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RGB Subdivision
Enrico Puppo, Member, IEEE, and Daniele Panozzo

Abstract— We introduce the RGB Subdivision: an adaptive
subdivision scheme for triangle meshes, which is based on the
iterative application of local refinement and coarsening operators,
and generates the same limit surface of the Loop subdivision,
independently on the order of application of local operators. Our
scheme supports dynamic selective refinement, as in Continuous
Level Of Detail models, and it generates conforming meshes at
all intermediate steps. The RGB subdivision is encoded in a
standard topological data structure, extended with few attributes,
which can be used directly for further processing. We present an
interactive tool that permits to start from a base mesh and use
RGB subdivision to dynamically adjust its level of detail.

Index Terms— Triangle meshes, Subdivision, Level of Detail.

I. INTRODUCTION

SUBDIVISION surfaces are becoming more and more popular
in computer graphics and CAD. During the last decade, they

found major applications in the entertainment industry [1] and in
simulation [2]. Several solid modelers, both commercial and open
source, now support modeling based on subdivision [3], [4], [5],
[6]. From the point of view of users, subdivision surfaces come
midway between polygonal meshes and NURBS, getting many
advantages from both worlds. They allow a designer to model a
shape on the basis of a relatively simple control net, which can
be handled as freely as a polygonal mesh, while automatically
generating either a finer mesh at the desired level of detail, or a
smooth limit surface.

Although the natural approach to modeling based on subdivi-
sion is coarse-to-fine, advances in reverse subdivision suggest that
also a fine-to-coarse approach can be undertaken [7], [8], [9], [10],
[11]. Direct and reverse subdivision may thus be used together, to
take any mesh and automatically generate a whole hierarchy of
Levels Of Detail (LODs), coarser as well as more refined than the
base mesh. Such a hierarchy, however, will contain just models
at uniform resolution, i.e., having the same LOD in all parts of
an object. In order to become really competitive with polygonal
modeling, subdivision modeling should also support selective
refinement, i.e., the possibility to vary LOD smoothly across a
mesh and dynamically through time. To this aim, it is necessary
to combine different levels of subdivision in the context of a
mesh, without losing consistency with an underlying subdivision
scheme (see Figure 1). This is the central issue investigated in
this paper.

A. Motivation

Most often subdivision is applied up to a certain level and the
resulting mesh is used for further processing [12]. Even when
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Fig. 1. A polygonal model (upper left) is selectively refined through RGB
subdivision, by increasing level of detail in the parts representing eyes, nose,
mouth and the top of the head (upper right). The limit surface of the RGB
subdivision is coincident with that of the Loop subdivision (lower). Model
courtesy of Silent Bay Studios http://www.silentbaystudios.com

users are interested in rendering the limit surface, subdivided
meshes can be useful in intermediate computations. For instance,
physical engines for animation, as well as system solvers for the
finite element methods, work on polygonal meshes with a limited
budget of cells.

It is often desirable to refine different parts of the mesh at
different levels of detail. For instance, the design of characters
for videogames is constrained by a certain budget of polygons.
More polygons will be used in detailed areas and in the proximity
of joints, while rigid parts will be modeled with fewer polygons.
Similar arguments apply to domain discretization for the finite
element methods. Manually adjusting the level of detail of the dif-
ferent parts of a mesh may be a tedious task, unless sophisticated
tools to control LOD are made available. This sort of mechanism
is customary in Continuous Level Of Detail (CLOD) applied to
free-form mesh modeling [13]. A mesh at intermediate LOD can
be modified on-line through selective refinement in either way,
by refining some parts of it while other parts may be coarsened.
To this aim, refinement and coarsening operations must be local
and easily reversible.

For subdivided meshes, adaptivity implies that cells at different
levels of subdivision are combined in the context of a single
mesh. However, classical subdivision schemes are based on the
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Fig. 2. The one-to-four triangle split pattern.

application of recursive patterns that act uniformly over the whole
surface. For instance, the popular Loop [14] and butterfly [15]
schemes for triangle meshes are based on recursive one-to-four
triangle split (see Figure 2), which gives non-conforming meshes
when applied adaptively at different levels of subdivision (see the
left side of Figure 3).

B. Contribution

We introduce RGB Subdivision, an adaptive subdivision scheme
for triangle meshes, which is based on the iterative application of
local refinement and coarsening operators. Our scheme generates
the same limit surface of the Loop subdivision, independently on
the order of application of local operators, it supports dynamic
selective refinement and it generates conforming meshes at all
intermediate steps. The main contributions of the paper are the
following:

1) We define local operators for both refining and coarsening
a subdivision mesh of triangles by inserting/deleting one
vertex at a time;

2) On the basis of such operators, we define the family of RGB
triangulations and we study them as purely combinatorial
structures. We show that they are highly adaptive, since they
span all possible meshes obtained by combining triangles
in a given set;

3) We give a dynamic selective refinement algorithm for RGB
triangulations, with the same features of the algorithms
developed in the context of CLOD models;

4) Next we develop RGB subdivision by endowing RGB
triangulations with the rules of Loop subdivision. We derive
a multi-pass formula to compute control points of vertices
correctly and we develop a mechanism to keep an RGB
subdivision consistent throughout all steps of selective
refinement;

5) We describe a data structure for RGB subdivision, which
does not need to store any hierarchy and extends a standard
topological data structure with a moderate overhead;

6) We present an application built upon RGB subdivision and
the selective refinement algorithm, which allows a user to
adjust LOD locally, by interacting with the mesh through a
brush tool.

The rest of the paper is organized as follows. In Section II
we discuss related work. In Section III we give the necessary
background. In Section IV we introduce RGB triangulations and
in Section V we describe the selective refinement algorithm
working on them. In Section VI we introduce RGB subdivision
by describing how to set the position of control points during
selective refinement, according to the Loop subdivision scheme.
In Section VII we describe the data structure and in Section
VIII we present our interactive tool to manage LOD on RGB
subdivision. Finally, in Section IX we make some concluding
remarks.

Fig. 3. Red-green triangulation: a restricted non-conforming mesh obtained
from adaptive one-to-four split (left) is made conforming by splitting some
triangles further, depending on the level of their neighbors (right).

II. RELATED WORK

A. Adaptive subdivision

The literature on subdivision surfaces is quite extended. The
interested reader can refer to [16] for a textbook, [12] for a tutorial
and [8] for a survey. Here, we will review only those works related
to adaptive subdivision on triangle meshes.

Red-green triangulations were introduced in the context of
finite element methods [17], and have become popular in the
common practice, as an empirical way to obtain conforming
adaptive meshes from hierarchies of triangle meshes generated
from one-to-four triangle split. They are built through a two-
step procedure: first apply one-to-four triangle split adaptively,
and then subdivide some triangles further, to fix non conforming
situations (see Figure 3). Depending on the underlying subdivision
scheme, the geometry of vertices (control points), which lie on
the transition between different levels of subdivision, may not
correspond to that of the same vertices in a uniformly subdivided
mesh. This fact may prevent the correctness of further subdivision
or coarsening of a red-green triangulation, unless the subdivision
process is repeated from scratch. This latter option is unwieldy,
it prevents incremental editing of LOD, and it may be not
sustainable for on-line processing.

A variant of red-green triangulations was used in [11] to
support multi-resolution editing of meshes based on the Loop
subdivision scheme. Adaptive meshes are computed by reverse
subdivision, starting at the finest level and pruning over-refined
triangles. Also in this case, a restricted non-conforming mesh
is computed first, which is fixed next by further bisection of
some triangles. Correct relocation of vertices is treated by using
a hierarchical data structure. Recently, another variant, called
incremental subdivision, was presented in [18] for both the Loop
and the butterfly schemes. In this case, the correct computation of
geometry of control points is addressed by using a larger support
area for refinement.

Based on seminal work of Forsey and Bartels [19], a method
for hierarchical editing of triangular splines is proposed in [20],
which is based on adaptive one-to-four subdivision, like in the
first step of red-green triangulations. The non-conforming mesh
is used just as a control grid and the continuity of the spline
surface is guaranteed by satisfying consistency constraints across
adjacent patches at different levels of subdivision.

In [21], the one-to-four triangle refinement scheme is decom-
posed into atomic local operations, called quarks, based on the
popular vertex split operation [22]. In [23] a factorization of one-
to-four triangle split into a sequence of edge split and edge swap
operations is proposed, which form a subset of the local operators
we use in Section IV. A factorization of the Loop subdivision
rule is also proposed, which makes it possible to compute the
control points correctly through the sequence of local refinement
operations.
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The
√

3 subdivision [24] and the 4-8 subdivision [25] schemes
are not based on the classical one-to-four triangle split operator.
They are naturally adaptive, being both based on local conforming
operators. The

√
3 subdivision alternates one-to-three triangle split

at one level, with edge swap at the next level. The resulting
triangles can be regarded as being of green and blue types in
our terminology (see Section IV). A closed form solution of the
subdivision rule permits to compute control points correctly for
a vertex at any level, at the cost of some over-refinement. The
4-8 subdivision is based on edge split, as in our case, applied
to a special case of triangle meshes, called tri-quad meshes. The
correct position of control points is addressed and resolved also
in this case with a certain amount of over-refinement. Only basic
operations are investigated in [25].

B. CLOD models

Also the literature on Continuous Level of Detail models
is very wide. The interested reader may refer to [13] for a
book. Here we review only some concepts and contributions
that are relevant to the rest of the paper. Generally speaking,
a CLOD model consists of a base mesh at coarse resolution,
plus a set of local modifications that can be applied to the base
mesh to refine it. Such modifications are usually arranged in a
hierarchical structure, which consists of a directed acyclic graph
(DAG) in the most general case. Meshes at intermediate level
of detail correspond to cuts in the DAG, and algorithms for
selective refinement work by moving a front through the DAG
and doing/undoing modifications that are traversed by this front.
This general framework, as shown in [26], encompasses almost all
CLOD models proposed in the literature and it can be applied to
the hierarchies generated by

√
3 subdivision and 4-8 subdivision

as well.
In [27], a CLOD model is introduced, which does not fit

the above general framework, and achieves better adaptivity by
using local modifications more freely than in previous models. In
Section IV, we use the idea of transitive mesh space proposed in
[27] to study the expressive power of RGB triangulations.

CLOD models can provide meshes at intermediate LOD, where
detail can vary across the mesh and through time, at a virtually
continuous scale and with fast procedures. The outer structure of
the algorithm we propose for RGB triangulations in Section V is
based on a popular scheme proposed first in [28].

There exist a few CLOD models based on subdivision patterns.
The model proposed in [28] is based on the recursive bisection
of right triangles. This rule is also used by several other authors,
and may be regarded as a subdivision scheme. It can be applied
just to meshes obtained from regular grids (typically representing
terrains), while its extension to more general triangle meshes is
not straightforward. One generalization is given by 4-k meshes
[29], which have in fact a strong relation with 4-8 subdivision
[25].

III. BACKGROUND

A. Triangle meshes

A triangle mesh is a triple Σ = (V, E, T ) where: V is a set
of points in 3D space, called vertices; T is a set of triangles
having their vertices in V and such that any two triangles of T

either are disjoint, or share exactly either one vertex or one edge
(i.e., the mesh is inherently conforming); E is the set of edges of
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Fig. 4. The stencils used in the Loop subdivision scheme: odd internal vertex
(upper left), odd boundary vertex (lower left), even internal vertex (upper
right), even boundary vertex (lower right). Numbers are weights assigned to
vertices in the linear combination, n is the valence of the even vertex (n = 6
in the regular case).

the triangles in T . Standard topological incidence and adjacency
relations are defined over the entities of Σ.

We will assume to deal always with manifold meshes either
with or without boundary, i.e.: each edge of E is incident at either
one or two triangles of T ; and the star of a vertex (i.e., the set of
entities incident at it) is homeomorphic either to an open disc or
to a closed half-plane. Edges that are incident at just one triangle,
and vertices that have a star homeomorphic to a half-plane form
the boundary of the mesh and they are called boundary edges and
boundary vertices, respectively. The remaining edges and vertices
are said to be internal. A mesh with an empty boundary is said to
be watertight. A mesh is regular if all its vertices have valence six.
Vertices with a valence different from six are called extraordinary.

A non-conforming mesh is a structure similar to a mesh, in
which triangles may violate the rule of edge sharing: there may
exist adjacent triangles t and t′ such that an edge of t overlaps
just a portion of the corresponding edge of t′.

B. Loop subdivision

The Loop subdivision [14] is an approximating scheme that
converges to a C2 surface if applied to a regular mesh. The
subdivision pattern is one-to-four triangle split, as depicted in
Figure 2. The position pl(v) of a new vertex v introduced at level
l of subdivision (called an odd vertex) is computed as a weighted
sum of positions of vertices from the previous level (called even
vertices), as depicted in Figure 4 (left side): If v splits an internal
edge, then its position is given by

pl(v) =
3

8
pl−1(v0) +

3

8
pl−1(v1) +

1

8
pl−1(v2) +

1

8
pl−1(v3); (1)

If v splits a boundary edge, then its position is given by

pl(v) =
1

2
v0 +

1

2
v1. (2)

Even vertices are relocated at each level l of subdivision, through
a weighted sum of their position and the position of their 1-ring
neighbors at the previous level: If v is an internal vertex, it is
relocated according to formula

pl(v) = (1− αn)pl−1(v) +
αn

n

n−1X
i=0

pl−1(vi) (3)
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and the vi for i = 0, . . . , n−1 are the n neighbors of v (apart from
extraordinary vertices in the base mesh, we always have n = 6);
If v is a boundary vertex, it is relocated according to formula

pl(v) =
3

4
pl−1(v) +

1

8
pl−1(v0) +

1

8
pl−1(v1). (5)

Therefore, for each vertex v introduced at level l, there exist an
infinite sequence of control points pl(v), pl+1(v), . . . , p∞(v) that
define the positions of v at level l and all successive levels, p∞(v)

being its position on the limit surface. It is possible to show that
any control point pk(v) for a vertex v introduced at level l, with
0 ≤ l < k can be computed directly just from the positions pl of
v and of all its neighbors at level l. In the Appendix, we derive
a multi-pass closed form for computing directly control points at
an arbitrary level.

IV. RGB TRIANGULATIONS

RGB triangulations are defined as all those triangle meshes
that can be built through iterative application of the operators
for local modification depicted in Figures 5 and 6, starting at a
base mesh Σ0. Note that the diagrams in such figures cover all
possible topological configurations in local mesh subdivision and
coarsening.

In this section we introduce the combinatorial structure of
RGB triangulations and the basic rules to manipulate them in
a consistent way. In Subsection IV-A we define local subdivision
operators. The essential idea is that such operators subdivide a
mesh by introducing one vertex at a time, they always produce
conforming triangulations, and they can be controlled just on the
basis of color and level codes. In Subsection IV-B we introduce
local coarsening operators, which reverse refinement operators,
while in Subsection IV-C we add one neutral operator. Subsection
IV-D has a more theoretical flavor: we define and study the
transitive space of RGB triangulations, in order to show their
expressive power and adaptivity; we also prove some results
useful to warrant correctness of the selective refinement algorithm
described in the next section.

All rules defined in this section are purely topological. Just for
the sake of clarity, in the figures we will use meshes composed
of equilateral triangles, right triangles and isosceles triangles to
depict the three different types of triangles that may appear in
an RGB triangulation. Actually, the shape of triangles is totally
irrelevant in the subdivision process, while just level and color
codes matter.

A. Local subdivision operators

Consider a base mesh Σ0. We assign level zero to all its vertices
and edges, and color green to all its edges. As a general rule, the
level of a triangle is defined to be the lowest among the levels of
its edges; and the color of a triangle is defined to be: green if all
its edges are at the same level; red if two of its edges are at the
same level l and the third edge is at level l + 1; and blue if two
of its edges are at the same level l + 1 and the third edge is at
level l. It follows that all triangles in the base mesh are green at
level zero.

In the following, we define local subdivision operators that,
when applied iteratively to Σ0, will generate a conforming mesh

where triangles will be colored of green, red and blue; edges will
be colored of green and red; and vertices, edges, and triangles will
have different levels. Color and level codes allow us to control
the application of subdivision operators on a local basis.

We say that an edge e at level l ≥ 0 is refinable (i.e., it can
split) if and only if it is green and its two adjacent triangles t0
and t1 are both at level l. In case of a boundary edge, only one
such triangle exists. We split an edge e at level l, by inserting
at its midpoint a new vertex at level l + 1. The edges generated
by the two halves of e are green and at level l + 1. Note that
these definitions of levels for vertices and green edges are fully
compliant with those in the standard uniform subdivision based
on the one-to-four triangle split pattern.

Splitting an edge e at level l also affects its incident triangles t0
and t1: each such triangle is split into two triangles by connecting
the new vertex splitting e to the vertex of the triangle opposite to
e. If the triangle is green, then the new edge splitting it will be red
at level l; if the triangle is red, then the new edge will be green
at level l + 1. Blue triangles do not split (blue triangles at level l

have their green edges at level l + 1, thus they are not refinable
by definition). By simple combinatorial analysis, we obtain the
following variants of the edge split operator (see Figure 5):
• GG-split: t0 and t1 are both green. The bisection of each

triangle t0 and t1 at the midpoint of e generates two red
triangles at level l. Each such triangle will have: one green
edge at level l (the one common with old triangle t), one
green edge at level l + 1 (one half of e) and one red edge at
level l (the new edge inserted to split t).

• RG-split: t0 is green and t1 is red. Triangle t0 is bisected
and edge e is split as above. The bisection of t1 generates
one blue triangle at level l and one green triangle at level
l+1. The green triangle is incident at the green edge at level
l + 1 of old triangle t1 and also its other two edges are at
level l + 1 (the edge inserted to subdivide t1, and one half
of e). The blue triangle is incident at the red edge of old
triangle t1 and has also two green edges at level l + 1 (the
edge inserted to subdivide t1, and the other half of e).

• RR-split: t0 and t1 are both red. Triangles t0 and t1 are
both bisected as triangle t1 in the previous case and each
of them generates the same configuration made of a blue
triangle at level l and a green triangle at level l + 1. This
case may come in two variants: RR1-split and RR2-split.
Each variant can be recognized by the cycle of colors of
edges on the boundary of the diamond formed by t0 and
t1: this may be either red-green-red-green for RR1-split, or
red-red-green-green for RR2-split.

Edge split operations applied to boundary edges will affect
just one triangle. The resulting configuration depends only on the
color of the triangle incident at e.

Edge split operators are not sufficient to factorize the one-to-
four triangle split pattern by introducing one vertex at a time.
We also need an edge swap operator, as depicted on the left side
of Figure 6, to get rid of blue triangles: BB-swap is applied to a
pair of blue triangles at level l, which are adjacent along their red
edge at level l. Such an edge is eliminated and the other diagonal
of the quadrilateral formed by such two triangles is inserted. The
new edge, as well as its two incident triangles, will be green at
level l + 1. Note that, by construction, one of the two new green
triangles will have all three vertices at level l + 1. Note also that
just green edges can be split, while red edges are only swapped.
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Fig. 5. Edge split and edge merge operators. Labels denote the level of
vertices and edges. Grey triangles represent portions of triangulations spanned
by parent triangles, which are not affected from the operation, and may have
been refined further at arbitrarily many levels.

Fig. 6. Edge swap operators. Grey triangles represent portions of triangula-
tions spanned by parent triangles, which are not affected from the operation,
and may have been refined further at arbitrarily many levels.

The sequence of three edge split plus one edge swap that
factorizes the one-to-four triangle split of a triangle is depicted
in Figure 7 and corresponds to that proposed in [23].

By simple combinatorial analysis, it would be easy to verify
that this set of operators is closed with respect to the meshes
obtained, i.e.: if we start at an “all green” mesh Σ0 at level 0
and we proceed by applying any legal sequence composed of the
five operators above, all refinable edges in the resulting mesh can
be always split by one of the four variants of edge split. Rather
than proving this claim, in Section IV-D we prove a more general
result that also implies this fact.

B. Reverse subdivision operators

We define also local operators that invert edge split and edge
swap on an RGB subdivision. Edge merge is the reverse operator
of edge split and can be applied to triangles incident at vertices
of valence four. The same cases depicted in Figure 5 occur
(modifications apply right-to-left in this case):
• R4-merge inverts GG-split;
• R2GB-merge inverts RG-split;
• GBGB-merge inverts RR1-split;
• G2B2-merge inverts RR2-split.

A little care must be taken in applying GBGB-merge in order
to avoid inconsistencies. Referring to Figure 5, note that the
quadrilateral has two vertices at the same level l and two other
vertices at a level lower than l. GBGB-merge must be performed
by removing edges incident at the vertices of level l.

Similar rules apply to pairs of triangles along the boundary.
GG-swap, which inverts BB-swap, can be applied to a pair of

adjacent green triangles t0 and t1 at level l > 0 if one of them,
say t0, has all three vertices at level l. This condition is necessary
and sufficient to guarantee that t0 and t1 have the same parent

Fig. 7. One-to-four triangle split of a green triangle is factorized into three
edge split operations plus an edge swap operation.

triangle t in the subdivision and t0 is the central triangle obtained
by subdividing t.

C. Neutral operator

We finally introduce RB-swap, a reflexive operator that is
neutral with respect to subdivision (i.e. it neither refines nor
coarsens). RB-swap takes a pair formed by a red and a blue
triangle at the same level l of subdivision, which are adjacent
along a red edge, and swaps the diagonal of the trapezoid formed
by such a pair, thus obtaining another red-blue pair of triangles
at level l (see Figure 6). This operator may seem redundant. On
the contrary, it is very important for both theoretical and practical
reasons, as we will discuss in the next section.

For each diagram in Figures 5 and 6, the colored part is
influenced by the corresponding operator, while the gray area
refers to a portion of mesh that must exist, but is not influenced
by the operator, and it is not necessarily covered by a single
triangle. In fact, the gray part may have been refined adaptively
at arbitrarily many levels of subdivision.

D. The transition space of RGB triangulations

We now have a set of eleven atomic operators: four split
operators, four merge operators, and three swap operators. The
family RGBΣ0 of RGB triangulations subdividing base mesh Σ0

is defined inductively as follows:
• Σ0 is an RGB triangulation;
• If Σ is an RGB triangulation and Σ′ is obtained from Σ by

applying one of the eleven atomic operators, then also Σ′ is
an RGB triangulation.

Following the approach of [27], we define the transition space
of RGBΣ0 as a graph where:
• RGBΣ0 is the set of nodes (where each mesh is taken as an

atomic entity);
• There is an arc between two meshes Σ and Σ′ if and only

if it is possible to transform Σ into Σ′ by applying just one
atomic operator.

In Figure 8, we show the initial fragment of transition space for a
single triangle, which shows all possible ways to subdivide such
triangle at levels zero and one of subdivision, and all possible
transitions among such configurations.

Note that the transition space is not a strict partial order,
because of RB-swap operators. So, one may think that we would
better define RGB triangulations without using such operator. In
fact, a transition space defined without RB-swap would be a strict
partial order, but it would also contain minimal elements different
from Σ0. For instance, if we do not use RB-swap, the “fan”
configuration depicted in Figure 9 becomes a minimal element
in the transition space. There are also more practical reasons for
using RB-swap. Consider for instance the “strip” configuration
shown in Figure 10. This configuration has been obtained from an
“all green” mesh by applying a sequence of edge split operators.
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Fig. 8. The first few nodes of the transition space for a mesh formed by a
single triangle. There we find all patterns that subdivide the triangle between
level zero and level one. Arcs in black correspond to transitions through
refinement operators (upward) and coarsening operators (downward); arcs in
red correspond to RB-swap operators.

Fig. 9. A fan configuration. Without RB-swap: the fan is obtained from an
“all green” mesh by a sequence of refinement operators followed by a GG-
swap and a R2GB-merge; it cannot be simplified without using refinement
operators. With RB-swap: the fan is obtained in a smaller number of steps
by applying RB-swap right after the RR2-split and it can be reversed without
using refinement operators.

The only possible way to coarsen such a mesh without using
RB-swap consists in reversing the refinement sequence. In other
words, it is not possible to remove any vertex v introduced at an
intermediate step, without removing also all vertices following it
in the strip. On the contrary, as we will show in the following, any
intermediate vertex can be removed by applying a single RB-swap
followed by a merge, without affecting the other vertices of the
mesh. In summary, RB-swap allows us to obtain monotone and
more flexible sequences of refinement and coarsening operators.

For the sake of simplicity, in the rest of this section we will
assume Σ0 to be watertight. Generalization of the following
results to meshes with boundary is straightforward.

Let ∆Σ0 be the set of all triangles that appear in meshes
of RGBΣ0 , and let TΣ0 be the set of all possible (conforming
and watertight) triangle meshes that can be built by combining
elements of ∆Σ0 . Note that combination of triangles is arbitrary,
provided that they match at common edges. We now show that
all elements of TΣ0 are RGB triangulations.

Lemma 4.1: The transition space of RGBΣ0 spans TΣ0 .
Proof: Let us first analyze the nature of triangles in ∆Σ0 :

since they come from meshes of RGBΣ0 , each such triangle t

is endowed with a color and a level l. For l > 0, t must have

Fig. 10. This strip has been obtained from an “all green” strip by applying
a GG-split (at its top end) followed by a sequence of RG-splits (proceeding
downwards). Without RB-swap, the only possible way to coarsen the strip
is by reversing the refinement sequence. With RB-swap, followed by a
merge operation, we can remove any intermediate vertex introduced during
refinement, without affecting the other vertices.

been generated from one of the eleven local operators, and it must
subdivide a parent triangle t′ at level l − 1. Moreover, along the
edge(s) internal to t′, triangle t can only be adjacent to other
triangle(s) that also subdivide t′. In other words, no matter how
we combine triangles to form a mesh Σ of TΣ0 , if Σ contains
t, then it must contain a group of triangles that subdivide t′

exactly. Vertices of triangles in ∆Σ0 also have a level: if a vertex
v belongs to Σ0, then its level is zero; otherwise, v has been
generated splitting an edge at level l − 1, thus its level is l. It
is straightforward to see that all triangles incident at that vertex
have a level greater than, or equal to l − 1.

Now let Σ be a mesh of TΣ0 . Let us define the level m of Σ

to be the maximum level of its vertices. Proof is by induction on
m.

If m = 0, then Σ can be formed just from green triangles at
level zero. Since Σ is watertight and all its triangles come from
Σ0, then we have necessarily that Σ ≡ Σ0, thus Σ is an RGB
triangulation.

Now let us assume all meshes of TΣ0 up to level m − 1 are
RGB triangulations. Given Σ at level m, we know that the level
of its green triangles is at most m, while the level of its red and
blue triangles is at most m−1. We build another mesh Σ′ at level
m−1 as follows: we remove all green triangles at level m and all
red and blue triangles at level m− 1 from Σ; as a consequence,
all vertices at level m have been also removed; this means that
the holes left after removing such triangles can be filled exactly
with green triangles at level m− 1. Let us call Φm−1 this set of
triangles, which are in fact the parents of triangles that we have
removed. Now since also triangles of Φm−1 belong to ∆Σ0 then
Σ′ must belong to TΣ0 . Since we have removed all vertices at
level m, Σ′ is at level m − 1, thus by inductive hypothesis it is
an RGB triangulation.

Now let us consider all vertices at level m that we have
eliminated from Σ to obtain Σ′. By construction, they all lie on
green edges at level m − 1 that are shared by pairs of triangles
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of Φm−1. Thus all such edges are refinable. Let us consider an
arbitrary sequence of edge splits that insert such vertices back
into Σ′, generating another mesh Σ′′. Mesh Σ′′ has the same set
of vertices of Σ and it coincides with Σ at all green triangles of
level smaller than m, and on all red and blue triangles of level
smaller than m − 1. In fact, the edge splits we have performed
affect only the triangles of Φm−1. Now each triangle of Φm−1

has been split by one of the patterns depicted in the middle levels
of Figure 8 (where we now assume that the root triangle has level
m−1). Let t be one triangle of Φm−1, and let us consider the two
patterns decomposing t in Σ and in Σ′′. Since we have introduced
all and only those vertices that were removed, the two patterns
may be different, but they subdivide the edges of t in the same
way. By referring to Figure 8, and comparing the two patterns,
we have the following cases:

• If they subdivide just an edge of t, then they must be equal;
• If they subdivide two edges of t and they are different, then

it is possible to obtain one from the other by applying an
RB-swap;

• If they subdivide all three edges and they are different, then
it is possible to obtain one from the other by applying a
BB-swap and/or a GG-swap.

All operators listed above only affect triangles that subdivide
t, so they can be carried out independently on all subdivisions
of triangles of Φm−1. This means that we can obtain Σ from
Σ′′ through a sequence of local operators. Concatenating such a
sequence with the sequence that transforms Σ′ into Σ′′, we have a
sequence of local operators that transforms Σ′ into Σ. Therefore,
also Σ is an RGB triangulation.

It is an open question whether or not the same set of triangula-
tions can be generated by using just combinations of the first ten
operators, without using RB-swap. So the set of operators we use
is sufficient to generate the transition space but we do not claim
it to be minimal.

Concerning comparison with other known schemes, note that
a uniform “all green” subdivision at any level belongs to TΣ0 ,
therefore it is an RGB triangulation. Also red-green triangulations
belong to TΣ0 and they are in fact a proper subset of triangula-
tions. Red-green triangulations that obey to the 2-neighbor rule as
defined in [17] will not contain blue triangles. Even in case such
a rule is not applied, there exist RGB triangulations that cannot
be obtained as red-green triangulations. A trivial example is a
mesh made of four red triangles obtained from a pair of adjacent
green triangles by applying GG-split (as in the upper-left case of
Figure 5).

Next we state some results useful to ensure that the selective
refinement algorithm, described in the next section, does not get
stuck in configurations that cannot be either refined or simplified
further.

Corollary 4.2: Any RGB triangulation can be obtained from
Σ0 by applying a sequence of operators composed just of edge
split and swap operators. Σ0 can be obtained from any RGB
triangulation by applying a sequence composed just of edge merge
and swap operators.

Proof: The first statement follows from the proof of Lemma
4.1 by considering the operators we have used to obtain Σ from
Σ′. The second statement follows from the first one by considering
that each split operator it inverted by a merge operator and each
swap operator is inverted by a swap operator.

Sequences used in Corollary 4.2 are not always monotone in
the span space. In fact, refinement [coarsening] sequences to
obtain meshes that contain configurations in the second upper
row of Figure 8 may require using GG-swap [BB-swap], which
is actually a coarsening [refinement] primitive. On the other hand,
such configurations are not really interesting: the decomposition
of a parent triangle with a configuration that contains two green
and two blue triangles is usually better substituted with the
standard decomposition made of four green triangles. A mesh
containing no configuration made of two blue triangles adjacent
along a red edge will be called stable; otherwise it will be called
unstable. In our implementation of selective refinement, we will
use unstable configurations just as transitions. We will perform
refinement by using just subdivision operators, and coarsening
by using just reverse subdivision operators and RB-swap. During
refinement, a BB-swap will be forced every time an unstable
configuration arises. During coarsening, on the contrary, GG-swap
and RB-swap will be used to locally modify the mesh in order to
allow a vertex to be removed from a merge operator. The mesh
just before applying the merge operator may be unstable, but it
will become stable right after it.

We study next the local configurations corresponding to vertices
that can be removed during coarsening. Let v be a vertex at
level l > 0 in an RGB mesh. We say that v is removable if
and only if all its adjacent vertices are at a level ≤ l. Since v was
introduced by splitting an edge at level l − 1, by combinatorial
analysis we have that the star of triangles surrounding it can have
only 28 possible configurations, which are obtained by mirroring
from the 18 configurations depicted in Figure 11. For each such
configuration, the graph in the figure provides a sequence of
operators to remove v. Notice that BB-swap is necessary only
if we start from one of the unstable configurations. Notice also
that the local configurations at the end of sequences (i.e., after
vertex removal) are all stable.

Corollary 4.3: If an RGB mesh Σ is stable, then:
1) Σ can be obtained from Σ0 by a sequence made just of

refinement operators and RB-swaps;
2) Σ0 can be obtained from Σ by a sequence of just coarsening

operators and RB-swaps.
Proof: We prove the second statement first. Let m be the

level of Σ. We can obtain Σ0 from Σ by deleting all vertices of
level > 0 level by level, starting at level m. As shown above, if
Σ is stable, a vertex can be removed without need to apply BB-
swap and the resulting mesh will again be stable. Thus the whole
sequence will need just coarsening operators and RB-swap. The
first statement follows from the second by considering the inverse
operators.

We now know refinement and coarsening sequences that are
monotone in the transition space. Once the star of either a
refinable edge, or a removable vertex is known, the sequence
of operations necessary to perform the corresponding either
refinement, or coarsening operation, respectively, can be retrieved
from a lookup table and performed on such a star without
affecting the rest of the mesh. These sequences will provide the
basic ingredients to implement the selective refinement algorithm
described next.

V. SELECTIVE REFINEMENT OF RGB TRIANGULATIONS

Selective refinement consists of the iterated application of
local operators until some user-defined halt condition is verified.
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Fig. 11. Sequences of operators to remove a vertex. There exist 28 con-
figurations of triangles incident at a removable vertex, obtained by mirroring
from the ones depicted in the figure (except those in the last column, which
correspond to the configurations after deleting the vertex). Each configuration
labeled with X2 has a mirror configuration. Triangles in gray correspond to
areas of the parent triangles that are not affected by transitions and may be
further refined. Except for the unstable configurations, a vertex can be removed
without using any refinement operator.

Application of local operators is priority-driven. Depending on
user needs, priority of an edge to be split may be related to, e.g.,
its level, its length, the areas of its incident triangles, the distance
between its midpoint and the position of the vertex splitting it at
next level of subdivision, etc. Related criteria set the priority of
vertices to be removed.

Following [28], selective refinement is driven by two priority
queues: a queue Qr of under-refined edges to split, and a queue
Qc of over-refined vertices to remove. After initialization, the
algorithm consists of a loop, which pops elements from the queues
and executes the local operations necessary to either split edges,
or remove vertices. Such operations will involve updating both the
current mesh and the queues. Details about the general scheme
of the algorithm can be found in [28], while the sequences of

refinement and coarsening operators to be performed on an RGB
triangulation are detailed in the following subsections.

A. Coarsening

All removable vertices are added to queue Qc during selective
refinement. However, a vertex v already in Qc may become non
removable at a later time because of changes in its star. When a
vertex v is popped from Qc, its star is inspected to check whether
or not it is removable. Non removable vertices are skipped.

Let now v be a removable vertex at level l that has been popped
from Qc. As we have seen in the previous section, the star of v

must be in one of the configurations of Figure 11. The following
operations are performed:

1) Apply the sequence of operators necessary to remove v and
update Σ accordingly;

2) For each vertex v′ that was adjacent to v, if v′ was not
removable and it has become removable after removing v,
then insert v′ into Qc.

Note that a non removable vertex v′ at level l becomes
removable only if some edge incident at v′ at level > l is deleted.
This can occur during coarsening only to vertices adjacent to v.
Thus all and only those vertices that are removable are inserted
into Qc.

B. Refinement

All green edges are added to queue Qr during selective
refinement. Because of recursive calls, an edge e may be inserted
into Qr more than once. Therefore, it may happen that an edge e

popped from Qc has been already split. When popping an edge,
we check whether or not it exists. Non existing edges are skipped.

Existing edges in queue Qr are all green but they are not
necessarily refinable. If an edge e is not refinable, we force
recursive split of edges adjacent to e in order to be able to refine
it. Splitting a single edge e at level l thus involves the following
operations:

1) If e is not refinable, then recursively decompose its incident
triangle(s) at level l − 1 (see details below);

2) Split e at v with the proper split operator and update mesh
Σ accordingly;

3) If the mesh has become unstable, perform a BB-swap;
4) Test each new green edge generated from split and add it

to Qr if it does not fulfill LOD requirements;
5) Insert v into Qc.

Recursive decomposition of triangles (step 1) works as follows.
Assume we want to split a green edge e having level l and
let t be a triangle incident at e. There are only three possible
configurations:

• If t is a red triangle at level l−1 then its green edge at level
l − 1 is recursively split;

• If t is a blue triangle at level l−1 then t must be adjacent to
a red triangle t′ at level l − 1 along its red edge; the green
edge of t′ at level l − 1 is split recursively (this split will
eventually trigger a BB-swap involving t and t′);

• Otherwise no action is required (t must be at level l and e

is refinable).
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VI. RGB SUBDIVISION

So far we have been concerned only with topological changes
in an RGB triangulation. The RGB subdivision is now derived
by studying the geometry of vertices. The basic idea here is to
adapt the rules of Loop subdivision to the topology of RGB
triangulations, so that the limit surfaces of the two subdivision
schemes become coincident.

For odd vertices, we devise a simple mechanism for using the
stencil of the Loop subdivision as is. For even vertices, we rather
derive a multi-step rule for the Loop subdivision that computes
the control point of a vertex at any given level on the basis of
its insertion position and its limit position. We then factorize
computation of the limit position of vertices, which depends on
its neighbors, while such neighbors are inserted into the mesh.

Note that in RGB subdivision both refinement and coarsening
operations are allowed, therefore updates to control points must
be made for odd vertices during refinement, and for even vertices
both during refinement and during coarsening.

A. A multi-step rule for the Loop scheme

Let us consider a vertex v inserted at level l in a Loop
subdivision scheme. If l = 0 then v belongs to the base mesh
and its geometry p0(v) is known, otherwise its control point
pl(v) is computed on the basis of either Equation 1 or Equation
2, depending on v being an internal or a boundary vertex,
respectively (see Figure 4).

By applying the concept of multi-step subdivision rule [24] to
the analysis of the Loop scheme developed in [30], the following
equations are derived (see the Appendix). The limit position of
an internal vertex v inserted at level l ≥ 0 on the subdivision
surface is given by

p∞(v) = (1− 8αn

3 + 8αn
)pl(v) +

8αn

n(3 + 8αn)

nX
i=1

pl(vi) (6)

where the vi’s and αn are defined as in Equation 3. For any k ≥ 0,
its control point at level l + k is given by

pl+k(v) = γn(k)pl(v) + (1− γn(k))p∞(v) (7)

where

γn(k) =

�
5

8
− αn

�k

.

Similarly, if v is a boundary vertex we have

p∞(v) =
2

3
pl(v) +

1

6
(pl(v0) + pl(v1)) (8)

and, for any k ≥ 0,

pl+k(v) =

�
1

4

�k

pl(v) +

 
1−

�
1

4

�k
!

p∞(v). (9)

This means that the base position of a given vertex v introduced
at level l, plus the positions of its neighbors at level l are necessary
and sufficient to compute the position of v at any further level of
subdivision.

B. Factorized computation of the limit position

In an RGB subdivision, when a vertex v at a level l > 0 is
inserted into a mesh, some of its neighbors at level l might not
belong to such mesh yet, while they will be inserted at a later time.

Therefore, it is not always possible to know the limit position of
a vertex v right after its insertion into the mesh.

In the data structure encoding an RGB mesh, for each vertex v

inserted at level l, we store its control point pl(v) and we reserve
another field to store its limit position p∞(v). At startup, we fill
such fields for all vertices of the base mesh, assigning to p0(v)

the base coordinates and computing p∞(v) through Equation 6.
For a generic vertex inserted at level l > 0, control point pl(v)

is computed and stored when creating v (see next subsection),
while p∞(v) is computed incrementally. In p∞(v) we store at
any time a value computed through Equation 6, where we use
pl(v) in place of any missing pl(vi). So, initially p∞(v) will be
approximated with pl(v), and its value will be updated every time
the control point at level l for a neighbor vi becomes available
(see Subsection VI-D). As soon as all six contributions have been
obtained, the value of p∞(v) will be the correct one.

C. Control points for odd vertices

Let vertex v be introduced at level l + 1 of subdivision by
splitting an edge e at level l. In order to compute control point
pl+1(v), we need to fetch the four vertexes in the Loop stencil
of v at level l, and their control points at level l.

Consider the four possible cases as depicted in Figure 5. In GG-
split, the two splitting triangles form exactly the standard Loop
stencil. In the other cases, however, whenever a red triangle is
splitting, its vertex opposite to e does not belong to the standard
Loop stencil. The correct vertex to be used for the stencil is rather
at the apex of the triangular zone depicted in gray in Figure 5,
which may have been refined at arbitrarily many levels, as shown
in Figure 12. Such a vertex in fact belongs the parent of the red
triangle.

In summary, in order to compute pl+1(v), the two vertexes
at the endpoints of edge e are always available. For the other
two vertexes we do the following: if a triangle incident at e is
green, then we use its vertex opposite to e; if the triangle is red,
then we use the vertex of its parent triangle opposite to e. We
are left with the problem of fetching such a vertex. It would be
possible to retrieve it by navigating the mesh, but we rather prefer
to avoid such computational overhead, so we use another method.
Referring to Figure 12, let us consider a red edge e′ at level l

bisecting a triangle t at level l, and let v0, v1 and v2 be the
vertexes of t. Without loss of generality, let v0 be an endpoint of
e′, and let v′ at level l + 1 be the other endpoint of e′. Note that
each of the two halves of t may be refined further at arbitrarily
many levels. When e′ is generated, we store at v′ two references
to vertexes v1 and v2 and we maintain such references until v′

has a red incident edge, such that v′ is the endpoint with higher
insertion level of such edge (there may be at most two such edges
incident at v′). In this way, when a red triangle is involved in a
stencil, we retrieve the proper vertex to be used for the stencil
through the references at its vertex opposite to the splitting edge.

We must take care of keeping our data structure up-to-date
during topological changes of the mesh. This is possible in
constant time whenever a red edge is generated. Consider all the
possible operators, as depicted in Figures 5 and 6. New red edges
are generated just by operators GG-split, RG-split, GG-swap and
RB-swap. For the split operators, references to vertexes v1 and v2

are found immediately, since they are the endpoints of the splitting
edge. For RB-swap, one of the references is available from the red
triangle, while the other is obtained from the vertex that “loses”
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Fig. 12. Upper half of a stencil for an odd vertex. The triangle incident at e
at level l might have been split through all successive levels of subdivision.
Arrows show references from vertex v′ to the endpoints of the edge it splits.

Fig. 13. In order to bisect the edge in bold, vertexes marked by bullets must
be computed by recursive edge split.

the red incident edge. For GG-swap, each vertex to be referenced
is at the apex of a gray triangular zone, which may have been
refined further. Consider one of the two new blue triangles, and
its adjacent gray zone. Either the gray zone is covered entirely
by a green triangle and, therefore, the vertex to be referenced is
available from it, or the triangle t′ adjacent to the blue triangle
inside the gray zone is red, and the reference is obtained from
the proper vertex of the red edge of t′.

Once we know the vertexes of the stencil, we must compute
their correct control points. If the splitting edge e is at level l− 1

then, for each vertex vi in the stencil, we must compute pl−1(vi).
If the insertion level of vi is li < l − 1, then pl(vi) must be
computed through Equation 7. To this aim, we need the correct
value of p∞(vi), which will not be available unless all neighbors
of vi at level li belong to the current mesh. We therefore force
the insertion of any missing vertex, by traversing the list of edges
incident at vi and recursively splitting all green edges incident at
vi and having a level lower than li. Note that a regular vertex may
have green incident edges that differ for at most three levels, thus
the number of new vertexes to be inserted recursively is usually
quite small (see Figure 13). More in general, an extraordinary
vertex of valence n may have green incident edges that differ for
at most

�
n
2

�
levels.

D. Control points for even vertexes

An even vertex v inserted at level l will be always represented
with a control point at level k, where k is the smallest value
between l and the smallest level of edges incident at v. If
k > l, value pk(v) is computed with Equation 7. As already
mentioned, such a value depends on p∞(v), which is computed
incrementally, so an approximated value will be used, as defined
in SubsectionVI-B, until p∞(v) is completely specified.

Updates to the limit position p∞(v) for a vertex v inserted at
level l are done in the following cases:
• When inserting v, we initially approximate all the pl(vi)’s

with pl(v), so we initially set p∞(v) = pl(v). Then we
collect contributions from adjacent vertexes through green
edges at level l. If the insertion level of one such vertex vi

is l, then the contribution comes from pl(vi), otherwise we
get the contribution only if the correct value of p∞(vi) is
available. Such a contribution is added to p∞(v) according to
the summation of Equation 6, substituting the approximated
contribution computed with pl(v), which is subtracted from
p∞(v).

• When the contribution of a neighbor vi of v through a green
edge at level l becomes available, then it is computed as in
the previous case. This can happen when either the correct
limit value of an existing neighbor of v becomes available,
or a new neighbor of v is generated, and its contribution is
readily available.

These operations are performed also in the opposite direction,
since each vi may need the contribution of v to compute its own
limit position.

When a vertex v is removed, its neighbors are also checked and
the contribution of v is subtracted from its neighbors that received
it. For a given neighbor vi, if the minimum level of incident edges
has become lower, then its current control point is also updated
accordingly.

VII. DATA STRUCTURE

An RGB triangulation can be maintained in a standard topo-
logical data structure for triangle meshes. One possibility is
using three dynamic arrays, for vertexes, edges, and triangles,
respectively, with a garbage collection mechanism to manage
reuse of locations freed because of coarsening operators. The
following simplified version of the incidence graph [31] can be
adopted: for each triangle, links to its three edges are maintained;
for each edge, links to its two vertexes and its two adjacent
triangles are maintained; for each vertex, just a link to one of
its incident edges is maintained. This is sufficient to compute
topological relations in optimal time.

If the mesh contains n vertexes, we can roughly estimate its
number of triangles and edges to be about 2n and 3n, respectively.
By assuming unit cost to represent a pointer or a number, the total
cost for topological information in this base structure is about 19n,
and an additional 3n is necessary to maintain the coordinates of
vertexes.

This data structure is extended as follows. For each vertex,
we maintain: its level of insertion and a counter to keep track
of the number of neighbors that have given their contribution
for computing the limit position (one byte is sufficient for both);
two triples of coordinates rather than just one (position at time
of insertion and limit position); two references to vertexes of its
parent triangle, only in case the vertex is incident at a red edge as
described in Subsection VI-C. Since the number of red edges in
a mesh is usually small, it may be more efficient to avoid storing
such references in the main data structure, and use a hash table
instead, indexed on vertexes.

For each edge and each triangle, we maintain its color and its
level. Edges come in just two colors. It is convenient to encode
two different types of red triangles, and two different types of
blue triangles, depending on their orientation: a red triangle will
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Fig. 14. The front end user interface of MeshLab with the control panel
of RGB subdivision on the right. The blue circle on the object visualized is
the print of the brush, which is sweeping an LOD refinement from level 0 to
level 6 of subdivision. A base mesh consisting of about 1,000 faces has been
selectively refined in real time to a mesh with more than 60,000 faces by a
single sweep of the brush.

be said to be either RedRGG, or RedGGR, depending on the colors
of its edges, traversed in counter-clockwise order starting at the
vertex with the highest insertion level; a blue triangle will be said
to be either BlueRGG, or BlueGGR, depending on the colors of its
edges, traversed in counter-clockwise starting at the vertex with
the lowest insertion level. We thus use five different color codes
for triangles: two for red triangles RedRGG and RedGGR, two
for blue triangles BlueRGG and BlueGGR, and one for green
triangles. Since three [one] bits are sufficient for the color of
triangles [edges], and levels in subdivision are usually not many,
one byte is sufficient to store both color and level.

Summing up, by assuming one unit of cost to be equal to
four bytes, we have an additional cost between 4.5n and 6.5n,
depending on whether or not a hash table is used for the additional
references of vertexes. This corresponds to an overhead between
20% and 30% with respect to the base data structure.

VIII. MODELING WITH RGB SUBDIVISION

We have implemented an interactive tool that supports fully
dynamic selective refinement for LOD editing through graphic
widgets. Our tool is a prototype implemented as a plugin for
MeshLab, an open source tool for processing, editing and visual-
izing 3D triangular meshes [32]. Implementation is based on the
VGC Library, an open source API for geometry processing [33].
The plugin will be included in the next release of MeshLab. A
beta version of the software can be currently downloaded from
our website http://ggg.disi.unige.it/rgbtri/.

Figure 14 shows a snapshot of the front end user interface of
MeshLab with the control panel of the RGB plugin on the right.
Our plugin allows a user to edit LOD in different ways:
• A portion of the mesh can be selected and either refined

or coarsened by setting the desired LOD inside and outside
selection. LOD may be set in terms of levels of subdivision
and maximal length of edges;

• A brush tool can be used to adjust LOD locally: the region
swept by the brush is either refined or coarsened by changing

Fig. 15. Only the face and the right side of the hockey player have been
refined: level of subdivision varies from zero to two and it is higher at joints
and on the face. This mesh contains 2826 faces.

the LOD according to the parameters set for the brush;
• Edge split and vertex removal primitives can be applied

individually for fine editing.
We have tested our tool on a number of models representing

various objects. Most objects were described with base meshes in
the order of 102-104 faces, which have been selectively refined
up to sizes of order 106. We show results on four models: a very
simple model representing a 3D star (base mesh 24 triangles);
a character for videogames (base meshes 1,008 triangles); the
hand of another character (base mesh 618 triangles); and a mesh
representing a hippo, which contains triangles of very different
size (base mesh 46,202 triangles).

For the hockey player and the hand, we show how selective
refinement can be applied to parts of the skin near joints, e.g.,
to better follow bending during animation (see Figures 15 and
16). The star is a very symmetric model, which is useful to
show how RGB subdivision acts regularly, in spite of being based
on local operators that are applied dynamically (see Figure 17).
We have also removed one spike of the star to show how RGB
subdivision acts on boundaries. On the hippo model we let the
selective refinement algorithm refine the whole mesh until a given
budget of faces was reached, by giving higher priority to longer
edges. In this case, RGB subdivision acts as a remeshing method
to make the mesh more uniform (see Figure 18).

In all examples it is clearly visible that RGB subdivision is truly
selective: LOD can increase/decrease as fast as two subdivision
levels per ring of triangles around a vertex/edge/triangle. Note
that the number of blue triangles appearing in the meshes is quite
small. Additional RB-swap operators could be forced to improve
the shape of such triangles further (e.g., based on max-min angle
criterion) without affecting the RGB structure.
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Fig. 17. The base mesh of the star has six spikes; one spike has been selected and refined to six levels of subdivision; one spike has been removed and the
square boundary has been refined to four levels.

Fig. 16. The two sides of the hand have been refined differently: the palm
is at level one, fingers are at level two, and joints of fingers and of the wrist
are at level three; the rest of the wrist as well as the back of the hand are at
level zero. This mesh contains 4821 faces.

Fig. 18. The original mesh contains triangles of very different size. Selective
refinement is run on the whole object until a mesh of 100,000 triangles
is obtained, giving higher priority to the refinement of longer edges. The
triangles in the resulting mesh are much more uniform.

We have evaluated time performance by running the program
on a PC with a Pentium 4 - 2.8 Ghz processor and 3 GB
of memory. Processing times for editing with the brush tool
are always compatible with interactive use. Actually, when the
mesh contains many triangles, most time is spent by MeshLab
in picking and rendering, while the time for selective refinement
is almost negligible. In general, time performance is very good
with all widgets, even on large meshes, as long as the effects
of editing are local. If the tool is used for uniform refinement
of the whole mesh through several levels of subdivision, then it
becomes slower than standard Loop subdivision. In this modality,
the performance resulting from our profiles is of about 15,000
refinement operations per second. Therefore, it can take several
seconds to get a mesh of size 105 through five or six levels
of subdivision. This is only in part due to the factorization of
subdivision through local operators. In our prototype we had
to comply with the structure of MeshLab, so we encoded RGB
triangulations in a data structure different from that described in
the previous section, and less efficient than it. We believe that a
more careful implementation could greatly improve performance,
hence supporting more real-time tasks, such as view-dependent
visualization, even on very large meshes.

IX. CONCLUSIONS

The RGB subdivision scheme has several advantages over both
classical and adaptive subdivision schemes, as well as over CLOD
models: it supports fully dynamic selective refinement while
remaining compatible with the Loop subdivision scheme; it is
better adaptive than previously known schemes based on the one-
to-four triangle split pattern; it does not require hierarchical data
structures; selective refinement can be implemented efficiently by
plugging faces inside the mesh, according to rules encoded in
lookup tables, thus avoiding cumbersome procedural updates.

We are currently developing an analogous scheme for the
modified butterfly subdivision [34]. Based on a similar approach,
we are also developing a hybrid tri-quad adaptive scheme for the
selective refinement of quad meshes. The basic ideas of this latter
work are sketched in [35].

We believe that this approach to adaptive subdivision may
give valid substitutes or complements to standard subdivision for
solid modelers and simulation systems. Combined with reverse
subdivision techniques, it may also offer a valid alternative to
CLOD models for free-form objects in computer graphics.



IEEE-TVCG 13

Our prototype integrated in MeshLab can be already used for
interactive editing of LOD. However, a more careful implementa-
tion of our data structures should provide a much more efficient
engine, suitable for tasks such as real-time view-dependent ren-
dering, or integration in a solid modeler.

Concerning rendering, our scheme is already progressive and
we did not find many popup effects during selective refinement.
However, morphing techniques [22] could be incorporated easily
to make frame-to-frame transitions smooth under any possible
changes.

A crucial feature to support modeling is surface editing. Editing
at the base level should be easy on the RGB subdivision, by
exploiting the mechanisms that we already implemented to prop-
agate contributions for computing the limit position of vertexes.
Editing at a finer level involves backward propagation to lower
levels and may require techniques of reverse subdivision. Either
the mechanisms proposed in [11], or those proposed in [20]
for hierarchical splines could be probably extended to RGB
subdivisions. In the future, we plan to develop these features
and to integrate our scheme in Blender [3], an open source solid
modeler.

APPENDIX

MULTI-PASS FORMULAS FOR THE LOOP SUBDIVISION

Following Stam [30] the portion of subdivision matrix involv-
ing an internal vertex v and its n neighbors v0, . . . , vn−1 has the
following structure:

S =

0
BBBBBB@

an bn bn bn bn . . . bn bn bn

3/8 3/8 1/8 0 0 . . . 0 0 1/8

3/8 1/8 3/8 1/8 0 . . . 0 0 0
...

. . .
...

3/8 1/8 0 0 0 . . . 0 1/8 3/8

1
CCCCCCA

where an = 1 − αn, bn = αn/n and αn is defined by Equation
4.

If v = (v, v0, . . . , vn−1)
T , then the product Sv gives the con-

trol point of v and all its neighbors at the next level of subdivision.
Thus, the control point of v after k levels of subdivision can be
computed by multiplying the first row of matrix Sk by v. We can
obtain Sk = UΛkU−1 from the decomposition S = UΛU−1,
where U is the matrix of eigenvectors and Λ is the diagonal
matrix of eigenvalues. Actually, we are interested just in the first
row of such a matrix. Moreover, by symmetry, we know that all
coefficients sk

1j for j = 2, n + 1 in the first row of Sk must be
equal. Thus, it is sufficient to compute just coefficients sk

11 and
sk
12.

From Stam [30], we have that the first row of matrix U is:

U1,∗ = (1,−8

3
αn, 0, . . . , 0)

and
Λ = diag(λ0, λ1, . . . , λn)

where λ0 = 1 and λ1 = 5/8 − αn. For our purposes, we can
disregard all the other eigenvalues. Thus, the first row of matrix
UΛk will be

(UΛk)1,∗ = (1,−3

8
αn(

5

8
− αn)k, 0, . . . , 0).

Let u11 and u21 be the first two coefficients of the first column
of matrix U−1, thus we have:

s11 = 1− αn = (UΛ)1,∗U
−1
∗,1 = u11 −

3

8
αn(

5

8
− αn)u21 (10)

and since UU−1 = I we have also:

u11 −
8

3
αnu21 = 1. (11)

Equations 10 and 11 form a linear system from which we obtain

u11 =
1

1 + 8
3αn

u21 =
−1

1 + 8
3αn

.

So now we can compute the first coefficient of Sk as follows:

sk
11 = (UΛk)1,∗U

−1
∗,1 = . . . =

3 + 8αn(5/8− αn)k

3 + 8αn
.

Proceeding in the same way, we obtain the second coefficient
of the first row of Sk:

sk
12 =

8αn(1− (5/8− αn)k)

n(3 + 8αn)
.

Now by defining

βn(k) =
8αn(1− (5/8− αn)k)

3 + 8αn

we have

sk
11 = 1− βn(k), sk

12 = βn(k)/n.

Hence, the control point of vertex v after k levels of subdi-
visions (following the level at which v was inserted as an odd
vertex) is

pk(v) = Sk
1,∗v

= sk
11v + sk

12

n−1X
i=0

vi

= (1− βn(k))v +
βn(k)

n

n−1X
i=0

vi. (12)

The limit position of vertex v is thus

p∞(v) = lim
k→∞

pk(v) = (1− β∞n )v +
β∞n
n

n−1X
i=0

vi

where
β∞n = lim

k→∞
βn(k) =

8αn

3 + 8αn
.

By substituting the above value in Equation 12 we obtain

pk(v) = γn(k)v + (1− γn(k))p∞(v),

where

γn(k) =

�
5

8
− αn

�k

.

For a boundary vertex, the corresponding portion of subdivision
matrix is:

S =
1

8

0
@ 6 1 1

4 4 0

4 0 4

1
A .

In this case, we can compute the decomposition explicitly:

U =

0
@ 1 1 0

1 −2 1

1 −2 −1

1
A , U−1 =

0
@ 2

3
1
6

1
6

1
3 − 1

6 − 1
6

0 1
2 − 1

2

1
A
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and Λ = diag(1, 1
4 , 1

2 ). Therefore we have:

sk
11 =

1

3

 
2 +

�
1

4

�k
!

sk
12 = sk

13 =
1

6

 
1−

�
1

4

�k
!

.

Proceeding as in the previous case, we obtain:

p∞(v) =
2

3
v +

1

6
(v0 + v1)

and

pk(v) =

�
1

4

�k

v +

 
1−

�
1

4

�k
!

p∞(v).
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