orientation field generation algorithm computes the
smoothest orientation field on the surface subject to some boundary
conditions and/or target directions. Often target directions are de-
rived from principal curvature information [CSMO03, CP05], so that
the most important orientations, that is, those in parabolic regions
where it is obvious how the quads have to be oriented in order to
achieve a good surface approximation, are smoothly extrapolated
over the surface (see Figure 8). Other frequently used sources of
boundary conditions are feature curves, manually painted strokes or
user-provided singularity information.

It is important to understand that an orientation field behaves
quite differently as compared to a direction field, that is, a unit
vector field. Hence, unfortunately the huge arsenal of vector field
design approaches like e.g. [FSDHO07, ZMT06] cannot directly be
used for the design of orientation fields. In the view of Quadcover
[KNPO7], an orientation field can be seen as four interlinked di-
rection fields dj . ..ds; which are pairwise anti-symmetric, that is,
di = —d; +2mods- However, notice that the space of orientation
fields is richer than the combination of four independent direction
fields. In an orientation field around a singularity these direction
fields can be interlinked in such a way that while traversing a small
loop around the singularity the cross rotates by an arbitrary integer
multiple of 90°, that is, a jump from one vector field to another

Figure8: Atypical orientation field generation algorithm first iden-
tifies the most important orientations (left-hand side) which are then
smoothly extrapolated over the surface (right-hand side).

is possible. Accordingly, in contrast to direction fields, orientation
fields allow for singularities with fractional indices that are integer
multiples of 1.

In the literature two different approaches can be found that were
developed in order to handle orientation field topologies. The first
class of approaches uses nonlinear formulations based on periodic
functions like [HZ00, PZ07, RVAL09], while the other class is based
on an integer valued representation like, for example, [RVLLOS,
BZKO09]. In both formulations, finding globally optimal solutions,
that is, the smoothest orientation field subject to some boundary
conditions or fitting data, is a hard task. Especially the placement
of singularities turns out to be a crucial but also complicated step
within the automatic generation of orientation fields. As a result,
orientation field optimization algorithms often get stuck in local
minima with suboptimal singularities.

To overcome the above problems, several interactive methods
were developed which allow the user to either modify or completely
specify the singularities of the orientation field [PZ07, RVLLOS,
LJX*10, RVALO09, CDS10]. Unfortunately, the specification of all

© 2013 The Authors

Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.



D. Bommes et al./Quad-Mesh Generation and Processing 61

singularities is a tedious task which additionally requires expert
knowledge in order to achieve good results. Therefore in practice au-
tomatic methods like [HZ00, RLL*06, RVAL09, BZK09] are highly
desirable. In a recent paper [PLPZ12], the approach of [BZK09] has
been extended to generate cross fields that respect the intrinsic struc-
ture of objects with bilateral symmetry. Such a method generates
cross fields that preserve orientation through symmetry mapping
and have a nearly symmetric placement of singularities, thus result-
ing more similar to manually drawn fields for this class of objects;
the method can be applied to objects with generalised intrinsic sym-
metries and objects with imperfect symmetry, also supporting a
trade-off between alignment to global symmetry and alignment to
local non-symmetric features.

3.5.2. Sizing field computation

Depending on the application, the sizing field can be computed in
different ways. The shape of the elements in the quad mesh can be
influenced by the type of the sizing field which can be either isotropic
or anisotropic. If squares are preferred, an isotropic sizing function
should be chosen, while an anisotropic one offers the possibility
to create rectangles by controlling two independent sizing values
as was done in [ZHLB10]. Anisotropic sizing is discussed in more
detail in Section 3.7.

The trivial constant sizing field is applied in the context of uniform
remeshing where only a constant target edge length is specified. A
second possibility is to choose the sizing with respect to the curva-
ture in order to achieve a good approximation quality as proposed
in [ACSD*03]. A variation of this strategy is to use /fs (local feature
size), a more global surface characteristic that corresponds to both
curvature and local thickness of the surface [AB99].

The third often-used strategy is to compute a sizing field which
is compatible with the desired orientation field. To understand the
rationale behind this methodology, imagine a cone with a smooth
orientation field that diverges from the apex to the base. Clearly a
quad mesh which interpolates these orientations, like for example, a
polar parametrisation with respect to the apex, requires an increasing
sizing function in the angular coordinate direction. As observed in
[RLL*06], itis feasible to generate a quad mesh that exactly matches
a cross field only if the curl of the cross field is zero. Therefore,
if precise orientation reproduction is required, it is desirable to
compute a sizing field that compensates the directional variations of
the cross field by resizing the quads appropriately. Since no solution
exists in general, in practice a sizing field that minimises the curl is
computed [RLL*06].

3.5.3. Quad mesh synthesis

Once the guiding fields are available, the next step consists in gen-
erating a quad mesh where the individual elements closely follow
the local guiding. Here the most difficult aspect is consistency, that
finding a pure quad mesh without, that is, triangles or pentagons.
Since there typically exists no quad mesh which exactly reproduces
the guiding field it is desirable to distribute the required deviation
smoothly over the surface instead of concentrating it at some ‘stitch-
ing areas’. Obviously this task requires a global formulation and it
turns out that again the placement of irregular vertices is crucial in
order to find high quality solutions.

The quad mesh synthesis algorithms can be categorised into ex-
plicit methods and global parametrisation methods (cf . Section 3.3).
The first class of methods tries to explicitly generate curves which
on the one hand align to the orientation field and on the other hand
exhibit a spacing as desired by the sizing fields. The second class
of methods searches for a mapping in a function space which au-
tomatically implies consistency and thus leads to a quad mesh that
fits as close as possible to the guiding fields. Both approaches are
discussed in more detail in the following two paragraphs.

3.5.4. Explicit methods

Streamlines in a cross field intersect orthogonally and naturally form
quads as long as no singularities are enclosed. Thus, a straightfor-
ward way for synthesising a quad mesh from guiding fields is to
explicitly trace curves within the orientation field as was done in
[ACSD*03]. In this approach, the tracing was performed in 2D by
means of a parametrisation. The difficult part in such an algorithm
is to achieve a curve distribution which is in consent with the siz-
ing field. In the aforementioned approach, techniques known from
streamline placement were adapted in order to achieve adequate
results. Later on a variant of this method was developed which does
not require any parametrisation and thus is applicable to objects
with arbitrary genus [MKO04].

Even simpler is the approach proposed in [LKHO8] where a tri-
angle mesh is successively converted into a quad dominant mesh
by first constructing a new triangle mesh with a sampling that is
compatible to the sizing field, followed by a smoothing operation
which aligns chains of edges with the orientation field. In a final step,
non-aligned diagonal edges are removed, similarly to the tri-to-quad
conversion approaches described in Section 3.1.

One drawback of all explicit methods is that they are only able
to generate quad dominant meshes. Therefore, a final subdivision
step is required in order to achieve a pure quadrilateral mesh. A
second drawback is that the construction process is performed iter-
atively without being guided by a global topology. Consequently,
these approaches cannot be expected to achieve a globally well-
behaved irregular vertex distribution comparable to those produced
by parametrisation based methods discussed next.

3.5.5. Global parametrisation methods

Compared to the general setting (cf. Section 3.3), field guided meth-
ods benefit from the fact that the rotational degree of freedom i in
(1) can be adopted from the orientation field, turning the equation
into a linear integer condition. This is exactly the approach taken in
[KNPO7, BZK09], which as a consequence leads to irregular ver-
tices which coincide with the orientation field singularities. Notice
that, in order to capture the rotational changes around singular ver-
tices, it is important to ensure that all singularities of the cross field
lie on the cut graph (see Figure 6 and [BZK09]).

By restricting the parametrisation function to transition functions
of form 1, a function space with ‘built-in’ continuity is designed.
Hence, it is possible to search for the mapping within this function
space that best reproduces both guiding fields. Unfortunately, due
to the integer conditions introduced by the transition functions,
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Figure 9: Quad mesh synthesis comparison based on identical guiding fields: The PGP method provides the best length distortion at the cost
of additional singularities (a). This effect can be reduced by a curl corrected sizing field (b). QC and MIQ are based on the same function space
construction and consequently behave similarly with a clear trade-off between mapping distortion and runtime due to different heuristics for
the estimation of integer DOF’s (c) and (d). The mapping distortion can be further reduced by the iterative stiffening approach (e).

the construction of the mapping requires the solution of a mixed-
integer problem which in general is NP-hard. Therefore, instead
of searching the globally optimal solution, practical methods apply
cheaper heuristics in order to estimate adequate integers from a
previously computed continuous solution either in one step [KNP07]
or iteratively one after another [BZK09].

Instead of the formulation as a mixed-integer problem, it is pos-
sible to express the invariance of grid transformations with the help
of (non-linear) periodic functions, as proposed in [RLL*06] (im-
plementation available in Graphite [ALI12]). In terms of the pre-
vious representation, this means that the cut graph separates all
the triangles of the surface (there is a transition function for each
pair of triangles that share an edge). In this formulation, the grid
lines stitch correctly only in regular regions while singular regions
have to undergo a special treatment including a splitting and a re-
parametrisation step.

Since for some of the method cited earlier the produced parame-
terisation is, generally, not bijective (due to global overlaps), special
care in the implementation of the resampling is needed in order to
produce a valid quadrilateral mesh. A common method consist in
tracing integer lines on the original surface and group them to define
quads or polygons.

3.5.6. Comparison of parametrisation based methods

In order to investigate the behaviour of different parametrisation
based methods, Figure 9 compares the quad mesh synthesis of
Periodic Global Parameterization (PGP) [RLL*06], QuadCover-
Surface Parameterization using Branched Coverings (QC) [KNPO7]
and Mixed-Integer Quadrangulation (MIQ) [BZK09] against each
other. For all methods the same guidance fields are used which

consist in an orientation field produced by the PGP method and a
constant sizing field. The only exception is Figure 9(b) where the
sizing field was adjusted by the curl correction method proposed
together with the PGP method in [RLL*06].

Figure 9 shows that all synthesis methods behave quite similar in
regular regions, showing that the orientation and sizing fields have
a strong influence on the result. As mentioned before, a suitable
distribution of singularities in the orientation field is crucial for the
success of the quad mesh synthesis step. In accordance to that, our
experiment shows that interesting differences mostly occur close
to singularities which will be the first aspect of our discussion.
As expected, the PGP method generates additional singularities in
order to capture the given constant sizing field, while QC and MIQ
exactly reproduce the orientation field singularities at the cost of
some length distortion. Some of the additional singularities can
be compensated by a curl corrected sizing function as shown in
Figure 9(b), however, the PGP method does not provide explicit
control. Clearly, the favoured behaviour strongly depends on the
application. However, in most practical applications regularity and
explicit control over singularities is preferred over moderate length
distortion.

QC and MIQ search for an optimal mapping within the same
function space and consequently their results shown in (c) and (d)
are closely related. While QC is extremely fast since it requires only
the solution of two sparse linear systems, MIQ is able to estimate
integers that induce less distortion at the cost of increased runtime.
The impact of the integer estimation technique strongly depends on
how close singular vertices get in the quadmesh. If the goal is the
generation of a very coarse quad mesh, it is very important to apply
more expensive integer estimation schemes like those of MIQ, while
for the generation of finely tessellated quad meshes a simple and
fast heuristic like the one of QC is sufficient.
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The last aspect we want to analyse here is the quality of the
mapping. An often neglected aspect of parametrisation based ap-
proaches are degeneracies in the mapping function (e.g. foldovers)
which easily destroy the quad mesh consistency and necessitate a
repair step comparable to that of PGP. One reason for such defects
is that singularities in a parametrization behave similar to point con-
straints, which are well known to often introduce heavy distortions
and foldovers. Although there is currently no fundamental solution
to this problem, the stiffening heuristic of MIQ in practice often
leads to sufficient results by iteratively updating a weighting func-
tion in order to minimise the maximal distortion. Figure 9(e) depicts
the solution of MIQ with five stiffening iterations where especially
the distortion around singularities is greatly reduced, again at the
cost of an increased runtime.

In summary, for the quadmesh synthesis algorithms analysed
here, there is clearly a trade-off between speed and quality. While
conceptually comparable, in practice the MIQ approach is often
preferred over QC since, on the one hand, it naturally handles sharp
features and boundaries and, on the other hand, the required greedy
mixed-integer solver is freely available [BZK12], enabling a cost-
efficient implementation.

While all field guided approaches discussed here lead to valence
semi-regular meshes, one interesting direction for future research
includes the design of methods that are directly able to generate
semi-regular meshes with a coarse patch structure. Additional con-
straints described in [MPKZ10] offer a step in this direction. An-
other important aspect which would deserve some attention is the
improvement of robustness. While MIQ with stiffening is able to
generate valid mappings leading to quad meshes of moderate coarse-
ness, the construction of degeneracy-free mappings for arbitrarily
coarse sizing fields is still unsolved.

3.6. Centroidal Voronoi tessellation

In a certain sense, meshing a surface requires to compute a sam-
pling of the surface, that is, generating a set of vertices (or samples)
on the surface. In this context, the notion of Centroidal Voronoi
Tessellation (CVT) optimises a measure of the quality of a sam-
pling (see the survey in [DFG99]). From a computational point of
view, as suggested by the term Centroidal Voronoi Tessellation, a
CVT can be obtained by starting from an initial random sampling
of the surface (Figure 10A) and iteratively relocating the samples
at the centroids of their Voronoi cells[L1082] (Figure 10B). This
algorithm, known as Lloyd’s relaxation, converges to a configura-
tion such that the samples and the centroids of their Voronoi cells
coincide (Figure 10C). Lloyd’s relaxation can be used to compute a
triangle mesh of a surface with nearly equilateral triangles [DGJ03,
AdVDIO5].

CVTs can be used to generate quad (or quad dominant) meshes,
both coarse ones, to be used as base domains, as well as fine, quad-
dominant, valence semi-regular ones.

Based on the observation that at convergence, the Voronoi cells
form a ‘honeycomb-like’ pattern, with mostly hexagonal cells, a
quad mesh can be obtained by splitting each hexagonal Voronoi cell
into two quads [BMRJ04]. Another approach is based on a physical

Figure 10: (a) Random sampling. The samples are shown in black
and the centroids in green. (b) Result after one iteration of Lloyd
relaxation. (c¢) Convergence of Lloyd relaxation. (d) Standard CVT
(with L, norm). (e) L ,-CVT. (f) Quad-dominant mesh obtained from
(e) by triangle merging.

analogy between CVT and the configuration of soap bubbles or
particles [ISO1]. With a specific definition of the attracting and
repelling forces between two particles, the algorithm generates a
distribution of the samples aligned with a prescribed direction field.
A quad-dominant mesh is then obtained by one of the triangle
merging techniques in Section 3.1. A similar approach consists in
changing the definition of centroids in Lloyd relaxation, in a way that
takes the alignment with the direction field into account [HauO1].

Alternatively, it can be shown that Lloyd’s relaxation minimises
an objective function, known as the quantisation noise power
[DEJO6], that corresponds to the inertia moments of the Voronoi
cells. x;. The quantisation noise power is of class C?> [LWL*09],
and can be minimised by a Newton-type solver[LN89] more effi-
ciently than Lloyd’s relaxation. Moreover, considering this varia-
tional point of view (CVT defined as the minimiser of F) allows
to generalise the definition of CVT. For instance, replacing the L,
norm (Figure 10-D) with the L, norm (Figure 10E) results in a set
of (mostly) square Voronoi cells from which a quad-dominant mesh
can be extracted (Figure 10F) by triangle merging.

3.7. Allowing anisotropy

The aims of the above mentioned techniques is to generate squared
quads. A complementary approach is to allow for rectangular ele-
ments, which may have a significantly better approximation quality.
Two recent quadrangulation methods focus on anisotropy:

3.7.1. Anisotropic quadrangulation

[KMZ10]: This method for computing anisotropic quadrangulations
adapts quad aspect ratios to local curvature to obtain a good surface
approximation with fewer quads. This method can be effectively
applied to improve the visual quality of a rendering, as illustrated
in Figure 11(a).
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Figure 11: (a) The anisotropic remeshing provided by [KMZI10].
(b) Isotropic (top panel) and Anisotropic (bottom panel) quadran-
gulation, using [ZHLBI10].

3.7.2. A wave-based anisotropic quadrangulation method

[ZHLB10]: As in Periodic Global Parameterisation [RLL*06], the
method uses the periodicity of the sine and cosine functions to rep-
resent seamless coordinates, combined with the Morse-Smale com-
plex used in Spectral Surface Quadrangulation [DBG*06]. More
control is provided to the user. In addition to a cross field, an
anisotropic sizing function is used as guidance in order to con-
struct a standing wave which provides a quasi-dual Morse-Smale
complex, that approximates the input data. An example show-
ing the degree of anisotropy provided by this method is show in
Figure 11(b).

3.8. Starting from different shape representations

All the methods discussed so far require a manifold triangular mesh
as input. However, in many cases, the original geometric data has a
different form: for example, 3D scanning devices typically produce
a set of range images; in other situations, the surface may be defined
as a level set of a scalar volumetric function, an implicit function,
or a point cloud. A commonly used quad-meshing pipeline starts
with constructing a general triangular mesh using a method such
as marching cubes, which is then converted to a quad mesh. The
ability to work directly with the original representation has several
advantages: it reduces the complexity of the meshing pipeline; it
eliminates the need to deal with artifacts due to the initial meshes;
and, by removing an intermediate resampling step, it makes it pos-
sible to incorporate information extracted from original data more
directly into quad mesh generation.

Two recent quadrangulation methods use non-mesh input data:

3.8.1. Global parametrisation of range image sets

[PTSZ11]: This method directly recovers a global parametrisation
from a set of range images, produced by a range scanner or ob-
tained by projection and sampling of other geometry representa-
tions. Range image sets occupy an intermediate place between point
clouds or triangle soups, and manifold meshes. On one hand, they
exhibit a regular connectivity and implicitly define a global man-
ifold structure for the object, with transition maps determined by
reprojection. On the other hand, each point on the surface may be
represented by multiple positions inside different range images, and
the connectivities of different range images, while highly regular,
are inconsistent with each other.

This method is based on a discretisation of the seamless global
parametrisation equations and constraints on a collection of overlap-
ping triangles. In contrast with conventional discretisation on a sin-
gle mesh, the method globally takes into account the compatibility
constraints between all the parts. The equations for the parametrisa-
tion are discretised on each range image separately, with constraints
ensuring that the projections of the same surface point to different
range images have the same parametric position, up to an admissible
transformation.

The most important advantage of using range images is that they
can be obtained from any geometry type that can be rendered. Quad-
rangulation requires only a way to project surface data onto a set
of planes, and can be applied directly to implicit surfaces, non-
manifold surfaces, very large meshes and collections of range scans,
as shown by Figure 12(a).

3.8.2. Meshless quadrangulation by global parametrisation

[LLZ*11]: This method generates a quadrangulation computing a
global parametrisation of an unorganised point cloud. This method
is an adaptation of [BZK09] to point sets, using local vertex neigh-
bourhoods consisting of k nearest neighbours. A tangent plane is
assigned to each vertex, and the set of neighbours is projected onto
this tangent plane and triangulated. The cross field is obtained using
the smoothness energy of [HZ00], with connectivity defined by the
local triangulations. The parametrisation is obtained by minimising
the energy closely related to the energy of [BZK09]: the formulation
is changed, so that the energy terms are defined per-edge rather than
per-facet. Quadrangulations produced by this method from point
clouds are shown in Figure 12(b).

4. Quad Mesh Processing

Geometry processing algorithms are techniques that transform ge-
ometric representations and shapes (see the book [BKP*10] for a
systematic treatment of the subject). They are similar in spirit to
digital signal processing, but focus on data representing geome-
try: most commonly, triangle meshes, point clouds and levelsets of
scalar fields.

A significant part of mesh processing research efforts in com-
puter graphics has been traditionally dedicated to triangle meshes.
There are all types of efficient techniques for operating on trian-
gle meshes, including smoothing, simplification, compression and
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(b)

Figure 12: (a) Several geometry representations that can be parameterised and quadrangulated by using [PTSZ11] (a set of implicit surfaces
and a triangle soup). (b) A point cloud that has been quadrangulated by using [LLZ*11].

parametrisation. More recently, a number of efficient algorithms
performing similar tasks on quad meshes were developed.

4.1. Quad mesh simplification

Simplification methods aim at reducing the total number of elements
forming a given input mesh, keeping the introduced error low and
meshing quality high. The typical application is the construction
of a (potentially continuous) level-of-detail (LOD) pyramid. Sim-
plification of triangle meshes has been studied in depth during the
1990s and can now be considered a mature technology (see surveys
in [CMS97, Lue01]). One typical approach consists of iteratively
applying coarsening operations, each one affecting a limited part of
the mesh. The order in which operations are performed is crucial; so
potential operations must be carefully prioritised. Typically, the best
operations are incrementally identified and performed in a greedy
fashion, striving to minimise a global energy, for example, quadric
error metrics [GH97].

Quad mesh simplifications inherently target only unstructured
quad meshes. However, it is useful in a number of situations. One
main advantage of the simplification approaches with respect to
parametrisation based quadrangulation is their ability to produce
meshes with fewer quads, for example, to be used as base do-
mains for either a quad-based parameterisation or for higher-order
surfaces. The maximal simplification reachable is only limited by
topology conditions (see Figure 13a).

Simplification of quad meshes is inherently more difficult than
simplification of triangle meshes due to the stronger global connec-
tivity dependencies. Preservation (or induction) of good meshing
quality is a far more challenging and important objective, particu-
larly in terms of element shapes, valence regularity and field align-
ment. Also, degenerate configurations are more frequent in quad
meshes and avoiding them requires more care. A consequence of
these extra difficulties is that minimisation of introduced geometri-
cal error can only be pursed to a lesser extent, and it is often sought
indirectly.

Another consequence is that quad mesh simplification cannot be
considered as mature as triangle mesh simplification, as revealed by
the size of the meshes which can be tackled. Off-core or streamed

(b)

Figure 13: (a) The quad mesh of David can be simplified to ob-
tain very coarse base mesh, (b) simplified mesh pairs (5K and 3K)
obtained from Igea data set with [DISC09a] (left-hand side) and
[TPC*10] (right-hand side).

triangle mesh simplification techniques (e.g. presented in [ILGSO03,
CGG*05]) can process on modern computers meshes composed of
order of 10° elements, and yet newly presented quad mesh simpli-
fication approaches are tested by their authors on meshes with less
than 10° elements (but the gap is reducing).

All methods tend to make the shape of the quads worse. A pop-
ular countermeasure, for example, as proposed among others in
[DISSCO08, SDW*10, TPC*10, RLS*11], is to apply tangent space
smoothing, either to the final result, or earlier, during the simplifi-
cation process. Vertex positions are modified to improve the shape
of quads, but without allowing them to leave the mesh surface, and
without changing connectivity.

Iterative quad mesh simplification methods presented in literature
rely on specific sets of operations. Each operation modifies the mesh
connectivity, either to reduce the number of elements composing the
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mesh, or to improve the individual quad shape. In most frameworks,
the application of each single operation must leave a consistent quad
connectivity.

4.1.1. Local methods versus Non-Local methods

Quad mesh simplification methods can be classified into local and
non-local, depending on the footprint of atomic operations: in local
methods, the atomic operations affect only a small neighbourhood
of a quad or a vertex, while for non-local methods the size of the
footprint can be arbitrarily large, and a single operation can affect
the entire mesh.

Local methods have the advantage of a finer granularity. Also,
they can target only a portion of the mesh, leaving the rest untouched.
However they introduce more irregular vertices, especially when the
input mesh is very regular (vice versa, when the input mesh is highly
irregular, regularity usually increases).

Non-local methods preserve the regularity of the original mesh
better. However, since their atomic operations affect a larger part of
the mesh, they are intrinsically less adaptive (e.g. it is not possible to
reduce tessellation density locally) and granularity of simplification
is harder to control.

4.1.2. Non-Local methods

The most common non-local operation is the poly-chord collapse,
used for example, in [DISSC08, MBBM97, BBS02]. A poly-chord
is a strip of consecutive quads which either self-connects in a loop,
or (in an open mesh) it has both ends at border edges. If a poly-
chord is collapsed, removing all its elements, the quad structure of
the mesh is preserved. An attractive property of this operation is that
it never introduces novel irregular vertices. However, poly-chords
are often too long, winding over the mesh and exhibiting multiple
self crossings. Indeed, an entire quad mesh is sometime spanned
by a single poly-chord. The collapse of such poly-chords may be
avoided either because of consistency constraints, or because it will
coarsen the mesh too much.

In [DISSCO08], local operations are interleaved to poly-chord col-
lapses to shorten poly-chord prior to collapse. It is significant that,
while the minimised energy includes a Quadric Error [GH97] to re-
flect geometric fidelity, as common with triangle meshes, the weight
of this energy competent is kept extremely small compared to the
components accounting for meshing quality (like regularity). This
reflects the nature of quad mesh decimation, as discussed earlier.

In [SDW*10] the poly-chord collapses are interleaved by local
operations (see below) in order to ‘steer’ the poly-chords around the
mesh.

4.1.3. Local methods

Each local method proposed in literature uses its own set of atomic
operations, but several operations can be found in all sets, even
though they are referred to with different names. We group these
operations into three classes:

Figure 14: (a) The poly-chord collapse operation. (b) and (c), pro-
gressive simplification using [DISSCOS8].

Coarsening operations, which reduce the number of quad elements
composing the mesh. The most common is diagonal collapse
(also called quad close and in several other way): a quad is
collapsed along a diagonal, merging the two vertices at the end
of the collapsing diagonal,

Optimizing operations, which change local connectivity without
affecting the number of elements. Examples include Edge ro-
tate and Vertex rotate: in the former, an internal edge, shared
by two quads, is dissolved leaving a hexagonal face, which can
be split into a pair of quads in other two ways; in the latter the
edges incident at an internal vertex v are deleted and they are
replaced by the diagonals incident at v of its incident facets.

Cleaning operations, which address local configurations which are
considered degenerate. A common one is doublet removal: a
doublet is a configuration with a valency 2 vertex, which is
eliminated by dissolving the two shared edges.

Degenerate configurations are for example ‘doublets’ or ‘sin-
glets’, consisting of interior vertices with valency two or one,
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Figure 15: A few of the commonest local operations used in the
literature, categorised by effect.

respectively. Note that certain class of applications can allow for
these configurations. Figure 15 shows a few commonly used local
operations of each class. Methods proposed in literature include:

Localised Quadrilateral Coarsening [DISC09a]: Here the poly-
chord collapse defined by [DISSCO08], is broken into a sequence
of simpler atomic operations, each removing one element of
the poly-chord. Even if each operation reduces the connectivity
quality, a sequence of operations, taken as a whole, inherits
the quality preserving properties of poly-chord collapse. The
minimised energy function measures the ratio of ideal vertices
to total vertices, and a weighted average distance with the
original surface.

Practical Quad Mesh Simplification [TPC*10]: In this method,

the set of basic operations shown in Figure 15 is extended
by adding two new local operations: a coarsening operation
called edge collapse and a cleaning operation, called singlet
removal, to erase vertices with valency one. See original paper
for further information.
The local operations are used to pursue a simple objective:
homeometry. Homeometry means equal length of all edges,
and proportional length of all diagonals, which, to some ex-
tent, implies most other desiderata: flatness, squareness, regu-
larity, isometry and even some correspondence between vertex
valency and Gaussian curvature. It is trivial to prioritise local
operations to maximise homeometry in a greedy way.

Automatic Construction of Adaptive Quad-Based Subdivision
Surfaces Using Fitmaps [PPT*11]: This method introduces
a different way to seek adaptivity: instead of favouring local
coarsening operations which minimise introduced error, in a
pre-processing step the ideal tessellation density around each
point of the surface is estimated a priori, stored in a ‘fitmap’,
and sought during the simplification. A fitmap is designed
to target a specific class of shape representations (e.g. either
flat quads, or cubic patches). It describes the local tessellation
density approximately required to reproduce the original shape,

Figure 16: Examples of displaced subdivision surfaces automati-
cally generated by [PPT*11].

using elements of the targeted class, with any given precision.
While the idea is general, it is particularly suited for quad
mesh simplification, where, as discussed, the need of ensuring
a sufficient meshing quality leaves fewer degrees of freedom
to the task of seeking adaptivity.

A comparisons between [DISC09a] and [TPC*10] is shown in
Figure 13: results in [DISC09a] are closer to the original surface,
while with [TPC*10] the measure of homeometry keeps the shape
of individual quads better and globally uniform. Finally, Figure 16
shows the adaptivity provided by [PPT*11] to produce high-order
quad-based subdivision surfaces.

4.2. Geometry optimisation

The optimisation of geometry of a quad mesh aims to optimise the
shape of its facets, by changing the 3D position of vertices, while
leaving connectivity unaffected. It is a fairly straightforward task,
usually presented as one step inside more complex methods (as is
the case of all papers cited in this subsection).

Available techniques include tangent space smoothing (e.g. used
in [RLS*11, TPC*10, DISC09a]), where vertices are allowed to
move along tangent directions without leaving the surface, or, al-
most equivalently, an unconstrained small scale shape optimisation
followed by are-projection on the original surface. Other desiderata,
like preservation of feature lines, can also be improved by this kind
of geometric optimisation, by moving vertices over creases (e.g. as
in [TPC*10]).

When the quad mesh is obtained by a re-sampling over a pa-
rameterisation domain of an initial triangular mesh (as described
in Section 3.3), an alternative approach to optimise the geometry
consists of minimising the global stretch of the parameterisation
prior to re-sampling (e.g. as described in [BcGBOS]). This is more
robust than tangent space smoothing as optimisation is performed
in parametric space, thus in 2D, and fitting to the input surface is
guaranteed by construction (as opposed to, e.g. 3D re-projection
over the surface). In parameterisations defined globally thanks to
transition functions (like in [RLL*06, BZK09]), stretch is just min-
imised globally, by explicitly including the transition functions to
enforce continuous isolines across seams (Figure 6b).
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For parameterisations defined over 2D domains composed by the
union of a set of patches, optimisation takes place inside each patch,
but this poses the problem of how to optimise the areas around the
cuts separating the patches, which includes the important case of
placements of irregular points. This problem can has be tackled in
several different ways. In [THCMO04] the trivial embedding of the
parametric domain in a 3D space allows for a trivial re-projection
over the polycube. Such reprojection is interleaved with a global
iterative stretch minimisation approach. In [KLS03] the positions of
irregular points are optimised separately, and this is interleaved with
stretch minimisation inside each patch. In [TPP*11] (and similarly
in [PTC10]) a ‘quincux’ strategy is adopted where optimisation is
performed in several stages; at each stage, the parameterisation do-
main is partitioned differently in a set of so-called ‘parameterisation
domains’, and the stretch energy is minimised inside each domain
separately; different partitions are used in succession, designed in
such a way that each point of the surface is guaranteed to be mapped
in the interior of a parameterisation domain in at least one partition;
in this way, each point is guaranteed to undergo optimisation (in-
cluding the corners of the original domains, that is, all irregular
points).

4.2.1. Geometry optimisation in architectural applications

In the field of Architectural Geometry, quad meshes are often used to
represent physical structures to be constructed (e.g. domes). In this
scenario, the geometric optimisation is used to enforce, within some
tolerance, specific geometric constraints [CHP*10]. Often these re-
quirements are not expressible as linear constraints, and non-linear
solvers are called for.

One possible constraint is flatness of quad elements (e.g.
[GSC*04, YYPM11]), which eases construction. In other cases the
geometrical optimisation strives to produce quads that are several
repeated instances of the same shape, so that they can be produced
using the same mold [EKS*10, FLHCO10].

In [YYPM11] a general unified system is introduced that is able
to enforce several different constraints, like planarity of sequence
of edges, quad planarity, flatness or circularity of facets (i.e. the
property of having a specific circumcircle, or positioning of specific
vertices). The system is interactive: given a set of constraints, an
end user can explore the space of possible shapes satisfying it. The
user works inside a solution space of all possible embeddings of the
mesh in 3D (a space which has three dimensions for each vertex of
the mesh). The key of the interactivity is to let the user move in-
side ‘osculants’: parameterised manifolds embedded in the solution
space, passing through the current embedding, and which matches
up to the second order derivatives the user-defined constraints.

4.2.2. Fitting high-order surfaces to a given shape

One of the original goals of algorithms for mesh parameterisation
was to provide a way to fit a spline surface to a mesh [Flo97].
Many methods for semi-regular triangle and quad mesh generation
have, as one of the applications, approximation of surfaces with
high-order surfaces, including subdivision surfaces, various types
of surface splines, and T-splines. Starting with [EDD*95] for tri-

Figure 17: Fitting a Catmull-Clark subdivision surface (right-
hand side) to a triangle mesh (left-hand side) with VSDM (Voronoi
Squared Distance Minimisation). The control mesh is superimposed
(thick black lines).

Figure 18: Left-hand side: Three separatrices stemming from a
valency 3 irregular vertex. Right-hand side: Five separatrices stem-
ming from a valency 5 irregular vertex. In a closed mesh, each
separatrix is bound to end in another (or the same) irregular vertex.

angle meshes, [BMRJ04] aimed at constructing a multiresolution
Loop or Catmull-Clark approximation to the original mesh (note
that this work uses CVT, see also Section 3.6). These methods
typically split the highly nonlinear problem of finding the best-
approximating high-order surface for a given mesh, into two parts.
The first step, essentially equivalent to semi-regular remeshing, de-
fines a parametric domain (provided by a collection of patches
of the semi-regular mesh) and a parametrization of the original
mesh over the parametric domain. This reduces the problem to the
functional setting: both the surface and the approximating high-
order surface basis functions are defined on the same paramet-
ric domain. At the second stage, a standard function approxima-
tion problem is solved. In a similar way, [GHQ06, HWW*(6,
WHL*08] use conformal parametrisation to construct several types
of spline and T-spline surface approximations. The same process is
a part of lossy mesh compression algorithms based on remeshing
[KSS00], adapted to quad meshes in [BDHJ04] and other related
works.

Valence semi-regular quad meshes are not in general compatible
with fitting multiresolution subdivision surfaces and related spline
constructions, due to absence of coarse patch structure. However,
a coarse T-mesh structure [MPKZ10] can always be extracted from
parametrisations produced by methods like PGP, QC and MIQ (see
Section 3.5.3). Then T-Splines [LRLO6] and related T-mesh subdi-
vision surfaces can be used to approximate the mesh.

Another family of methods is inspired by the notion of Polycube
Map [THCMO04], a generalisation of cube mapping, where a given
surface is put in one-to-one correspondence with a set of cubes. In
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the original method, the mapping is constructed via user interac-
tion. Some automatic methods compute the mapping by fitting an
initial polycube template to the surface, using relaxation both on the
surface and on the template (dual domain relaxation) [YLSL11].
Voronoi Squared Distance Minimisation (VSDM, Figure 17) oper-
ates similarly, with the difference that it minimises a well defined
objective function that corresponds to a Voronoi-based approxima-
tion of the overall distance between the surface and the template
[NYL11].

4.3. Connectivity optimisation

As we discussed previously, several applications require that the
quad mesh is semi-regular and its elements are nearly flat and rect-
angular. On the other hand, most methods for automatic mesh gen-
eration described in the previous sections cannot guarantee that all
such requirements are fulfilled. Connectivity optimisation is aimed
at producing a semi-regular mesh (i.e. made of few gridded patches)
from an input mesh by just changing its connectivity. This is a chal-
lenging task for quad meshes, since local changes in the structure
usually propagate globally across the whole mesh. There exist some
automatic methods that transform a valence semi-regular mesh into
a semi-regular mesh maintaining the overall alignment of elements;
as well as manual methods that provide basic tools to optimise both
the placement of singularities and their connectivity.

4.3.1. Separatrices and connectivity graph

At any interior regular vertex, two pairs of opposite edges meet.
Starting from an irregular vertex, any chosen edge can be followed,
reaching another vertex: if that vertex is regular, then the opposite
edge can be followed too, thus reaching a third vertex, and so on until
an irregular vertex is eventually reached. We term all the (necessarily
distinct) edges traversed in this fashion as forming a separatrix (as
defined in Section 1.1). Note that the same regular vertex can be
encountered twice by the same separatrix: in that case we say that
the separatrix crosses itself at that vertex. In general, a regular vertex
can be reached by zero, one or two different separatrices. In the latter
case, the two separatrices are said to cross at that vertex. Conversely,
any edge of the mesh belongs to either one or zero separatrices. An
irregular vertex of valency n is one endpoint of n (non-necessarily
distinct) separatrices.

Separatrices are important because they determine the intrin-
sic connectivity complexity of a given quad mesh: they subdi-
vide the mesh into quad patches. The quad mesh defined by these
patches is sometimes termed a ‘base mesh’ because the connectiv-
ity of the original mesh can be trivially obtained by a regular re-
tessellations of this mesh. The base mesh will have the same irregular
vertices of the original mesh, and one regular vertex for each vertex
of the original mesh where two separatrices cross.

A semi-regular quad mesh can be defined precisely as a quad-
mesh where the base mesh turns out to be coarse. This requires not
only that the irregular vertices are few, but also that the separatrices
connecting them are short and without too many crossings (see
Figure 1A). In a general valence semi-regular mesh, this is usually
not the case: separatrices may wind over the mesh for long distances,

Figure 19: (a) A valence semi-regular quad mesh with just 16
irregular vertices and an entangled graph of separatrices defining
almost 8000 domains in the base mesh; (b) by using [TPP*11] the
graph is disentangled to 28 domains; (c) a semi-regular remeshing
obtained by resampling the base mesh.

usually with many crossings (see Figure 19a). In the worst case,
separatrices may traverse all edges of a quad-mesh, making the
base-mesh equal to the mesh itself.

4.3.2. Automatic methods

The algorithms proposed in [BLK11, TPP*11, CBK12] aim at gen-
erating a quad mesh with a well behaved connectivity between
prescribed singular vertices, that is, a semi-regular mesh. This is
done either by iteratively optimising the connectivity of a given
valence semi-regular mesh [BLK11, TPP*11] or alternatively by
directly constructing the connectivity out of a cross-field [CBK12].
In both cases the overall goal is that irregular vertices ‘align’ to each
other, and separatrices become much shorter (see Figure 19), while
keeping the local element orientation nearly unchanged.

In [BLK11], a generalisation of the poly-chord collapse operation
is introduced, which can be used to change the global connectivity
of a quad-mesh while maintaining its quad-consistency as well as its
irregular vertices. These so called GP-Operators are closed chains
of local operations acting on mesh edges. Since arbitrary combina-
tions of the three available local operations, namely collapse, shift
left and shift right, would easily destroy the mesh consistency, a di-
rected graph is constructed which represents valid GP-Operators as
closed loops in the graph. Consequently simple graph search algo-
rithms can be used in order to find the ‘best’ operator which changes
the connectivity in a desired way. To clarify the overall idea we give
a simple example here. Assume that a local connectivity change, that
is, an edge shift, should be performed. This local operation would
destroy the quad-structure, however, there are many different GP-
Operators realising this local shift, characterised by closed loops in
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Figure 20: Comparison of automatic connectivity optimization ap-
proaches: The non-optimised separatrices are shown in red, while
those resulting from [BLK11], [TPP*11] and [CBKI12] are shown
in gold, green and blue, respectively. For a quantitative comparison,
the number of resulting quadrilateral patches is indicated.

the graph which contain the corresponding node. In this context the
‘best’ choice typically is the shortest of those loops, since it induces
the smallest number of additional operations to be performed in or-
der to maintain consistency. In [BLK11] GP-Operators are selected
by a simple greedy strategy with the goal of removing helical config-
urations which are known to yield a dense base mesh. Although ex-
periments show a drastic reduction of the base mesh complexity (cf.
Figure 20), the simple helix removal strategy often is not able to gen-
erate base meshes that are comparable to manually designed ones.

In [TPP*11] the graph of separatrices is explicitly extracted and
simplified with a greedy strategy that consists of a sequence of
subatomic moves, without changing the underlying mesh. A step
of graph simplification consists of: an initial deletion of a separa-
trix, which leaves two open ports at the singular vertices previously
connected by such a separatrix; this deletion is followed by a se-
quence of moves, each deleting another separatrix and reconnecting
two (out of four) open ports with another (new) separatrix and it is
ended by a creation operation that connects the last two open ports,

(b)

Figure 21: (A) A CAD/CAM part, represented by NURBS patches.
(B) Quad-mesh obtained by sampling the surface with Lp-CVT
and merging the triangles with Quad-Blossom (data courtesy of
C. Geuzaine).

thus bringing back the graph to a consistent state. In the whole pro-
cess, an energy is considered, which depends on the total length
of separatrices and on their drift, that is, their deviation from the
cross field underlying the input mesh: the choice of moves is guided
from a greedy criterion that tends to minimise such energy. Thus the
algorithm aims at disentangling the graph by selecting separatrices
that are as short as possible, while maintaining it as aligned as pos-
sible to the original cross field. The resulting base mesh is used as a
domain for mesh parametrisation: a subsequent phase of geometric
smoothing (as described in Section 4.2) is applied to redistribute
the vertices of the original mesh inside the base domains. Finally a
new semi-regular mesh is extracted by using such parametrisation
to regularly sample the facets of the base mesh.

While iterative connectivity optimisation algorithms, as described
earlier, are typically able to drastically reduce the complexity of the
base mesh, they often get stuck at complicated configurations which
cannot be untangled by the applied operator set. One alternative,
which circumvents the conversion of complicated structures into
simpler ones, consists in the direct construction of a simple connec-
tivity out of a prescribed cross-field, as done in [CBK12]. Although
it would be tempting to greedily construct separatrices between ir-
regular vertices, it turns out that achieving topological consistency
in the end, that is, a pure quad mesh with prescribed valencies at
the irregular vertices, is a very complicated task. In [CBK12] such
topological issues are circumvented by the insight that topological
consistency can be easily achieved in the dual setting with a single
operator that adds a dual-loop. Intuitively, this operator can be un-
derstood as an inverse poly-chord collapse (cf. Section 4.1.2) which
adds a stripe of quads to the primal mesh. Based on a given cross-
field, candidate loops can be found efficiently and added greedily
in order to generate a quad mesh which reproduces the cross-field’s
singularities. Especially on complex inputs this connectivity gener-
ation method seems to outperform the discussed connectivity opti-
misation methods as can be seen in Figure 20 as well as from the
experiments in [CBK12].

4.3.3. Quad mesh generation for FEM

It is worth mentioning that optimisation methods, which were origi-
nally developed for the more difficult problem of hexahedral volume
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meshing (important for some numerical analysis such as plastic
deformations of computational fluid dynamics) can be applied to
quadrilateral surface meshing. See for instance the survey in [SJ08].
Note that in the context of FEM, the geometry is often available in a
form that is different from a triangle mesh, namely a set of Splines or
NURBS, together with all the adjacency information between them
(shown as thick black lines in Figure 21A). Such a meta-graph pro-
vides more information about the structure of the object, which can
be exploited by a surface quad meshing (or a volumetric hex mesh-
ing) algorithm, such as the multiple sweeping method [SMKWO0O0].
Another strategy, called paving, generates a quad mesh row-by-row.
The volumetric version that generates hexahedra s called plastering.
The unconstrained versions of plastering improves the treatment of
the centre of the object where advancing fronts meet [SOBO0S5].

Note that the additional structure of the data is not always avail-
able, or sometimes shows too complicated relationships to be di-
rectly exploited by the algorithm. In this situation, an octree-based
method with a special treatment to recover the initial surface works
in nearly all situations [Mar09], at the expense of imposing three
directions that do not necessarily match the orientation of the fea-
tures of the surface. L ,-CVT [LL10] (see Section 3.6) is less robust
to some degeneracies (features thinner than a quad), but generates
quad dominant (or hex dominant) meshes that follow a prescribed
direction field. Combined with Blossom-Quad [RLS*11] (see also
Section 3.1), it can generate a quad mesh suitable to FEM applica-
tions (see Figure 21B).

4.3.4. Manual connectivity editing

As discussed, good placement of irregular points is crucial to achieve
a good meshing quality in a quad mesh. It is part of the skill of any
good artistic modeler to be able to identify good placement of irreg-
ular points over an intended 3D shape (this is especially stereotyped
when targeting certain categories of objects; consider, for example,
modelling of human heads, or human bodies). However, in most
automatic methods for quad meshing, it is difficult to include the
possibility of manual interaction. One reason behind the inability of
any fully automatic method to determine good placement, is that the
latter is also determined by the intended use of the object (e.g. how
it has to be animated) as well as by its shape. Unfortunately, manual
editing the connectivity of a quad mesh is not an intuitive task,
especially when pure quad meshes are needed. Naive approaches
to manual editing are problematic: a careless local operation on
connectivity will create many irregular vertices, repairing which is
far from intuitive. The main challenge here is therefore to provide
an intuitive interface capable of driving the user in this task, and to
find the right abstractions. Recently there has been some significant
advancements in this field, which is still overall at an immature
stage.

Connectivity Editing for Quadrilateral Meshes [CHPW11]: This
introduces a set of operations which affect a pair of irregular
vertices at a time, moving them over the mesh but affecting only
a small area around them. Interface mechanisms are proposed
to show the potential operations to an end user, so that they can
edit the connectivity (see Figure 22). All operations will nec-
essarily affect two vertices simultaneously in some predefined
ways, are the interface illustrates that to the end-user.

(b) ©

Figure 22: A GUI offering to an end user several possible ways
to change the connectivity around a pair of irregular vertices (a: a
valency 3 and a valency 5 vertex; b: a pair of valency-3 vertices;
c¢: a pair of two valency-5 vertices). Each potential move is rep-
resented by a pair same-coloured arrows indicating approximate
displacement of irregular vertices (image courtesy of C.-H. Peng).

Interactive Quadrangulation with Reeb Atlases and Connectiv-
ity Textures [TIN*ar]: By combining scalar field topology and
combinatorial connectivity techniques, this follows a coarse-
to-fine design philosophy, which allows for explicit control
of the subjective quality criteria on the output quad mesh, at
interactive rates. Their quadrangulation framework uses the
new notion of Reeb atlas editing, to define through user inter-
actions a coarse quadrangulation of the model, capturing the
main features of the shape, in particular, they allow the user to
prescribe extraordinary vertices and alignment. Fine grain tun-
ing is achieved with the notion of connectivity texturing, which
allows for additional extraordinary vertices specification and
explicit feature alignment, to capture the high-frequency ge-
ometries.

5. Conclusions

The state-of-the-art in quad mesh generation and processing was
rapidly improving over the past several years, but many important
questions remain unsolved. Since their introduction, semi-regular
meshes have potential to change considerably the way surface ge-
ometry is routinely stored and processed in many applications, po-
tentially simplifying and improving efficiency of many algorithms.
One of the important obstacles on this path is the lack of fully sat-
isfactory algorithms for quad mesh generation, with guarantees on
various aspects of the resulting meshes, such as the number of sin-
gularities and patches, and the quality of geometry approximation.

One can identify several aspects of the quad mesh generation
problem that require further work.

e Approximation and quad mesh quality. To make further progress
on improving mesh quality, geometry approximation measures
need to be integrated more directly into generation algorithms.
In particular, singularity placement has a substantial impact on
approximation quality and quad mesh quality, and automatic
algorithms for singularity placement have to take this into ac-
count.

e Robustness. Different quad mesh generation approaches suffer
from a variety of robustness problems. For example, methods
based on global parametrisation typically do not guarantee that
the parametrisation is locally bijective everywhere, resulting
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in irregular vertices and non-quad faces in the mesh not cor-
responding to the desired singularities (recent work [Lip12,
WMZ12] offers possible approaches to ensuring local bijec-
tivity.) On the other hand, for simplification-based methods,
both parametrisation smoothness and quality is often hard to
control. Another important aspect is robustness with respect
to incomplete, noisy and geometrically inconsistent inputs. The
first steps in this direction are discussed in this paper, but further
work is needed.

e Efficiency and interactive control. Ultimately, best-quality quad
remeshing may require taking semantics of the shapes into
account, which may require user adjustments, best achieved
through direct manipulation of quad meshes (e.g. reposition-
ing of singularities or patch boundaries). This, in turn, requires
highly efficient algorithms for modification of quad meshes and
related global parametrisations.

e Scalability. Semi-regular quad meshes are particularly appealing
as a way to represent large-scale geometry of relatively simple
topological structure, a common situation for scanned objects.
This requires quad remeshing at high resolution of large data
sets; current techniques are primarily tested on relatively small
data or low mesh resolutions, and further work is needed to
handle scans of moderate to large size (millions to billions of
points).

e Mathematical Foundations. Many of the practical goals outlined
above are likely to require a deeper fundamental understanding,
that requires to create more connections with other domains
of computational sciences, such as approximation theory, ap-
plied mathematics and finite elements modelling. Some tech-
niques belonging to these fields, continuously developed since
the 1940’s, are now mature and advanced. Transferring these
techniques into the geometry processing domain is likely to
result in important advances.

e Evaluation. With the variety of application domains, it will be
of paramount importance to be able to compare the relevance
and efficiency of different methods, using a scientific approach
based on well-defined and objective metrics. For instance, this
may include, to name but a few, stability and convergence of
Finite Element simulations, faithfulness (Hausdorff distance)
for surface approximation, editability and rigging quality for
computer animation and constructability/structural mechanics
evaluation for computer aided architecture.
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