
Scalable Locally Injective Mappings
MICHAEL RABINOVICH and ROI PORANNE
ETH Zurich
and
DANIELE PANOZZO
New York University
and
OLGA SORKINE-HORNUNG
ETH Zurich

We present a scalable approach for the optimization of flip-preventing
energies in the general context of simplicial mappings, and specifically for
mesh parameterization. Our iterative minimization is based on the observa-
tion that many distortion energies can be optimized indirectly by minimizing
a family of simpler proxy energies. Minimization of these proxies is a natural
extension of the local/global minimization of the ARAP energy. Our algo-
rithm is simple to implement and scales to datasets with millions of faces.
We demonstrate our approach for the computation of maps that minimize a
conformal or isometric distortion energy, both in two and three dimensions.
In addition to mesh parameterization, we show that our algorithm can be
applied to mesh deformation and mesh quality improvement.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Geometric algorithms, languages,
and systems

General Terms: Mesh Parameterization, Optimization

Additional Key Words and Phrases: parameterization, bijectivity, scalability

1. INTRODUCTION

Mappings are an essential tool in computer graphics and geometry
processing. One of the most basic uses, and the main focus of this
paper, is mesh parameterization. Many practical applications, such
as texture mapping, remeshing, shape correspondence and attribute
transfer rely on the computation of a low-distortion parameteriza-
tion. The problem has been extensively studied, and a plethora of
algorithms have been devised. Linear methods were proposed first,
providing efficient ways to compute parameterizations, but only able

This work was supported in part by the ERC grant iModel (StG-2012-
306877), a gift from Adobe, and Courant Institute’s faculty start-up funding.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies show
this notice on the first page or initial screen of a display along with the full
citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c© YYYY ACM 0730-0301/YYYY/17-ARTXXX $10.00

DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

200

150

100

50

10 20 30 40

0.6M
1M
2M
4M
6M
8M

10M

Initialization Iteration 30

Iteration number

En
er

gy

0

0.6s
1.1s

22.7s
16.2s
12.1s
6.8s
2.6s

Fig. 1. We compare the behavior of our algorithm on progressively simpli-
fied versions of the Lucy model. We observe that the number of iterations
required is not dependent on the resolution of the mesh. The time required
per iteration in seconds appears on the righthand side of the image.

to ensure injectivity of the map when the mesh boundary is fixed a
priori, which induces a high distortion. As more powerful processors
became available, nonlinear optimization became tractable, allowing
one to compute free boundary, injective or bijective maps of a very
high quality. Still, current nonlinear approaches typically require
long computation times and do not scale well to large datasets, such
as detailed scanned surfaces like the one in Fig. 1.

In this paper, we propose a simple algorithm that combines the
benefits of the two approaches: it scales well to large datasets with
millions of elements (Fig. 1) and minimizes state-of-the-art non-
linear energies (Fig. 2). In particular, we focus on minimizing flip-
preventing energies and we propose an algorithm that is guaranteed
to produce parameterizations without any flipped elements.

The key idea of our method is to minimize the nonlinear energy
using much simpler proxy functions that permit the use of a lo-
cal/global approach. Our algorithm scales well to large datasets
even using a single core, and it can take advantage of the recent
developments in parallel solution of linear systems to be deployed
on multi-core architectures. While we are unable to provide a strict
bound on the convergence rate, we experimentally found that the
number of iterations required by our method is related to the geomet-
ric surface complexity and is not affected by the tessellation density

2 • M. Rabinovich et al.

Initialization Iteration 20 Iteration 40

Fig. 2. A locally injective parameterization obtained by minimizing the symmetric Dirichlet energy [Smith and Schaefer 2015] on a mesh with over 25 million
triangles, computed with our algorithm in 80 minutes. The algorithm starts from a highly distorted locally injective initialization and in only 40 iterations, each
requiring to solve a sparse linear system, it converges to a map with low isometric distortion that is guaranteed to be free of inverted elements.

(Fig. 1). Since each iteration merely requires solving a sparse linear
system, massive datasets can be parameterized quickly.

2. PREVIOUS WORK

Mappings are one of the most researched subjects in computer
graphics, and specifically the problem of generating locally injective
2D and 3D mappings has garnered a lot of attention in the past
decades. In this section, we mention only the most closely related
work on the topic of large scale mesh parameterization and we refer
to [Floater and Hormann 2005; Sheffer et al. 2006] for in-depth
surveys.

Linear methods. Linear methods compute a mesh parame-
terization by solving a linear system, where each mesh vertex is
represented as a weighted average of its neighbors. They have been
proposed to parameterize topological disk patches [Tutte 1963] or
topological spheres [Aigerman and Lipman 2015]. For topologi-
cal disks, linear methods can be guaranteed to produce bijective
parameterizations if the patch boundary is fixed to a convex shape
and the weights are positive [Floater 2003]. Free-boundary methods
exist that minimize a measure of conformal distortion [Desbrun
et al. 2002; Lévy et al. 2002; Zayer et al. 2007; Ben-Chen et al.
2008; Mullen et al. 2008], but they are not guaranteed to produce a
bijective map.

Nonlinear methods. Many nonlinear deformation energies
have been proposed in the literature for both conformal and isometric
distortion. They are typically minimized using standard optimization
methods, such as Newton [Sheffer and de Sturler 2001; Chao et al.
2010; Sanan 2014], Gauss-Newton [Sanan 2014], quasi-Newton
[Smith and Schaefer 2015] and second-order cone programming
[Aigerman et al. 2014]. To simplify implementation and reduce
memory usage, several works [Hormann and Greiner 2000; Labsik
et al. 2000; Schreiner et al. 2004] opt for a block descent optimiza-
tion, where in each iteration only a single vertex is free to move.
Similarly, [Levi and Zorin 2014; Fu et al. 2015] optimize an inde-
pendent subset of vertices in parallel. These methods do not scale
to large datasets, since the number of iterations they need grows
quickly with the size of the mesh. In contrast, we observe that the
number of iterations required by our method is related to the geomet-
ric complexity and not the dataset size (Fig. 1): even datasets with
millions of elements can be parameterized within a few iterations.

The local/global minimization of isometric distortion [Sorkine
and Alexa 2007; Liu et al. 2008] iteratively alternates between
a local step and a global step. In the local step, each element is

individually perfectly mapped (without any distortion), and in the
global step, a linear system is solved to stitch all elements back
together. This process very quickly recovers from a bad initialization,
but it is slow to converge to a local minimum when it is close to it.
The decoupling of a local condition from a global “stitching” has
been successfully used in other parameterization algorithms [Weber
et al. 2012] and to enforce complex constraints [Bouaziz et al. 2012;
Poranne et al. 2013]. Our method uses the local/global paradigm
and enriches it with a reweighting scheme to efficiently minimize
nonlinear, flip-preventing energies.

Non-flipping invariant. A recent series of works [Schüller
et al. 2013; Fu et al. 2015; Smith and Schaefer 2015] have proposed
parameterization energies with a term that goes to infinity when
an element inverts. These flip-preventing energies are minimized
starting from a flipless initialization (e.g., [Tutte 1963]) using line
search to ensure that they never leave the feasible region. This
approach is guaranteed to create a locally injective map given a
feasible starting point, but the energies are numerically difficult to
optimize, leading to high running times.

Our algorithm is specifically designed to optimize these energies
and, differently from all existing methods, quickly recovers from
the highly distorted starting point.

Bounding, projections. Another approach to the creation of
locally injective maps is based on directly bounding the distortion.
Similar to the above, a parameterization algorithm is first employed
to generate an initial locally injective map. The energy of the map
is then optimized while adhering to a specified distortion bound
[Lipman 2012; Kovalsky et al. 2014; Sanan 2014; Chen and Weber
2015]. A similar, more recent approach projects any map, possibly
with flips, to the closest map that has no flips [Aigerman and Lip-
man 2013; Kovalsky et al. 2015]. The major limitation with these
approaches is that the elements in the solution they generate have
suboptimal distortion. In fact, their distortion tends to be the highest
possible without violating the bound (Fig. 3). These methods are
not guaranteed to find a valid solution [Myles et al. 2014] and they
often need thousands of iterations to find one. Instead of projecting
into the feasible space, [Fu and Liu 2016] propose to first unfold
all simplices separately, and then solve a nonlinear optimization to
glue them together. Similarly to the previous methods, they cannot
guarantee to produce a valid locally injective map. An interesting
special case is the convex energy used in ex-rotated elasticity simu-
lations, for which Liu et al. [2016] propose a numerical approach
that can both minimize the energy and robustly recover from flipped
elements. However, the ex-rotated energy requires to specify a fixed

Scalable Locally Injective Mappings • 3

[Lipman 2012] AMIPS [Fu et al.] AMIPS (Ours)

Fig. 3. The bounded ARAP energy (left, result taken from [Fu et al. 2015])
pushes the triangles to the distortion bound, while a direct minimization of
the AMIPS energy [Fu et al. 2015] evenly distributes the distortion over the
surface (middle). Our approach can also optimize the AMIPS energy (right),
further reducing the energy to a local minimum. This model has 11K faces
and took our method less than 20 iterations to converge. Bottom row: the
distortion magnitude is visualized by the saturation of the red color.

rotation per element as input, inhibiting its use for parameteriza-
tion tasks and limiting its applicability to a very specific isometric
distortion measure [Liu et al. 2016].

Stiffening. Another strategy is the so-called stiffening, where
the idea is to try and coerce inverted elements to reorient correctly.
Examples include [Irving et al. 2004], where an added force acts on
inverted elements in a simulation, and [Martin et al. 2011], where
a volume term is added to the energy of each element. Another
method related to ours is found in [Bommes et al. 2009]: there, the
inverted elements are progressively reweighted in the parameteri-
zation energy, as opposed to minimizing the original energy in the
space of locally injective maps. Finally, the IRLS algorithm [Pighin
and Lewis 2007] can be similarly considered as a special form of
stiffening. All these methods can be enriched with a line search to
ensure the generation of locally injective maps, but they get stuck
before reaching a local minimum and thus produce maps that are
considerably inferior in quality when compared with the results of
our algorithm (Fig. 4).

We discuss these methods in more detail in Sec. 5.

Large scale. Computing locally injective maps with a large
number of elements is a challenging numerical problem that has
been tackled in surprisingly few research papers in graphics. Apart
from linear methods that scale well since they only involve the so-
lution of a linear system, the only other works we are aware of are
ABF++ [Sheffer et al. 2005],[Kovalsky et al. 2015], and [Kovalsky
et al. 2016]. The first uses a multiresolution hierarchy to make the
problem tractable at the expense of a higher distortion compared to
the original ABF [Sheffer and de Sturler 2001], and it can only opti-
mize for angle preservation. The algorithm of Kovalsky et al. [2015]
is a projection method to the space of conformal maps. It does not
minimize map distortion (Fig. 3), it cannot generate isometric param-
eterizations [Kovalsky 2016] and it often fails to find a valid map,
making it impractical for many applications. Concurrently to this
work, [Kovalsky et al. 2016] also introduced a scalable method for
computing locally injective maps. We compare it with our method
in Sec. 5 and demonstrate that our method is significantly faster.

Stiffening [Bommes 2009]

IRLS Ours
 =10.6 =8.2

 =2140

Initialization

 =3.0e6E

E E

E

Fig. 4. We compare different numerical methods to minimize the symmetric
Dirichlet energy (Eq. (3)) starting from a Tutte’s initialization (top left): the
greedy stiffening [Bommes et al. 2012] (top right), Iteratively Reweighted
Least Squares (bottom left) and our approach (bottom right). See Sec. 5 for
a detailed explanation of these techniques.

Other applications. In addition to parameterization, our algo-
rithm can be used to deform 3D objects, and we can also adapt our
method to minimize mesh improvement energies, as suggested in
[Lipman 2012; Aigerman and Lipman 2013; Fu et al. 2015]. “Seam-
less” rigid and conformal parameterizations (i.e., parameterizations
whose gradients match across seams, see [Myles and Zorin 2012;
Myles et al. 2014; Diamanti et al. 2015]) are also supported, al-
though we cannot enforce the integer translations that are necessary
for remeshing applications [Bommes et al. 2012].

3. PRELIMINARIES AND PROBLEM STATEMENT

Our main objective is to devise an efficient and scalable algorithm to
compute high quality isometric parameterizations. Denote the input
triangle mesh by M = (V, F), where V is the set of vertices and F
is the set of faces. In our setup, a parameterization Φ : M → R|V |×2

is a continuous piecewise affine map from M into a planar domain;
triangles f ∈ F are mapped to triangles by an affine map Φ|f , and
the different affine maps agree on the common edges. We denote the
mapped coordinates of the vertices by x ∈ R|V |×2. In the general
case, the input mesh cannot be flattened without introducing some
geometric distortion. The distortion is quantified by a distortion
measure D that reflects changes between the source and mapped

4 • M. Rabinovich et al.

triangles’ areas, angles, or a combination of both. The distortion
measure D depends solely on the shape of the source and mapped
triangles and is naturally invariant to rotations and translations.
Therefore, we assume that each triangle f ∈ F is equipped with
its own arbitrary local isometric mapping to a triangle on the plane,
pf : R3 → R2. The parameterization mapping of a triangle f can
be written as Φ|f = φf ◦pf , where φf : R2 → R2 is an affine map
in the plane. Since D is invariant to translations, it can be formulated
solely in terms of the 2× 2 Jacobians of each affine transformation
φf , namely Jf (x) := ∇φf . Note that Jf (x) is a linear function of
x. Then the energy we wish to minimize is

min
x
E(x) =

∑
f∈F

Af D(Jf (x)), (1)

where D(·) is the distortion measure, and Af is the area of element
f .

We say that D is an isometric distortion measure if D is minimal
only for rotations. A popular choice for such a distortion measure is
the As-Rigid-As-Possible (ARAP) measure [Liu et al. 2008], which
is defined by

DARAP(Jf (x)) = ‖Jf (x)−R(Jf (x))‖2F , (2)

where R(Jf (x)) is the closest rotation to Jf (x) in the Frobenius
norm, and ‖·‖F denotes the Frobenius norm. Minimization of the
associated nonlinear energy (1) with the ARAP distortion measure is
often achieved with the alternating local/global algorithm [Sorkine
and Alexa 2007; Liu et al. 2008]. We review the algorithm in Sec.
4. This local/global optimization has the very interesting property
of making large steps in the minimization when initialized with a
point far from the solution. This well-known property makes the
local/global approach attractive, since a few iterations are sufficient
to obtain a result that is good enough for many practical purposes.
In addition to parameterization, this technique has been successfully
applied to shape deformation [Sorkine and Alexa 2007; Jacobson
et al. 2012], architectural design [Bouaziz et al. 2012], and physical
simulation [Bouaziz et al. 2014], where its fast progress in the
initial iterations is paramount to achieving interactive performance.
However, the ARAP energy only softly penalizes degenerate and
inverted elements, and they commonly appear in practice [Civit-
Flores and Susin 2014; Martinez Esturo et al. 2014], making the
resulting parameterizations unusable in many geometry processing
tasks, such as texture mapping and remeshing (Fig. 5). This is
a direct result of the ARAP energy’s bias towards shrinking, in
contrast to other distortion measures such as the symmetric Dirichlet
[Schreiner et al. 2004; Smith and Schaefer 2015], as seen in Fig.
6. The symmetric Dirichlet energy punishes equally on scaling and
shrinking. More precisely, this distortion measure satisfies D(J) =
D(J−1) for every J. Our objective is minimizing (1) where D is the
continuous symmetric Dirichlet energy:

D(Jf (x)) =

{
‖Jf (x)‖2F + ‖J−1

f (x)‖2F if det(Jf (x)) ≥ 0

∞ if det(Jf (x)) < 0

(3)
The above definition can be seen as the same energy defined in
[Smith and Schaefer 2015], which is infinite for degenerate Jaco-
bians, but continuously extended for negative determinants. Later
in the paper we additionally show that we can minimize other dis-
tortion measures that are also infinite for degenerate Jacobians, and
we similarly extend them to be infinite for orientation flipping Jaco-
bians. Minimizing an energy composed of these distortion measures
ensures no triangle degenerates or flips and provides an overall
higher quality parameterization, as seen in Figures 5, 6. Our method

can be seen as an extension of the local/global algorithm to mini-
mize energies other than ARAP, significantly outperforming current
algorithms. Sec. 4 introduces our parameterization algorithm that ef-
ficiently minimizes the symmetric Dirichlet energy. Sec. 5 analyzes
its performance, comparing it to other optimization methods. In Sec.
6 we further generalize the algorithm to minimize other geometric
energies, and in Sec. 7 we demonstrate various applications of our
method.

ARAP Symmetric
Dirichlet

Fig. 5. The ARAP energy (left) introduces 6K inverted triangles in the
parameterization (highlighted in magenta), which cause highly distorted
regions around the neck and the wing of the Gargoyle. Our algorithm avoids
this problem by minimizing a flip-preventing symmetric Dirichlet energy
(right). This model has 99K faces and took our algorithm 20 iterations and
2.6 seconds to optimize.

Same ARAP energy

ARAP Symmetric Dirichlet

Fig. 6. Top row: Parameterizing the Mannequin by minimizing the ARAP
energy (left) and the symmetric Dirichlet (right). Bottom row: The ARAP
distortion of an infinite shrinking (a mapping that creates a degenerate
triangle) is equal to the distortion of a triangle scaled to less than three times
its area. This shrinking bias leads to a parameterization with a lower quality
that might contain degenerate or flipped triangles.

Scalable Locally Injective Mappings • 5

4. ISOMETRIC PARAMETERIZATION

We first briefly review the local/global algorithm for minimization
of the ARAP distortion measure.

Local/Global optimization. Liu et al. [2008] proposed to
minimize the ARAP energy using a local/global algorithm, an it-
erative process that alternates between two steps. At iteration k,
the local step greedily pushes the Jacobian Jf (x) of each element
f ∈ F towards the closest minimizer, which is a rotation. That is,

Jkf := Jf (xk−1) (4)

Rk
f := R(Jkf) = UV> (5)

where xk−1 is the previous iterate and Jkf = USV> is the signed
SVD of Jkf . The global step that follows minimizes the deviation
from those rotations, essentially averaging the distortion among all
elements in order to stitch them together. This is done by solving

xk = arg min
x

∑
f∈F

Af‖Jf (x)−Rk
f‖2F + λ

∥∥x− xk−1
∥∥2
. (6)

The second term is a proximal term that makes the solution unique,
removing the invariance of the energy to rigid transformations, and
it is equivalent to adding hard constraints to remove the translational
and rotational degrees of freedom. We use λ = 10−4 in this paper.
Since the Jacobians are linear functions of x, the above is a simple
quadratic minimization that can be computed by solving a linear sys-
tem (see [Liu et al. 2008]), which is always full rank by construction
thanks to the proximal term.

We observe that Eq. (6) minimizes the energy (1) with the ARAP
distortion in (2) for a specific set of rotations. We suggest another
point of view by introducing a family of proxy functions

P
Rk

f (J) = ‖J−Rk
f‖2F (7)

and equivalently rewriting Eq. (6) as

xk = arg min
x

∑
f∈F

Af P
Rk

f (Jf (x)) + λ
∥∥x− xk−1

∥∥ . (8)

Note that the proxy in Eq. (7) is almost identical to the ARAP
distortion itself in Eq. (2), and they are in fact equal in the current
iteration.

To simplify notation, we write D(J) instead of DARAP(J), and
we rewrite the local step as a projection operator from a given
Jacobian Jkf to the closest minimizer of D(J):

Min(D) := {J | J is a minimum of D} (9)

Proj
D

(Jkf) := arg min
R∈Min(D)

||Jkf −R||2F = Rk
f (10)

We further observe that this convex quadratic proxy has the follow-
ing properties:

Majorizer: P
Rk

f (J) ≥ D(J) ∀J (11)

Matching gradients: ∇JP
Rk

f (Jkf) = ∇JD(Jkf) (12)

Closest minimizer: arg min
J

P
Rk

f (J) = Proj
D

(Jkf) (13)

Property (11) guarantees that the proxy energy is at least as high
as the original ARAP energy, and since it is exactly equal at the
given point, minimizing the proxy is guaranteed to reduce the ARAP
energy at every step. Property (12) ensures that the energy (6) locally

approximates ARAP. Indeed, Jf (x) is a linear function of x, and
the following also holds:

∇xP
Rk

f (Jkf) = ∇xD(Jkf). (14)

Property (13) is more of a global nature. The nonlinear ARAP
distortion measure is minimal for all rotations, while the quadratic
proxy has only a single minimizer. This property states that the
proxy at each iteration is minimal only for the rotation that is closest
to Jkf . Generalizing the local/global algorithm for the symmetric
Dirichlet distortion measure means finding an appropriate class of
proxy distortion measures with the properties (11)-(13).

Sadly, this is not possible. As any quadratic function is finite on a
finite interval, finding a quadratic proxy distortion measure with the
majorizer property (11) is impossible for the symmetric Dirichlet, or
any other distortion measure that has an infinite value for degenerate
or orientation flipping Jacobians. Therefore, at best, we can hope
to have a proxy distortion measure with the matching gradient (12)
and closest minimizer (13) properties.

Local-Global as a descent algorithm. Let us rewrite the
local/global algorithm as a descent algorithm. The local step remains
the same (Eq. (5)), and then the global step generates a search
direction dk:

dk = x̃k − xk−1, (15)

where x̃k is computed as in Eq. (6) and xk−1 is the previous iterate.
Then the algorithm simply takes a full step in the search direction:

xk = xk−1 + αdk, α = 1, (16)

and the iterations are continued for the next value k := k+ 1. Since
the proxy is convex quadratic and the gradients match, dk must
point towards a descent direction for Eq. (2). This allows us to use a
variation of the local/global algorithm with a step size α 6= 1 and a
line search. Consequently, property (12) is sufficient to minimize an
energy of the form (1) composed of a general distortion measure D.

Weighted proxy functions. The challenge in extending the
local/global descent algorithm to a more general energy D is to find
a class of proxy functions P that satisfy similar conditions to Eq.
(12), (13). We first note that for the symmetric Dirichlet distortion,
as well as any other isometric distortion, the set of minimizers is
the same, namely the set of rotations. The Euclidean projection of a
Jacobian Jkf to the closest minimum is in fact the closest rotation,
exactly as in ARAP. This leads us to propose the following family
of proxy functions:

PR
W(J) = ‖W(J−R)‖2F , (17)

where W is a 2 × 2 matrix. These proxy functions satisfy (13)
by construction, and we wish to find a matrix W such that (12)
holds. The proxy functions are similar to the ARAP proxy (Eq.
(7)), with the only difference being the term W, which is the affine
transformation required to warp the proxy to locally match the
gradient of the distortion energy. This enhanced proxy energy is
quadratic (with fixed R and W) and can be rewritten in matrix form
and minimized (see details in Appendix A).

Given xk−1 and Rk
f , we can find a weight matrix Wk

f , such that

Eq. (12) holds for P
Rk

f

Wk
f

:

∇Jf

∥∥Wk
f (Jf −Rk

f)
∥∥2

F
= ∇Jf

D(Jf), at Jf = Jf (xk−1).
(18)

6 • M. Rabinovich et al.

Initialization Iteration 6 Iteration 9 Iteration 12 Iteration 20

Fig. 7. Minimization of the symmetric Dirichlet energy on the Octopus model. Note how quickly the boundary of the UV map recovers from the distorted
starting point. This model has 299K faces and took 20 iteration and 5.5 seconds to optimize.

For brevity, we drop the indices and simply write Eq. (18) as
∇J ‖W(J−R)‖2F = ∇JD(J). We can then expand the l.h.s.:

∇J ‖W(J−R)‖2F =

∇Jtr(W>W(J−R)(J−R)>) =

(W>W + WW>)(J−R).

Assuming J−R is invertible, we can manipulate this equation and
find that W must satisfy

W>W + WW>= ∇JD(J) (J−R)−1. (19)

If (J − R)−1 does not exist, we take the pseudo-inverse instead.
Since the left-hand side is positive semidefinite, a solution to Eq.
(19) exists if and only if the right hand-side is positive semidefinite,
which is always the case for isometric energies such as symmetric
Dirichlet (see Sec. 6 for more details). The unique solution can be
found explicitly:

W =

(
1

2
∇JD(J) (J−R)−1

)1/2

, (20)

where the square root is a matrix principal root, which we compute
via diagonalization. Alternatively, this equation can be rewritten to
sidestep the diagonalization to improve performance, as detailed in
Sec. 6 (see Eq. (28)).

Note that ∇JDARAP(J) = 2(J − R), reducing the previous
equation to W = I. Thus, our algorithm reduces to [Liu et al. 2008]
when used on DARAP.

Line search. The proxy energies generate good descent direc-
tions during the minimization: at each step our algorithm alternates
the computation of optimal rotations (local step) with the minimiza-
tion of the proxy function to find a descent direction. Similarly to
Eq. (8), we use the weighted proxy and solve,

pk := arg min
x

∑
f∈F

Af P
Rk

f

Wk
f

(Jf (x)) + λ
∥∥x− xk−1

∥∥ . (21)

Then we use pk to define the search direction,

dk := pk − xk−1 (22)

and we use this direction for the next step,

xk = xk−1 + αdk,

where α is the step size determined by a line search that minimizes
the original energy (1), without the proximal term. Starting from a
locally injective map (Tutte’s embedding) and using a line search to
minimize any energy that is infinite exactly when elements degen-
erate or flip ensures that the generated map is flip-free. In practice,
we use a line search strategy similar to [Smith and Schaefer 2015]

to choose an α such that we never cross the point where an ele-
ment flips. At such points the energy is infinite. We thus initially set
α = min {0.8αmax, 1}, where αmax is the maximal step size with
no foldovers. We then proceed with a bisection line search, where
the initial interval is [0, αmax], until we find a point that satisfies
Wolfe’s conditions (see [Nocedal and Wright 2006], section 3.4).
Our algorithm is guaranteed to generate a descent direction at every
iteration, and therefore decrease the energy at each iteration. We
have found experimentally that our algorithm always converges to a
local minimum. However we lack a formal convergence proof, and
this remains an open question. This is also the case for the original
local/global ARAP algorithm. We mention that by the Zoutendijk
theorem ([Nocedal and Wright 2006] section 3.2), such a proof
could be found by bounding the angle between dk and the gradient
of the energy, which is directly related to the condition number of
our linear system.

Reweighted local/global for symmetric Dirichlet. En-
riching the local/global algorithm with the matrix reweighting
scheme and line search leads to our algorithm, which is simple
to implement and scales to datasets with millions of elements. Al-
gorithm 1 sketches the pseudocode of our method. We provide the
source code of a reference implementation in libigl [Jacobson et al.
2016], as well as an optimized parallel optimization on GitHub
[Rabinovich 2016]. We analyze the method’s properties in Sec. 5
and we show how it can be easily extended to various distortion
energies and to 3D locally injective maps in Sec. 6.

Algorithm 1: Reweighted local/global
Input:

A mesh M with a set of vertices V and elements F
Output:

A set of mapping coordinates x minimizing Eq. (1)

Initialization:
x0 = Tutte(V, F)

Optimization:
for k = 1 to max iterations do

Compute closest rotation Rk
f for each Jacobian Jf (xk−1)

Update the weights Wk
f for each f ∈ F using Eq. (20)

Solve Eq. (21) to find pk

Set dk using Eq. (22)
Find αmax, as in [Smith and Schaefer 2015](Section 3.3)
Perform bisection line search to find step size α, starting
from α = min {1, 0.8αmax} in the interval [0, αmax]
xk = xk−1 + αdk

Scalable Locally Injective Mappings • 7

Initialization Iteration 1 Iteration 2 Iteration 20

Fig. 8. Minimization of the symmetric Dirichlet energy on the Buddha model. Despite the massive the dataset (470K faces), our algorithm produces an
optimized locally injective parameterization in 14 seconds.

5. ANALYSIS

We apply our algorithm to a series of challenging parameterization
problems to observe its properties and scalability to large datasets.
We also provide a comparison against Newton descent and L-BFGS
[Nocedal and Wright 2006] to demonstrate that our algorithm out-
performs classical optimization techniques, and against more recent
state of the art methods.

Qualitative convergence behavior. We observed that the
convergence behavior in our case is similar to local/global opti-
mization of the ARAP energy, that is, the algorithm progresses
very rapidly at the beginning, but then slows down when close to
a minimum (see Figures 7, 8, 9). Uneven meshing does not alter
the performance of our method (Fig. 10). We demonstrate this by
parameterizing two copies of the same surface, one with an homo-
geneous triangulation and another with an uneven triangulation with
hundreds of slivers.

Initialization 20 iterations10 iterations Converged (196)

Fig. 9. Our algorithm quickly progresses towards the minimum of the en-
ergy. If sufficiently many iterations are executed, our algorithm numerically
converges to a minimum, but the differences in quality compared to earlier
iterations are negligible. This figure shows the result after 10, 20, and finally,
196 iterations, where the optimization has converged to a minimum.

Our algorithm is extremely robust, and it succeeds even when
initialized with a map made of slivers, as demonstrated in Fig. 19
— the resulting parameterization after 20 iterations is very close to
being isometric, as can be seen in the texture, even if the algorithm
needs many more iterations to reach a numerical minimum. New-
ton’s method is much slower, and only after 2000 iterations does the
quality of the parameterization start to resemble ours.

Non-uniformUniform

Fig. 10. Our algorithm is robust and consistently produces high quality
locally-injective maps in as little as 20 iterations, even in presence of low-
quality triangulations. In this example we show the results of running our
parameterization process on the same shape with uniform and non-uniform
triangulations. As can be seen, our algorithm reaches similar minima re-
gardless of the mesh quality. In this case, the non-uniform triangulation has
smallest triangle angle of 0.222 degrees and the largest triangle angle of
178.05. The max triangle area divided by the smallest is 94,618.

Comparison with standard numerical methods. In Fig.
12 (top) we compare our iterations against L-BFGS. Since the L-
BFGS iterations are faster than ours, we plot the time on the x-axis
to ensure a fair comparison. Our method is considerably faster and
produces a high quality map in a fraction of the time. In Fig. 12 (bot-
tom), we compare against Newton’s method. This method can get
stuck if the Hessian is not positive semidefinite (PSD). A common
remedy in simulation applications is to regularize the Hessian by

8 • M. Rabinovich et al.

Newton OursInitialization

Reg. Newton

Fig. 11. Our algorithm outperforms Newton’s method when applied to
non-uniform triangulations. In this case, Newton’s method stopped before
reaching a minimum, while the regularized Newton did very little progress
after 500 iterations.

projecting the Hessian of each face on the set of PSD matrices (see
e.g. [Teran et al. 2005]). We observe that for parameterization it is
not clear which method performs better, as cases vary. We report the
results of both the normal and the regularized version of Newton’s
method. In both cases, our algorithm is considerably faster. Another
example of this behavior is shown in Fig. 11 and in Fig. 19.

Comparison with similar methods. The Accelerated
Quadratic Proxy (AQP) algorithm of [Kovalsky et al. 2016] mini-
mizes a distortion energy by iteratively computing descent direc-
tions using a modified Newton’s method, where instead of the true
Hessian, which changes at each iteration, they use the cotangent
Laplacian, which remains fixed. These directions are later fed into a
line search algorithm with a customized acceleration scheme. The
descent directions are generated by solving

dk = −A−1g(xk−1), (23)

where g(x) is the gradient of the objective, and A incorporates the
Laplacian and additional positional constraints. A similar method
by [Martin et al. 2013] uses different weighted sums of powers
of the Laplacian, which represent highpass, bandpass and lowpass
filters. We show in Appendix C that our method can be written in a
similar way. For both approaches above, the matrix A is fixed and
can be prefactored, leading to fast iterations. This is not the case for
our method, where the matrix A changes in every iteration, so that
only symbolic factorization can be precomputed. Nevertheless, our
algorithm substantially outperforms these methods since it generates
superior descent directions, resulting in fewer iterations and a lower
running time. We compare our method against our implementation

10.5

4

17

23.5

30

125 250 375 500

25 50

10.5

4

17

23.5

30

Ours L-BFGS

Newton

 Time (seconds)

Iterations

Regularized Newton

En
er

gy
En

er
gy

Fig. 12. Our iterations are slower than those of L-BFGS, since we have
to solve a sparse linear system, but overall, they progress much faster (top).
Our iterations are also making considerably more progress than Newton
iterations when we are far from the minimum (bottom). This model has
386K faces, and in both cases we minimize the symmetric Dirichlet energy.
See Fig. 19 for another comparison with Newton’s method.

of the approach of [Kovalsky et al. 2016] in Fig. 13 and in Table I.
The code of the two algorithms uses the PARDISO solver, and the
same optimized line search and energy evaluation code. Our method
is between 2 to 6 times faster on simple datasets, and up to 14 times
faster on challenging models such as the Bunny and the Gargoyle.

The method of [Martin et al. 2013] does not scale to large models.
We implemented the algorithm of [Martin et al. 2013] for mesh
parameterization with the Symmetric Dirichlet energy, using the
same optimized code base and solvers. Our method is more than
200 times faster on the 11K faces Bimba mesh, and more than 2,100
times faster on the 99K faces Lion Vase model.

Scalability. The efficiency of our method stems from the ex-
perimental observation that the number of iterations is related to
the geometric complexity of the model, instead of depending on the
density of the tessellation. We show evidence supporting this claim
in Fig. 1, where we plot the energy on a progressive input mesh
(Lucy), sampled with 0.6-6 million faces. Note that the majority
of the competing methods become impractically slow for models
larger than 100K vertices. There are only two exceptions: (1) [Ko-
valsky et al. 2015], which does not minimize a distortion energy,
often fails to find a solution and cannot be used to create isometric
parameterizations [Kovalsky 2016]; and (2) [Kovalsky et al. 2016],
which is considerably slower than our approach, as demonstrated in
our experiments (Table I).

Why not ARAP with Line search? Our approach relies on
the line search proposed by [Smith and Schaefer 2015] to en-
sure the local injectivity of the map. It is tempting to simply
add the line search to e.g. ARAP parameterization algorithm,

Scalable Locally Injective Mappings • 9

Table I. Comparison with [Kovalsky et al. 2016]

Model (Figure) #Faces #Vertices Our iterations AQP iterations Our time (s) AQP time (s) Speedup factor

Bimba (3) 11K 5.6K 10 / 20 131 / 145 0.3 / 0.55 1.48 / 1.63 4.93 / 2.96
Bunny (4) 108K 54K 10 / 20 923 / 979 1.98 / 3.47 44.06 / 46.73 22.25 / 13.46
Gargoyle (5) 99K 49K 10 / 20 901 / 946 1.49 / 2.53 34.92 / 36.6 23.43 / 14.46
Octopus (7) 300K 151K 10 / 20 222 / 298 3.42 / 5.48 22.82 / 29.68 6.67 / 5.41
Superman (9) 190K 95K 10 / 20 217 / 284 2.9 / 4.83 17.98 / 23.09 6.2 / 4.78
Buddha (8) 470K 235K 10 / 20 87 / 117 7.98 / 13.5 24.36 / 31.15 3.05 / 2.3
Max Planck (10) 84K 42K 10 / 20 81 / 102 1.11 / 1.83 3.1 / 3.73 2.79 / 2.03
Dragon Head (12) 387K 194K 10 / 20 316 / 404 6.57 / 11.33 61.31 / 77 9.33 / 6.79
Bear (14) 296K 148K 10 / 20 181 / 212 5.22 / 9 24.83 / 28.72 4.75 / 3.19
Lion Vase (15) 99K 49K 10 / 20 239 / 268 1.48 / 2.5 8.79 / 9.76 5.93 / 3.9

Comparison of mesh parameterization minimizing the Symmetric Dirichlet energy with our implementation of [Kovalsky et al. 2016], called Accelerated
Quadratic Proxy (AQP). We ran our algorithm for a fixed number of iterations (10 and 20), and compared both the number of iterations and the time taken for
the AQP method to reach the same energy. The linear system of the AQP method can be numerically prefactored, while in our algorithm we can only perform
symbolic factorization. Though each iteration of our algorithm is more expensive, our proxy generates better descent directions and our algorithm is between 2
to 14 times faster. The prefactoring of the linear systems is included in the timings.

10.5

4

17

23.5

30

20 40 60 80

Ours AQP

 Time (seconds)

Fig. 13. Comparison of our algorithm and AQP for computing a param-
eterization minimizing the Symmetric Dirichet energy of the 386K faces
Dragon Head model. Our approach is significantly faster, especially at the
first iterations.

obtaining a method that is also guaranteed to produce locally
injective maps. However, the quality of the map will be poor
because the line-search will lock the algorithm whenever one
triangle degenerates, and further progress will not be allowed.

In the inset, we repeat the experiment shown
in Fig. 4 using the ARAP parameterization al-
gorithm with the the line search proposed by
[Smith and Schaefer 2015]. The algorithm is
not able to make much progress, producing a
result with a much higher distortion than ours
(Fig. 4).

Relationship to IRLS and greedy stiffening. Our ap-
proach is loosely related to the stiffening methods, which are often
used in global parameterization [Bommes et al. 2009], where Eq.
(6) is modified to include a per-element scalar weight wf , i.e.,

min
x

∑
f∈F

Af w
k
f‖Jf (x)−Rk

f‖2F . (24)

The rationale is to increase this weight for the elements that flip,
hoping that this will lead to a locally injective map. This approach
is a heuristic that is not guaranteed to succeed, since increasing
the weight of an element to remove a flip could cause a flip in a
neighboring element, and this could (and does in practice) repeat

indefinitely. We tried using this approach in our formulation, replac-
ing our matrix weights with a scalar weight and updating it using
the update rule proposed in [Bommes et al. 2009], but this is not
guaranteed to generate a descent direction, and the algorithm gets
stuck, as shown in Fig. 4.

Another related algorithm is iterative reweighted least squares
(IRLS), which also uses scalar weights for the purpose of locally
matching the energy value. This is sufficient to ensure convergence
for the specific case of Lp norms. We tried to adapt this idea to our
framework, using scalar weights and the update rule proposed in
[Yoshizawa et al. 2004; Pighin and Lewis 2007]:

wkf =
D(Jf (xk−1))

‖Jf (xk−1)−Rk
f‖2F

. (25)

If, in a given iteration, an element is mapped to an almost degenerate
one, the symmetric Dirichlet energy in the numerator becomes huge,
while the proxy in the denominator does not, and so in the next
iteration the IRLS scalar weight strategy penalizes more on this
element by giving it a larger weight. This could prevent it from
flipping in the next iteration, and one could expect it to produce
a result that is closer to the actual energy that we would like to
minimize. If an element is scaled, we could expect the weight to be
lower than 1, since the proxy tends to penalize it too much. However,
our experiments show that this update rule (which turned out to be
conceptually similar to the stiffening of [Bommes et al. 2009]) is
not sufficient to guarantee convergence, and in fact eventually often
fails to find a descent direction (Fig. 4).

Intuitively, the expressivity of scalar weights is limited, for in-
stance when a triangle is stretched very heavily along just one axis,
while not being stretched along the other axis. In this case, a single
scalar weight per-triangle cannot distinguish between the axes, and
both of them are penalized the same. A more proper choice is to
penalize each axis separately, and this can only be expressed by
using matrix weights. We elaborate on this in the next section.

6. GENERAL DISTORTION ENERGIES

We proceed with the treatment of specific isometric distortion mea-
sures, as well as generalizing to other types of geometric distortion
measures. From now on, we assume that D(J) is any rotation in-
variant distortion measure, as we define below. Note that any D(J)
that solely measures geometric changes is in fact rotation invariant.
Additionally, we fill the gap that remains from the previous section,

10 • M. Rabinovich et al.

that is, ensuring that Eq. (19) is indeed valid, and that its right hand
side is positive semidefinite. We start with the latter, as it naturally
leads to the derivation of the relevant formulas.

SVD viewpoint. A geometric distortion measure is rotation
invariant:

Definition 1. D(J) is rotation invariant if

D(J) = D(UJV>)

for any rotation matrices U and V.

All rotation invariant distortion measures can be written solely in
terms of the singular values of J, as shown in the following lemma.

LEMMA 2. Let J = USJV
> be the singular value decomposi-

tion of J (we use SA to denote the diagonal matrix containing the
singular values of A). Then,

D(J) = D(SJ), (26)

∇JD(J) = U∇SJ
D(SJ)V>. (27)

Proof. See Appedix B.1.
For example, the ARAP distortion measure, which is rotation

invariant, can be written as

‖J−R‖2F = ‖SJ − I‖2F =

d∑
i=1

(σi − 1)2,

where σi are the singular values of J.
Using Lemma 2, we can write Eq. (20) in SVD form:

W = U

(
1

2
∇SJ

D(SJ)(SJ − I)−1

)1/2

U>= USWU>. (28)

This expression shows that the matrix weights in fact act as scalar
weights per singular value of each Jacobian, that is, a single weight-
per-axis. Since the matrix expression inside the square root is diag-
onal, it is trivial to take the root. From Eq. (28) we can clearly see
that

∇SD(SJ)(SJ − I) � 0 (29)

is required in order to take the root. In other words,
∇SJ

D(SJ)(SJ − I) must be PSD, which is always the case for
isometric distortion measures, as we show in the following.

Isometric energies. We applied our algorithm to a variety
of isometric distortion measures. In our context, a true isometric
distortion measure is one that is rotationally invariant, minimal only
for rotations, and is separable in terms of the singular values. In
other words, a true isometric distortion measure can be written as

D(SJ) = D(σ1, . . . , σd) =
∑
i

fi(σi), (30)

where fi(σi) convex and minimal when σi = 1. This condition
makes it is easy to show that Eq. (29) holds.

Without loss of generality, we demonstrate the solution to Eq.
(28) using the symmetric Dirichlet energy. The same steps can be
used for any other isometric distortion measures (see Table II and
Figure 14). The symmetric Dirichlet energy in terms of the singular
values is

D(J) = ‖J‖2F + ‖J−1‖2F =

d∑
i=1

(σ2
i + σ−2

i).

Symmetric Dirichlet Hencky strain Exponential Dirichlet

Fig. 14. Minimizing isometric distortions for the Bear model. Our approach
is general and supports many distortion energies such as Symmetric Dirichlet
(left), Hencky strain (middle) and Exponential Dirichlet (right). This model
has 296K faces and required an average of 9 seconds to optimize.

Hence,

(∇SJ
D(SJ))i = 2(σi − σ−3

i), (31)

where we introduce the notation (D)i to refer to the i’th diagonal
entry of the diagonal matrix D. Thus, plugging Eq. (31) in Eq. (28)
we obtain

(SW)i =

√
σi − σ−3

i

σi − 1
(32)

when σi 6= 1, and (SW)i = 4, which is the limit, otherwise. The
expression under the root is always nonnegative, so we can always
find weights to match the gradients.

General distortion measures. To extend this construction
to energies that are rotation invariant, but not true isometric distor-
tions (i.e., do not satisfy Eq. (30)), we need to slightly change our
algorithm. Consider for example the AMIPS energy E?iso from [Fu
et al. 2015] (see the paper for the reasoning behind this definition),
that is defined using the distortion measure

D?
iso(J) = exp (s ·Diso(J)) (33)

where

Diso(J) =
1

2

[(
tr(J>J)

det(J)

)
+

1

2
(det(J) + det(J−1))

]
. (34)

Algorithm 1 fails to minimize this energy, because (29) might not
hold, and it thus may be impossible to compute weights that locally
match the gradients. To address this issue, we generalize the local
step (Eq. (5)) by replacing the closest rotation R with another matrix
Λ, which depends on the energy that we wish to minimize. Note that
the local step is only used in the proxy energy, which becomes

PΛ
W(J) = ‖W(J− Λ)‖2F . (35)

The modification of the local step changes the step computation
Eq. (21) and the formula for W in Eq. (28), replacing the closest
rotation and the identity with the matrices Λ and SΛ. The global
step now solves

pk := arg min
x

∑
f∈F

Af P
Λk
f

Wk
f

(Jf (x)) + λ
∥∥x− xk−1

∥∥ , (36)

the weight matrix can be computed as

W = U

(
1

2
∇SJ

D(SJ)(SJ − SΛ)−1

)1/2

U>. (37)

,
and the requirement in Eq. (29) becomes

∇SJ
D(SJ)(SJ − SΛ) � 0. (38)

Scalable Locally Injective Mappings • 11

The condition on the local step is now clear: The sign of each ele-
ment of SJ−SΛ must match the sign of each element of∇SJ

D(SJ).
The computation in the local step can then be easily adapted on a
case-by-case basis. Note that this construction is a generalization of
[Liu et al. 2008].

General construction. Given an arbitrary distortion energy,
it is easy to find a matrix Λ that satisfies Eq. (38). For the special
(and very general) case of separably strictly convex energies, we
found a simple construction.

Definition 3. A function D(x1, ..., xn) is separably
strictly convex, if for each i the single variable function
D(x1,..,xi−1,xi+1,.,xn)(xi), which is constructed by freezing all of
the other variables, is strictly convex.

In this case, we can set each (SΛ)i to be the solution of

∂

∂σi
D(σ1,...,σi−1,σi+1,...,σd)(σi) = 0. (39)

In other words, we set SΛ such that each entry of SΛ minimizes
the corresponding entry of D(SJ), assuming the other singular
values are fixed. We show in Appendix B.2 that this choice always
satisfies Eq. (38). The reasoning behind this choice is to always push
each singular value towards its closest minimum. It is also a direct
generalization of the isometric case shown above, as the choice of
the closest rotation exactly satisfies Eq. (39).

As an example, we derive the expressions for the AMIPS energy
(Eq. (33)) in Table II and show the resulting parameterization in Fig.
3. The complete algorithm is summarized in Algorithm 2.

Conformal distortions. While the above construction is gen-
eral and guaranteed to create weights that match the gradients, it
might be suboptimal for certain energies. For example, if we con-
sider the conformal distortion energy proposed (for arbitrary dimen-
sion d) in [Fu et al. 2015]

D(J) =
tr(J>J)

det(J)2/d
, (40)

our general construction produces a matrix in the local step that is
not a similarity. We experimentally observed an increase in perfor-
mance by defining Λ = σ̄UV>, where σ̄ is a scalar, i.e., by finding
the closest conformal transformation. We show in Appendix B.3
how to compute σ̄ for the 2D and 3D case. Similarly to [Fu et al.
2015], we can also minimize the exponential of this energy (Fig.
17).

7. APPLICATIONS

We ran our experiments on a 12-core Xeon clocked at 2.7 GHz, using
the PARDISO solver [Schenk et al. 2007; Schenk et al. 2008; Kuzmin
et al. 2013] for the linear system solve. We report the running times
in Table III, using both a single- and multi-core implementation. The
sparsity pattern of the linear system in every iteration never changes,
allowing us to reuse the symbolic factorization between iterations.
Our method requires a feasible, i.e., inversion free starting point:
for 2D, we use Tutte’s parameterization with cotangent weights;
if they produce a flipped element, we resort to uniform weights
which are guaranteed to give us a valid starting point. For the mesh
improvement and deformation examples in 3D, the rest pose is used
as the starting point.

Single-patch 2D parameterization. Single-patch 2D pa-
rameterization is ubiquitously used in modeling software to generate

Algorithm 2: Generalized Reweighted local/global
Input:

A mesh M with a set of vertices V and elements F
Output:

A set of mapping coordinates x minimizing Eq. (1)

Initialization:
x0 = Tutte(V, F)

Optimization:
for k = 1 to max iterations do

Compute the SVD USJV
>= Jf (xk−1) for each face f

Update Λkf = USΛV
>, taking SΛ from Table II

Update the weights Wk
f for each f ∈ F using Eq. (37)

Solve Eq. (36) to find pk

Set dk using (22)
Find αmax, as in [Smith and Schaefer 2015](Section 3.3)
Perform bisection line search to find step size α, starting
from α = min {1, 0.8αmax} in the interval [0, αmax]
xk = xk−1 + αdk

Initialization Iteration 10 Iteration 20

Fig. 15. Minimization of a conformal energy using our method. Note that
visually the difference between 10 and 20 iterations is already quite small,
and after 20 it becomes negligible.

UV maps given a predefined set of cuts. Our approach improves
upon existing algorithms, providing superior quality and higher ef-
ficiency, in addition to supporting extremely detailed models with
millions of elements. We show the quality of our results on several
meshes with different energies throughout the paper. We highlight
that our method is not tied to a specific parameterization energy, and
can minimize all rotation invariant energies, provided that the local
step satisfies Eq. (38).

Seamless 2D parameterization. “Seamless” parameteriza-
tions, i.e., parameterizations whose derivatives agree on the seams
up to a rotation of multiples of π/2, are commonly used for remesh-
ing purposes [Bommes et al. 2012]. Our algorithm can generate
them by adding compatibility constraints [Bommes et al. 2009] to
the seams, as shown in Fig. 16. Note that we currently do not support
integer optimization in our framework and we thus cannot produce
integer-grid maps [Bommes et al. 2013].

3D deformation. Volumetric deformation energies can be min-
imized with our method, benefiting in a similar way as 2D param-
eterization. In Fig. 17, we demonstrate an example of a cube de-
formation with two different discretization resolutions (48K and

12 • M. Rabinovich et al.

Table II. Energies we used in this paper, expressed also in terms of the singular values, with their derivatives and our choice for the
local step. The entries of this table are used in Algorithm 2.

Name D(J) D(σ) (∇SD(S))i (SΛ)i

Symmetric Dirichlet ‖J‖2F + ‖J−1‖2F
∑n
i=1(σ

2
i + σ−2

i) 2(σi − σ−3
i) 1

Exponential
Symmetric
Dirichlet exp(s(‖J‖2F + ‖J−1‖2F)) exp(s

∑n
i=1(σ

2
i + σ−2

i)) 2s(σi − σ−3
i) exp(s(σ2

i + σ−2
i)) 1

Hencky strain
∥∥logJ>J∥∥2

F

∑n
i=1(log

2 σi) 2(logσi
σi

) 1

AMIPS
exp(s · 1

2
(
tr(J>J)

det(J)

+
1

2
(det(J) + det(J−1)))

exp(s(
1

2
(
σ1

σ2
+
σ2

σ1
)

+
1

4
(σ1σ2 +

1

σ1σ2
))

s · exp(s · (1
4
(σi+1 −

1

σi+1σ2
i

)

+
1

2
(

1

σi+1
− σi+1

σ2
i

))

√
2σ2

i+1+1

σ2
i+1+2

Conformal AMIPS 2D tr(J>J)
det(J)

σ2
1+σ2

2
σ1σ2

1
σi+1

− σi+1

σ2
i

√
σ1σ2

Conformal AMIPS 3D tr(J>J)

det(J)
2
3

σ2
1+σ2

2+σ2
3

(σ1σ2σ3)
2
3

−2σi+1σi+2(σ2
i+1+σ2

i+2−2σ2
i)

(3σiσi+1σi+2)
5
3

√
σ2
1+σ2

3
2

Table III. Size of the input datasets and running times with and
without multi-core parallelization.

Model (Figure) #Faces #Vertices Time (s) Time (s)
Multi core Single core

Bimba (3) 11K 5.6K < 1 < 1

Bunny (4) 108K 54K 3.47 9.8
Gargoyle (5) 99K 49K 2.53 6.5
Octopus (7) 300K 151K 5.48 18.4
Superman (9) 190K 95K 4.83 14.6
Buddha (8) 470K 235K 13.5 43.2
Max Planck (10) 84K 42K 1.83 6.2
Dragon head (12) 387K 194K 11.33 36.8
Bear (14) 296K 148K 9 25.2
Vase Lion (15) 99K 49K 2.5 6.2

250K tetrahedra) and two different distortion energies (exponential
Dirichlet and exponential of the conformal AMIP). The running
time of our algorithm is 0.5 and 8 seconds per iteration, respectively,
and we used 10 iterations.

Mesh improvement. Maps can be used to improve the qual-
ity of meshes, and we compare our algorithm against two recent
methods [Aigerman and Lipman 2013; Fu et al. 2015] in Fig. 18.
We use the exponential Dirichlet energy, which is inspired by the
exponential AMIPS energy proposed in [Fu et al. 2015]. As can be
seen in Table IV, our approach outperforms the competing methods
in all cases except one. We performed 10 iterations for all models,
which on average took 3 seconds each.

8. LIMITATIONS AND FUTURE WORK

We presented a general approach to simply and efficiently minimize
practical distortion energies commonly used in geometry processing.
The major theoretical limitation and advantage of our approach
are both inherited from the local/global method: our algorithm is
extremely fast while approaching a local minimum but requires
many iterations to converge to a numerical minimum. This problem
stems from the slow propagation of the rotations in the local step,
making a small rotation over a large part of the parameterization
hard to recover from. This is however not a practical limitation,
since the difference between the result we obtain after 20 iterations

Initialization Parameterization Seam constraints

Fig. 16. An example of “seamless” global parameterization computed with
our method. Starting from Tutte’s embedding (left), we minimize the symmet-
ric Dirichlet energy first, and then activate seamless soft constraints to make
the parameterization’s derivatives match on the seams, up to permutation.

and the converged result is negligible (Figures 9, 15). On the other
hand, the fast progress of our method in the first few iterations is an
extremely valuable property for many applications (Fig. 12).

We exemplify this property in a stress test similar to [Smith and
Schaefer 2015] (see Fig. 19). The challenge in this test is to recover
from Tutte’s embedding of a Hilbert-curve-shaped developable sur-
face, which is flipless, but highly distorted. We observed that our
first iteration makes the same progress as around 2000 Newton it-
erations — by combining the two algorithms, we reconstruct the
Hilbert curve in less than 200 iterations.

Our algorithm requires a locally injective initialization, which we
construct using Tutte’s embedding in 2D, but we are not aware of
any general construction for 3D maps. This limitation is ameliorated
by the fact that maps are mostly used for deformations in 3D, where
the rest shape itself is a perfectly valid initial map which we directly
use as a locally injective initialization.

A final limitation is that our proxy energy definition only works
for rotation invariant distortion energies. It is an interesting venue

Scalable Locally Injective Mappings • 13

Initialization 20 iterations 20 iter. + 80 Newton iter. 20 iter. + 160 Newton iter.

200 iterations 500 iterations 1000 iterations

2000 iterations

10K iterations

100 Iterations 500 Iterations 1000 Iterations

1500 Iterations

1900 Iterations

Ours + Standard Newton

Regularized Newton

Standard Newton

Fig. 19. Example of running our algorithm on a stress test. The highly distorted Tutte’s embedding is quickly unrolled by our algorithm in about 20 iterations,
producing a map close to being isometric. However, from this point on the progress of our algorithm slows down considerably, although the minimum is still
reached after ca. 500K iterations. The regularized Newton method is much slower (middle row) and the system is severely ill-conditioned due to the extremely
distorted triangles. The standard, non-reguralized Newton fails to find a descent direction after 1900 iterations. By combining our method with the standard
Newton’s method, we are able to reach the global minimum in a total of 180 iterations. Note that we used Newton iterations with our method as an initialization
only in this figure. All the other results in the paper are produced using solely our algorithm.

for future work to extend our local/global method to a wider family
of energies, such as those used in finite element simulations.

Acknowledgments

The authors would like to thank Shahar Kovalsky for providing
the source code for AQP and for illuminating discussions, and the

anonymous reviewers for their useful comments and suggestions.
This work was supported in part by the ERC grant iModel (StG-
2012-306877), a gift from Adobe, and Courant Institute’s faculty
start-up funding.

14 • M. Rabinovich et al.

Source Conformal Isometric

Fig. 17. Our method can be used to deform tetrahedral meshes, minimizing
a conformal energy (middle) or the exponential symmetric Dirichlet isomet-
ric energy (right). The cubes have 48K (top) and 350K (bottom) tetrahedra,
and our algorithm took 5 and 80 seconds, respectively. We picked 4 edges
of the cube (shown as cylinders) and manipulated them. The right image in
each pair shows the interior of the deformed cube.

Table IV. Comparison of mesh improvement.

Name Init. Dihed. BD AMIPS Our Method

Duck (10,163) (16,148) (19.6,161.5) (19, 138.16)
Elephant (8,167) (16,148) (13.7,161.3) (20.2,141.2)
Elephant2 (15,157) (18,147) (19,150) (23.1,142.3)
Hand (9,162) (16,148) (18,156) (21.1, 143.3)
Max (21,151) (14,153) (27.2,137.3) (29,141.5)
Rocker (10,163) (16,148) (21.6,148.7) (22.8,139.4)
Skull (0.8,178) (14,153) (21.1,147.6) (17.4,157.8)
Dragon (31,140) (28,139) (27.8,139.37) (31.8, 137.6)

Comparison of mesh improvement achieved by running [Aigerman and Lipman 2013]
(BD) and [Fu et al. 2015] (AMIPS). In each entry in the table we show the minimal and
maximal dihedral angle, where the second column shows the initial values. As can be seen,
in all cases except for the Skull dataset, our method outperforms the competing methods.

REFERENCES

AIGERMAN, N. AND LIPMAN, Y. 2013. Injective and bounded distortion
mappings in 3D. ACM Trans. Graph. 32, 4.

AIGERMAN, N. AND LIPMAN, Y. 2015. Orbifold Tutte embeddings. ACM
Trans. Graph. 34, 6.

AIGERMAN, N., PORANNE, R., AND LIPMAN, Y. 2014. Lifted bijections
for low distortion surface mappings. ACM Trans. Graph. 33, 4, 69:1–
69:12.

BEN-CHEN, M., GOTSMAN, C., AND BUNIN, G. 2008. Conformal flat-
tening by curvature prescription and metric scaling. Computer Graphics
Forum 27, 2, 449–458.

BOMMES, D., CAMPEN, M., EBKE, H.-C., ALLIEZ, P., AND KOBBELT,
L. 2013. Integer-grid maps for reliable quad meshing. ACM Trans.
Graph. 32, 4 (July), 98:1–98:12.

BOMMES, D., LÉVY, B., PIETRONI, N., PUPPO, E., SILVA, C., TARINI, M.,
AND ZORIN, D. 2012. State of the art in quad meshing. In Eurographics
STARs.

BOMMES, D., ZIMMER, H., AND KOBBELT, L. 2009. Mixed-integer
quadrangulation. ACM Trans. Graph. 28, 3, 77:1–77:10.

BOUAZIZ, S., DEUSS, M., SCHWARTZBURG, Y., WEISE, T., AND PAULY,
M. 2012. Shape-Up: Shaping discrete geometry with projections. Comput.
Graph. Forum 31, 5, 1657–1667.

Source Improvement

Fig. 18. An example of 3D mesh improvement computed with our method
minimizing the Exponential Dirichlet energy. The elephant has 33.5K tetra-
hedra and the rocker arm 35.5K. Our entire optimization took 3 and 3.2
seconds, respectively.

BOUAZIZ, S., MARTIN, S., LIU, T., KAVAN, L., AND PAULY, M. 2014.
Projective dynamics: Fusing constraint projections for fast simulation.
ACM Trans. Graph. 33, 4 (July), 154:1–154:11.

CHAO, I., PINKALL, U., SANAN, P., AND SCHRÖDER, P. 2010. A simple
geometric model for elastic deformations. ACM Trans. Graph. 29, 4,
38:1–38:6.

CHEN, R. AND WEBER, O. 2015. Bounded distortion harmonic mappings
in the plane. ACM Trans. Graph. 34, 4.

CIVIT-FLORES, O. AND SUSIN, A. 2014. Robust treatment of degenerate
elements in interactive corotational FEM simulations. Computer Graphics
Forum 33, 6, 298–309.

DESBRUN, M., MEYER, M., AND ALLIEZ, P. 2002. Intrinsic parameteriza-
tions of surface meshes. Comput. Graph. Forum 21, 3.

DIAMANTI, O., VAXMAN, A., PANOZZO, D., AND SORKINE-HORNUNG,
O. 2015. Integrable PolyVector fields. ACM Trans. Graph. 34, 4, 38:1–
38:12.

FLOATER, M. S. 2003. One-to-one piecewise linear mappings over triangu-
lations. Mathematics of Computation 72, 242, 685–696.

FLOATER, M. S. AND HORMANN, K. 2005. Surface parameterization:
a tutorial and survey. In Advances in Multiresolution for Geometric
Modelling. Mathematics and Visualization. 157–186.

FU, X. AND LIU, Y. 2016. Computing inversion-free mappings by simplex
assembly. ACM Transactions on Graphics (SIGGRAPH Asia) 35, 6.

FU, X.-M., LIU, Y., AND GUO, B. 2015. Computing locally injective
mappings by advanced MIPS. ACM Trans. Graph. 34, 4.

GILES, M. 2008. An extended collection of matrix derivative results for
forward and reverse mode automatic differentiation. Tech. rep., Oxford
University Computing Laboratory. Jan.

HORMANN, K. AND GREINER, G. 2000. MIPS: An efficient global
parametrization method. In Curve and Surface Design. Innovations in
Applied Mathematics. 153–162.

Scalable Locally Injective Mappings • 15

IRVING, G., TERAN, J., AND FEDKIW, R. 2004. Invertible finite elements
for robust simulation of large deformation. In Proc. Eurographics Sympo-
sium on Computer Animation. 131–140.

JACOBSON, A., BARAN, I., KAVAN, L., POPOVIĆ, J., AND SORKINE, O.
2012. Fast automatic skinning transformations. ACM Trans. Graph. 31, 4,
77:1–77:10.

JACOBSON, A., PANOZZO, D., ET AL. 2016. libigl: A simple C++ geometry
processing library. http://libigl.github.io/libigl/.

KOVALSKY, S. 2016. Private communication.
KOVALSKY, S. Z., AIGERMAN, N., BASRI, R., AND LIPMAN, Y. 2014.

Controlling singular values with semidefinite programming. ACM Trans.
Graph. 33, 4.

KOVALSKY, S. Z., AIGERMAN, N., BASRI, R., AND LIPMAN, Y. 2015.
Large-scale bounded distortion mappings. ACM Trans. Graph. 34, 6,
191:1–191:10.

KOVALSKY, S. Z., GALUN, M., AND LIPMAN, Y. 2016. Accelerated
quadratic proxy for geometric optimization. ACM Trans. Graph. 35, 4,
134.

KUZMIN, A., LUISIER, M., AND SCHENK, O. 2013. Fast methods for
computing selected elements of the Green’s function in massively parallel
nanoelectronic device simulations. In Proc. Euro-Par. Lecture Notes in
Computer Science. 533–544.

LABSIK, U., HORMANN, K., AND GREINER, G. 2000. Using most isomet-
ric parametrizations for remeshing polygonal surfaces. In Proc. Geometric
Modeling and Processing. 220–228.

LEVI, Z. AND ZORIN, D. 2014. Strict minimizers for geometric optimiza-
tion. ACM Trans. Graph. 33, 6, 185:1–185:14.

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002. Least
squares conformal maps for automatic texture atlas generation. ACM
Trans. Graph. 21, 3, 362–371.

LIPMAN, Y. 2012. Bounded distortion mapping spaces for triangular meshes.
ACM Trans. Graph. 31, 4, 108:1–108:13.

LIU, L., ZHANG, L., XU, Y., GOTSMAN, C., AND GORTLER, S. J. 2008.
A local/global approach to mesh parameterization. In Proc. Symposium
on Geometry Processing. 1495–1504.

LIU, T., GAO, M., ZHU, L., SIFAKIS, E., AND KAVAN, L. 2016. Fast and
robust inversion-free shape manipulation. Comput. Graph. Forum 35, 2.

MARTIN, S., THOMASZEWSKI, B., GRINSPUN, E., AND GROSS, M. 2011.
Example-based elastic materials. ACM Trans. Graph. 30, 4, 72:1–72:8.

MARTIN, T., JOSHI, P., BERGOU, M., AND CARR, N. 2013. Efficient non-
linear optimization via multi-scale gradient filtering. Computer Graphics
Forum 32, 6, 89–100.

MARTINEZ ESTURO, J., RÖSSL, C., AND THEISEL, H. 2014. Smoothed
quadratic energies on meshes. ACM Trans. Graph. 34, 1, 2:1–2:12.

MULLEN, P., TONG, Y., ALLIEZ, P., AND DESBRUN, M. 2008. Spectral
conformal parameterization. In Proc. Symposium on Geometry Processing.
1487–1494.

MYLES, A., PIETRONI, N., AND ZORIN, D. 2014. Robust field-aligned
global parametrization. ACM Trans. Graph. 33, 4.

MYLES, A. AND ZORIN, D. 2012. Global parametrization by incremental
flattening. ACM Trans. Graph. 31, 4, 109:1–109:11.

NOCEDAL, J. AND WRIGHT, S. J. 2006. Numerical optimization. Springer
Series in Operations Research and Financial Engineering. Springer, Berlin.
NEOS guide http://www-fp.mcs.anl.gov/otc/Guide/.

PIGHIN, F. AND LEWIS, J. 2007. Practical least-squares for computer
graphics. In ACM SIGGRAPH 2007 Courses.

PORANNE, R., OVREIU, E., AND GOTSMAN, C. 2013. Interactive pla-
narization and optimization of 3D meshes. Comput. Graph. Forum 32, 1,
152–163.

RABINOVICH, M. 2016. Scalable locally injective map-
pings. https://github.com/MichaelRabinovich/

Scalable-Locally-Injective-Mappings.
SANAN, P. D. 2014. Geometric elasticity for graphics, simulation, and

computation. Ph.D. thesis, California Institute of Technology.
SCHENK, O., BOLLHÖFER, M., AND RÖMER, R. A. 2008. On large-scale

diagonalization techniques for the Anderson model of localization. SIAM
Rev. 50, 1, 91–112.

SCHENK, O., WCHTER, A., AND HAGEMANN, M. 2007. Matching-based
preprocessing algorithms to the solution of saddle-point problems in large-
scale nonconvex interior-point optimization. Computational Optimization
and Applications 36, 2-3, 321–341.

SCHREINER, J., ASIRVATHAM, A., PRAUN, E., AND HOPPE, H. 2004.
Inter-surface mapping. ACM Trans. Graph. 23, 3.

SCHÜLLER, C., KAVAN, L., PANOZZO, D., AND SORKINE-HORNUNG,
O. 2013. Locally injective mappings. Computer Graphics Forum 32, 5,
125–135.

SHEFFER, A. AND DE STURLER, E. 2001. Parameterization of faceted
surfaces for meshing using angle-based flattening. Engineering with
Computers 17, 3, 326–337.

SHEFFER, A., LÉVY, B., MOGILNITSKY, M., AND BOGOMYAKOV, A. 2005.
ABF++: Fast and robust angle based flattening. ACM Trans. Graph. 24, 2,
311–330.

SHEFFER, A., PRAUN, E., AND ROSE, K. 2006. Mesh parameterization
methods and their applications. Found. Trends Comput. Graph. Vis. 2, 2,
105–171.

SMITH, J. AND SCHAEFER, S. 2015. Bijective parameterization with free
boundaries. ACM Trans. Graph. 34, 4, 70:1–70:9.

SORKINE, O. AND ALEXA, M. 2007. As-rigid-as-possible surface modeling.
In Proc. Symp. Geometry Processing. 109–116.

TERAN, J., SIFAKIS, E., IRVING, G., AND FEDKIW, R. 2005. Robust
quasistatic finite elements and flesh simulation. In Proceedings of the
2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
SCA ’05. ACM, New York, NY, USA, 181–190.

TUTTE, W. T. 1963. How to draw a graph. Proceedings of the London
Mathematical Society 13, 743–767.

WEBER, O., MYLES, A., AND ZORIN, D. 2012. Computing extremal
quasiconformal maps. Comput. Graph. Forum 31, 5.

YOSHIZAWA, S., BELYAEV, A., AND SEIDEL, H.-P. 2004. A fast and
simple stretch-minimizing mesh parameterization. In Proceedings of the
Shape Modeling International 2004. SMI ’04. IEEE Computer Society,
Washington, DC, USA, 200–208.

ZAYER, R., LÉVY, B., AND SEIDEL, H.-P. 2007. Linear angle based
parameterization. In Proc. SGP. 135–141.

APPENDIX

A. SOLVING EQ. (21)

In order to solve Eq. (21), we write it in matrix form, and in terms
of the coordinates x. Then Eq. (21) is transformed into

min
x
‖Ax− b‖2 (41)

where the structure of A and b in the 2D case is as follows. Assum-
ing a set of orthogonal frames per element are prescribed, we let
Dx,Dy be the FE gradient matrices of the mesh w.r.t. the frames.
Additionally, we define four diagonal matrices, Wij for i, j = 1, 2,
where the diagonal of Wij holds the (i, j) entries of all of the
weights Wf . In other words, Wij = diag({Wf (i, j)}f). Sim-
ilarly, we define Rij to be the column vector holding the (i, j)

16 • M. Rabinovich et al.

entries of all of the Rf

A = WD =

W11 0 W12 0
W21 0 W22 0

0 W11 0 W12

0 W21 0 W22

Dx 0
Dy 0
0 Dx
0 Dy

 (42)

b =

R11

R21

R12

R22

 (43)

This can be readily solved by any least squares minimization
algorithm.

B. SECTION 3 PROOFS

B.1 Lemma 3.1

Lemma 3.1 Let J = USJV
> be the Singular Value Decomposition

of J. Then,

D(J) = D(SJ) (44)

∇JD(J) = U∇SJ
D(SJ)V> (45)

PROOF. Eq. (44) is immediate from the definition in Eq. (1). As
for Eq. (45), we use the formula for the derivative of the singular
values (see [Giles 2008])

∇JD(SJ) = U∇SJ
D(SJ)V> (46)

B.2 Local step, general construction: proof of Eq.
(39)

For a rotation invariant D(J) that is separably strictly convex in
singular values, Eq. (38) can be satisfied by setting (SΛ)i such that:

∂

∂σi
D(σ1,...,σi−1,σi+1,...,σd)(σi) = 0 (47)

In particular, in the case of a true isometric distortion measure, (38)
is satisfied by setting the local step as the closest rotation Λ = UV>.

This can be seen from the fact that every partial func-
tion of D(σ) is strictly convex on R>0, and therefore has
a single minimum, (SΛ)i. Hence, for every σi < (SΛ)i,
∂
∂σi

D(σ1,...,σi−1,σi+1,...,σd)(σi) < 0, and for every σi > (SΛ)i,
∂
∂σi

D(σ1,...,σi−1,σi+1,...,σd)(σi) > 0. This is also true for (SJ −
SΛ)i and so Eq. (39) is satisfied.

B.3 Conformal energy local step derivation

Let D(J) = tr(J>J)

det(J)2/d
. D(J) is rotation invariant and can be written

as D(σ) =
∑d

i=1 σ
2
i

σ1...σd
. By differentiating the distortion measure w.r.t.

the singular values in the 2D case, we find that

(∇SJ
D(SJ))1 =

1

σ2

− σ2

σ2
1

,

and similarly, (∇SJ
D(SJ))2 = 1

σ1
− σ1

σ2
2

. Assuming J is not a
similarity already, then, since σ1 > σ2 > 0, the first entry is
negative, while the second is positive. By choosing σ1 > (SΛ)i >
(σ2), this holds true for (SJ − SΛ)i and so Eq. (38) is satisfied.

For the 3D case,

(∇SJ
D(SJ))i =

−2σi+1σi+2(σ2
i+1 + σ2

i+2 − 2σ2
i)

(3σiσi+1σi+2)5/3
,

where the index i cycles from 1 to 3 (i.e., σ4 = σ1). This is

zero only for σi =

√
σ2
i+1+σ2

i+2

2
, and so (∇SJ

D(SJ))1 < 0,

(∇SJ
D(SJ))3 > 0. We note that σ̄ =

√
σ2
1+σ2

3
2

satisfies σ3 < σ̄ <

σ1. Therefore, by choosing SΛ = σ̄UV>, we get (SJ − SΛ)1 < 0,
(SJ − SΛ)3 > 0, and by construction, same as the proof for Eq.
(39), we get that the sign of (SJ − SΛ)2 is equal to the sign of
(∇SJ

D(SJ))2.

C. CONNECTION WITH NEWTON’S METHOD

We show that our proxy can be written in a ”Newton” form. Min-
imizing the proxy energy (21), generated with our algorithm for a
rotation invariant D(J), provides a search direction that satisfies:

dk = pk − xk−1 = −L−1
w g, (48)

where Lw is the l.h.s. of Eq. (42) and g is the gradient of the energy
at the given point. We note that, the Lw matrix is dependent on the
weights, and thus changes at every iteration. Replacing it with the
Hessian of the energy is exactly Newton’s method, while replacing
it with a constant Laplacian L is the approach of [Kovalsky et al.
2016]. The latter coincides with our approach and the original lo-
cal/global approach of [Liu et al. 2008] only when used to minimize
the ARAP energy. To see that (48) holds, note that the matching
gradient condition (12) for our proxy distortion implies:

∇Jf
D(Jf) = Wk

f

>
Wk

f (Jf − Λf), (49)

where Wk
f are per-face matrix weights satisfying Eq. (12). Using

the chain rule we get the energy gradient as a function of the vertices;
in the notation of Eq. (42):

g = D>W>WD(J− Λ), (50)

where J are the vectorized Jacobians, and Λ = b is the same as in
Eq. (43).

