
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Automatic Construction of Quad-Based
Subdivision Surfaces using Fitmaps
Daniele Panozzo, Enrico Puppo, Marco Tarini, Nico Pietroni, and Paolo Cignoni

Abstract—We present an automatic method to produce a Catmull-Clark subdivision surface that fits a given input mesh. Its control
mesh is coarse and adaptive, and it is obtained by simplifying an initial mesh at high resolution. Simplification occurs progressively via
local operators and addresses both quality of surface and faithfulness to the input shape throughout the whole process. The method
is robust and performs well on rather complex shapes. Displacement mapping or normal mapping can be applied to approximate the
input shape arbitrarily well.

Index Terms—Quadrilateral meshes, Subdivision surfaces, Displacement mapping, Mesh compression

F

1 INTRODUCTION

Subdivision surfaces have become of central interest
during the last few years, because of their high potential
in shape design and rendering. A major breakthrough
in this context comes from methods for fast evaluation
of subdivision surfaces [1] that, combined with recent
advances in GPUs [2], may support rendering with
unprecedented quality and speed [3]. Fine detail can be
added via displacement mapping [4]. With these meth-
ods, high resolution meshes are produced directly in the
graphics card, bypassing the limit of throughput from
main memory to GPU. Expectations are that subdivision-
based modeling will soon replace polygonal modeling
even for real-time applications such as videogames.

This approach is relatively straightforward as long
as shapes are created directly as subdivision surfaces
[4]. However, many shapes come as polygonal meshes
at high resolution, e.g., built by range-scanning real-
world objects, or as iso-value surfaces, or by tessellating
implicit surfaces, etc. Range scanning is customary in
cultural heritage applications; and during production of
animation movies and videogames, plaster mock-ups are
created by artists prior to being modeled through CAD.

Hence, the problem of converting an input mesh at
high resolution into a subdivision surface with a coarse
control mesh, possibly enriched with a displacement
map or normal map. This problem involves issues from
two other sub-problems, which have been studied in-
dependently in the literature: creating a coarse mesh

• Daniele Panozzo and Enrico Puppo are with the Department of Computer
and Information Sciences, University of Genoa, Genoa, Italy.
E-mail: lastname@disi.unige.it

• Marco Tarini is with the Department of Computer Science and Commu-
nication, University of Insubria, Varese, Italy
E-mail: tarini@isti.cnr.it

• Nico Pietroni and Paolo Cignoni are with the Visual Computing Lab, ISTI-
CNR, Pisa, Italy.
E-mail: firstname.lastname@isti.cnr.it

to approximate a given shape; and fitting a surface to
a shape, for a given connectivity of its control mesh.
Displacement or normal mapping also require that the
output surface can be projected to the input shape. In this
work we show that tackling the original problem as a
whole leads to better results than combining techniques
aimed at resolving each of the sub-problems.

1.1 Adaptivity vs regularity

The primary application we address here is fast GPU
rendering of displaced subdivision surfaces. To this aim,
it is important that the control grid of the subdivision
surface is made of as few patches as possible, while pre-
serving the overall shape, and that displacement map-
ping is used just to add fine detail. For natural objects
with details at different scales, such as the Armadillo
shown in Figure 1, the contrasting objectives of having a
good fit and a coarse control mesh can be achieved only
if the mesh is adaptive. While techniques for adaptive
triangle-based meshing can be considered a consolidated
subject, producing an adaptive quad-only mesh for a
given shape is still a challenging task: not only the mesh
(in fact, its limit surface in our case) should fit the input
shape, but also its connectivity, as well as the shape of
its patches, should be as regular as possible. Adaptivity
and regularity are highly contrasting objectives: tran-
sition from coarse to fine patches requires introducing
some irregular vertices, or warping the shape of some
quads, or both. Several works have been proposed in the
literature recently that address the problem of producing
a quad mesh that approximates a given input shape well
while being made of regular faces, which are possibly
aligned either with lineal features, or with a cross field
defined on the surface [5], [8], [9], [6]. Such methods
achieve very good results in terms of regularity of the
mesh (see, e.g., the first two examples on the left in
Figure 1), but they are intrinsically not adaptive, thus
requiring many more faces to achieve the same quality

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Mixed Integer [5] PGP [6] VSA [7] OUR approach
2184 patches 1600 patches 534 patches 476 patches

Fig. 1. Subdivision surfaces approximating the Armadillo (original mesh 345k triangles) obtained from control meshes
produced with different methods. Our approach gives a much better approximation by using fewer patches, thanks to
adaptivity.

of approximation. This is especially true for objects with
intricate geometries that are difficult to represent via
displacement mapping (see, e.g., hair curls in the David
head in Figures 5, 7): lack of adaptivity leads either to
artifacts, or to meshes with many tiny faces even on
smooth regular areas. For these reason, in this work
we trade some regularity for adaptiveness. Our method
combines tools for progressive mesh simplification based
on local operations, together with tangential smoothing
to keep a regular shape of patches, and subdivision
surface fitting to keep the limit surface close to the input
shape. Such ingredients are not used independently in
separate stages, but they are combined in the context of
an integrated framework, in order to take into account
all aspects of the problem throughout the whole process.

1.2 Objectives

Given a triangular input mesh M , we strive to build
a quad-based control mesh K with a limit surface SK

through the Catmull-Clark (CC) subdivision scheme [10],
such that surface SK approximates surface M , with the
following requirements:

(I) Conciseness: the number of faces of K is small;
(II) Regularity: most vertices have valence four, and

patches have nearly right angles;
(III) Accuracy: the difference between SK and M is

small;
(IV) High projectability: The great majority of points of

M can be reached from SK by projection along the
surface normal.

Conciseness relates to rendering efficiency, ease of edit-
ing, minimization of memory consumption, etc. Regu-
larity relates to the quality of the meshing that can be
obtained with a regular sampling of SK (e.g., performed
at rendering times). Accuracy relates to the quality of
generated geometrical approximation: it implies not only

that positions of vertices of K are carefully chosen, but
also that K is tessellated adaptively. Finally projectability
is very important for several techniques in computer
graphics: in practice it means that any attribute of M
(e.g., per vertex color or normal) can be stored as tex-
ture maps associated to faces of K. Moreover it also
means that M can be faithfully reproduced from SK via
displacement mapping in the normal direction, which
requires storing just a texture of scalar offsets for each
patch. Ideally, one wish to have perfect projectability, i.e.,
the projection along surface normal defining a bijection
between SK and M . However, since the input can be
affected by noise and/or contain detail at arbitrarily
high frequency, such a strict requirement may prevent
building coarse control meshes. For this reason, we allow
for some loss of projectability, which can be controlled by
the unique parameter used in our method, as a trade-off
for improving adaptivity and coarseness of the output
mesh.

1.3 Contribution

Our contribution can be summarized as follows:
• We present an integrated approach that incorpo-

rates both the automatic construction of a pure-
quad, concise and semi-regular control mesh, and
the optimization of its related CC subdivision sur-
face, in terms of both projectability and accuracy
with respect to the input shape. To the best of our
knowledge, this is the first method to produce a
pure-quad control mesh while addressing quality of
subdivision fit during mesh construction. The only
other attempts in this direction have been proposed
in [11] for triangle meshes and Loop surfaces and
in [12] for T-meshes and T-splines.

• Our method is fully automatic and ”one-click”: it
takes in input a geometric mesh and it builds a

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

coarse CC subdivision surface through progressive
simplification of its control mesh.

• Mesh simplification is driven from an innovative
and effective heuristic, which is based on an static
analysis of the input made during preprocessing: a
pair of scalar fields, called a Fitmap, are computed
on the input mesh, which roughly estimate for
each vertex of the surface, how well the mesh can
be locally modeled with patches, in terms of both
geometric error and projectability. This allows us
to avoid performing cumbersome geometric tests
during the simplification process. This approach is
fairly general and probably it can be adapted to any
other form of parametric surfaces, as well as to the
simpler case of polygonal mesh simplification.

• We experiment our method on several meshes, rep-
resenting objects with various topologies and details
at different scales. We compare our results to CC
subdivision surfaces obtained by first building a
quad mesh with other state-of-the-art methods, and
then using such meshes for subdivision surface fit-
ting and displacement mapping. Our results clearly
outperform those obtained with the other methods.

• Our control meshes contain about two orders of
magnitude less faces than the input meshes, thus
our method works also as a shape compressor.
In fact, displaced subdivision surfaces can be effi-
ciently encoded as a control mesh plus single chan-
nel, highly compressible, displacement textures.

2 RELATED WORK

The literature on surface fitting is immense and its
review is beyond the scope of this paper. Dozens of
algorithms tackle exclusively the task of geometric fitting
a subdivision surface starting with a control mesh with
known connectivity. See, e.g., literature reviews in [13],
[14], [15]. We adopt a rather standard approach for
solving this problem [16], which is orthogonal to our
contribution. In this review we rather focus on methods
that address the problem of automatically building a
suitable control mesh.

2.1 Simplification and fitting
The problem of finding a coarse subdivision surface that
fits an input mesh has been studied in the past for the
case of triangle-based subdivision surfaces. Hoppe et
al. [17] first simplify a triangle mesh, then they build
a control mesh for Loop subdivision by optimizing
vertex positions; further simplification is performed by
alternating local operators for mesh simplification and
geometric optimization. Later on, Lee et al. [11] combine
this approach with displacement mapping. To this aim,
they address approximated projectability during simpli-
fication.

Similar simplify-then-fit approaches have been pro-
posed in [13], [18], [15]. Beside simplification, some of
these methods consider refining the control mesh via

local operations, such as edge split and edge swap,
to improve portions of surface affected by large error.
Conversely, Suzuki et al. [19] adopt a semi-automatic
approach based on refinement of a given, manually built,
coarse mesh. Kanai [20] modifies the QEM method [21]
to perform mesh simplification by taking into account
the position of points sampled from the limit surface of
a Loop subdivision.

It is not clear how such algorithms could be extended
to work on quad-based subdivision schemes. However,
following the same simplify-then-fit approach, other
known techniques could be adopted to produce a coarse
control mesh of quads.

Boier-Martin et al. [22] and Cohen-Steiner et al. [7]
propose clustering algorithms that generate coarse and
adaptive polygonal meshes. Such algorithms take into
account projectability to some extent, as clustering is
driven from alignment of face normals. Resulting meshes
can be quite coarse, but also irregular, containing faces
with concave boundaries and many edges. Such faces
can be decomposed further to obtain semi-regular quad
meshes, but this process usually increases their number
for about one order of magnitude (see also Section 4).

Similarly Marinov and Kobbelt [23] use a face-merge
method to compute a coarse polygonal mesh, by also
taking into account normal projectability to the input.
Again, they diagonalize each polygonal face at the end of
the process, to obtain a quad-dominant control mesh for
Catmull-Clark subdivision, and they compute a normal
displacement map from it. Lavoué and Dupont [14] use
VSA [7] to build a polygonal control mesh of hybrid tri-
quad subdivision surfaces for mechanical objects.

2.2 Polygonal remeshing and simplification

Strictly related with the above topics there are various
simplification and remeshing algorithms designed to
target quad (or quad-dominant) meshes.

Remeshing algorithms, such as those proposed in [5],
[6], [8], [9], replace an input mesh with a semi-regular
quad (or quad-dominant) mesh, which can represent
the same shape with arbitrarily good accuracy. Since all
these methods are aimed at achieving face uniformity,
they are inherently not adaptive, thus it is hard to apply
them with the purpose of drastic simplification. For
instance, in the Mixed Integer method [5] grid step is
set by the smallest distance between cone singularities
of a smooth guidance field computed on the input. Such
a distance is likely to be quite small on complex natu-
ral shapes. In these cases, drastic simplification can be
achieved only if cone singularities are placed manually
(see also Section 4). Myles et al. [12] use T-meshes to
obtain a small number of adaptive patches while pre-
serving regularity and alignment, but the representation
scheme (T-splines) is much more complex.

Algorithms for progressive simplification of quad
meshes [24], [25], [26] are based on sequences of small
operations combined with tangent space smoothing.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

Fig. 2. The reference mesh M , the control mesh K and
the subdivision surface SK ; a vertex v of K has its limit
position at s(v) and NS is the normal at the limit point.
Projection φ of SK to M is a normal displacement.

Such algorithms usually aim at obtaining a mesh with
good quality, in terms of shape of faces and vertex va-
lencies, while quality of approximation and adaptiveness
are usually addressed only indirectly.

We would like to remark that all the above meth-
ods are designed to produce general coarse polygonal
meshes, rather than control meshes meant to be subdi-
vided. As such, they provide direct control neither on
the quality of the subdivision surface, nor on normal
projectability to the input data.

We adopt a framework similar, in concept, to [26],
interleaving local simplification with a smoothing phase.
Our criteria to drive both local and global operations
are rather different, though: we address both accuracy
and adaptivity by introducing Fit-Maps, a guidance field
derived from a pre-analysis of the mesh designed to
drive the selection of operations (see Sec. 3.1); we push
on adaptivity, because the coarse mesh we produce is
intended to be the base of an higher order surface; we
reduce the set of local operations down to just one
simplification operator (diagonal collapse), one cleaning
operator (doublet removal) and one optimization operator
(edge flip)—also, we make a different use of the latter (we
employ it to explicitly increase regularity); finally, in our
case the smoothing phase is completely different, as it
combines tangent space smoothing with local fitting, so
to obtain a better approximation.

3 THE ALGORITHM
We take in input a mesh M and we want to build a CC
subdivision surface SK , with control mesh K, that fits
M according to requirements stated in Section 1.2.

We start with a subdivision surface interpolating M at
all its vertices, and we progressively simplify K through
local operations. Let v be a vertex of K: s(v) denotes its
limit position on SK ; NS(v) denotes the surface normal
at s(v); φ(s(v)) denotes the projection of s(v) to M along
direction NS(v). Symbols are summarized in Figure 2.

The algorithm has the following outline:
1) Analyze input mesh M and compute its Fitmap,

which is made of a pair of scalar fields that will be
used to drive simplification during Step 3 (Sec. 3.1);

2) Compute initial control mesh K, having the same
connectivity of M , and such that SK interpolates
the vertices of M (Sec. 3.2);

3) Iteratively process control mesh K. At each step:
a) Perform a diagonal collapse, followed by edge

swaps and/or cleaning operations, if appropriate
(Sec. 3.3);

b) Fit and smooth positions of vertices in the area
affected by the previous operation(s) (Sec. 3.4);

4) Globally fit SK to M (Sec. 3.5).
We describe our method to work on a watertight

model, its extension to models with boundary being just
straightforward. We assume M to be a discrete represen-
tation of a smooth manifold. Smoothness is intended in
a relaxed sense here: meshes with sharp edges can also
be taken in input, but they will be treated as discrete
approximations of smooth manifolds containing zones
with very high curvature. Since we model our output
with smooth CC surfaces in output, some smoothing
of sharp creases is unavoidable, and this represents a
limit of our current method. See Section 5 for a possible
extension to explicitly represent sharp creases.

Throughout the algorithm, we adopt the method pro-
posed by Loop and Schaefer [1] to evaluate the limit
point s(p) and its surface normal NS(p) for an arbitrary
point p sampled on control mesh K. A spatial index on
M is used to support ray-casting to evaluate function φ.

3.1 Mesh analysis
During Step 3 of the algorithm, we need a mechanism
to select local operations, as well as a halting criterion.
The general idea is that conciseness is achieved through
simplification, which should proceed as long as the
surface maintains acceptable regularity, accuracy and
projectability. Therefore, we wish to select, at each itera-
tion, the local operation that best preserves such criteria.
Regularity is somehow easy to test on a local basis, and
it is addressed explicitly by the edge swap operations
performed in Step 3a and by smoothing performed in
Step 3b. On the contrary, variations in accuracy and
projectability are very expensive to test, involving sur-
face fitting and normal projection of the portion of mesh
affected by an operation. For this reason, we rely on an
analysis of the input mesh, both to drive the selection of
collapse operations and to halt simplification.

The general idea is to estimate, for each point p of
the input mesh, how well neighborhoods of p can be
modeled, in terms of accuracy and projectability, by
using a single patch. This analysis provides a rough
estimate of how patches generated during simplification
should behave.

3.1.1 Fitmaps
A Fitmap consists of a pair of values for each point p of
a surface M : the S-fitmap (“Scale” fitmap) estimates how
the RMS error of fitting a patch P to a neighborhood B
of p increases with radius of B; the M-fitmap (“Maximal
radius” fitmap) estimates how much a patch P can
extend around p before correct projection of P to M
through normal displacement becomes impossible. The

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 3. The two channels of the Fitmap (S-fitmap upper; M-fitmap lower), together with subdivision surfaces built by
our method, with patches outlined: adaptive distribution of patches follows the Fitmap. Color coding is depicted at the
bottom left (d is 1% of the bounding box diagonal): color of the S-fitmap (left) represents the coefficient a of the model
of RMS residual; color of the M-fitmap (right) corresponds to size limit for the patch.

Fitmap is computed at vertices of M and extended by
linear interpolation to its faces (See Figure 3).

The Fitmap of mesh M can be interpreted as a pre-
scription on the patches of an ideal approximation S:
• The local radius of each patch of S should be

inversely proportional to the value of the S-fitmap
computed at its central point;

• No patch of S should have a radius larger than the
value of the M-fitmap computed at its central point.

The first condition aims at distributing error evenly,
while the second condition aims at preserving pro-
jectability.

3.1.2 Building the S-fitmap
In order to estimate the S-fitmap FS , we proceed as
follows. For each vertex p of M , we consider neighbor-
hoods Bp,i of p of increasing radii ri, for i = 0 . . . h. For
each i, we collect all vertices of the input mesh in Bp,i:
vertices are gathered with a breadth-first traversal of M
starting at p; for simplicity, we use Euclidean distance
instead of geodesic distance to stop the search. In all our
experiments, we set h = 8, r0 equal to the average length
of edges of M , rh equal to 1/4 the length of the diagonal
of the bounding box, and we distribute the other radii
on an exponential scale.

Next, we express Bp,i as the graph of a bivariate
function, on a local frame defined with tangent plane
at p, and we fit a cubic polynomial to its vertices. Cubic
polynomials serve as an easy and conservative surro-
gate to the more general bicubic patches that constitute
our output surface S, as they are easy to fit and they
are independent of the orientation of the local frame.
Roughly speaking, we are assuming that bicubic patches
of S will do at least as well as we can do with cubic

polynomials. Vertices of Bp,i are expressed in the tangent
frame (u,v,n) at p, u and v being mutually orthogonal
tangent directions at p and n its normal. Surface Bp,i is
then expressed as the graph of function gp,i : R2 → R in
the tangent frame, and a linear least squares problem is
resolved to fit a cubic polynomial g̃p,i(u, v) to vertices of
Bp,i. We measure the RMS residual as

E(ri) =
1

np,i

√√√√np,i∑
j=1

(g̃p,i(uj , vj)− nj)2,

where summation is run over all vertices (uj , vj , nj) of
Bp,i, and np,i is their number.

The sequence of E(ri) values for i = 0 . . . h provides a
sampling of how the RMS error grows in the neighbor-
hood of p. Now, we need to compress information into a
single scalar value. To this aim, we model error increase
as a function of radius r. Without loss of generality,
assume function gp (i.e., the surface M expressed in the
tangent frame of p) admits a Taylor expansion. Let T3
be the cubic Taylor polynomial of gp centered at p. Then
the error of approximating gp with T3 at a single point
at distance r from p belongs to O(r4). Now the RMS
error ET3

of T3 is computed by integrating the square
error over the circle of radius r, computing its square
root and normalizing this by the area of the circle. It
readily follows from integration and normalization that
also ET3

belongs to O(r4). Let E(r) be the RMS error of
the best fitting cubic polynomial g̃p,r, then we will have
E(r) ≤ ET3

(r) ∈ O(r4), i.e., E(r) ≤ ar4 for some a > 0.
Thus, we model error with a simple function E(r) = ar4.
Having collected h measurements of errors at different
radii ri, we fit (in the least squares sense) such function
to these values to estimate parameter a. We have also

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

validated this error model with empirical tests: we have
fitted functions of the type ark for various values of k
to sampled error measures; the best average fit to actual
errors was consistently obtained for k = 4 on all datasets.

We set the value for the S-fitmap FS(p) to a1/4, so
that we obtain a function that increases linearly with
the radius. In this way, if two patches centered in p0,
p1 have radii r0 and r1, respectively, they contribute
approximatively the same error if the values of r0 ·FS(p0)
and r1 · FS(p1) are equal.

3.1.3 Building the M-fitmap
The M-fitmap FM is built together with the S-fitmap. For
a given neighborhood Bp,i of radius ri, we sample g̃p,i
and we use a spatial index to cast a ray from each sample
point along its surface normal (computed analytically
from g̃p,i) to M . Samples are distributed randomly on
the neighborhood and their number is 4nM

|Bp,i|
|M | , where

nM is the number of vertices of M , |M | is its total area
and |Bp,i| is the area of the neighborhood. In this way,
the density of samples is roughly twice the density of
vertices of M . We flag each triangle hit by a ray and
we count the percentage of triangles in the spanned
neighborhood that are not hit by any ray, which are
(conservatively) classified as flipped faces. The value of
FM (p) is set to the largest tested radius at which the por-
tion of neighborhood covered by flipping faces is smaller
than a “tolerance” threshold τ . Parameter τ can be user-
defined, depending on the amount of high frequency
noise expected in the input mesh, or on the amount of
3D high frequency detail that could be ignored, to avoid
an excessive fragmentation of patches. Parameter τ is the
only parameter used by our simplification method, and
it can be used to trade-off between projectability and size
of the simplified surface.

3.2 Building the initial control mesh

We first apply a tri-to-quad conversion algorithm [26]
to transform the reference mesh M into a quad mesh
Mq having the same set of vertices. We set initial control
mesh K to the same connectivity of Mq , while placing
its vertices to have the limit surface SK interpolate the
vertices of M . This is done by resolving a sparse linear
system

LVK = VM , (1)

where VM is the vector of positions of vertices of M , VK
is the vector of (unknown) positions of vertices of K, and
L is the limit subdivision matrix, which is determined
by the connectivity of K and by the subdivision masks.
Because of its sparsity, this system can be solved easily
and efficiently with any sparse solver, even for meshes of
large size [27]. We rather adopted a simple natural fixed
point iterative method, which displaces each control
point towards its limit position until convergence. This is
perhaps not the fastest available method, but it is very
simple as it does not require to manipulate L directly,

Fig. 4. The set of local operators. See details in Sec. 3.3.

and it is sufficiently fast for our purposes. In fact, this
phase takes just about one second for the largest mesh
we have processed. Besides, it has the advantage to be
also applicable locally: we will exploit this feature during
vertex optimization (see Section 3.4).

Next, we define a mapping φ from the subdivision
surface SK to M for every point p ∈ SK by taking the
closest point of M intersected by a ray cast from p along
its normal NS(p).

3.3 Local operations
We use a subset of local operators that have been in-
troduced in [26] to modify control mesh K throughout
simplification (see Fig. 4). We have found this subset to
be sufficient and effective for our purposes, the quality
of results being not different from those obtained with
the complete set of operators, while implementation is
simpler and more robust. The criteria for applying op-
erators during simplification, which are rather different
from those in [26], are discussed in the following.

3.3.1 Diagonal collapse
This is the main operator used to reduce mesh complex-
ity. It eliminates a quad q, two edges and a vertex, by
collapsing one diagonal of q.

We maintain a heap of potential collapses, which is
kept up-to-date throughout the simplification process.
Cost of collapsing a diagonal d is given by |d| · FS(φ(c)),
where |d| denotes the length of d, c is the center of
the patch containing d, and φ(c) is its projection to M .
Collapses are prioritized according to least cost.

Collapsing an element causes its neighbors to expand.
Systematically executing the least expensive collapse
causes survivors to have a size proportional to the in-
verse of the S-fitmap, thus producing patches of variable
sizes, yet yielding a roughly uniform distribution of the
approximation error, as depicted in Figure 3. At the same
time, where S-fitmap is nearly uniform, equality of diag-
onal lengths tend to favor rectangular patches. Note that
the contrasting objectives of tessellation adaptivity and
of patch regularity are sought together, with a natural
trade-off, by operating a single criterion on lengths.

The M-fitmap is used to try avoiding collapses that
hinder projectability. Given a potential collapse, we eval-
uate the M-fitmap at the center of surrounding patches
that the collapse would extend. We perform the collapse
only if, at each such patch, the M-fitmap is smaller than

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

its diameter, measured as the maximal distance between
its center and one of its corners. Simplification is halted
when no feasible collapses remain.

The vertex generated from a collapsed diagonal is set
to its midpoint, prior to optimization (see Section 3.4).

3.3.2 Edge swap

This operator is used to improve the quality of the mesh.
It substitutes an existing edge e with one of the other
two diagonals of the hexagon formed by the two quads
incident at e. Edge swaps have also the side effect of
modifying lengths of diagonals, effectively driving the
selection of local operations to be performed next.

After performing a diagonal collapse, we consider all
faces in the 1-ring of the collapsed element and we test
all their edges for potential swap. A swap operation is
performed if it improves the valencies of vertices (note
that this criterion is rather different from the one adopted
in [26]). Given an edge e, let v1, . . . , v6 be the vertices
bounding the pair of faces incident at e. We measure the
valence D(vi) of each such vertex and we set an energy∑6

i=1 |D(vi)− 4|. We swap e if and only if such a swap
decreases this energy. In this way, we tend to increase
the number of regular vertices of K.

3.3.3 Doublet removal

Collapse and swap operations may generate doublets,
i.e., configurations where two adjacent quads share two
consecutive edges, which join at a vertex with valence
two. Doublet-removal is applied to eliminate a doublet
as soon as it appears, by simply merging the two quads.

3.4 Local optimization of vertex positions

We wish to maintain surface SK close to M throughout
the simplification process. We do not need to warrant
accurate fit, though, since this is done just on the final
mesh, during Step 4 of the algorithm (see Section 3.5).

After each diagonal-collapse (and edge-swap and
doublet-removal operations potentially triggered by it),
positions of all affected vertices of K must be updated
to re-fit SK to M . Let W ⊆ K be the portion of mesh
directly affected by the last local operation(s), plus all
the mesh spanned by its 1-ring. We resolve system (1)
with only the vertices in W as unknowns, while freezing
the remaining vertices of K. As W usually contains few
dozens vertices, this operation is very fast. This is just an
approximation: limit points of vertices in W interpolate
M , but vertices in the 2-ring of W may be perturbed
and leave M . However such perturbation is generally
irrelevant to subsequent processing.

A better approximation to fit could be computed by
using the least squares fitting algorithm described in the
following subsection, by sampling just faces of W and
using just vertices of W as unknowns. However, this
solution is more time-consuming and we did not notice
any relevant benefit in terms of final result.

In order to obtain more regularly shaped patches, we
interleave local fit with Laplacian smoothing: each vertex
w ∈ W is moved midway between its current position
and the average of centroids of its incident faces, before
being displaced to interpolate M . We empirically found
that alternating smoothing and fitting twice is sufficient.

The combined effect of Laplacian smoothing and local
fit is equivalent to smooth the vertices of SK in tangent
space, without leaving the surface of M (similarly to [26],
but without the need for a parametrization). This greatly
improves the shape of patches.

3.5 Final fitting
After the connectivity of control grid K has been
obtained through simplification, a more accurate and
global fitting process is run over the entire K. In this
phase quality is crucial, therefore, following [16](2.3.3),
we add extra equations to the system (1) to enforce that
not only vertices of SK but also points sampled inside
its patches are close to M . Each patch of the limit surface
is sampled with a number of points proportional to its
area. Let |P | be the area of patch P , |M | be the total area
of M and n be the number of its vertices. We sample
P on a k × k regular grid in its parametric domain,
where k = b

√
n |P ||M |c. The limit surface corresponding

of each face f of K is evaluated as a Bézier patch,
whose coefficients are a linear combination of vertices
in the 1-ring of f [1]. Let p be a point sampled on
f , with parametric coordinates (u, v). The position of
s(p) on the limit surface is defined in terms of (u, v)
and of the coefficient of the Bézier patch s(f). This
allows us filling the corresponding row of matrix L in
system (1). Projection φ(s(p)) of s(p) on M is used as
a target position for s(p), which is plugged into the
corresponding position of column VM in system (1). The
resulting overdetermined sparse linear system is solved
in the least squares sense using a sparse solver from the
Eigen library [27].

A better fit could be probably obtained by using
a more advanced technique, e.g., based on the square
distance minimization (SDM) introduced in [28]. However,
control mesh simplification is independent on the tech-
nique used for final fitting, thus we did not explore this
possibility so far.

4 EXPERIMENTAL RESULTS

The proposed method was tested on several datasets
coming from range scanning. Some results are shown
in Figure 8. In Table 1, we provide statistics in terms of
the four requirements outlined in Section 1.2:

1) Conciseness is reported as the number of patches of
surface SK (faces of K) with respect to the number
of faces of M ;

2) Accuracy is reported as the RMS error of approxi-
mating M with either SK , or its normal displaced
surface;

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

PGP [6] MI (w/ manual cones) [5] OUR approach Original mesh
616 patches 542 patches 774 patches 98K triangles

Fig. 5. Comparison of displaced subdivision surfaces of the David’s hair. Because of higher projectability, we produce
a more accurate approximation of the original mesh using a similar number of patches. In this example patches are
sampled uniformly 10× 10.

Fig. 6. Comparison of error distribution of the Limit
surface for the meshes built with MI and our approach
as reported in table 1 with a and b.

3) Regularity is reported as the number of irregular
vertices in the control mesh K;

4) Projectability is reported as the percentage of surface
M that is not reached correctly by normal projection
from SK (0.0% means perfect projectability).

Parameter τ of the M-fitmap, as defined in 3.1.3, is
used to obtain more or less simplified meshes, depend-
ing of the tolerance on the loss of projectability: higher
tolerances allow for more drastic simplifications. The set
values turned out to be very conservative in practice. As
shown in table 1, we used tolerances of 1% and 10%,
but the projectability of results is always larger than
99%, except for the David dataset which shows 4% of
non-projectable surface if the tolerance is set at 10%.

Fig. 7. A subdivision surface made of just 20 patches
obtained from the original mesh of 50,446 triangles by
deactivating tests on the M-fitmap. The overall shape
is still preserved but relevant artifacts appear due do
severe loss of projectability. Surface without (left) and with
displacement mapping (right) - see artifacts on hair and
ear.

Overall, our meshes achieve better projectability than
those produced with other methods, for a comparable,
and sometimes even much smaller, number of patches.

Subdivision surfaces with a relatively large number
of patches, which can be obtained by setting a small
tolerance for the M-fitmap, or by stopping simplifica-
tion before its completion, approximate the input shape
well even without displacement. In such cases, normal
mapping is sufficient to achieve a reasonably good qual-
ity of rendering. Conversely, even drastically simplified
surfaces made of few patches can achieve almost perfect
quality through displacement mapping.

In order to test the effectiveness of the M-fitmap to
prevent losing projectability, we have run some experi-
ments by inhibiting tests on the M-fitmap, thus allowing

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Mesh Alg. �K Irreg. Unp. RMS Error
(M) vert. (%) L D
Garg. PGP 742 127 0.3 4.05 0.23
(49k) MI 2904 83 0.0 1.00 0.02

VSA 2946 816 0.1 1.46 0.06
1% 1096 345 0.0 2.36 0.07
10% 493 182 0.4 4.50 0.15

* 2897 821 0.0 1.32 0.03
Moai PGP 830 61 0.0 1.30 0.20
(52k) VSA 240 61 0.0 2.62 0.13

1% 92 30 0.0 5.00 0.12
10% 41 16 0.0 8.22 0.18

Bunny PGP 1042 114 0.0 1.98 0.13
(69k) VSA 450 104 0.0 3.03 0.11

1% 506 216 0.0 3.41 0.08
10% 218 72 0.0 8.48 0.14

Fert. PGP 3784 176 0.0 0.34 0.04
(80k) MI 3357 48 0.0 0.28 0.10

VSA 2772 739 0.2 2.16 0.03
1% 489 194 0.0 2.35 0.04
10% 323 130 0.6 5.10 0.40

* 3352 956 0.0 0.13 0.005
David PGP 616 108 4.9 5.70 1.08
(98k) MI 39K 261 0.0 0.24 0.08

(MI) 542 8 3.9 4.96 0.45
VSA 1348 349 0.8 3.80 0.16
1% 1603 496 0.2 3.29 0.07
10% 375 145 3.0 9.09 0.43

Arm. PGP 1600 231 13.2 11.03 5.86
(345k) MI 2184 74 0.8 a 3.32 0.19

VSA 534 143 2.3 8.24 1.29
1% 1402 466 0.1 2.46 0.07
10% 476 258 0.3 4.48 0.12

* 2170 773 0.1 b 2.35 0.08

TABLE 1
From the left: name of input mesh (number of triangles);
method used to produce the control mesh (percentages
refer to our method with different values of parameter τ

of the M-fitmap; (MI) refers to the MI method with manual
placement of cone singularities); number of patches �K

in the final control mesh; total number of irregular
vertices; portion of the input mesh that is not reached
correctly by normal projection from the limit surface;
RMS error (in 1000th of the diagonal of the bounding
box) by using either the limit (L), or the displaced (D)

subdivision surface. The line denoted with the (*) refers
to a model built with our approach and with a number of

patches similar to the MI output.

all collapses to be performed. The process is stopped
manually after very drastic simplification. As shown in
Figure 7, an extremely simple subdivision surface made
of just 20 patches is still able to give a reasonable recon-
struction through displacement mapping, but relevant
artifacts appear.

The proposed method works with real world objects
of medium resolution. In case a subdivision surface, with
a reasonably small number of patches, is to be extracted
from a large high resolution mesh M , it is possible to
compute the Fitmap (and the spatial index necessary

for ray casting) on the original mesh M , while starting
simplification from a simplified mesh M ′ with a smaller
size, which can be computed with any standard program
for triangle mesh simplification. The control mesh K
is initialized on the basis of M ′, but all computation,
including fitting and mapping, is referred to the original
mesh M . We followed this approach for running exper-
iments on the Armadillo dataset, starting with a mesh
M ′ with about 100K triangles.

The technique is somehow time consuming, partly
because the code was not optimized for fast prototyping.
However, timings reported in Table 2 are reasonable
considering that this is a pre-processing computation.
See Section 5 about possible optimizations.

Dataset name and size
Gargo Moai Bunny Fert. David Arm.

Times (secs.): 40K 53K 70K 80K 99K 98K
Fitmap 69 149 293 332 454 442
simplif./fit 486 592 780 722 1320 1360

TABLE 2
Running times in seconds for computing Fitmaps, and for

simplification and subdivision surface fitting.

4.1 Comparison with literature

We compare our results against the ones obtained by
first computing a control mesh with alternative meth-
ods, then fitting a Catmull-Clark surface with the algo-
rithm described in Section 3.5. We tested two remeshing
algorithms, Mixed Integer (MI) [5] and Periodic Global
Parametrization (PGP) [6], and one clustering method,
Variational Shape Approximation (VSA) [7].

PGP meshes have been computed with the publicly
available Graphite software, extracting the coarsest pos-
sible mesh with standard parameters. Since produced
meshes containts triangles, one step of Catmull-Clark
subdivision was needed to remove them.

MI meshes (provided by the authors of [5]) are avail-
able only for some datasets. In the David dataset MI
places a large number of cone singularities in areas
containing small features (hair curls), so that model
cannot be coarsened below 39K quads. A much coarser
version has been produced by manually placing just 8
cone singularities.

VSA meshes were produced with a software provided
by the authors of [6]. The process is semi-automatic:
the user chooses the number of seeds and when to
stop optimization. We have tried to roughly match the
coarseness of meshes extracted with our method, or the
coarsest which could be obtained before results differed
too much from the input mesh for the fitting algorithm
to work. Again, one step of Catmull-Clark was necessary
to get rid of triangles in the in resulting models.

Results show that our method is consistently able to
obtain much coarser meshes than competitors. In most

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

cases the number of quads is lower by about one order
of magnitude with respect to other methods, yet perfect
or almost perfect projectability is maintained.

To assess accuracy, in table 1, the RMS error of limit
and displaced surface is measured in 1000th’s of the
bounding-box diagonal of the object (in each experiment,
the displacement maps are obtained by sampling each
patch with a fixed resolution chosen so that the total
number of samples roughly matches the number of
vertices of the original mesh). For sake of comparison, in
a few experiments we forced our Fitmap based approach
to produce base meshes with a face-count similar to the
best competitors (rows marked with a ∗ in tab. 1). The
results show a comparable, often better, RMS error ob-
tained with our method. Moreover, visual comparisons
(e.g. Fig. 1) and error distributions (Fig. 6) reveal that
our method better preserves local small scale features,
something that the RMS error fails to clearly detect,
being averaged over the entire surface. Again, we stress
that one strength of our method consists in the ability
to reduce the face-count of base mesh drastically more
than other methods can, while preserving good accuracy
and projectability.

In terms of regularity, comparison yields mixed re-
sults. Note that, with our method, presence of a few
extra irregular vertices is implied by the adaptiveness of
the tessellation, as irregular vertices are unavoidable in
zones of transition among different levels of detail (e.g.
from the back to the arm to the fingers in the Armadillo,
or from the cheek area to the hair area of the David). The
MI gives fewest irregular vertices with some datasets
(Gargoyle, Fertility and Armadillo), and a comparable
number with the David (unless, predictably, singularities
are placed manually). Our method performed compara-
bly with PGP and VSA, resulting in more regular or less
regular results depending on the dataset and the used
parameters. Highly irregular vertices (valency > 5) are
very rare with our method (unlike, for example, with
VSA). VSA and MI in some cases also generated doublets
(valency 2 vertices), whereas our method is bound to
never output them.

5 CONCLUDING REMARKS

We have presented a fully automatic method for build-
ing a coarse control mesh for approximating an input
shape with a Catmull Clark surface. Our method pro-
duces surfaces with low complexity, good quality and
accuracy, and almost perfect projectability. In contrast
with standard quad-simplification and quad-remeshing
approaches, our method explicitly works on a control
mesh for subdivision, and the limit surface is targeted
throughout the process. To our knowledge, this is the
first method to address the problem in this integrated
way, in the context of quad-based subdivision surfaces.

A key issue here is adaptiveness of patch density to
geometrical complexity. To this aim, we have introduced
Fitmaps, which provide an a-priori estimation for the

ideal localized patch densities. Fitmaps demonstrate to
be very effective at driving the local simplification pro-
cess to build better control meshes that adapt locally
and concisely to fine details. The concept of Fitmaps can
probably be adapted to any other form of parametric
surfaces, as well as to the simpler case of adaptive mesh
simplification.

Surfaces produced with our method are suitable for
GPU-assisted rendering via displacement mapping. The
method may also support reverse engineering, by pro-
viding initial control grids that may be adjusted and
refined with modeling tools.

Our current method has some limitations, though.
Compared to global remeshing methods (like [5]), it
produces meshes containing more irregular vertices.
Some such vertices are necessary to warrant transi-
tions through different levels of resolution inherent to
adaptive tessellation. However, we believe that irregu-
lar vertices could be further reduced by more careful
tessellation. The definition of a good balance between
adaptivity and regularity demands further investigation.

Another problem is the lack of alignment of patch
boundaries to either curvature directions, or other line
features. Alignment to features could be enforced with
a snapping mechanism, similarly to [26]. The same
mechanism can be also used to model surfaces with
sharp creases, by combining it with the extension of
subdivision surface evaluation presented in [29]. Also
this issue requires further investigation.

The time performance of the method can be certainly
improved, possibly of orders of magnitude. The main
bottlenecks come from subdivision surface evaluation,
which is performed many times at many samples during
simplification, and by the extraction of large neigh-
borhoods during the construction of fitmaps. Surface
evaluation could be easily delegated to the GPU. The
extraction of large neighborhoods could be made faster
by using an ad-hoc data structure, such as a hierarchi-
cal spatial index supporting range queries according to
geodesic distance.

REFERENCES

[1] C. Loop and S. Schaefer, “Approximating catmull-clark subdivi-
sion surfaces with bicubic patches,” ACM Trans. Graph., vol. 27,
no. 1, pp. 1–11, 2008.

[2] K. Gee, “Direct3d 11 tessellation,” GameFest - Microsoft game
technology conference, 2008.

[3] C. Eisenacher, Q. Meyer, and C. Loop, “Real-time view-dependent
rendering of parametric surfaces,” in I3D ’09: Symposium on
Interactive 3D Graphics and Games. New York, NY, USA: ACM,
2009, pp. 137–143.

[4] I. Castaño, “Next-generation hardware rendering of displaced
subdivision surfaces,” SIGGR2008 - Exhibitor Tech Ses., 2008.

[5] D. Bommes, H. Zimmer, and L. Kobbelt, “Mixed-integer quad-
rangulation,” ACM Trans. Graph., vol. 28, no. 3, pp. 1–10, 2009.

[6] N. Ray, W. C. Li, B. Lévy, A. Sheffer, and P. Alliez, “Periodic global
parameterization,” ACM Trans. Graph., vol. 25, no. 4, pp. 1460–
1485, 2006.

[7] D. Cohen-Steiner, P. Alliez, and M. Desbrun, “Variational shape
approximation,” in ACM Trans. Graph. (SIGGRAPH). New York,
NY, USA: ACM, 2004, pp. 905–914.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

[8] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C. Hart,
“Spectral surface quadrangulation,” ACM Trans. Graph., vol. 25,
no. 3, pp. 1057–1066, 2006.

[9] F. Kälberer, M. Nieser, and K. Polthier, “Quadcover surface
parameterization using branched coverings.” Computer Graphics
Forum, vol. 26, no. 3, pp. 375–384, 2007.

[10] E. Catmull and J. Clark, “Recursively generated b-spline surfaces
on arbitrary topological meshes,” Computer Aided Design, vol. 10,
pp. 350–355, 1978.

[11] A. Lee, H. Moreton, and H. Hoppe, “Displaced subdivision
surfaces,” in ACM Trans. Graph. (SIGGRAPH). New York, NY,
USA: ACM Press/Addison-Wesley Publishing Co., 2000, pp. 85–
94.

[12] A. Myles, N. Pietroni, D. Kovacs, and D. Zorin, “Feature-aligned
t-meshes,” ACM Trans. Graph., vol. 29, no. 4, pp. 1–11, 2010.

[13] K.-S. D. Cheng, W. Wang, H. Qin, K.-Y. K. Wong, H. Yang,
and Y. Liu, “Fitting subdivision surfaces to unorganized point
data using sdm,” in PG ’04: Proc. of the Computer Graphics and
Applications, 12th Pacific Conference. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 16–24.

[14] G. Lavoué and F. Dupont, “Technical section: Semi-sharp sub-
division surface fitting based on feature lines approximation,”
Comput. Graph., vol. 33, no. 2, pp. 151–161, 2009.

[15] M. Marinov and L. Kobbelt, “Optimization techniques for approx-
imation with subdivision surfaces,” in SM ’04: Proceedings of the
ninth ACM symposium on Solid modeling and applications. Aire-la-
Ville, Switzerland, Switzerland: Eurographics Association, 2004,
pp. 113–122.

[16] J. Hoschek and D. Lasser, Fundamentals of computer aided geometric
design. Natick, MA, USA: A. K. Peters, Ltd., 1993, translator-
Schumaker, Larry L.

[17] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. Mc-
Donald, J. Schweitzer, and W. Stuetzle, “Piecewise smooth surface
reconstruction,” in ACM Trans. Graph. (SIGGRAPH). New York,
NY, USA: ACM, 1994, pp. 295–302.

[18] W. Ma, X. Ma, S.-K. Tso, and Z. Pan, “A direct approach for
subdivision surface fitting from a dense triangle mesh,” Computer
Aided Geometric Design, vol. 36, no. 16, pp. 525–536, 2004.

[19] H. Suzuki, S. Takeuchi, F. Kimura, and T. Kanai, “Subdivision
surface fitting to a range of points,” in PG ’99: Proceedings of
the 7th Pacific Conference on Computer Graphics and Applications.
Washington, DC, USA: IEEE Computer Society, 1999, p. 158.

[20] T. Kanai, “Meshtoss: Converting subdivision surfaces from dense
meshes,” in Proc. of the Vision Modeling and Visualization Conference.
Aka GmbH, 2001, pp. 325–332.

[21] M. Garland and P. S. Heckbert, “Surface simplification using
quadric error metrics,” in ACM Trans. Graph. (SIGGRAPH). New
York, NY, USA: ACM Press/Addison-Wesley Publishing Co.,
1997, pp. 209–216.

[22] I. Boier-Martin, H. Rushmeier, and J. Jin, “Parametrization of
triangle meshes over quadrilateral domains,” in Proceedings Sym-
posium on Geometry Processing, 2004.

[23] M. Marinov and L. Kobbelt, “Automatic generation of structure-
preserving multi-resolution models,” CG Forum, vol. 24, no. 3, pp.
479–486, 2005.

[24] J. Daniels, C. Silva, and E. Cohen, “Localized quadrilateral coars-
ening,” Comput. Graph. Forum, vol. 28, no. 5, pp. 1437–1444, 2009.

[25] J. Daniels, II, C. T. Silva, and E. Cohen, “Semi-regular
quadrilateral-only remeshing from simplified base domains,” in
SGP ’09: Symposium on Geometry Processing. EG Association, 2009,
pp. 1427–1435.

[26] M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo, and P. E., “Practical
quad mesh simplification,” CG Forum (Eurographics 2010), vol. 29,
no. 2, pp. 407–418, 2010.

[27] “Eigen library - sparse direct solvers.”
[Online]. Available: http://eigen.tuxfamily.org/dox-
devel/TutorialSparse.html#TutorialSparseDirectSolvers

[28] H. Pottmann, S. Leopoldseder, and M. Hofer, “Approximation
with active b-spline curves and surfaces,” in PG ’02: Proceedings
of the 10th Pacific Conference on Computer Graphics and Applications.
Washington, DC, USA: IEEE Computer Society, 2002, p. 8.

[29] D. Kovacs, J. Mitchell, S. Drone, and D. Zorin, “Real-time creased
approximate subdivision surfaces,” in I3D ’09: Proceedings of the
2009 symposium on Interactive 3D graphics and games. New York,
NY, USA: ACM, 2009, pp. 155–160.

Daniele Panozzo received his undergraduate
degree in 2007 and his master degree in 2008,
both in Computer Science, from the University
of Genova. He is currently enrolled as PhD
student in Computer Science at the University
of Genova, and temporarily a visiting graduate
student at the Courant Institute of Mathematical
Sciences of the New York University. During
2008, he has been a visiting student at the De-
partment of Computer Science of the University
of Maryland, where he worked on his master

thesis. He has written eight scientific publications.

Enrico Puppo is professor of computer science
at the Department of Computer and Information
Sciences (DISI) of the University of Genova.
He received a Laurea in Mathematics from the
University of Genova in March 1986. From April
1986 to October 1998 he has been research
scientist at the Institute for Applied Mathematics
of the National Research Council of Italy. He is
with DISI since November 1998. He has written
over one hundred scientific publications on the
subjects of algorithms and data structures for

spatial data handling, geometric modeling, and geometry processing.

Marco Tarini (Ph.D. 2003, Univ. of Pisa) is
an Assistant Professor at the Univ. of Insubria
(Varese, Italy) and an Associate Researcher
with CNR-ISTI. He teaches and researches in
Computer Graphics, his main published contri-
butions being in 3D surface acquisition, mod-
elling, parametrization, real-time rendering, and
scientific visualization. Marie Curie Mobility Fel-
low in 2001 (spent in MPI-Saarbrüken). He re-
ceived “Best Young Researcher” award by the
Eurographics association in 2006.

Nico Pietroni is a researcher at the Istituto
di the Scienza e Tecnologie dell’Informazione
(ISTI) of the National Research Council (CNR)
in Pisa, Italy. His research interests include
mesh parametrization, texture synthesis and de-
formable object modeling. He received in 2003
an advanced degree in Computer Science (Lau-
rea) from the University of Pisa and in 2009
a Ph.D. Degree in Computer Science at the
University of Genova.

Paolo Cignoni is a Senior Research Scientist
with CNR-ISTI. He received a Ph.D. Degree
in Computer Science at the University of Pisa
in 1998. He has been awarded ”Best Young
Researcher” by the Eurographics association in
2004. His research interests cover Computer
Graphics fields ranging from visualization and
processing of huge 3D datasets, to 3D scanning
in the cultural heritage field and to Scientific
Visualization. He has published more than one
hundred papers in international refereed jour-

nals and conferences.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

Fig. 8. Examples of meshes computed with our system. From the left: original mesh M in white; subdivision surface
SK ; and displaced subdivision surface.

