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We present a new method for the solution of the Stokes equations. The main features of our
method are: (1) it can be applied to arbitrary geometries in a black-box fashion; (2) it is second
order accurate; and (3) it has optimal algorithmic complexity. Our approach, to which we refer as
the Embedded Boundary Integral method, is based on Anita Mayo’s work for the Poisson’s equa-
tion: “The Fast Solution of Poisson’s and the Biharmonic Equations on Irregular Regions”, SIAM
Journal on Numerical Analysis, 21 (1984), pp. 285–299. We embed the domain in a rectangular do-
main, for which fast solvers are available, and we impose the boundary conditions as interface (jump)
conditions on the velocities and tractions. We use an indirect boundary integral formulation for the
homogeneous Stokes equations to compute the jumps. The resulting equations are discretized by
Nyström’s method. The rectangular domain problem is discretized by finite elements for a velocity-
pressure formulation with equal order interpolation bilinear elements ( ��� - ��� ). Stabilization is used
to circumvent the ���
	������� condition for the pressure space. For the integral equations, fast matrix
vector multiplications are achieved via an ��������� algorithm based on a block representation of the
discrete integral operator, combined with (kernel independent) singular value decomposition to spar-
sify low-rank blocks. The regular grid solver is a Krylov method (Conjugate Residuals) combined
with an optimal two-level Schwartz-preconditioner. For the integral equation we use GMRES. We
have tested our algorithm on several numerical examples and we have observed optimal convergence
rates.

Key Words: Stokes equations, fast solvers, integral equations, double-layer potential,
fast multipole methods, embedded domain methods, immersed interface methods, fictitious
domain methods, Cartesian grid methods, moving boundaries

1. INTRODUCTION

The Stokes equations model very low Reynolds number flows and incompressible lin-
early elastic solids. They also serve as building blocks for solvers for the velocity-pressure
formulation of the Navier-Stokes equations. In this paper we present a method for solving
the steady two-dimensional Stokes equations in irregular domains. Our motivation in de-
veloping this method is to develop efficient algorithms for flows with moving boundaries.
Solving such problems efficiently requires algorithms that do not require expensive pre-
processing, like unstructured mesh generation, as the boundary positions change at each
time step.

The main features of our method are:
1This work is supported by the National Science Foundation’s Knowledge and Distributed Intelligence (KDI)

program through grant DMS-9980069.
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� It can be applied to arbitrary piecewise smooth geometries; the method does not
require mesh generation.

� It can solve problems with distributed forces.

� It is second-order accurate and easily generalizes to arbitrary order of accuracy.

� If an optimal boundary integral equation solver is used, the method has
�������	��
���

complexity2

In addition, robust parallel algorithms exist for all the components of this method,
both in two and three dimensions. Finally, the method is relatively straightforward to
implement.

Our method is based on potential theory for linear second-order elliptic operators. Us-
ing an indirect integral formulation, the solution of a Dirichlet problem can be written as
the sum of a double layer potential and a Newton potential (the domain convolution of the
Green’s function with the distributed force). Under such a scheme the evaluation of the so-
lution must consist of three steps: (1) computation of the Newton potential, (2) solution of a
boundary integral equation to compute a double layer potential that satisfies the boundary
conditions, and (3) evaluation of a double layer potential everywhere in the domain.

In theory, all steps can be performed with optimal complexity using the fast multipole
method (FMM) [21] [51]. Only one step requires solving an equation, the other two steps
are evaluations of integrals.

However the are several practical problems that have prevented the broad application
of approaches of this type. FMM depends on analytic kernel expansions; computing these
expansions may be computationally expensive, which results in large constants in method’s
complexity, which can easily negate the asymptotic advantages of the method even for
problems of moderate size. Because work-efficient, highly accurate implementations are
far from trivial. This is the reason that such implementations exist only for the Laplace and
Helmholtz operators. For example, an efficient scheme for the three dimensional Laplacian
was developed more ten years after the original method was introduced [22]. Furthermore,
the complexity constants of the FMM are high, and often, for problems that do not require
adaptive discretization, regular grid schemes like multigrid or FFT are much faster [39],
[44], [19]. Finally, due to singularities, computing the near field interaction, either for the
Newton potential or for evaluations near the boundary can involve increased computational
costs and implementation complexity, and is an active research topic [5], [12], [19], [38],
[54].

For these reasons we have opted to use a different approach in order to compute the
Newton potentials and to evaluate the solution everywhere in the domain. Our method, to
which we refer to as the Embedded Boundary Integral method (EBI), is an extension of
Anita Mayo’s work [37], for the Laplace and biharmonic operators. This approach was
also used in [39] in combination with fast multipole methods for the boundary integrals
only, and was extended in three dimensions [19], again for the Laplacian operator. Instead
of using direct integration, we use an efficient regular grid solver for the first and last steps.
Note that the asymptotic complexity of the computation does not increase, as the solver is
guaranteed to converge in a fixed number of steps for a fixed precision.

More specifically, the method handles the three steps enumerated above as follows.
The flow domain is is embedded in a larger simple rectangular domain, which can be
easily refined to obtain a structured regular grid. At the first step, we extend the distributed

2In this paper we present an ��������������� variant, however the method can be changed to an �������
algorithm—by switching to a classical FMM method for the boundary integral solver.
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force to this simple domain and then solve the regular grid problem. At the second step,
we solve a boundary integral equation for the boundary conditions. This equation yields
values for velocity and pressure jumps across the boundary of the original domain, which is
now regarded as an interface. The third step step is evaluation the velocities and pressures
everywhere in the domain. Another regular grid solve is used; however, this time, Taylor
expansions are used to express velocity and pressure jumps as a body force at regular grid
points which are close to the interface. This body force, which appears in the right hand
side of a the regular grid problem, we call Taylor Expansion Stencil Correction (TESC). In
greater detail, the steps are discussed in Section 2.

The fact that we use regular grid solvers is of crucial importance for making the method
more practical and suitable for applications where the boundaries change. First, the do-
main does not depend on the geometry of the problem, and no mesh generation is required.
Second, unlike the case of unstructured meshes, relatively simple and highly efficient mul-
tilevel preconditioners with well-understood properties are readily available.

In this paper we apply this approach to the Stokes equation and present fast numerical
methods for solving the boundary integral equations and the corrected equations on the
regular grid. We have also extended the method to the elastodynamics and to the unsteady
Navier-Stokes equations. For the latter preliminary results can be found in [6].

An additional benefit of solving the equations on the interface (second step) results in
a natural formulation for coupled problems. For example in fluid-solid interaction prob-
lems, the interface conditions are the continuity of the tractions and of the velocities; these
conditions can augment boundary integral formulations for the solid and fluid. If an im-
plicit method is used to solve the equations, in this formulation the nonlinear iterations
can be restricted on the interface. While time dependent problems require volume com-
putations, a fast solver on a structured grid helps to minimize the computational cost of
the volume discretization. These considerations indicate that the EBI-based methods may
have advantages for such problems which we plan to explore in the future.

Acknowledgments. We thank L. Greengard, M. Shelley and C. Peskin for valuable
discussions leading to the formulation of the approach.

1.1. Related work

Finite elements. Undoubtedly finite element methods are one of the most successful
discretization methods and allow for the accurate solution of problems in arbitrary geome-
tries. Nevertheless, application of such methods to problems with complex geometries
has several difficulties; two main difficulties are mesh generation and design of efficient
solvers.

First, for large-scale problems, especially 3D problems and problems with moving
boundaries, mesh generation takes a significant fraction of the total computation time.
As parallel computation is necessary to solve realistic problems with sufficient accuracy,
mesh generation should be also done in parallel. Furthermore, for problems with moving
boundaries, the mesh needs to be frequently regenerated, which requires a robust purely
automatic mesh generator which guarantees element quality. Although a lot of progress
was made in recent years,( [2],[26]) at this time, we are not aware of any algorithm that
meets all of these requirements: i.e. does not require user intervention, has an efficient
and robust parallel implementation and guarantees element quality both in two and three
dimensions. In fact, in 3D, even sequential guarantee-quality mesh generation for arbitrary
boundaries remains an area of active research. The state of the art is discussed in [33],
[52], and [53].
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Second, once the discretized operators have been constructed, optimal complexity in-
version algorithms require multilevel techniques such as multigrid or domain decomposi-
tion [9, 10], which extend to unstructured grids. However, for unstructured meshes, the
main problem is related to automatically generating quality coarse meshes from the user-
specified mesh. Algebraic multigrid, a method that does not require multilevel meshing,
has been successfully applied to scalar positive definite operators, but has not been ex-
tended to vector PDEs or indefinite operators like the Stokes equations [55].

Cartesian grid methods. State-of-the-art methods for problems in complex geome-
tries, most often found in applications with dynamic interfaces, are based on regular grid
or Cartesian grid discretizations, due to their efficiency, parallel scalability, and implemen-
tation simplicity.

Research on this topic dates back to the seventies [8]. Most of the fundamental ideas
that we will discuss below, the connection between immersed interfaces, potential theory
and integral equations, the interpolation-based approximations of jumps, the stencil modi-
fication around the boundary, and the utilization of regular grids, go back to the capacitance
matrix method [49]. This method solves Neumann and Dirichlet problems for the Laplace
and Helmholtz problems using domain embedding and finite differences. The stencils that
cross the interface are modified and the resulting matrix is written as a sum of the standard
five-point Laplace operator and of a low rank modification. This matrix can be inverted
by the Sherman-Morrison-Woodbury formula. Instead the authors solve for the jump con-
ditions first (the discrete potential). For the Neumann problem the two approaches are
equivalent, but not for the Dirichlet problem, since the double-layer approximation results
in well-conditioned problems for the unknown interface jumps. One shortcoming of the
method is the requirement of a variable number of regular grid solves.

One of the most successful techniques is the Immersed Boundary Method [41, 42]
which was designed for a Poisson problem for the pressure within a projection algo-
rithm for the unsteady Navier-Stokes equations. The interface is modeled as a set of
one-dimensional delta functions whose discretization gives a forcing term. The method
is first-order accurate due to smearing of the boundary layers by the discrete delta func-
tions.

The Immersed Interface Method [31] is an extension of the immersed boundary method
which is second-order accurate. It is designed for problems with discontinuous coeffi-
cients and singular forces. It has been successfully applied to moving boundary problems,
for example for the Stokes problem with elastic interfaces [32] and for the Navier-Stokes
problem [35]. If the singular forces are known then the jumps are known and TESCs can
be computed explicitly. For discontinuous coefficients IIM modifies the stencils for points
close to the boundary in order to account for the jump conditions. The method results
in matrices with non-standard structure and fast methods are not straightforward to apply.
The immersed interface method as presented in [31] was not used on Dirichlet and Neu-
mann problems in general irregular regions, since it requires known jump conditions. In
[14], IIM is extended to Neumann problems by modifying interface stencils to account for
the unknown jumps. Later versions of IIM, (Explicit Immersed Interface Method) [56],
(Fast Immersed Interface Method) [34], addressed non-standard matrices by adding addi-
tional equations for the jumps and extended IIM to Dirichlet problems. These approaches
however appear to result in considerable additional computational cost since they require
tens to hundreds of regular grid solves.

Next, we examine several groups of methods which share some common features, in-
cluding finite-volume and fictitious domain methods. These methods produce discretiza-
tions based on regular grids, with modified stencils and/or right-hand sides to account for
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the embedded interfaces. Cheng and Fedkiw [11] describe a second order method for the
Dirichlet boundary problem. This method results in symmetric positive definite matrices
with diagonally-modified stencils and with additional terms on the right hand side. In
Cartesian finite-volume methods, the stencils modifications are derived from appropriate
modification of finite volume cells to account for the intersections of the Cartesian grids
with the interface [1], [25]. An algorithm, similar to the IIM and capacitance matrix meth-
ods but which first appeared within the finite element community, is the fictitious domain
method [13, 16]. Based on a finite element variational formulation, Dirichlet boundary
conditions are imposed weakly as side constraints. This approach results in a saddle-point
problem that includes the primitive variables plus Lagrange multipliers. In fact, certain
fictitious domain methods are intimately related to the IIM and EBI methods. It can be
shown that the Lagrange multipliers correspond to Neumann condition jumps.

In our examination of the above methods, we restrict our attention to problems with
constant coefficients and force singularities which cause interface jumps. When these
jumps are a priori known, the stencil modifications can be transferred to the right hand
side using TESC. However this is almost never the case. In general, interface discontinu-
ities have to be solved for. One approach is to modify the stencils of the discretization close
to the interface (Cartesian grids, immersed interface method, Cheng and Fedkiw method),
or to introduce additional equations (fictitious domain, immersed boundary, fast immersed
interface, explicit immersed interface). However, modified stencils make it more difficult
to apply fast solvers, especially if the boundaries are moving. If additional unknowns are
used, a common approach to solving the resulting system is to invert the Schur comple-
ment corresponding to these unknowns. These Schur complement matrices correspond to
discretizations of integral equations [49]. A matrix-vector multiplication with such matrix
will be expensive since it involves a regular grid solve.

The EBI method computes the jumps directly via boundary integral equations, and cir-
cumvents costly computations used by other methods by decoupling the interface from the
regular grid. Only one integral solve and two regular grid solves are required indepen-
dently of the complexity of the interface. The main downsides of this approach is that it is
restricted to piecewise constant coefficient problems, and that for a scalable and efficient
implementation a fast dense matrix multiplication algorithm is needed. In this paper we
discuss an efficient

��� � 
 �
algorithm that can be used with any kernel with rapid decay

properties, and only requires kernel evaluations, but for optimal asymptotic complexity an
FMM-type method is required, with implementation details depending on the choice of the
kernel.

Integral formulations for the Stokes problem. Several researchers have used bound-
ary integral formulations to solve the homogeneous Stokes problem. The basic formulation
can be found in [29, 46, 47]. In [17, 36, 45], the homogeneous Stokes problem is solved
using boundary integral representation combined with multipole-like far-field expansions
to accelerate the matrix-vector multiplications. In [43, 48, 57] boundary integral equa-
tions have been used for problems with moving and deforming boundaries. In [20] the
homogeneous Stokes problem is posed as a biharmonic equation and it is solved for both
interior and exterior problems. Inhomogeneous problems however, cannot be reduced to a
pure boundary integral formulation. As discussed above, evaluation of Newton potentials
is required.
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1.2. Overview and Notation

In the next section we present the overview of the method. Subsequent sections address
the details of the boundary integral formulation (Section 3); discretizations of the bound-
ary integral equations (Section 4.1), regular domain equations (Section 4.2) and Taylor
expansion stencil corrections (Section 4.3). Section 5 discusses the implementation of
the method, a fast SVD-based solver for the boundary integral equation in particular. In
section 6 we conclude with numerical experiments that demonstrate the accuracy of the
method.

Notation. Scalars will be denoted with lowercase italics, vectors with lowercase bold-
face letters; tensors and matrices will be denoted with uppercase boldface letters. In-
finitely dimensional quantities will be in italics, whereas finite dimensional ones (usually
discretizations) will be non-italic fonts. We use

����� ���
to denote the jump of a function across

an interface (exterior � interior).

2. HIGH LEVEL DESCRIPTION OF THE EBI METHOD

We seek solutions for the interior, possibly multiply-connected, Stokes problem with
Dirichlet boundary conditions. We choose a primitive variable formulation (velocities and
pressures), for which the momentum and mass conservation laws are given by

���	��
��������� in ��� div 
���� in ����
���� on �! (1)

Here 
 is the velocity field, � is the pressure, � is a known forcing term, and � is a given
Dirichlet boundary condition for the velocity. The stress tensor " associated with the
velocity and pressure is given by

"#�$�%�'&(��� � �*)+���*)-,   (2)

We split the solution of the problem into several steps as follows. We first embed �
in an easy-to-discretize domain . , typically a rectangle. By linearity we decompose (1)
into two problems: one problem that has an inhomogeneous body force and zero boundary
conditions for . ; the other has no body force, but nontrivial boundary conditions:

���/�*
102�����304�5� in .6� div 
704�8� in .6� 
70���9 on :(; (3)

���	��
=<=�����-<��89 in ��� div 
1<��8� in ��� 
=<����>�
 0 on �? (4)

The domain . is chosen to make the fast solution of (3) possible (Section 4.2). For
(4) we use a double layer boundary integral formulation (Section 3) to obtain the hydrody-
namic density, @ , on the boundary � . The solution 
 < for an arbitrary point in the interior
of � is the convolution of the double layer kernels with the density. The solution of the
original problem (1) is 
���
70(�A
 < , ���B�C0%�D� < .

In practice however, evaluating 
 < using convolution presents the same difficulties as
the evaluation of a forcing term by convolution. A different approach proposed by Mayo
[37], is to use the fact that once problems (3) and (4) are solved, the jumps of the solution

 can be very accurately computed on � . Conceptually, there is a discontinuous extension

1E of 
2< on . that satisfies

���	��
 E ����� E ��� in .6� div 
 E �8�/� in .6��
 E ��
 < � on :(� (5)��� 
 E ���GF �8@�� ��� " EIH ���GF � ��� �%� EJH ��� � �*
 E ���*
 ,E  H ���GF �8�/ (6)
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Numerically, this problem is solved using the same solver used for problem (3), but with
a right-hand side that takes into account the interface jumps computed from the velocity
density (Section 4.3).

In summary, the EBI approach uses the following steps:

1. Solve the problem (3) on the simpler domain . ; using multigrid or 2-level domain
decomposition method.

2. Solve the boundary integral problem derived from (4) on � to obtain the velocity
density; using an integral equation formulation with mesh independent condition
number, spectrally accurate discretization and a kernel-independent fast multipole
acceleration.

3. Compute the right-hand side corrections from the velocity density.

4. Solve the second regular problem on . with the computed right-hand side.

5. Add the solutions obtained at steps 1 and 4 to obtain the complete solution on � .

3. THE DOUBLE LAYER FORMULATION FOR THE STOKES EQUATIONS

In this section we describe the double layer integral formulation of a problem of the
form (4). We have opted to use a primitive variable formulation instead the formula-
tion used in [20] since it can be extended without modifications in the three dimensional
case. We assume that the boundary curve � is curvature-continuous, and the domain � is
bounded. We use the notation� � �4� ��� �� � � F � ��� �
	 �� � 	 � � � 	  �
to denote the convolution for a kernel

�
;
� ��� ��	 �� is a dot product for vector kernels and

matrix-vector product for matrix kernels.
The fundamental solution for the Stokes operator in two dimensions it is given by:� ��� ��	  � � ��� �� �������� ��� �� � ������ <! � (7)�

is the observation point, 	 is the source point,
�"� � � �#	 , � � �%$ � $ < , and

�
is the tensor

product of two vectors. This kernel is also known as the Stokeslet.
Similar to the potential theory for the Laplace equation we can introduce single and

double surface potentials for the velocity and the pressure. We use only the double layer
potential & for velocity and the double layer potential for pressure ' :

& ��� ��	 (� �)�� � � H � 	 � < ���*�� < ;+' ��� �
	 (� � ���,��-�� < �/&7�/. ������ <0 H � 	  (8)

where H � 	  is the outward surface normal at a boundary point 	 . For a derivation of [46]
and [47].

We limit our discussion to the interior Dirichlet problem. Its extension to exterior prob-
lems is trivial. We have opted to use an indirect double layer formulation for the Dirichlet
Stokes problem. This approach results in a Fredholm equation of second kind. Combined
with Nÿstrom discretization it results in linear systems with bounded condition number,
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and it is superalgebraically convergent for analytic geometries. Second kind formulations
are also well known for the Neumann problem.

We represent the velocities and pressures as surface potentials convolved with the dou-
ble layer kernel:


 ���  � & � @ � ���  � � ���  � ' � @ � ���  � �
in �� (9)

Here 
 is the hydrodynamic potential and @ is the hydrodynamic density. Taking limits
across the boundary from the interior and exterior regions we obtain


 ���  � � �. @ ���  �/& � @ � ���  � �
on �! (10)

The velocity 
 has to satisfy
� F 
 � H  � �5� , a direct consequence of the conservation of

mass. This constraint is an indication that for the simply-connected interior problem the
double layer operator has a null space of dimension at least one. In fact, it can be shown
([46], p. 159) that the dimension of the null space is exactly one. The null space can be
removed by a rank-one modification ([46], p. 615). Let � ��� ��	  � H ���  � H � 	  . We
represent 
 as


 ���  �$� �. @ ���  �*& � @ � ���  ��� � @ � ���  � �
on �! (11)

More generally, for the multiply connected interior problem, a direct calculation can
verify that the double layer kernel has a larger null space: it is spanned by potentials that
correspond to restrictions of rigid body motion velocity fields on the boundary. These
fields generate zero boundary tractions and thus belong to the null space of the double
layer kernel. Suppose that the boundary � consists of �>� � components ��� � � 0 � � �I� � ��� ,
where �	� encloses all other components, and let 
�� � �B� � � �I� � �� be an interior point of
��� . Following [46], we represent 
 as


 ���  �$� �. @ ���  �*& � @ � ���  ��� � @ � ���  � ��
��� 0
� ��� � �� � � @ � � ��

��� 0��
��� � �� � � @ � (12)

where
� � � � ��
 � , �

���  � ����� � � � < , and if
� � ��� 0 � � <  , ��� � ��� < � � � 0  .

The coefficients
� � and

� � are computed by augmenting (12) with�
F! #"� � 	  � @ � 	   � � 	  � � � �%$*� � � ./��

F& E� � 	  � @ � 	   � � 	  � � �  (13)

Here  ('� � � � � � � � � ��%��)2� � � . �+* are *�� functions spanning the null space of the double
layer potential. These functions are explicitly known  ,'� � 	  � �.- 0 ' � - < '  for ) � � � . E� � 	  � �0/ < �I� / 0  on ��� —they are fluid rigid-body motions, restricted on �	� . In [46] is
shown that equations (12) and (13) guarantee a unique solution of @�� � and

�
for general

admissible boundary condition 
 .

Jump computation. Once the density @ is known, we need to compute the jumps
at the interface and the velocity to use in equation (5) Equation (9) is defined for points
inside � . We can use exactly the same relation to extend 
 in 1 < �32� . The resulting field is
discontinuous across the interface.
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From the properties of the double layer kernel for an interior problem we have the
following jump relations for velocity and stress:

��� 
 ��� ��@�� ��� " H ��� ���/ (14)

The jump on the pressure can be deduced if we notice that the double layer kernel' ��� �
	  can be also written as � . �/��� ������� �
	   , where
����� ��	  � ��� � H � 	  � � < is the

double layer kernel for the Laplace equation.
From (14) we can derive a condition for the pressure:

��� � ��� �$� . @ ��� � (15)

where
�

is the curve tangent.
In addition to jumps in velocity and pressure, we also need the jumps for derivatives

of velocity and pressure as well as the jumps in second derivatives of the velocity; these
jumps are used to compute corrections to ensure second-order accuracy of the solution of
the problem on the domain . . The derivation is presented in the appendix.

4. DISCRETIZATION

4.1. Boundary Integral Equation

We discretize (11) by the Nyström method combined with the composite trapezoidal
rule which achieve superalgebraic convergence for smooth data. Without loss of generality
we assume � to be simply connected. Note that the double layer kernel has no singularities
for points on the boundary. Indeed,

���	�

�� � & ��� �
	  �$�/�� � � � � � . � � ��	 on �!�

where
�

and  are the tangent vector and the curvature at
�

.
Let

� �	� . � � be the curve parameterization space and � the number of discretization
points with � � . � � � . We discretize by:


 � 	 � )��   �$���/ �� @ � )��  � �� ��
" � 0
& � 	 � )��  �
	 � $��   @ � 	 � $��   $I� 	 � $��  $ <

� H � 	 � )��   ��
" � 0

@ � 	 � $��   � H � 	 � $��  $I� 	 � $��  $J< � )!� � �  I  ��%�
or

� ' � ���/ �� @ ' � �� ��
" � 0

� ' " @ " $ � 	 " $J<2��� '
��
" � 0

@ "
� � " $I� 	 " $ < � )!� � �I  I J��� (16)

which results in a dense . ��� .�� linear system. Here 	 � �  is the parameterization of � .
While resulting system has a bounded condition number, it is dense. Fortunately, one

can take advantage of the fast decay of the Green’s function with distance and use a fast
method to solve the system. A number of such methods exist; we use an SVD-based
method described in detail in Section 5.1.
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4.2. Finite element formulation of the regular region

To solve the equations in the regular domain . we use a finite-element discretization of
the Stokes operator. It should be noted that we use the finite-element formulation primarily
as a convenient mechanism to derive the discretization of the problem. For the regular grid
the discrete system obtained by using finite elements is identical to a system obtained by
a specific choice of finite difference stencils to which we can apply the right-hand side
corrections described in Section 4.3.

We have chosen to solve for the velocity and pressure simultaneously rather than use an
Uzawa or pressure correction algorithm using a finite element method with � � - � � bilinear
elements.The advantage of the � � - � � elements is that they probably result in one of the
simplest implementations for the Stokes system since they allow equal order interpolation
for the velocity and the pressure on a unstaggered grid 3. A survey and related references
on finite element methods for the Navier-Stokes equations can be found in [23], and [24].

With � < � .  we denote the space of scalar functions (in . ) which are square-integrable
and with � 0 � .  we denote vector functions whose first derivatives are in � < � .  .

We also define � � � ���	�
� 0 � .  � ���  �59����� � � �����
� < � . �� ��� �  .#�#���� 
The domain integral constraint in � is necessary for pressure uniqueness (for Dirichlet
problems pressure is defined up to a constant). It can be implemented by a null space
correction within Krylov iterations or by setting the pressure datum at a boundary dis-
cretization node. We choose the former since it results in better conditioned linear systems
[7].

In the weak formulation of (1) we seek 
���� 0 � .  and ����� such that:���
�	��
 � ���  .�� ��� � div �  .�� ��� � � �  .��89 ����� � � (17)

�
� � �

div 
  .�� � � <
� �
��� � �

�  .��8�!� � ���+ (18)

In unconstrained elliptic systems like the Laplace and elasticity equations mere inclu-
sion of the finite element spaces within the continuum spaces suffices for convergence.
However, this is not the case for the Stokes equations and the choice of the pressure ap-
proximation function space cannot be independent of the choice for the velocities [23].
To ensure convergence, the well-known (

����"
- #%$'& condition) needs to be satisfied, which is

not satisfied by he � � - � � element. The weighted diffusive term in (18) is introduced to
circumvent the

� ��"
- #($)& condition [23]; parameter

�
controls the amount of stabilization.

In [40] it is shown how to choose an optimal value for
�

; for regular domains and periodic
boundary conditions

� � � � . � . The resulting approximation is second-order accurate for
the velocities and first order accurate for the pressures in the � < norm.

The resulting discrete system is*+-, 9 .+0 �
9 , . ,<��.#� 0 . � < � � � <0/213546 7 � 0� <8:9 ;< � 46 7>= 0= <9 9 ;<  (19)

3 ?A@CBD?A@ could also have been used, but the implementation is somewhat more sensitive on the stabilization
parameter [40].
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where
,

is the Laplacian with Dirichlet boundary conditions, / is the Laplacian with ho-
mogeneous Neumann boundary conditions (since the pressure is unknown on the bound-
ary). The corresponding finite difference stencils are provided in the appendix.

We use this discretization to solve all equations on the rectangular domain . .When
solving the system (5) we apply corrections computed as described in Section 4.3 to the
right-hand side of the system, which ensures second-order convergence. The derivation
of these corrections is based on the standard finite difference analysis, assuming sufficient
smoothness of the solution. Although the discretization we use is derived using finite
elements, truncation error can be easily shown to be second order accurate for (3). However
standard maximum principle techniques cannot be used for the Stokes equations, because
they correspond to an indefinite and thus not coercive operator. For this reason we use
FEM theory to obtain an error estimate in the � < norm.

Given � in ��� 0 � .  , and � in � < � .  for the stabilized � � - � � formulation we know
that the following problem has a unique solution. Find 
�� � ��� , � ����� such that:���

�/�*
	� � � ���  .�� ��� �
� div ���  .�� ��� � � � ���  . ����� � �� � (20)

�
� � �

� div 
 �  .�� � � <
���
��� � � �

�
�  .�� ��� � � � �  . � � � ��� �  (21)

If we denote $ � $�� the usual norm in � � � .  , standard regularity results [15] give$J
�� $ 0 � $ �
� $ ����� � $�� � $ � 0 � $���� $ �  �
or (since $ � $ � 0�� $ � $ � � $ � $I0 )$ 
�� $ �1� $ �
� $������ � $�� � $ �1� $���� $ �   (22)

Now let
� � � � 
 � � � � � and � � � � � � ��� � � . We can associate a linear operator� � to (20), mapping

� � to � � ; since (20) has a unique solution for all � � , we can also
write

� � � � � 0� � � . The regularity condition (22) implies that $ � � $ � �!$�� � $ � and thus$�� � 0� $ � �! . Then if " � is the approximation error and # � the truncation error, we get
" � � � � 0� # � , or $�" � $ � � $ � � 0� $ � $�# � $ � . If we assume that $�# � $ � is

��� � <  we obtain$�"$� $ � � � � � <  . In our numerical experiments we have observed a similar convergence
rate in the infinity norm.

4.3. Taylor Expansion Stencil Corrections

In this section we show how discontinuities across the interface (jumps) can be used
as a correction term for a discretization obtained using a simpler domain in which the
interface is embedded.

The derivation of the basic formulas for the corrections does not depend on the prob-
lem, as long as the jumps of the variables across the interface can be computed.

To illustrate the basic idea, suppose we solve Poisson’s equation �*)#�%� , in � with
given Dirichlet boundary conditions on � (Fig. 4.3). Assume further that we use a dis-
continuous extension of ) in . which satisfies the same equation outside � . We assume
that the discontinuities are known up to second derivatives. Typical discretizations of el-
liptic PDE’s (finite elements, finite differences or finite volumes) produce a linear system
with ) -th equation of the form & ) ' �(' "

� " ) " �*)�� ' , where $ runs through the neigh-
bors of ) ' . The coefficients of the equations for regular grids are the same for all in-
terior points, and depend only on the relative position of ) ' and ) " . These coefficients
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together with corresponding relative displacements are usually referred to as stencils. For
the standard 2D five-point discrete Laplacian (Fig. 4.3(a)) the equations have the form� � � �  ) ' � '��" � 0 ) " � � < � ' , where � is the mesh size. In the absence of an interface

ωð γð

�

��
����	�
	

�

�

��
��

��
����� �����

������ 

FIG. 1 Stencil corrections. (a) The irregular domain � is embedded in a simpler domain . .
For the depicted stencil the truncation error is constant as the discretization step decreases.
Figure (b) shows the notation for computing the correction terms.

this stencil is well-defined and second order accurate. For stencils that intersect with the
interface, however, this is not true, as the solution is discontinuous across the interface.
In Fig. 4.3(b), we show an example for which two unknowns ) ' and )"! are related in a
discretization stencil that “crosses” the interface at point # . The limit of the solution from
the interior is denoted as )%$' and the limit from the exterior is denoted as )&$! . The key idea
is that the truncation error of the stencil can be corrected to be second (or higher-order)
accurate if we know the difference between the interface limits, and not their exact values.
Define H �(' � � to be the unit-length direction vector oriented from ) ' to ) ! , � ! � � ! H
and � ' � � ' H , Fig. 4.3(d). By using Taylor expansions we can write

)"!7�#) $! � �)!+* ) $! � H � � < !. H � � * < ) $!  H � � � � E 

� � ��� ) ��� �A) $'
 � � ! � ��� * ) ��� �,* ) $'

 � H � � < !. H � � ��� * < ) ��� �,* < ) $'
 H � ��� � E   

(23)

Defining -
' �

��� ) ��� ���.! ��� * ) ���	� H � � < !. H � ��� * < ) ��� H (24)

and expanding ) $' using Taylor series at ) ' we obtain

)"!1� ) ' ���.* ) ' � 'D� � . ' � � * < ) '  '>�
-
' � � � � E   

Similarly we can write

) ' ��) ! � �.* ) ! � 'D� � <. ' � � * < ) !  ' �
-
! � � � � E  �
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where

-
! is given by:-

! � � � ��� ) ��� � � '
��� *B) ���	� H � � <'. H � ��� * < ) ��� H   (25)

For the stencil centered at ) ! we use (25) and for the stencil centered at ) ' we use (24).
More specifically, in the equation & ) ' � � ! ) ! � � �I� � ) � ' , we replace ) ! with ) ! �

-
' ,

which results in the correction to the right-hand side
� !
-
' , and yields the desired accuracy.

By using the correction term we achieve
� � � E�� <  truncation error for a second order

discretization of the Laplacian for the points immediate to the boundary and
� � � <  for the

remaining set of points. This results in an
� � � <  discretization error for all points [31, 37].

It also implies a second order truncation error in the � < norm. Therefore second order
convergence can be achieved using jump information up to second derivatives.

5. THE IMPLEMENTATION OF THE EBI METHOD

In this section we summarize the algorithmic components of the EBI method and we
provide some implementation details.

The input data is the boundary geometry � , the body force, and the boundary con-
ditions. The boundary is represented as a collection of cubic B-spline curves. Solution
includes the following steps.

1. Define the regular domain . . Its boundary : (Fig. 4.3) should not be too close to the
boundary of the target domain, since we use (9) to evaluate the velocity; the integrals
are nearly singular as we approach � .

2. Solve the problem (3) on the rectangular domain . . We use standard numerical
methods to solve the discretized system as discussed in Section 6. tests the forcing
term is analytically known everywhere; in the general case it will be known only in
the domain. We have used Shepard cubic extrapolation ([50]) to compute a smooth
extension of the body force.

3. Solve of the boundary integral equation corresponding to (4) using SVD accelera-
tion discussed in Section 5.1. This step requires the trace of a particular solution to
correct the boundary conditions for 
1< by setting 
=<�� F �$� �B
 0 � F . We use cubic
Lagrange interpolation to compute 
 0 on � . Provided that the trace is interpolated
consistently to the accuracy of the FEM solution, and provided the density calcula-
tion is higher-order accurate, the error in the boundary integral equation data ( 
 < � F
includes the approximation error from 
�0 ) does not decrease the overall accuracy of
the method.

4. Compute corrections using the density. First we compute the intersections of � with
the regular grid, using a standard Bezier-clipping algorithm. Then, using the hy-
drodynamic density we evaluate the correction terms for the regular grid neighbors
of every intersection point. Furthermore in order to compute the jumps we need to
compute first and second derivatives of the density. For this purpose we use cubic
spline interpolation for every curve on the boundary.

5. Solve (5) to evaluate the homogeneous solution. For this step we need to set appro-
priate boundary conditions on : . We use (9) to evaluate the boundary condition. For
this step we use a dense evaluation of the boundary integral. This approach is not
scalable but the constant is very small. SVD acceleration can be used.
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The overall solution is given by the restriction in � of the sum of the particular and the
homogeneous solutions.

To compute the solution we need two numerical methods: one to solve the boundary
integral equations and the other to solve the linear systems obtained by discretization of
the Stokes equation on . .

5.1. Fast BIE solver using SVD

The linear systems resulting from the Nyström discretization of a double layer potential
have bounded condition number. The double layer kernel is weakly singular, and thus com-
pact for domains with � 0 -boundary. Compact perturbations of the identity have bounded
condition number; for such system the expected number of iterations for a Krylov method
(like GMRES) will be independent of the mesh size. For example, for the unit circle the
condition number is exactly 2, and it is independent of the number of discretization points.
In addition, for the interior problem, there are only two eigenvalues—therefore GMRES
converges in two iterations. For multiply-connected domains the condition number scales
with the number of simply-connected components. In [18] an effective preconditioner is
proposed; our implementation includes this preconditioner. However, as the matrix of the
system is dense, each iteration is expensive and further acceleration is required for large
problems.

The discretized equation(16) can be written in the vector form as:

� � � �. &J@ � ����� @B��� � , � ��� @   (26)

� � @6� � are the vectors of boundary velocity, density and normal respectively;
�

is the
matrix of the double layer kernel;

�
is the diagonal Jacobian matrix of the curve parame-

terization; and
�

is the diagonal matrix of quadrature weights. The essential step of the
iterative solver is the multiplication of matrix � 0< &2� ����� � � � , ��� . Since

�
and

�
are all diagonal matrices, the only expensive step is the multiplication with

�
.

This matrix-vector multiplication operation costs
� � � <  where

�
is the number of

Nyström points. To accelerate the method we should take advantage of the fact that the
Green’s function rapidly decays with distance, and thus the double and single layer kernels
become nearly degenerate. Several techniques exist to accelerate this matrix-vector multi-
plication, for example the Barnes-Hut algorithm ( to

� � ��� � 
 ��
) and the Fast Multipole

Method (to
� � ��

).
We use a fast matrix-vector multiplication algorithm, which was first proposed in [28]

and [27] for the single layer formulation of the Laplace equations in triangulated do-
mains. This method uses the singular value decomposition (SVD) to sparsify large low-
rank blocks of the discretized double layer operator. The basic ideas of the Fast Multipole
and the SVD-based method are illustrated in Figure 2.

The dense linear map
�

represents the hydrodynamic forces of � source points to �
target points. If we assume that these two groups are geometrically well separated the

�
is expected to be numerically low rank, i.e. the ratio

- � - 0	��
 for all but
�� � singular

values

-
, where

-
0 is the largest singular value and 
 is a constant determining the accuracy

of the computations. Fast multipole methods use truncated analytic expansions and trans-
lation operators to sparsify

�
. The singular value decomposition computes a coordinate

transformation, for which
�

is diagonal, and eliminates the vectors corresponding to the
small singular values. Compared with Fast Multipole Method, SVD-based compression is
kernel independent and easy to implement. However, its main disadvantage is the higher
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FIG. 2 Low rank approximations of discrete interaction. (a) The dense interaction. (b)
Fast Multipole method. (c) SVD based method. Arrows represent linear transformations.

algorithmic complexity,
� � ��� � 
�� 

instead of
������

. In [27] an orthogonal recursive bi-
section to create the partition into low-rank blocks. Here we give a version of the algorithm
using a hierarchical structure based on curve subdivision. There are two algorithms: the al-
gorithm that sets up the hierarchical matrix representation and the algorithm implementing
matrix-vector multiplication.

The setup algorithm. The input to the algorithm is the collection of boundary curves
and quadrature points, and three parameters: � , & and 
 . Parameters � and 
 are used in
the computation of the low-rank representation for blocks and & is used to determine when
sets of quadrature points are well-separated. The precise meaning of the parameters is
described below.

The output is a hierarchical representation of the matrix. To define the matrix represen-
tation, we partition quadrature points into a geometry-based hierarchy. First, we partition
the boundary curves into several top level segments

� �' ��)%�#�/�
� �I� �����	� � , each containing

roughly the same number of quadrature points. Second, we subdivide every
� �' into two

segments:
� 0< ' and

� 0< ' � 0 . We repeat this procedure at each level and we stop when the
finest level segment has less than � � quadrature points in it. We take � to be the number
of levels with levels numbered �4  I (��� � . For each segment at each level, we calculate
a bounding box of its quadrature points. For a segment # , we use �

� #  to denote its
bounding box, �

� #  to denote the set of indices of its quadrature points, � � # 
center of

�
� #  , � � #  the radius of �

� #  , and left(X) and right(X) the left and right subsegments
of # .�

is represented as a collection of blocks organized into a hierarchy; each block cor-
responds to the interaction between two segments. Similarly to FMM methods, we use a
low rank representation if two segments are well-separated; otherwise we compute a dense
block.
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Algorithm 1 construction of
�

function constructMatrix
�
top segment list


matrix trees

� ���
for # � top segment list do

matrix trees
� � matrix trees � constructSegmentTree

�
X,top segment list


end for
return matrix trees

end constructMatrix

function constructSegmentTree
�
X, segment list


node.submatrices, node.leftchild, node.rightchild

� ���
node.segment :=X
near list

� ���
for � � segment list do

if separated
�
�
� #  , � � �   then

node.submatrices
� � node.submatices � � �

Y, SPARSE, constructSparse
� # ���  �

else
near list

� � near list � Y
end if

end for
if level

� #  = L-1 then
for � � near list do

node.submatrices
� � node.submatices � � �

Y, DENSE, constructDense
� # ���   �

end for
else

new list
� ���

for Y � near list do
new list

� � new list � �
left

� �  ,right
� �  �

end for
node.leftchild

� � constructSegmentTree
�

left
� #  , new list


node.rightchild

� � constructSegmentTree
�

right
� #  , new list


end if
return node

end constructSegmentTree

Algorithm (1) is the pseudocode for constructing the matrix
�

. The matrix is repre-
sented as a set of trees, one tree per each top-level segment. Each node of the tree on level �
corresponds to a segment

�
	
" . Each non-leaf node corresponding to a segment # contains

a list of matrices in a low-rank sparse representation described below; each matrix corre-
sponds to a segment on the same level as � , for which a separation criterion is satisfied. In
addition, a non-leaf node contains pointers to two nodes corresponding to the subsegments
of # . The leaf nodes contain only a list of matrices; for segments � which do not satisfy
the separation criterion a dense matrix is stored.

The main function constructMatrix simply calls constructSegmentTree on each top-
level segment # to compute the interaction between # and all other top-level segments.
Function constructSegmentTree(X,segment list) construct a tree representation of the sub-
matrix of

�
corresponding to interactions of # with segments from segment list. Func-

tion separated( � 0 , ��< ) is used to test whether two bounding boxes � 0 and �6< are well-
separated. If the ratio of the distance between centers � � ��0  and � � � <  to the sum of their
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radii is less than a constant & , they are regarded to be not well-separated and either further
refinement is necessary, or a dense matrix has to be built.

When two segments # and � are well-separated, constructSparse is called to construct
a low-rank representation of the interaction matrix

��� � � between the sets of quadrature
points of # and � , i.e. to find a column basis of matrix

��� � � and represent the whole
matrix

��� � � as a linear combination of this basis:
� � � ���

, � / � �
(Figure 2).

Let
� �

and
� � be the set of � sampling points from the sets # and � respectively.

For the time being, we assume � to be significantly greater than the numerical rank
�

of
the interaction matrix

� � � � . We explain the estimation of
�

and � , and the selection of
sampling points along with the numerical experiments.

First we construct
� � � 	�
 and use SVD or modified Gram-Schmidt to get

, � which is
of size � � � , where

�
is the numerical rank of matrix

� � � 	�
 . The Modified Gram-Schmidt
algorithm is faster, with small loss of compression effectiveness. In our implementation
we use a column pivoted Modified Gram-Schmidt method; the pivoting is used to detect
the maximum 2-norm of the remaining vectors and we stop the process whenever that
maximum is less than the prescribed constant 
 .

The matrix
, � is used to compute / � . First we evaluate

� 	��� � , and then we subsam-
ple
, � by choosing �, whose rows are the rows of

, � corresponding to the set of points� �
. We compute / � from the least square system �, / � � � 	��� � .

Complexity analysis. There are three important observations on which the complex-
ity analysis of the construction algorithm are based. First, as we pointed out, the time
complexity of constructSparse

� # ���  can be bounded by � � � , where � is the number
of points in the larger of # and � . Second, the complexity of constructDense

� # ���  is� � � <  . Lastly, except for the segments at the top level, every segment gets an
��� �  number

of segments in the segment list from its parent segment, and passes also an
��� �  number

of segments in the new list to its children, under the assumption that the boundary curve
is smooth and the distribution of quadrature points is uniform. Consider a segment # ,
the segments in the near list of # have centers in a circle centered at � � #  with radius� . & � � �� � #  . There are about . &D� � segments in this near list due to the assumption
about uniformity. Therefore, the new list contains about

� & � . segments because each
segment in the new list is a child of some segment in near list . However, among them,
there would be roughly only half, about . &D� � , of them falling in the the circle centered
at � ��������� � #  

with radius
� . & � � �� ��������� � #   because

� ��������� � #   is half the size of
� � # 

,
and the same for

������� � #  . We use � to denote a bound on . &�� � .At the coarsest level, each segment computes its interaction with the remaining ��� � � � � �
�3� �  top level segments using the SVD method. The work can be bounded by � � � � � �� � � � .�� � 0  . For any other level ) , we have

��� . ' � �  segments, each of which computes
the interaction with � other segments at the same level. This work is proportional to. ' ��� � � � � � � � .�� � 0 � '  . For the finest level each segment also must compute the dense
interaction between itself and its neighbors, at most � of them. This costs . � � 0 ��� � � � � <� .
The total cost can be bounded by

��� � ��� � � � � ��. � � 0  � � � � 0
' � 0 . ' ��� � � � � � � ��. � � 0 � '  � . � � 0 ��� � � � � <�� � � � � � � � � . � � 0 � � � � � � � � � � . � � 0 � �	� � � � � � � . � � 0

� � � � � � � � � � � � � �  � � � � � . � � 0
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Algorithm 2 Matvec of
�

function matVec(matrix trees, x)
b
� � 0

for tree � matrix trees do
b :=matVecSegment(tree, x, b)

end for
return b

end matVec

function matVecSegment(node, x, ������� )
b := �������
for (type, matrix, src) � node.submatrices do

if type = DENSE then
b(I(node.segment))

� � b(I(node.segment)) + matVecDense(mat, x(I(src)))
else

b(I(node.segment))
� � b(I(node.segment)) + matVecSparse(mat, x(I(src)))

end if
end for
b :=matVecSegment(leftchild, x, b)
b :=matVecSegment(rightchild, x, b)
return b

end matVecSegment

� � � , � � and � � � are all constants. � � � � .�� � 0 is the total number of quadrature points�
. � is the depth of the hierarchical structure, so it is

��� �	��
���
. Therefore the total

complexity
� � � � � � � � � � � � �  � � � � � .�� � 0 is bounded by

� � � � � 
�� 
.

Matrix-vector multiplication. Algorithm (2) is the pseudo code for matrix-vector mul-
tiplication using the SVD-based representation of

�
. Function matVecDense simply mul-

tiplies the densely stored matrix with a vector. On the other hand, matVecSparse of two
segment # and � uses the sparse representation:

��� � � � , � / � . Since
, � and / � are

both of size � � �
, assuming � is the size of # and � , multiplication with / � and

, �
is much cheaper than multiplication with

��� � � . Figure 3 shows the sparse structure of a
simply-connected boundary.

Numerical Experiments. All experiments in this section were performed on a Sun
450MHz Ultra80 workstation. We use three parameters in the matrix construction algo-
rithm: & for separation detection, 
 for modified Gram-Schmidt algorithm and � for sam-
pling matrix columns and rows. The value of & is usually chosen to be �  � to . . Notice
that unlike Barnes-Hut or fast multipole algorithms, & does not have an effect on the ac-
curacy of the algorithm. In our context is just used as an oracle to activate the low rank
approximation. The tolerance 
 is the most important parameter; it determines the speed
and accuracy of the SVD-approximation and in some sense corresponds to the truncation
of the analytic expansions in the Fast Multipole Method. Assuming the SVD was com-
puted exactly ( without sampling) 
 is the relative error in the potential calculation. Once

 is chosen, SVD automatically selects the number of required moments to meet the error
criterion.

The estimation of
�

and � can be obtained by the following incremental procedure. For
two segments # and � , we first choose a small number for � , and use these � sampling

18



����� �����
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

13 12 11 13
9 8 8 8 11

9 9 9 10 11

13 12 10 12
9 9 9 9 10

8 9 9 8 8

12 12
8 8 9 12 12 10 9 10 9

8 7 9 9 13 11 10 9 9

12 12 14 13 15
10 10

11 13 10

13 12
10 12 11 11 10 12 13 10

9 11 11 12 10 11 13 11 9

12 10 11 14
12 12 11 9

10 11 11 10

12 11 12 14
10 10 11 12 10

12 12 11

15
10 10 8 8 9 9 14 11 10 11 12

10 10 9 9 9 10 10 9 9 11 11

FIG. 3 The sparsity structure of matrix
� � � � of a boundary curve. The curve is discretized

into 1024 quadrature points. The matrix is of size . � �	� �#. � �	�
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denotes its numerical rank
�
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FIG. 4 Test domains. Solid curves represent the boundary of the domain. The dots in the
domains are the points used for error estimation.

points to construct the SVD representation of
� � � � . If the numerical rank

�
of

� � � �
is close to � , which means that the number of sampling points � is not enough, then we
double � and compute the SVD representation of

��� � � again until
�

is much smaller than
� . In practice, we stop when

�
is less than � � * , which ensures that the algorithm can find a

good basis
,

of matrix
� � � � with very high probability. The position of these � sampling

points are chosen to be evenly spaced on the boundary.
In Table 1 we report wall-clock time and accuracy comparisons between the dense and

the SVD-sparsified double layer operators. We solve two different problems, a cubic flow,
and a flow that corresponds to a Stokeslet. We use pointwise error on a fixed number of
points to evaluate the accuracy. We first solve the integral equation for the hydrodynamic
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TABLE 1
Comparison between the dense matrix matrix-vector multiplication and the SVD-based

matrix-vector multiplication for two different flow fields and geometries. Setup time
includes the construction of the matrix and the preconditioner. Solve time is the time used

by GMRES solver. We see that as the problem scales, the dense approach grows up
quadratically, while SVD based approaches scales almost linearly.

domain,
solution

�
matrix setup solve � � � ! � � � ! � �

Fig.4(a) 736 dense 1.79 4.89 2.34 � � � � ��� 2.67 � � � � �svd 2.11 4.56 7.28 � � � � ��� 3.18 � � � � �cubicflow 1472 dense 6.37 17.0 8.82 � � � � ��� 2.30 � � � � �svd 5.25 7.98 8.12 � � � � ��� 4.63 � � � � �2944 dense 23.9 58.9 1.04 � � � � ��� 2.65 � � � � �svd 12.2 15.8 5.65 � � � � � � 2.91 � � � � �5888 dense 100 224 1.30 � � � � � � 3.10 � � � � 0 �svd 22.7 30.9 5.39 � � � � � � 2.31 � � � � �
Fig.4(b) 384 dense 0.44 0.52 1.80 � � � � ��� 1.07 � � � � �svd 0.74 0.37 5.08 � � � � ��� 3.31 � � � � �Stokeslet 768 dense 1.53 2.75 2.47 � � � � � � 1.40 � � � � �svd 1.35 1.14 1.95 � � � � ��� 2.89 � � � � �1536 dense 6.18 10.1 3.44 � � � � ��� 1.80 � � � � �svd 3.01 2.50 1.07 � � � � ��� 9.46 � � � � �3072 dense 29.1 39.3 4.63 � � � � � � 2.29 � � � � �svd 5.91 5.40 9.85 � � � � � � 4.84 � � � � �

Cubic flow in the domain of Fig. 3a 
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FIG. 5 Plots of the data from Table 1
with linear fit for SVD-based solver and quadratic fit for the dense solver.
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TABLE 2
Running times and pointwise errors for the SVD-based sparsification. We report results

for the geometry depicted in Figure 4(b) for a Stokeslet flow. We vary the numerical rank
tolerance 
 and we hold the number of quadrature points fixed (768); here max rank

indicates the maximum numerical rank for a SVD-approximated block.

 setup(s) solve(s) � � � ! � � � ! � � max rank� � � � < 3.48 7.13 3.95 � � � � � 1.84 � � � � � 8� � � � E 4.18 8.09 3.67 � � � � �

1.43 � � � � �

10� � � � � 5.49 7.95 6.68 � � � � � 4.63 � � � � � 12� � � � �

6.00 8.59 8.31 � � � � � 5.82 � � � � � 14� � � ��� 6.99 9.71 1.77 � � � � � 9.49 � � � � � 16� � � � � 7.93 10.8 1.17 � � � � � 4.65 � � � � � 18

TABLE 3
Running times and pointwise errors for the SVD-based sparsification. We report results

for the geometry depicted in Figure 4(c) (64 circles) for a Stokeslet flow; for two different
values of the numerical rank tolerance 
 and for an eight-fold increase in problem size.

Observe the almost linear scaling in setup and solve running times with the problem size.
For this example about 10,000 Nyström points give single precision machine accuracy.


 � ��� setup(s) solve(s) � � � ! � � � ! � � max rank� � � � � 4/4,544 49.6 111 9.02 � � � � � 1.63 � � � � �

14
5/9,088 118 226 1.52 � � � � � 1.59 � � � � � 14
6/18,176 217 435 1.35 � � � � � 1.02 � � � � � 14
7/36,352 487 904 1.07 � � � � � 9.24 � � � � � 14� � � � � 4/4,544 67.2 137 4.64 � � � � � 1.11 � � � � � 19
5/9,088 164 287 1.85 � � � � � 2.60 � � � � � 19
6/18,176 294 559 1.09 � � � � � 1.23 � � � � � 19
7/36,352 682 1,172 1.23 � � � � � 1.57 � � � � � 19

density and then we evaluate the velocities and pressures with (9).
The sparsification is divided to setup a phase and an iterative solution phase. As ex-

pected, the setup time for the dense matrix scales with the square of the number of un-
knowns. The fast methods scales almost linearly since the

�	��
 � � 
is quite small. In this

example we have used a fixed tolerance 
1� � � � � —that is why there is no improvement in
the error for the larger problem. Table 2 compares running time and accuracy for different
choices of 
 , for the geometry depicted in Fig. 4(b) with a Stokeslet flow. As expected the
accuracy improves without significant increase in running time.

Perhaps a more representative example for the scalability of the method is depicted in
Table 3. The geometry is that of Fig. 4(c) for a Stokeslet flow. We solve for two different
values of 
 and for a eight-fold increase in the problem size. It is apparent that about 10,000
quadrature points are enough to get single precision accuracy. The running times increase
almost linearly with the problem size.
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5.2. Regular grid solver

There exist several methods for the efficient solution of linear systems representing dis-
cretizations of elliptic PDEs. Examples are FFTs, multigrid and two-level domain decom-
position algorithms which are asymptotically optimal. However for medium size problems
it turns out the domain decomposition methods are faster. We have developed our code
on top of the PETSc library [3, 4]. PETSc includes several methods for regular grids such
as domain-decomposition preconditioners and multigrid. In Table 5.2 we report timings
for four different preconditioners: block-Jacobi, single-grid additive Schwarz, two-grid
additive Schwarz, and a V-cycle multigrid. We report isogranular scalability results for
problems up to 10 million unknowns on 16 processors Our intention is not a detailed com-
parison between the different solution techniques, but to give an numerical evidence of the
scalability of the different preconditioners for the � � � � � discretization.

TABLE 4
In this table we compare iteration count and wall-clock time for 4 different linear solvers

for the discretized Stokes problem. All use the same Krylov solver (Conjugate Residuals).
What differs is the preconditioner. Here grid is the number of grid points (3 degrees of

freedom per grid point); p is the number of processors; BJ denotes a block-Jacobi
domain-decomposition with ILU(1) preconditioning in each subdomain; ASM is an
additive Schwarz preconditioner with fixed overlap; 2L-ASM is a two level additive

Schwarz preconditioner in which the fine grid uses the ASM method described above and
the coarse grid is solved redundantly on every processor using a sparse LU factorization.

The coarse grid is 10 times smaller; MG is a 5-level single V-cycle multigrid
preconditioner with sparse LUs for the coarsest level and the BJ preconditioner for the
rest. For each different preconditioner we report wall-clock time in seconds (sec) and

iteration counts (it) for a relative residual reduction of 1 � � � � � . The largest problem has
10 million unknowns and it took 15 seconds to solve. The preconditioners are parts of the
PETSc library. The runs were performed on a 900 MHz Compaq server at the Pittsburgh

Supercomputing Center.

grid p BJ ASM 2L-ASM MG
it sec it sec it sec it sec� . � < 2 296 78 161 45 26 3 34 11. � � < 4 602 350 330 220 21 6 47 36

� � . < 8 1,240 1,450 692 950 18 11 56 98� ��. � < 16 2,578 6,100 1,391 3,910 19 24 57 260

As expected the single-grid preconditioners perform quite poorly compared to mul-
tilevel methods. For the latter we can observe mesh size-independence on the number
of Krylov steps. Notice that we quadruple the problem size and we double the number
of processors. Thus, for an optimal algorithm, wall-clock time should double with the
problem size. Indeed, this is the case for the 2L-ASM preconditioner which outperforms
the other methods. Multigrid is optimal in the number of iterations, but (for the specific
implementation) it is significantly slower, probably due to interprocessor communication
overhead. We have not attempted to fine-tune the multigrid preconditioner and thus we do
not advocate one method over the other. We have chosen the two-level method because
is somewhat simpler to combine with the boundary integral solver. For details on the the
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theory of two-level preconditioners for indefinite elliptic systems see [30].
Finally by comparing Table 5.2 with Tables 1,2, we can observe that for simple geome-

tries the regular grid solver takes similar time with the boundary integral solver. For more
complicated geometries the cost of the regular grid solve becomes quite small compared
to the boundary integral solver. Indeed for the 64 spheres problem, the boundary integral
setup and solve requires 160 seconds for the lowest accuracy (Table 3), whereas the regular
grid solver for the � . � < problem, takes 3 seconds on two processors on the Alpha server
which correspond to less than 12 seconds per solve on the Sun workstation. Since our
method requires two regular grid solves, the time spent to calculate the distributed terms
and the solution everywhere is 10% of the time spent on the boundary integral solver. 4

6. NUMERICAL EXPERIMENTS

In this section we test EBI on problems with exact analytic solutions. We assess the
pointwise accuracy of the solver and we investigate the effects of the accuracy of the bound-
ary integral solver on the overall accuracy of the method.

FIG. 6 Domains used in numerical examples

We present results for four different problems. The solutions are restricted to the target
domains (Figure 6), which are embedded in the unit square. We have chosen the following
analytic solutions: a Poiseuille flow


�� � / � � � /  � � �(�-� �$� . � �
a “cubic flow”


A� � / E � � E ��� ��� � ��/ �
a “body force flow”


�� . � � � < / � / < � � �-��� # ��� ��� /  �(��� � � � / � � ��� � # ��� /  � � � � � ��� � # ����/  �2 
We also use a Stokeslet (7) centered at

� �	 �/� �	 �  and oriented along �8� � � � � � . The
corresponding pressure is given by

��� �. � �� < � �- 
4The time required on computing the jumps, the intersections and the derivatives of the hydrodynamic densi-

ties is negligible compared to the domain an boundary solvers.
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All experiments in this section were performed on a SUN Ultra80, 450MHz workstation
(single processor).

In the first example we use the cubic flow solution for the interior problem in a circle of
radius 0.3. Convergence results are presented in Table 5. We report and compare conver-
gence rates for first-order accurate (dense-1) and second-order accurate TESCs (dense-2);
for the latter we also report results for the SVD acceleration (svd). The integral equa-
tion was discretized by 320 quadrature points. Increasing this number did not affect the
accuracy significantly. For the first order TESCs the convergence rate for the velocity is
superlinear and hence suboptimal; with second order TESCs both dense and sparse com-
putations result in optimal convergence rates for the velocities and pressures.

TABLE 5
Convergence results for the cubic flow inside a circle. In (dense-1) TESCs were first order

accurate; in (dense-2) TESCs include second order derivatives. In (svd) we use second
order TESCs combined with the svd acceleration. The rank tolerance 
 is � � � � ; (u) and

(p) denote error in the infinity norm for the velocities and pressures.

dense-1 dense-2 svd
grid u p u p u p* . < 2.43 � � � � E 1.19 � � � � 0 8.35 � � � � � 2.31 � � � � < 8.84 � � � � � 2.43 � � � � <� � < 8.06 � � � � � 1.07 � � � � 0 1.81 � � � � � 1.33 � � � � < 1.90 � � � � � 1.37 � � � � <� . � < 3.06 � � � � � 8.44 � � � � < 4.95 � � � � �

1.83 � � � � E 5.23 � � � � �

2.16 � � � � E.�� � < 1.20 � � � � � 4.21 � � � � < 1.12 � � � � �

4.79 � � � � � 1.20 � � � � �

7.54 � � � � �
In the second example we repeat the same test, but for the geometry depicted in Figure

6(b) and for two different analytic solutions, the Poiseuille and the body-force flow. In this
example the number of quadrature points for the integral equation varies. For dense-1 (first-
order) we used 768 points for the * . < grid, 1546 for the other two grids, and 3,072 points
for the . � � < grid. For the dense-2 (second-order) we used 768 points for all background
grid sizes. In svd we used 1536 points. The increased number of quadrature points did not
improve the convergence rate for the first-order TESCs. Optimal pointwise convergence
rates are observed for the velocities and pressures for both the dense and SVD versions.
The exact solution along with the error distribution for three different grids are shown in
Figure 7 (for the Poiseuille flow).

In our previous examples the approximation tolerance for the SVDs was kept constant
to � � � � . For the following test we have chosen an example for which both the geometry
and the solution vary rapidly close to a specific location. We look at the 2D-heart-shaped
domain, Figure 6(b), for which the exact solution is given by the stokeslet solution from a
pole located at (0.5,0.7). This location is very close to the rapidly changing geometry at
the top of the 2D-heart. As a result we expect that a large number of quadrature points is
required to obtain sufficient accuracy. Table 7 summarizes the results for this experiment
and Figure 8 depicts the exact solution and the error distribution. The number of necessary
quadrature points to obtain optimal pointwise convergence in the background grid was de-
termined experimentally based on dense solves; nearly 800 points are enough to resolve the
problem; in this test we took 1,664 quadrature points; we found that this extra discretiza-
tion does not help as we can see by comparing the columns of Table 7. We use dense-1 as
the reference calculation. In svd-1 the truncation tolerance for the modified Gram-Schmidt
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TABLE 6
Convergence results for two flows in the domain Figure 6(a). Here (dense-1), (dense-2),

(svd) and (u), (p) are as in Table 5.

dense-1 dense-2 svd
grid u p u p u p

Poiseuille* . < 8.84 � � � � E 1.01 � � � � 0 4.30 � � � � � 3.70 � � � � < 4.83 � � � � � 3.79 � � � � <� � < 2.71 � � � � � 9.33 � � � � < 1.31 � � � � � 9.84 � � � � E 1.43 � � � � � 1.09 � � � � <� . � < 1.39 � � � � � 4.07 � � � � < 2.76 � � � � �

3.67 � � � � E 2.98 � � � � �

2.86 � � � � E.�� � < 2.93 � � � � �

1.57 � � � � < 7.45 � � � � � 2.22 � � � � E 7.51 � � � � � 8.14 � � � � �
Body force* . < 3.47 � � � � < 8.99 � � � � 0 2.25 � � � � < 6.31 � � � � < 1.36 � � � � E 7.28 � � � � <� � < 2.33 � � � � E 2.68 � � � � 0 5.62 � � � � � 5.03 � � � � < 6.67 � � � � � 4.19 � � � � <� . � < 6.23 � � � � � 1.45 � � � � 0 1.46 � � � � � 3.87 � � � � < 1.47 � � � � � 2.67 � � � � <.�� � < 2.43 � � � � � 1.15 � � � � 0 3.58 � � � � �

1.06 � � � � < 4.31 � � � � �

1.14 � � � � <
is � � � E ; it results in suboptimal convergence rates. By using a tighter tolerance, � � � �

,
we recover optimal rates. In Figure 8 we show the exact solution and the pointwise error
distribution.

TABLE 7
Convergence results for a stokeslet flow generated by a pole just outside the domain. Here

the jumps are second-order accurate. All problems use 1,664 quadrature points.In
(dense-1) we evaluated a dense double layer matrix. In (svd-1) and (svd-2) we sparsify

using variable rank tolerance; � � � E for the former and � � � �

for the latter.

dense-1 svd-1 svd-2
grid u p u p u p* . < 7.01 � � � � E 3.36 � � � � 0 7.05 � � � � E 2.97 � � � � 0 7.05 � � � � E 2.46 � � � � 0� � < 1.01 � � � � E 1.55 � � � � 0 1.08 � � � � E 2.27 � � � � 0 9.96 � � � � � 1.57 � � � � 0� . � < 2.10 � � � � � 9.70 � � � � E 4.12 � � � � � 1.21 � � � � 0 2.13 � � � � � 1.48 � � � � <.�� � < 4.61 � � � � �

4.16 � � � � E 9.55 � � � � �

4.69 � � � � < 4.80 � � � � �

1.04 � � � � <
In the next example we look at an interior flow (body force flow) around 81 circles.

For the
� � < grid we use 9,088 Nyström points and for the two finer grids we use 18,176

points. We vary the accuracy of the SVD approximations by truncating at � � � E (svd-1),� � � �

(svd-2), and � � � � (svd-3). Table 8 summarizes the convergence study. Optimal rates
are obtained for the most accurate representation of the double layer. Figure 9 depicts the
exact solution and the error distribution. For the last example we do not have an analytic
solution, and we just plot the solution in figure 10. The boundary conditions are

� � � � � on
the enclosing curve, and zero on the internal domains.
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FIG. 7 Exact solution (color maps) and error distribution (top to bottom), for
� � < , � . � < ,and .�� � < ; the error plot for the .�� � < grid is omitted. The solution is a Poiseuille flow.
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FIG. 8 Exact solution and error distribution (top to bottom), for
� � < , � . � < , and . � � < ; the

error plot for the . � � < grid is omitted. The solution is the Stokeslet located at (0.5,0.7).
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FIG. 9 Exact solution and error distribution (top to bottom), for
� � < , � . � < , and . � � < ; the

error plot for the . � � < grid is omitted. The exact solution is a the body force flow.
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FIG. 10 Solution for a problem with Dirichlet conditions corresponding to a unit wind
flow, presented for two different geometries. The two bottom pictures depict the resulting
streamlines.
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TABLE 8
Convergence rates and pointwise accuracy for the 81-circle geometry and for the

“body-force” flow. Here (svd-1) is computed with 
7� � � � E , (svd-2) with 
=� � � � �

, and
(svd-3) with 
=� � � � � . Optimal convergence rates can be verified for svd-3.

svd-1 svd-2 svd-3
grid u p u p u p

� � < 5.89 � � � � < 7.72 � � � � � 5.65 � � � � E 4.76 � � � � 0 5.79 � � � � E 4.89 � � � � 0� . � < 2.65 � � � � < 5.53 � � � � � 2.38 � � � � � 5.54 � � � � < 1.68 � � � � � 1.57 � � � � <.�� � < 6.61 � � � � E 2.99 � � � � � 7.75 � � � � �

2.33 � � � � < 3.45 � � � � �

6.95 � � � � E
7. CONCLUSIONS AND EXTENSIONS

We have presented a second-order accurate solver for the Stokes operator defined on
arbitrary geometry domains. We use a hybrid boundary integral, finite element formu-
lation to circumvent the need for mesh generation. We employ an efficient double layer
formulation for the integral equations. The method requires two regular grid solves and
one integral solve.

We looked in detail the problem for which the boundary conditions for the velocities
given. The method extends to Neumann and mixed boundary value problems. The latter
case however, the integral equations require preconditioning.

We also presented scalability and convergence studies for both the regular and bound-
ary solvers. We have implemented an easy way to to accelerate the matrix-vector multipli-
cations required in the solution of the integral equation.

One restriction of the method as we presented it, is the stringent requirements on the
regularity of the boundary geometry. In the case of geometries with corners the singular-
ities can be resolved analytically and their contribution to the jump terms can be directly
evaluated at the stencil points. In 3D this is no longer possible. However this can be cir-
cumvented by replacing the jump computation by direct evaluation. For example the jump
terms can be computed to very high accuracy by plugging in the exact solution in the sten-
cils that cross the boundary. The exact solution can be obtain by direct evaluation of the
velocity. This will require adaptive quadratures—but only for the points close to a corner.

Another limitation of the EBI method is that it can be used only for problems with a
domain that can be partitioned to subdomains in which the fundamental solution is known.
The latter, however, does include problems with piecewise constant coefficients, and thus
EBI is suitable for a quite large class of problems.

Higher order accurate extensions are possible with further differentiation of the hydro-
dynamic density and use of high-order or spectral regular grid discretizations.

APPENDIX A: COMPUTATION OF JUMPS FOR THE STOKES OPERATOR

Here we show how the jumps on the velocities and pressures can be computed. We
use

��� � ���
to denote the jump of a function across the interface (exterior � interior). We

use � to denote Gateaux differentiation. We also assume that the curve parameterization���� 	 � �  is smooth enough (at least in � < ). We write �	 and �	 to denote the first and
second derivative with respect

�
. In order to derive the jumps for the pressure we first
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define a potential
�

corresponding to a solution of the Laplace operator:� ���  � � F � � H � 	 � < � � 	   � � 	  � � � �
Then

� ��� 
satisfies ���

�
� � , in 1 < � � with appropriate Dirichlet boundary conditions.

From potential theory we know that the extension of
�

outside � is discontinuous. More
precisely the following relations hold true:

��� � ��� � � � (27)��� �
� � H ��� �8�/ (28)

The first equation gives the zeroth order jump. To compute the first order jumps we differ-
entiate the first equation (with respect to

�
) and by the chain rule we obtain

��� �
� ���'� �	� �� (29)

for the tangential derivative. Equations (28) and (29) define a system with two equations
and two unknowns,

��� ��� � ��� � ��� ��� � ��� . Second order derivatives can be computed by taking
tangential derivatives, and the jumps in the Laplacian. Thus we obtain

��� �
� ��� �#�	� (30)��� � <

� ��� �	 � �	 � ��� � � ���	� �	� ��?� (31)��� � <
� ��� �	 � H � ��� � � ���'� �H �#�	 (32)

Now we have three equations with three unknowns:
��� � ��� � ���

,
��� � ��� � ���

,
��� � ��� � ���

.
The pressure jumps can be derived from the above relations. Since the discretization is

only first order accurate for the pressure, we only need zero and first order jumps. For the
double layer potential we have

� ���  � ' � @ � ���  ���. � � F � � � � H � 	 � < � � � . � @ � 	    � � 	   
Let

�
' be given by �

' � �. � � F � � �� < � '  �!� )%� � � . �
with � ' � � . � @ '  
Then

��� �
' � 0 � <

�
'
�
' �

and hence ��� � ��� � �
' � 0 � <

��� �
'
�
'
��� ;

that is the zeroth- and first-order jumps in the pressure correspond the sum of the first- and
second-order jumps of

�
' .

For the double layer formulation of the velocity we use similar relations with (27) and
(28). These relations can be derived by taking appropriate limits across the interface [46].
In fact, if the velocity is given by


 ���  � �� � F ���*�� < � � H � 	 � < � � 	   � � 	  �
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then the following interface conditions hold for the jumps across the interface:
��� 
 ��� ��@6� (33)��� " H ��� � ��� �%�'&(��� � � 
 � � 
 ,  H ��� ���/ (34)

In order to construct TESCs for the momentum and incompressibility equations we need
to compute

��� � 
 ��� and
��� � < 
 ��� . (We already have

��� � ��� and
��� � � ��� ). If we differentiate (33)

(with respect the curve parameterization
�
), we obtain:

��� � 
 ��� �	� �@6 (35)

Equations (35) and (34) give four equations with four unknowns
��� � 
 ��� . If we differ-

entiate once more and use the momentum equation balance we obtain ( 
 � � ) � � ) � � ,
H � � � � ��� � � )

� ��� �*
 ��� �$� ��� � � ��� �� ��� � < ) � ��� �	 � �	��� � < ) � ��� �	 � �	 � � �@�� ��� � 
 ��� �	=�� ��� � < ) � ��� �	 � H��� � < ) � ��� �	 � H �>� ��� � < ) � ��� �	 � � � ��� � < ) � ��� �	 � � � ��� � � ���	� �	D� ��� � � � 
� � 
 ,  ��� �H  
This system has six equations with six unknowns.

APPENDIX B: STENCILS FOR THE FEM DISCRETIZATION OF STOKES
EQUATIONS ON A REGULAR GRID

As discussed in Section 4.2 the finite element discretization on a regular grid is equiv-
alent to a finite difference discretization for a certain choice of stencils.

The stencils are shown explicitly in Figure 11.
Interior stencils a and d are second-order accurate. Stencils b and c are used only in

discretization of the stabilization term which has an extra scaling factor � < in front of it.
Although these stencils do not approximate Laplacian, because of the scaling factor the
terms in the equation corresponding to these stencils vanish as � � �  . Edge and corner
stencils for first derivatives e,f,g are only first-order accurate; however these stencils are
used only at the boundary in equations for pressure, hence do not affect the � < norm of the
truncation error.
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