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Figure 1: Left to right: Taking a rigged 3D character with many degrees of freedom as input, we propose a method to automatically compute
assembly instructions for a modular tangible controller, consisting only of a small set of joints. A novel hardware joint parametrization
provides a user-experience akin to inverse kinematics. After assembly the device is bound to the rig and enables animators to traverse a
large space of poses via fluid manipulations. Here we control 110 bones in the dragon character with only 8 physical joints and 2 splitters.
Detailed pose nuances are preserved by a real time pose interpolation strategy.

Abstract

We propose a novel approach to digital character animation, com-
bining the benefits of tangible input devices and sophisticated rig
animation algorithms. A symbiotic software and hardware ap-
proach facilitates the animation process for novice and expert users
alike. We overcome limitations inherent to all previous tangible de-
vices by allowing users to directly control complex rigs using only a
small set (5-10) of physical controls. This avoids oversimplification
of the pose space and excessively bulky device configurations. Our
algorithm derives a small device configuration from complex char-
acter rigs, often containing hundreds of degrees of freedom, and a
set of sparse sample poses. Importantly, only the most influential
degrees of freedom are controlled directly, yet detailed motion is
preserved based on a pose interpolation technique. We designed a
modular collection of joints and splitters, which can be assembled
to represent a wide variety of skeletons. Each joint piece combines
a universal joint and two twisting elements, allowing to accurately
sense its configuration. The mechanical design provides a smooth
inverse kinematics-like user experience and is not prone to gimbal
locking. We integrate our method with the professional 3D soft-
ware Autodesk Maya® and discuss a variety of results created with
characters available online. Comparative user experiments show
significant improvements over the closest state-of-the-art in terms
of accuracy and time in a keyframe posing task.
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1 Introduction

At the heart of interactive character animation lies a contradiction.
Animators must draw from a large space of poses to breath life and
depth into the character, but animators also wish to do so with a
very small number of control parameters. Standard rigging tools
offer sophisticated ways to span a large space of shape deforma-
tions, but their parameters are endless, and indirectly mapping them
to the keyboard and mouse makes existing interfaces cumbersome
and difficult to learn. Recent tangible input devices promise direct
and natural manipulation, but at the cost of either grossly simpli-
fying the pose space or of accepting complex and bulky physical
setups. In contrast, we present a novel software/hardware approach
co-designed to help animators traverse a large space of poses via
fluid manipulation of a tangible controller.

Specifically, we contribute: (a) a novel hardware design, over-
coming major limitations in prior work via a novel physical angle
parametrization; (b) an algorithm to compute a device configuration
and instructions to assemble it, using only a small set of modules;
and (c) a method to bridge the disparity between the input device’s
few degrees of freedom to the character’s many control parameters.
Our contribution allows users to move beyond static keyframing
towards fluid animation of a variety of complex characters with ar-
bitrary topologies.

The approach is general and can directly control professional-grade
rigs without relying on a specific shape deformation algorithm. It
only relies on a rig with a skeletal structure and a set of sample
poses as input. From this input rig, the most important control pa-
rameters are extracted. Using a given hardware kit, the algorithm
then computes a device configuration and a mapping of physical
rotations onto the extracted rig control parameters. The algorithm
is guided by an objective functional that measures reachability in
a set of sparse sample poses. Manipulating the physical proxy in-
duces a new pose in the rig. To preserve pose details, the rest of the
rig controls are synthesized from the sample poses via pose space
interpolation in real-time (see Fig. 1).

We demonstrate that complex characters, often containing hundreds
of bones, can be controlled with a compact tangible device consist-
ing of much fewer pieces. Furthermore, our method is integrated
directly into Autodesk’s Maya® 3D animation software, emphasiz-
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ing its practical applicability. We illustrate the method’s utility by
downloading and animating a variety of rigs without further modi-
fication. Results from a user study compare favorably to the hard-
ware design of [Jacobson et al. 2014b] both in terms of accuracy
and posing time, providing an average speed-up of 2×. Finally, we
qualitatively show that our method enables more fluid control, of
more complex characters, with less complex physical devices.

2 Related work

Real-time character articulation is a core subject of computer graph-
ics, receiving much attention in the literature. We refer to a recent
survey of skinning techniques [Jacobson et al. 2014a], and turn our
attention to methods of reducing deformation control, and specifi-
cally to those assuming a skeletal rig. We discuss comparisons to
existing joint hardware designs in Section 3.1.

Inverse kinematics. The well-studied problem of reducing the
control of a complicated rig to sparse user input is typically ap-
proached by trying to distill high-level controls from a given set of
low-level controls. For example, traditional inverse kinematics (IK)
abstracts an arbitrarily complicated kinematic tree of rotational or
translational joints into just the position of leaf nodes in the tree:
end-effectors in robotics, or more saliently to character animation,
the head, hands, and feet.

Classic IK ignores the effect of the kinematic tree’s implied de-
formation of the character’s surface geometry. So-called MeshIK
approaches remedy this by replacing the usual “joint work” with
a geometric energy capturing the quality or physical plausibility of
the deforming surface geometry [Sumner et al. 2005]. MeshIK (and
all mesh-based deformation methods [Botsch & Sorkine 2008]) re-
duce control from the individual mesh vertex level to the place-
ment of a few user-specified handles. Under the framework of lin-
ear blend skinning, MeshIK can achieve real-time performance [Ja-
cobson et al. 2012]. Given sparse user constraints, skeletal skin-
ning transformations are optimized according to their impact on the
shape’s surface.

Although the user effort is reduced by the above techniques, so is
the space of possible deformations: linear blend skinning cannot
feasibly represent high-frequency effects such as muscle bulging.

Pose and rig space. Pose space interpolation [Buck et al. 2000;
Lewis et al. 2000] has been successfully applied to character ani-
mation. These example based techniques leverage both the desired
shapes, sculpted by trained modeling artists, and the abstract pose
space which is formed by the rig controls. In particular, deforma-
tions may be interpolated and extrapolated according to associated
lower-dimensional abstract poses. We take advantage of such pose
space interpolation techniques, specifically [Buck et al. 2000], to
animate the rig with the reduced degrees of freedom from our input
device, since it is impossible to directly control a complex rig with
hundreds of bones through our modular input device.

Driving an arbitrary character rig has also been considered in the
context of physical simulation. For example, a physical simula-
tion’s deformation of a character’s geometry can be projected onto
a generic rig [Hahn et al. 2012]. Rather than mapping sparse user
controls, this maps a potentially very dense physical simulation to
a dense rig. Though distinct in motivation, our rig reduction bares
similarity to [Hahn et al. 2012], but we require only rig evaluation
without resorting to finite differencing.

Input devices. Despite their ubiquity, 2D mouse and discrete
keyboard interfaces struggle to control multi-modal 3D entities
such as rotations or translations [Jacob et al. 1994]. Previous works
have overcome this via sketching [Öztireli et al. 2013; Hahn et al.

2015; Guay et al. 2013; Guay et al. 2015], but manipulation is still
indirect through a projection onto 2D device coordinates. Follow-
ing [Ishii & Ullmer 1997], recent physical input devices demon-
strate technologies for direct manipulation. The software of [Ja-
cobson et al. 2014b] does not consider gross mismatches between
the virtual character’s skeleton and their modular input device. Cru-
cially, it assumes a simple skeleton and a matching input device that
has as many physical joints as virtual bones in the skeleton. In re-
ality, rigs are very complicated, causing physical configurations to
grow too bulky quickly. Furthermore, determining an appropriate
configuration of components is far from trivial. The “dinosaur in-
put device” of [Knep et al. 1995] also had to address the problem
of having too many rig parameters for a given input device. Their
solution was to map a short sequence of one-dimensional measure-
ments from the input device (say, along a T-rex’s tail) to a chain of
rotations along a virtual bone chain. In contrast, our proposed map-
ping is widely general. Our design integrates rotational degrees of
freedom (DoFs) per joint but still allows to separate translation and
rotation, which is preferable and in accordance with prior findings
([Zhai & Milgram 1998; Masliah & Milgram 2000]).

The recent flexible bending input devices of [Chien et al. 2015] and
[Nakagaki et al. 2015] consist of a chain of single DoF elements.
They do not directly offer the degrees of freedom needed for char-
acter animation, since they do not support axial rotational DoFs and
lack the modularity required to control a large variety of characters.

Other physical input systems exist, such as computer vision sys-
tems for 6-DoF tracking [Held et al. 2012; Shiratori et al. 2013]
and specialized dolls for humans and hands [Esposito et al. 1995;
Feng et al. 2008; Yoshizaki et al. 2011; Celsys, Inc. 2013; Achi-
bet et al. 2015]. See [Jacobson et al. 2014b] for a more thorough
history of tangible animation input devices.

Motion capture and retargeting. The human body itself be-
comes an input device via performance capture. The mapping of
an actor’s performance to a character can be non-trivial in the pres-
ence of proportional disparities (a short actor controlling a giant
[Gleicher 1998]) or gross differences in the source and target (a hu-
man actor controlling a sheep [Rhodin et al.; Fender et al. 2015]).
However, the input device is fixed and known: hands are always
connected to arms connected to torsos, etc.

The more general problem of animation retargeting considers map-
ping the deformation of one object onto a similar object [Sumner &
Popović 2004; Baran et al. 2009]. Most relevant to our work is the
recent effort to map the deformation of a simplified skeleton (e.g.
from a control optimization) to a character controlled by a com-
plex rig [Holden et al. 2015]. Similarly, Jin et al. [2015] consider
mapping skeleton deformations to a sub-skeleton or vice-versa. In
contrast, our work optimizes a quality metric for an input device to
rig mapping as means to propose a particular input device configu-
ration. That is, the very set of control parameters is determined by
our optimization.

Skeleton simplification. To propose a modular device configu-
ration, we rely on the ability to reduce a combinatorial tree of rig de-
formers to a simple geometric skeleton closely matching a constel-
lation of device components. Pure skeleton simplification has been
considered previously in the context of level-of-detail animations
[Ahn & Wohn 2004; Savoye & Meyer 2008] and curved skeleton
extraction [Au et al. 2008; Tagliasacchi et al. 2012]. These meth-
ods either assume a skeleton or rely on analysis of the shape’s sur-
face geometry. We consider rigs composed of arbitrary deformers,
some of which have no associated geometric “bone”. We avoid re-
lying too heavily on specific character surface geometry, as it could
change during animation prototyping or may simply be unavailable.



Figure 2: Illustration of our pipeline from input character to fluid
tangible animation. The horse has 29 bones, controlled by 8 joints.

Instead, in the spirit of pose space deformation [Lewis et al. 2000],
our optimization assumes a small set of sample rig poses.

Example-based methods are a popular means to solving a problem
that is in some sense the inverse of ours: Given a full animation of
a character’s geometry, determine a skeletal rig [Schaefer & Yuksel
2007; Le & Deng 2014]. Huang [2015] recently demonstrated au-
tomatic generation of plausible example poses. Our method would
immediately benefit from such example poses.

3 Method

Our approach provides a natural interface for posing and animating
complex 3D characters using only a small set of physical controls,
allowing novice users and experts to create animation sequences.
The proposed solution consists of hardware and software contribu-
tions, designed in unison and complementing each other.

To gain an intuition, consider the following example: the user pro-
vides a rigged 3D character with a sparse set of sample poses (read-
ily available online). Furthermore, the user indicates the kit (num-
ber of joints and splitters) to use. We then analyze the rig and the
poses, identifying the DoFs with the most influence on pose reach-
ability, weighted by the amount of controlled surface. Optimizing
for direct control of these most important nodes, and using only the
available parts, a device configuration and assembly instructions are
computed. We solve a challenging, discrete assignment problem:
finding a configuration of modular hardware pieces that maximizes
coverage of a large pose space. In addition to the physical setup
we also compute a mapping between sensed rotations and the rig’s
parameters, which ultimately control the character’s pose.

After assembly the physical device is bound to the virtual rig and
user inputs are mapped onto the rig. Manipulating the device in-
duces a similar deformation onto the 3D character. In most cases
the physical configuration has significantly fewer DoFs than the rig
(see Fig. 2). To maintain expressiveness and add details back into
the resulting motion, we use a pose space interpolation scheme to
synthesize detailed pose nuances (cf. Fig. 1).

3.1 Hardware

Our design, inspired by [Jacobson et al. 2014b], follows a modular
approach, decomposing the control structure into joints that mea-
sure 3D rotations, and splitters, which allow for branching. This
design enables dynamic rearrangement of the parts into arbitrary
topologies. However, one of the main limitations of [Jacobson et al.
2014b] is due to the mechanical joint design. Relying on twist-
bend-twist joints (Fig. 3, left) the user has to decompose rotations
into Euler angles, making the device prone to gimbal lock: mov-
ing the endpoint of a single joint between two coordinates on a unit
sphere typically cannot be done by tracing the shortest path (i.e.,
the geodesic) but rather requires a sequence of individual rotations,
with the endpoint zig-zagging over the surface (see Fig. 4).

Mechanical design. We propose a new joint design to overcome
this limitation and provide a much improved user-experience by
allowing for smooth tracing of geodesics – both for individual
joints and chains of joints. The design is based on the Univer-
sal (or Cardan) joint augmented with two infinite twisting rings.
The joint itself consists of a pair of hinges, oriented orthogonally
to each other and connected via a ring shaped cross-shaft (Fig.
3, right). This design enables the joint to bend in any direction
and maintains accuracy with an angular error below 0.5°. Fig.
4 illustrates the effect of our design when tracing geodesics on
a sphere. Our design allows for much smoother and faster tra-
jectories and a shorter path compared to [Jacobson et al. 2014b].
To enable rotation about the shaft itself, we incorporate twisting
rings at either end of the joint. While a single twist would suffice,
we experimentally found that two make user interaction smoother.

The joints in [Jacobson et al. 2014b]
also featured twist rings but were lim-
ited in their rotation range due to the
need for wired connections. We overcome this limitation using a
pair of slip rings (inset), conducting power and transmitting electri-
cal signals while allowing for infinite rotations. We use the same
splitter geometries as [Jacobson et al. 2014b].

Sensing and communication. To recover the joint’s rotations
we utilize magnets and Hall effect sensors. The two bending angles
are measured by embedding a passive axial magnet into the cross-
shaft. This generates a local magnetic field and its orientation is
sensed by a 2D Hall sensor, located at the base of the outgoing shaft.
Analogously, we sense twist by leveraging diametrical magnets and
1D Hall sensors (see Fig. 5).

Each joint contains three sensors and two micro-processors, which
reconstruct angles from sensor readings, serialize them and transmit
downstream to the host computer. While the slip rings have desir-
able mechanical properties, their electrical connectivity is less reli-
able than wire-based solutions. To deal with connection dropouts

[Jacobson et al. 2014b] ours

twist  bend  twist twist  bend  bend  twist 

Figure 3: Comparison of joint designs. Left: twist-bend-twist de-
sign of [Jacobson et al. 2014b]. Right: our proposed joint design.
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Figure 4: Our physical angle parametrization allows for direct
tracing of geodesics. The joints of [Jacobson et al. 2014b] force
angular decomposition of rotations, resulting in a zig-zag pattern.
Ours is also significantly faster in reaching the target position.
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Figure 5: Joint cross-section showing passive diametrical and ax-
ial magnets, Hall sensors and micro controllers.

we designed a fault tolerant protocol, robust to random disconnects
and missing packages, allowing us to reconstruct the topology of
the device consistently. For details we refer to Appendix A.

3.2 Rig retargeting

Tangible input devices (e.g., [Esposito et al. 1995; Knep et al. 1995;
Yoshizaki et al. 2011; Celsys, Inc. 2013; Jacobson et al. 2014b])
promise natural manipulation of 3D characters. However, because
they map degrees of freedom directly from device to virtual char-
acter, these are limited to controlling simple skeletons. In reality
animation rigs are very complicated and have tens to hundreds of
degrees of freedom (see Fig. 9), making direct control via tangi-
ble input devices impractical. We propose a set of algorithms to
overcome this inherent limitation.

In professional rigs, a small number of degrees of freedom control
large surface areas and hence predominantly define the character’s
pose. The rest of the rig then adds more subtle details (see Fig. 7).
This observation is crucial to our approach. We propose to con-

Figure 6: Our algorithm converts a rig of bones connecting nodes
(left) to a device consisting of joints and splitters (right).

trol these most important nodes directly using our hardware, while
driving the remaining DoFs implicitly. To accomplish this we have
developed methods to compute an optimized hardware configura-
tion, a mapping that induces realistic poses of the character, and an
interpolation scheme to add lost expressiveness at animation time.

At the heart of our algorithm is an objective functional that mea-
sures how well a given input character rig C, with a set of sparse
sample poses PC , can be approximated by a device configuration
D. We define the pose error as the L2 distance between the position
of rig nodes, resulting in the following optimization problem:

argmin
D,PD

∑
i

W
(
F (C,M(pDi ))− F (C,pCi )

)2
, (1)

where F (C,p) is the forward kinematic function that returns the
position of the nodes of C in the pose p and W is a diagonal matrix
weighting each node. A node’s weight is proportional to the surface
area which it directly controls. Each node also moves its connected
subtree: by subtracting the area of each subtree, we ensure that
each part of the surface is considered only once. Minimizing the
energy in Eq. (1) computes D, which is an injective assignment of
hardware joints j to bones b, and splitters s to branching nodes n
of the rig (see Fig. 6). This also induces a retargeting functionM
which converts the device poses pD to rig poses pC by relating
local joint rotations directly to bones. Generally speaking, there are
more bones than joints and all bones without joint assignment move
rigidly following the forward kinematic chain during fitting. Later
these will be controlled by the pose interpolation scheme, discussed
below. The device configuration D uniquely determines how to
assemble the input device, and we visualize it as a set of assembly
instructions, presented to the user as a 3D rendering (Fig. 6, right).

Evaluating Eq. (1) is fast since it only compares the positions of the
rig nodes. However, finding the assignmentD that spans the largest
pose space is very challenging since it contains a discrete element:
deciding which pieces of hardware to use and how to connect them.

To make the assignment problem computationally tractable, we
propose an iterative algorithm with two alternating phases: First,
we assign all available joints j, ignoring all branching nodes in the
rig. Second, we assign splitters s to branching nodes n. Since the
last step may remove already assigned joints, we repeat this proce-
dure until there are no more joints or splitters left.

Fig. 7 illustrates the effect and importance of our algorithm. We
plot pose error (measured in Eq. (1)) as function of the hardware
kit size. Initially the error is reduced by 90% once reaching 5 joints
and by 98% with 10 joints. However, the remaining 17 DoFs only
contribute marginally to the reachability of poses. Hence, a full
device would be unnecessarily bulky and require a large set of parts.
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Figure 7: Influence of joint number in the kit on pose accuracy.

Joint assignment. The first phase of the algorithm assigns all
available joints in the kit, maximizing D’s span of the pose space.
This assignment is computed in a greedy way: we try to assign a
joint j to each unassigned bone b and for each assignment we min-
imize Eq. (1), which reduces to a smooth nonlinear optimization
(details in Appendix B). We then pick the assignment with the low-
est energy and we add it to D. This procedure is repeated until all
joints are assigned. The resulting sparse assignment D inherits the
connectivity of the original rig C: intuitively, the algorithm com-
putes a sparse assignment, and then collapses all unassigned edges.

Splitters assignment. The second phase of the algorithm as-
signs splitters to branching nodes. The branching of the input rig
can be arbitrary both in terms of valence and geometry. This makes
a straightforward application of the above assignment strategy in-
feasible, since we only want to use a limited number of splitters
with fixed valences and geometries.

Instead of greedily assigning splitters, we propose a global strat-
egy based on integer linear programming (ILP) to optimally assign
available splitters to branching nodes. The program is augmented
with linear constraints that encode hierarchical dependencies and
physical feasibility. Intuitively, we seek to globally minimize the
mismatch in valence and geometry of branching nodes and splitters,
weighted by the impact on the total pose error of the downstream
assignment. For example, sometimes it may be acceptable to prune
an entire subtree of the rig if its influence on the final poses is low.
More formally we write:

argmax
x

cTx, (2)

where c is the gain of assigning a specific splitter s to a specific
branching node n. The corresponding gain is defined as the reduc-
tion in energy (Eq. (1)) when replacing all fully rigid (not assigned
with splitter s) outgoing branches of n with non-rigid bones up to
the next branching node. And x is the vector of binary variables that
encode the assignment of splitters to branching nodes. To compute
c and x we perform the following procedure.

First, we enumerate all possible combinations of branching nodes
n in the rig and all splitters s. Branching nodes n have one inlet
gn and 2 or more outlets gn

i . Each of the outlets has an orientation,
represented as rotation from gn to gn

i . The splitter also has one
inlet gs and outlets gs

j , where generally the valence and orientations
differ with respect to n. See Fig. 8 for an illustration.

angular error

          = 

      = not assigned

Figure 8: Branching node n0 with outlets gn
0 , gn

1 and gn
2 (left).

Candidate splitter s0 with outlets gs
0 and gs

1 (middle). Assignment
x0, aligning the pair n0 and s0 (right).

Second, for each (n, s)-pair (as in Fig. 8, left and middle) we map
the inlet and enumerate all permutations of outlet assignments. For
each such mapping we find the best possible orientation for the
splitter s via [Kabsch 1976] The resulting assignment is then used
to compute the gain via Eq. (1), comparing to a fully rigid configu-
ration. Note that we set the remaining rotational offset as rest-pose
rotation on the outgoing physical joint. Furthermore, we filter out
assignments where matched gates have a remaining angular error
exceeding 60° (Fig. 8, right).

Physical validity. We augment the ILP in Eq. (2) with a set of
linear equality constraints, ensuring that for each splitter sj and
assignment vector x only one entry is set to 1. LetA(sj) be the set
of assignments which contain splitter sj , then:∑

i∈A(sj)

xi ≤ 1, ∀j, (3)

enforces that no splitter is assigned more than once. Analogously,
let A(nj) be the set of assignments which contain branching node
nj , then: ∑

i∈A(nj)

xi ≤ 1, ∀j, (4)

precludes double assignments to nodes.

As previously noted, often it is the case that the valence of n and s
differs, resulting in configurations ofD where entire subtrees of the
rig C are not present. The following set of hierarchical constraints
ensures that no splitters are wasted on assignments to such “virtual”
branches and that they do not contribute to the gain:∑

i∈A(nc)

xi ≤
∑

k∈A(np,m)

xk, (5)

for all nodes np,nc s.t. np is the parent of nc and nc is connected to
the chain of the m-th outlet of np. The notation A(np,m) denotes
the set of assignments that contains np and have its m-th outlet
used, i.e., the branch attached to the m-th outlet is not “virtual”.

Implementation details. The rig reduction and hardware inter-
face are implemented in C++ using Eigen, and we use Gurobi
[Gurobi Optimization 2015] to solve the ILP program Eq. (2) with
constraints (3,4,5). The solver may return several solutions, for ex-
ample having multiple identical splitter outlet assignments for one
node. We favor the solution with the lowest average rotational er-
ror of the splitters, meaning that the geometry of the solution better
approximates the rig geometry.

Typically hardware kits only contain few splitters. Hence it is likely
that there are remaining, unassigned branchings. Obviously, joints
can be seen as splitters with a single outlet, allowing us to cover
at least one branch for such cases. This is realized by assigning
“phantom” splitters of valence 1 to the kit while solving the ILP.
These are simply removed before generating the assembly instruc-
tions, leaving only the attached joint (cf. Fig. 9, bottom row).
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Figure 9: Depending on the available kit, device build instruction plans with different complexity are generated by our algorithm. Note that
the models have much higher degrees of freedom than the generated control structures. The inputs were (nr. bones/nr. sample poses): Horse:
(29/25 galloping, going up) – Dragon: (110/12 flying, some walking); Scorpion (62/20 walking, attacking); Dancer (22/6). Note that the
device for the Dancer is asymmetric due to the asymmetry in the input poses: the left arm of the character moves almost rigidly with the torso
and it is thus not necessary to have any joint controlling the left arm.

Note that having multiple copies of each splitter in a kit is common.
For efficiency, we compute the candidate assignments only once for
each kind of splitter. Constraints Eq. (3) are also grouped to act on
classes of splitters instead of individual s.

Realtime pose interpolation. The algorithm discussed so far
produces a device D controlling a subset of the DoFs of the rig,
leaving the remaining DoFs unchanged. To synthesize those miss-
ing rig control values which can add detailed pose nuances back
into the final animation, we employ [Buck et al. 2000] for pose-
space interpolation. Principal component analysis on a set of sam-
ple poses is used to choose the largest principal vectors of the dom-
inant dimensions. These map the original high dimensional poses,
defined as stacked quaternions representing rotations of the active
rig controls, into a lower dimensional space. Delaunay triangula-
tion is used to create a piecewise linear manifold for interpolation.

Given a new pose, we first project it onto this space, locate the
projected point in the triangulation, then find the barycentric coor-
dinates inside the simplex that contains it. The coordinates then act
as blending weights. We then use Slerp to interpolate the quater-
nions and feed them to the previously rigid joints. The technique is
efficient enough for realtime computation of the barycentric blend-
ing weights and generates continous interpolation results. More
samples in the pose interpolation will generally increase the quality
and there is no upper limit on input poses. Since our experiments
with higher-dimensional pose spaces did not lead to improved re-

sults likely due to the “curse of dimensionality”, a 2D pose space is
used (as proposed in [Buck et al. 2000]).

4 Evaluation

We briefly report on a series of experiments that we conducted to
evaluate our algorithms for the computation of the physical device
configurations and to compare our proposed hardware design to the
closest state-of-the-art [Jacobson et al. 2014b].

For our experiments we fabricate a hardware kit containing 18
joints and 7 splitters. We implemented a Python program for Au-
todesk’s Maya® [Maya 2014], driving characters which we ac-
quired online.

Rig reduction and device configuration. Fig. 9 qualitatively
demonstrates the results from our method for different 3D char-
acters ranging in complexity from 22 bones (Dancer) to 110 bones
(Dragon), using a small number of sample poses as input (Dancer:
6; Horse: 25). Optimized device configurations are computed
based on three hardware kits of increasing size. Our method pro-
duces intuitive and sensible configurations, placing splitters and
joints such that they articulate the most important features of the
character. For each of the examples the amount of direct control
a user has increases with number of joints. However, there clearly
is a trade-off between directness of the mapping and physical com-
plexity. Fig. 7, plotting pose error as function of joints, illustrates



this further: initially additional joints drastically decrease the error
but the curve levels off, and beyond 10 joints gains are marginal.
Experimentally we found that most characters can be controlled
well with 5-10 joints. This supports our initial goal of combin-
ing the benefits of tangible control and rig animation algorithms.
Please note that the algorithm can produce asymmetric configura-
tions even for symmetric characters, e.g., for the Dancer. This can
be due to asymmetric input poses (rightmost column), or due to the
limited number of joints in the kit (leftmost column), which forces
the algorithm to introduce a “splitter” replacement (in red). This
enables the articulation of the character’s arm despite the lack of
splitters. In such cases pose interpolation controls the un-mapped
limbs causing whole character to move smoothly, albeit at the cost
of direct control (cf. Sec. 5).
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Hardware comparison. Intertwined with our
algorithmic contributions is the hardware de-
sign, which we discussed in Sec. 3.1. To isolate
the effect of the new joint design we repeat the
posing experiment reported in [Jacobson et al.
2014b]. We concentrate on directly comparing
their device with ours, assuming that results will
carry over to the established baseline (a mouse-
based Maya-like UI). We faithfully recreated the reported experi-
mental conditions with 10 participants, recruited from our univer-
sity (2 female, 8 male; ages ranging from 25 to 35). Device presen-
tation was counterbalanced by half of the participants starting with
our device, half with theirs. Per posing experiment, participants
were asked to replicate poses shown on-screen as close as possible
and stop once they reached a satsifactory accuracy. The results in-
dicate that the new hardware considerably outperforms the existing
design by [Jacobson et al. 2014b]. Ours requires significantly less
time (see inset; ours mean = 130.24 s, standard deviation = 19.07;
theirs mean = 256.94 s, SD = 38.62) and achieves higher relative
accuracy, represented by the remaining pose error in percent of the
original pose error at the beginning of each experiment (ours: mean
= 21.66% SD = 3.62; theirs mean = 36.23% SD = 5.48). These
differences also translate into the more lenient metric of “work” re-
ported in [Jacobson et al. 2014b], essentially the area under the plot
lines in Fig. 10 (ours: mean = 89.65% SD = 18.8; theirs mean =
474.1% SD = 123.7). A Student’s t-test reveals that all differences
are statistically significant (all p-values ≤ 0.05).

Please note that the speed-up factor of 2 (130.24 s to 256.94 s) re-
ported here is a very conservative estimate. It compares the time
elapsed until both devices reach their own minimum pose error. In
contrast, when measuring the more meaningful average ratio be-
tween the time elapsed until the more accurate device reaches the
minimum pose error of the less accurate device, ours achieves a
speed-up of 3× (see also Fig. 10).

This difference was also clearly noticeable by observing the sub-
jects during the study: with our hardware the posing can be done
rapidly and with minimal experimentation, while many participants
needed a long time to understand how to reach the target pose
with the old design, due to the requirement to decompose rotation.
Fig. 4 illustrates this further showing the effect of directly tracing
geodesics with our design versus sequential manipulation of indi-
vidual Euler angles in the old device.

5 Additional results

To assess the resulting animation qualitatively, we report on a num-
ber of examples produced with our approach, consisting of hard-
ware and algorithms that compute the device configuration and pose
interpolation at runtime. Please also see the accompanying video.
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Figure 10: Top: Experimental condition with on-screen stimuli.
Bottom: Two of the poses in the user study, averaged across all
participants, show ours (red) and (blue) decreasing pose distance
from 100% to minimal values at completion (dashed lines). Ours is
significantly faster and achieves better accuracy.

Interactive rig control. Fig. 11 shows a sequence of a user driv-
ing the Human (24 bones) with 7 joints and 2 splitters. The joints
are bound to the bones in the torso and the limbs. Since we only
control 7 bones directly, the remaining DoFs are controlled via pose
interpolation, which reintroduces pose nuances.

Physical inverse kinematics. An important design goal was to
create a user experience that resembles inverse kinematics, allow-
ing the user to work directly with positional constraints, rather than
having to deal with individual rotations. In Fig. 12, a user positions
only the end-effectors of the chain of joints, and the remaining con-

Figure 11: Interactive animation of the Human character.

Figure 12: Physical inverse kinematics. The user positions end-
effectors with the device, and the 3D character smoothly follows.



figuration follows smoothly, resulting in a fluid animation of the
on-screen character.

Pose interpolation. The impact of the pose interpolation scheme
is demonstrated in Fig. 13. Here we drive the Scorpion (64 bones)
without (top) and with (bottom) pose interpolation. In both cases
we use an identical device that only controls 6 of the bones directly.
The approach is particularly useful for such complex characters,
which are challenging to pose, especially for novice users. In the
extreme, the technique can be used to drive animation sequences
with very few pieces, an example is shown in Fig. 14.

Keyframing. Prior tangible devices heavily focus on keyframe
posing. This is also possible with our approach. Fig. 16 shows a se-
lection of frames from an animated sequence of the Dragon rig (110
bones), driven by only 8 joints and 2 splitters. The posing of this 30
seconds long animation consisting of 32 key frames took an inex-
perienced user 35 minutes, of which 15 were spent on non-posing
tasks, such as global transformations and camera positioning.

Abstract parameter control. Our device is also useful for con-
trolling non-rotational rig parameters. In Fig. 15, we control a
blendshape rig with four expressions. We manually map the an-

Figure 13: Effect of pose interpolation. Top: without interpolation.
Bottom: with interpolation. Note the additional pose details in the
tail and the legs.

Figure 14: An extreme case for pose interpolation. We control the
Horse rig with only two joints. The red joint controls the torso and
the green joint controls one of the rear legs directly; the rest of the
pose is synthesized by pose interpolation.

Figure 15: Controlling a face blendshape rig with a single joint.
We manually map the angles of the joint such that they semantically
match the facial expressions (i.e., a ∨ shape for smiling, a ∧ for
frowning, and twist opens the mouth).

gles of a single joint onto the four expressions to create a simple
facial animation.

6 Discussion and conclusion

We proposed a symbiotic pair of novel software and hardware to
help animators traverse a large space of poses via fluid tangible ma-
nipulation. The key insight is to drive only the most important de-
grees of freedom of a rig directly, limiting physical device size and
simultaneous manipulations. Furthermore, we have demonstrated
that our hardware provides a much improved user experience, re-
sembling inverse kinematics. Empirically we have shown that this
yields speeds-up of a factor of 3 compared to the most related work
in terms of character posing time.

Together, our software and hardware are an important step beyond
static keyframing and into the territory of motion sculpting. We be-
lieve our approach already provides a valuable tool chain to quickly
sketch animations using a variety of professional rigs. However, it
is not without limitations and opportunities for future work.

Currently, we employ a standard pose interpolation scheme. While
this already produces good results, it is sometimes an issue that
desired poses are not represented in the example set, or that the
pose set is biased. For example, our Horse character comes with
an extended set of galloping poses, which causes the horse’s legs
to curl even for non-running poses. Exploring more sophisticated
interpolation schemes, prioritizing user-specified DoFs over those
from example poses, would be interesting future work.

In terms of hardware, avoiding gimbal lock is a large leap in usabil-
ity, but further improvements could be achieved. Especially with
complex device configurations, it would be desirable to be able to
control joint friction, perhaps dynamically. However, this is a non-
trivial design challenge both in terms of mechanics and potential
negative impact on the desired IK properties. Similarly, design-
ing additional types of joints, such as prismatic or telescopic joints,
would allow us to support rigs with translational degrees of freedom
(such as cartoon characters) and is a challenging but interesting area
for future work.

Our device only senses local rotations, while the virtual charac-
ter’s global position and orientation have to be controlled externally.
Augmenting the device with an additional sensing mechanism, per-
haps vision-based, or leveraging inertial sensors, would further de-
crease the barriers to fully fluid character animations.

We have concentrated exclusively on character animation. How-
ever, we believe that the wide range of motion, modular nature and
high accuracy provided by our hardware make it an ideal candidate
to be explored in other application domains, such as general pur-
pose input devices (e.g., game-pads, joysticks) or as controllers for
virtual or augmented reality applications. To allow for easy repro-
ducibility and foster future work, we will release the open-hardware
specification for the device modules and the implementations of the
retargeting algorithm and the Maya interface1.
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Semantic deformation transfer. ACM Trans. Graph. 28, 3.

BOTSCH, M., AND SORKINE, O. 2008. On linear variational sur-
face deformation methods. IEEE Transactions on Visualization
and Computer Graphics 14, 1, 213–230.

BUCK, I., FINKELSTEIN, A., JACOBS, C., KLEIN, A., SALESIN,
D. H., SEIMS, J., SZELISKI, R., AND TOYAMA, K. 2000.
Performance-driven hand-drawn animation. In Proc. NPAR.

CELSYS, INC., 2013. QUMARION. http://www.clip-studio.com.

CHIEN, C.-Y., LIANG, R.-H., LIN, L.-F., CHAN, L., AND CHEN,
B.-Y. 2015. Flexibend: Enabling interactivity of multi-part, de-
formable fabrications using single shape-sensing strip. In Proc.
UIST.

ESPOSITO, C., PALEY, W. B., AND ONG, J. 1995. Of mice and
monkeys: a specialized input device for virtual body animation.
In Proc. I3D.
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SORKINE, O. 2012. Fast automatic skinning transformations.
ACM Trans. Graph..

JACOBSON, A., DENG, Z., KAVAN, L., AND LEWIS, J. 2014.
Skinning: Real-time shape deformation. In ACM SIGGRAPH
2014 Courses.

JACOBSON, A., PANOZZO, D., GLAUSER, O., PRADALIER, C.,
HILLIGES, O., AND SORKINE-HORNUNG, O. 2014. Tangible
and modular input device for character articulation. ACM Trans-
actions on Graphics (proceedings of ACM SIGGRAPH) 33, 4,
82:1–82:12.

JIN, M., GOPSTEIN, D., GINGOLD, Y., AND NEALEN, A. 2015.
Animesh: Interleaved animation, modeling, and editing. ACM
Trans. Graph..

KABSCH, W. 1976. A solution for the best rotation to relate
two sets of vectors. Acta Crystallographica Section A: Crystal
Physics, Diffraction, Theoretical and General Crystallography
32, 5, 922–923.

KNEP, B., HAYES, C., SAYRE, R., AND WILLIAMS, T. 1995.
Dinosaur input device. In Proc. CHI, 304–309.

http://www.google.com/search?q=Thing:+Introducing+a+tablet-based+interaction+technique+for+controlling+3d+hand+models
http://www.google.com/search?q=Thing:+Introducing+a+tablet-based+interaction+technique+for+controlling+3d+hand+models
http://www.google.com/search?q=Motion+level-of-detail:+A+simplification+method+on+crowd+scene
http://www.google.com/search?q=Motion+level-of-detail:+A+simplification+method+on+crowd+scene
http://www.google.com/search?q=Skeleton+extraction+by+mesh+contraction
http://www.google.com/search?q=Semantic+deformation+transfer
http://www.google.com/search?q=On+linear+variational+surface+deformation+methods
http://www.google.com/search?q=On+linear+variational+surface+deformation+methods
http://www.google.com/search?q=Performance-driven+hand-drawn+animation
http://www.google.com/search?q=QUMARION
http://www.google.com/search?q=Flexibend:+Enabling+interactivity+of+multi-part,+deformable+fabrications+using+single+shape-sensing+strip
http://www.google.com/search?q=Flexibend:+Enabling+interactivity+of+multi-part,+deformable+fabrications+using+single+shape-sensing+strip
http://www.google.com/search?q=Of+mice+and+monkeys:+a+specialized+input+device+for+virtual+body+animation
http://www.google.com/search?q=Of+mice+and+monkeys:+a+specialized+input+device+for+virtual+body+animation
http://www.google.com/search?q=Creature+teacher:+A+performance-based+animation+system+for+creating+cyclic+movements
http://www.google.com/search?q=Creature+teacher:+A+performance-based+animation+system+for+creating+cyclic+movements
http://www.google.com/search?q=Creature+teacher:+A+performance-based+animation+system+for+creating+cyclic+movements
http://www.google.com/search?q=Motion+capture+data+retrieval+using+an+artist's+doll
http://www.google.com/search?q=Retargetting+motion+to+new+characters
http://www.google.com/search?q=The+line+of+action:+An+intuitive+interface+for+expressive+character+posing
http://www.google.com/search?q=The+line+of+action:+An+intuitive+interface+for+expressive+character+posing
http://www.google.com/search?q=Space-time+sketching+of+character+animation
http://www.google.com/search?q=Gurobi+optimizer+reference+manual
http://www.google.com/search?q=Gurobi+optimizer+reference+manual
http://www.google.com/search?q=Rig-space+physics
http://www.google.com/search?q=Sketch+abstractions+for+character+posing
http://www.google.com/search?q=Sketch+abstractions+for+character+posing
http://www.google.com/search?q=3d+puppetry:+A+kinect-based+interface+for+3d+animation
http://www.google.com/search?q=Learning+an+inverse+rig+mapping+for+character+animation
http://www.google.com/search?q=Learning+an+inverse+rig+mapping+for+character+animation
http://www.google.com/search?q=Deformation+learning+solver
http://www.google.com/search?q=Tangible+bits:+Towards+seamless+interfaces+between+people,+bits+and+atoms
http://www.google.com/search?q=Tangible+bits:+Towards+seamless+interfaces+between+people,+bits+and+atoms
http://www.google.com/search?q=Integrality+and+separability+of+input+devices
http://www.google.com/search?q=Integrality+and+separability+of+input+devices
http://www.google.com/search?q=Fast+automatic+skinning+transformations
http://www.google.com/search?q=Skinning:+Real-time+shape+deformation
http://www.google.com/search?q=Tangible+and+modular+input+device+for+character+articulation
http://www.google.com/search?q=Tangible+and+modular+input+device+for+character+articulation
http://www.google.com/search?q=Animesh:+Interleaved+animation,+modeling,+and+editing
http://www.google.com/search?q=A+solution+for+the+best+rotation+to+relate+two+sets+of+vectors
http://www.google.com/search?q=A+solution+for+the+best+rotation+to+relate+two+sets+of+vectors
http://www.google.com/search?q=Dinosaur+input+device


LE, B. H., AND DENG, Z. 2014. Robust and accurate skeletal
rigging from mesh sequences. ACM Trans. Graph. 33, 4, 84.

LEWIS, J. P., AND ANJYO, K.-I. 2010. Direct manipulation blend-
shapes. IEEE Comput. Graph. Appl. 30, 4 (July), 42–50.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose
space deformation: A unified approach to shape interpolation
and skeleton-driven deformation. In Proc. SIGGRAPH.

MASLIAH, M. R., AND MILGRAM, P. 2000. Measuring the allo-
cation of control in a 6 degree-of-freedom docking experiment.
In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ACM, New York, NY, USA, CHI ’00, 25–
32.

MAYA, 2014. Autodesk, http://www.autodesk.com/maya.

NAKAGAKI, K., FOLLMER, S., AND ISHII, H. 2015. Lineform:
Actuated curve interfaces for display, interaction, and constraint.
In Proc. UIST.
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A Fault-resistant distributed protocol

The presence of slip-rings makes the electric connections between
the pieces unreliable: when many pieces are moved at the same
time, it is common for pieces to temporarily lose power or get dis-
turbed on the data channel that corrupts some packages. We evalu-
ated the protocol proposed by [Jacobson et al. 2014b], but discov-
ered that it is not applicable to our scenario, since it requires the

global bus to be stable for long periods to do a synchronized read
on all sensors. We propose a fault-resistant protocol that can grace-
fully recover from random disconnects or missing packages, while
allowing to easily reconstruct the topology of the device.

We assign a global identifier to all components (the hash of the
timestamp of the programming time) and we equip each component
with two messaging queues, one for incoming and one for outgoing
messages. Each component acts as a repeater for messages that
come from pieces below it, sending them to its parent. All messages
contain the ID of the creator of the message, the ID of the parent,
the message itself and a consistency hash to detect communication
errors. The ID of the parent is initialized as empty by the message
creator; each time a message is received with an empty parent ID,
the receiving component fills the field with its own ID. The message
distribution is done using a polling mechanism: every 5 ms, each
component probes its children for messages, and queues messages,
which are in turn passed to the parent when queried.

Our protocol supports three types of messages, generated by the
pieces at different frequencies: data messages (50 Hz), which con-
tain angle readings, type messages (2 Hz), which contain the color
and type of the component, and child messages (2 Hz), which de-
scribe the rotation associated with each slot of a splitter. This pro-
tocol robust thanks to its distributed nature and built-in error check-
ing: the topology can be reconstructed by storing the parent-child
relations in a hash table, and disconnected pieces can be detected by
keeping a timestamp for every component. If no messages are re-
ceived from a component for more than 2 s, then the subtree starting
at that component has been detached from the device.

B Evaluating Pose Reachability

Given a candidate assignment D, we want to find the device poses
PD which minimize the energy in Eq. (1). Each pose pDi of the de-
vice should be optimized to lead to the corresponding sample pose
pCi , and it is uniquely defined by a set of rotations RDij , each associ-
ated with a joint j. The assignment D associates the rotations RDij
to rotations in the rig; as discussed in Sec. 3.2, all the unassigned
rig nodes inherit the rotation of their parent.

The overall pose error E is defined as the sum of the individual pose
errors Ei (Eq. (1)). Since we have a fixed candidate assignment D,
this error can be optimized separately for each pose:

E = argmin
PD

∑
i

Ei(p
D
i ) =

∑
i

argmin
pD
i

Ei(p
D
i ). (6)

For the sake of clarity, from now on we omit the index i, since all
the equations are referred to a single pose (except wb, which are
constants shared by all poses):

Ei = argmin
RD

m∑
b

wb|nb − ñb(R
D)|22. (7)

The weights wb account for the difference in surface area (see Sec.
3.2). Eq. (7) highlights the variables we wish to optimize for, that
is, the rotations of the device that induce a deformation of the rig
with nodes ñb that better approximate the position of the sample
nodes nb. We denote by ñ = (ñ0, ñ1, ..., ñm) the induced node
positions through the device D in the sample pose; b is a stack of
the rest pose bones of rig C and H a 3m× 3m matrix encoding the
rig hierarchy, and

R̃C = MDR
D, (8)

where MD is a 3m× 3l matrix representing the map from the pose
of the device to the set of bone rotations R̃C (3m × 3 matrix) in
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rig pose p̃C , RD is a 3l× 3 matrix vertically stacking joint rotation
matrices RDj , and l is the number of joints in device D. The value
of ñ relates to RD in the following way:

ñ = H diag(R̃C)b = H diag(MDR
D)b, (9)

where diag(R̃C) is a 3m × 3m matrix with the vertically stacked
rotation matrices in R̃C on its diagonal.

Note that the pose error is a sum of squares (Eq. (7)), which
we optimize using the Gauss-Newton minimization method. For
the optimization update steps, we use a differential representation,
where each rotation associated with a joint j is encoded as a vector
ωj = (ωj,1, ωj,2, ωj,3):

RDj
k+1

= RDj
k
eJ(ωj), (10)

where RDj
k

is a fixed rotation computed at the previous step, and
eJ(ωj) is the change computed in the current iteration. The opti-
mization variables are the entries of J(ωj), which is defined as:

J(ωj) =

 0 −ωj,3 ωj,2

ωj,3 0 −ωj,1

−ωj,2 ωj,1 0

 . (11)

This exponential map parametrization of the rotation space ele-
gantly and efficiently ensures, without additional constraints, that
RDj

k+1
is a rotation. We stack all the variables in a vector ω =

(ω1, ω2, ..., ωl). In every iteration, we set ω to:

ω = −(DTD)−1Dr (12)

where r is a 3m-vector

r = W(n− ñ(RD
k
)) (13)

and D is a 3m × 3l matrix whose element at row a and column c
is:

Dac =
∂ra
∂ωc

. (14)

The optimization is initialized with the rotations of the sample pose.
Note that this initial guess does not reproduce the sample pose,
since not all bones have a joint assigned in D. We stop the iter-
ations when:

|Ek+1
i − Ek

i | ≤ |Ek+1
i | · 10−6 + 10−6. (15)

C User study details

We ran an experiment to compare our design to [Jacobson et al.
2014b], which in turn already establishes a baseline of equivalence
to mouse and keyboard. We asked 10 users (2 female, 8 male) to
participate in our experiment (cf. Sec. 4). Most of the users re-
ported some prior experience with 3D tools and even with Maya,
but none were professional animators. The device presentation was
balanced, and exactly half of the participants started with ours de-
vice. We instructed the participants to adjust an on-screen char-
acter’s pose according to a semi-transparent target pose. The par-
ticipants self-reported as soon as they considered their posing to
be “good enough”. The procedure consisted of one practice block
to familiarize oneself with the device, followed by three blocks of
timed posing. After a relaxation period, we repeated the procedure
with the second device. Finally, we conducted exit interviews with
each participant.
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Figure 17: Additional experimental results: Comparing our design
(red) to the design of [Jacobson et al. 2014b] (blue). Our device
performs better in every of the three metrics (time, accuracy, work).

Experiment metrics. Based on the three timed blocks, we com-
puted three metrics. First, task completion time is the elapsed time
until the minimal pose error is reached in each posing task. Sec-
ond, we recorded the minimal pose error [%] reached per pose.
Finally, we computed the work metric, as proposed in [Jacobson
et al. 2014b]. This is the integral of the pose error [%] over time
(cf. Fig. 10). In all three metrics, pose error percentages are always
in relation to the initial pose error.

Additional results. For an in-depth discussion of results please
refer to Sec. 4. Fig. 17 shows that our device outperforms [Jacobson
et al. 2014b] in all of the three metrics.

In addition to the above metrics, we also computed absolute angu-
lar errors and compared these across device designs. Note that the
presented numbers should not be confused with the accuracy of our
device (0.5 degrees).

The absolute average angular error per joint, as reached by our best
participant, was 5.06 degrees (elapsed time: 216.3 s). In compar-
ison, the same user achieved an average error of 14.51 degrees
(elapsed time: 245.5 s) with the old design.

The minimal absolute average angular error a user reached was 6.32
degrees with both devices (rounded to 2 digits). However, the user
reached this minimal error 41.7 s faster with our device (126.6 s)
than with [Jacobson et al. 2014b] (168.3 s).

The final average angular error (across all participants) for our de-
vice was 11.07 degrees (standard deviation: 4.51 degrees) versus
19.68 degrees (SD: 10.40 degrees) for [Jacobson et al. 2014b].


