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Abstract
We introduce a spatial index to support the fast retrieval of large neighborhoods of points on a polygonal mesh. Our
spatial index can be computed efficiently off-line, introducing a negligible overhead over a standard indexed data
structure. In retrieving neighborhoods of points on-line, we achieve a speed-up of about one order of magnitude
with respect to standard topological traversal, while obtaining much more accurate results than straight 3D range
search. We provide quantitative comparisons of results obtained with our method with respect to known techniques.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations I.3.6 [Computer Graphics]: Methodology
and techniques—Graphics data structures and data types

1. Introduction

Polygonal meshes are ubiquitous and techniques for analyz-
ing and processing them are relevant in a wide number of
applications. Meshes are usually encoded either with simple
data structures, which represent just their connectivity, or by
topological data structures, which also support tasks such as
navigation and editing. Topological data structures involve
a higher storage cost and a certain degree of indirection in
accessing data (e.g. through pointers) that, in spite of their
optimal asymptotic behavior, may slow down traversal oper-
ations.

One basic operation, which is necessary in several tasks,
is to determine the neighborhood of points on the mesh, i.e.,
finding the portion of mesh that lies within a certain distance
from a given point. While neighborhoods made of just few
rings of faces/vertices are usually sufficient for local analysis
and processing, multi-scale and global methods often require
finding large neighborhoods, which extend over a relevant
portion of the mesh [PPR10].

Range search in 3D can be solved efficiently by means of
standard spatial indexes [Sam05], without the need to main-
tain the mesh in a topological data structure, but it does not
provide the correct answer to the neighborhood query. In-
deed, points that lie within a given 3D Euclidean distance
from a given point P do not necessarily lie close to P on the
surface (see Figure 1 for an example).

A correct solution to the neighborhood query must take

Figure 1: Range search does not provide the correct answer
to a neighborhood query: a ball of a given radius centered at
the query point will capture the correct neighborhood (green
line), but it may also capture portions of surface that lie ar-
bitrarily far from it (red line).

into account the surface, not just its embedding space. A
rather straightforward idea would be to base the search on
geodesic distance, or an approximation of it, measured on
the surface. Apart from the heavy computational complexity
involved in computing geodesics, also this solution does not
give an appropriate answer for most applications. Indeed, the
frequency of details on the surface may heavily affect the re-
sult. This fact is related with the possible fractal nature of a
boundary of a surface embedded in 3D space and with the
scale at which such a surface is considered during compu-
tation. For equivalent 2D examples, think for instance about
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measuring the length of a coastline, which can yield very
different results depending on the method used [Man67]; or
about shapes that can span a limited area and have an infinite
perimeter, like the Koch snowflake [Koc04] (see Figure 2).

Figure 2: The first four iterations of the construction of the
Koch snowflake: distance along the perimeter can be arbi-
trarily different depending on the scale at which the shape is
represented.

For most applications, the neighborhood query must take
into account both the actual 3D distance of points and sur-
face connectivity: for a given point P on a mesh M, the
neighborhood of P with radius r consists of the set of points
that lie within the connected component of M containing P
and captured by a ball of radius r centered at P (i.e., the
green line in Figure 1). On one hand, we look for connected
components and this allows us to discard portions of of sur-
face that lie close to P in 3D space but comes from a differ-
ent part of the mesh. On the other hand, we use the euclidean
distance and this makes the result independent on the scale
of representation of the surface.

A neighborhood query defined as above can be answered
easily by means of a breadth-first search (BFS) on M, start-
ing at P, and extending up to the boundary of the query ball.
Such a search requires to traverse M by adjacencies, hence
to encode the mesh with a topological data structure. Apart
from the additional cost of maintaining topological informa-
tion, which involves a non-negligible overhead, BFS may
result quite slow for large values of r, thus becoming often
the bottleneck of computations that involve neighborhood
queries. In fact, the evaluation of topological relations in-
volves a number of random accesses to non-contiguous lo-
cations of memory. This makes this kind of operation ex-
tremely expensive on modern processors that heavily rely on
cache hierarchies to achieve good performances, especially
with large meshes.

In order to provide an efficient solution to the neighbor-
hood query, in this work we propose a spatial index, which
takes into account both 3D distance and connectivity on the
surface, and does not require a topological data structure.
The spatial index consists of a hierarchy of balls of differ-
ent radii, each containing a connected component of surface,
and such that the whole mesh M is spanned by the set of balls
belonging to each level of the hierarchy. The spatial index
supports a hierarchical search of space that greatly reduces
random access to memory, yielding a speed-up of about one
order of magnitude with respect to a standard BFS. The re-
sult of the query is approximate, as it may contain portions of

surface that lie close, but outside, the desired neighborhood.
With respect to a rough answer based on 3D range search,
the reported solution is much closer to the exact one, and it
is sufficiently accurate for practical purposes.

2. Related work

Standard methods for resolving the neighborhood query rely
either on a BFS of the mesh, e.g., through a Dijkstra tech-
nique, or on a straight range search in 3D.

Range search is a well studied problem and there exist a
large number of methods and spatial data structures to sup-
port such task [Sam05]. Most methods are based on spatial
indexes that organize data according to their proximity in the
embedding space. In our case, proximity is related to both
3D distance and distance on surface and no known spatial
index can be directly adapted to the problem at hand. Among
others, spatial indexes based on hierarchies of spheres have
been proposed by several authors for different applications
(see [Sam05], 4.4.2).

Computation of distances on a surface mesh has also been
studied in the literature. In [MMP87], an exact algorithm for
computing the geodesic distance from a given point to all
other points of a mesh has been presented. Unfortunately,
it has a O(n2) computational complexity and O(n2 logn)
space complexity, thus resulting prohibitive for relatively
large meshes. In [SSK∗05] a faster implementation of the
same method, which uses approximate distance evaluation
based on Dijkstra on the edge network, was proposed. In
spite of a relevant speedup, also this version is too cum-
bersome to be used online. Moreover, an offline computa-
tion of geodesic distances for all-vs-all vertices of a mesh
would involve quadratic storage cost. The Fast Marching al-
gorithm [Set99] provides an approximation of the geodesic
by solving the Eikonal equation. The level set of the solution
can be seen as a front advancing with constant speed and
can be used as the distance between a set of starting points.
The complexity of this algorithm for computing the distance
from one point to all the others is O(n log2 n), and it requires
to navigate the mesh, thus resulting necessarily slower than
simple BFS.

The biharmonic distance defined in [LRF10] provides an
approximation of the geodesic that is based on an embedding
of points in a high dimensional space of dimension d. This
embedding can be computed efficiently off-line and distance
on the surface between a pair of points corresponds to Eu-
clidean distance in the embedding, which requires a storage
cost of O(nd). Therefore, in principle, any spatial index for
high dimensional data could efficiently support online range
queries on the embedding space (see [Sam05], 4). Unfortu-
nately, the value of d is quite high, thus yielding an overhead
of at least two orders of magnitude over the cost of storing
the plain mesh only, thus making this approach unpractical.

c© The Eurographics Association 2011.



L. Rocca, N. De Giorgis, D. Panozzo, E. Puppo / Fast neighborhood search on polygonal meshes

3. Spatial index

The main idea behind the data structure we propose consists
in precomputing and storing multiple balls of connected ver-
tices, called clusters. These clusters are organized in a hi-
erarchy that connects them to their counterparts at different
scales, they share an adjacency relationship with their neigh-
bours at the same scale and each of them records the center
and the radius of the sphere enclosing the vertices it contains.
The main goal is to easily find precomputed groups of ver-
tices contiguosly stored in memory that contain the desired
neighborhood.

Each level of the hierarchy contains clusters belonging to
the same scale and spans the whole mesh with a perfect cov-
ering, i.e. each vertex is referenced by one and only one clus-
ter inside it.

The first level is based on the vertex to vertex adjacency
relationship of the original mesh. It is useful only to compute
the rest of the spatial index and it can be safely discarded af-
terwards, while each subsequent level is built on the previous
one until a level containing a single cluster spanning all ver-
tices remains. In practice, we will see that it is not necessary
to go that far and a small number of carefully chosen levels
is sufficient for all our purposes.

In the rest of this section, we will give some basic defini-
tions (3.1), describe how to compute the spatial index (3.2)
and how to perform a query on it (3.3).
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Figure 3: The spatial index.

3.1. Definitions

Cluster. A cluster contains a set of references to vertices
that form a connected component in the original mesh, the
center and the radius of the sphere that encloses all its ver-
tices and references to its parent in the hierarchy, its children
and its siblings.

Base Cluster. A cluster that contains only one vertex v and
has no children. Its enclosing sphere is centered at v and has
null radius.

Parent. The parent of a cluster C at level l contains at least
all vertices inside C and is located at level l +1.

Child. The child of a cluster C at level l contains a subset
of the vertices of C and is located at level l−1. The union of
the vertices inside all children of a given cluster corresponds
to the set of vertices inside that cluster.

Base Sibling. Two base clusters containing vertices v and w,
respectively, are siblings if and only if v and w are adjacent
on M.

Sibling. A cluster C at level l is sibling of another cluster S
at level l when one child of C is sibling of a child of S.

Level. A set of clusters. The sets of vertices they contain are
disjointed and their union covers all vertices in the original
mesh. Clusters inside a level l are siblings to each other and
have children at level l−1 and parents at level l +1.

Spatial Index. A set of N levels, from 0 to N−1. A sketch
of the whole structure is depicted in figure 3.

3.2. Computing the spatial index

The spatial index is built starting at level 0. This level is
composed of base clusters and its computation is straight-
forward, consisting of a traversal of all vertices in the mesh
and a visit of the vertex-to-vertex relation in order to build
the base sibling relationship. This level is the first input to a
procedure that computes every other level from the preced-
ing one, which is divided in four main phases:

1. Create. For each cluster C inside level k a new cluster of
level k+1 is created, initialized with C and all its siblings
as children. At this stage, everything else is still empty.
The newly created clusters are all inserted in a priority
queue Q, ordered on the number of children each cluster
has.

2. Select. The goal of this procedure is to modify and delete
the clusters inside Q until each cluster at level k is a child
of one and only one cluster at level k+ 1 inside Q. Such
a computation is an instance of the set cover problem,
which is known to be NP-complete. We therefore employ
a greedy algorithm, see algorithm 1. Note that there could
be different ways of ordering the priority queue; precom-
puting the average number of children of the clusters it
contains and ordering it based on the distance from the
average was empirically found to give a good solution.

3. Link and sphere. Now that the new clusters cover every
cluster of the previous level in a non-overlapping fashion,
for each cluster C ∈ Q we set its vertices as the union of
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Algorithm 1 select (PriorityQueue Q, Level newLevel)
1: while Q 6= empty do
2: deletedChildren← false
3: Cluster T← Q.top()
4: for Ci ∈ T.children do
5: if Ci.visited = true then
6: T.deleteChild(Ci)
7: deletedChildred← true
8: end if
9: end for

10: if deletedChildren = true then
11: if T.children 6= empty then
12: Q.insert(T)
13: end if
14: else
15: newLevel.addCluster(T)
16: for Ci ∈ C.children do
17: Ci.visited← true;
18: end for
19: end if
20: end while

its children vertices, the parent of its children as itself,
and as siblings every cluster different from itself that the
siblings of its children have as parent. Then, we compute
the center and radius of the minimum bounding sphere of
points inside C.

4. Fusion. At this stage, the new level we just created ful-
fills the definitions given in Subsection 3.1 and it could
be used for neighborhood queries. In practice, we found
that there may be a relevant number of small clusters
even at high level of the hierarchy, which have an impact
on performance. We therefore developed a fusion proce-
dure that deletes clusters smaller than a certain threshold,
which grows with the scale as we climb up the hierarchy.
Vertices belonging to the donor cluster are distributed to
the nearest siblings, and suitable care is used to reassign
inside the involved clusters the correct parent, children
and sibling relationships they share with each other in the
current, previous and next level. The relevant pseudocode
is in algorithm 2, which shows how to safely delete a clus-
ter smaller than the chosen threshold.

This procedure could continue until a level consisting of
only one cluster spanning the whole mesh is created, but this
is not necessary (see 4.1 )

3.3. Performing a query

The input consists of a vertex v, chosen as a starting point,
and a distance d. The search sphere S is the sphere of radius
d centered at v. A query is divided in three phases:

1. Climb up. First of all, the cluster inside the lowest level
that contains v is retrieved. Then, the query follows the
parent relationship going up through the levels, until a

cluster C at the right scale is found. Note that C contains
v by construction.

2. Breadth first search. A BFS using the sibling relationship
is performed starting from C until clusters whose enclos-
ing sphere intersects S are found. We call the set of such
clusters SC.

3. Range search. The neighborhood of v is the set of all the
vertices of SC that lie inside the search sphere S.

The critical point in this procedure is to decide when a
cluster at the right scale is found. Since a level contains
clusters of varying dimensions up to a certain point, we de-
cided to precompute for each level the average radius ar of
the clusters it contains. We stop climbing up levels when
ar ≥ d/ f , where factor f controls the balance between the
BFS and the range search: if f < 1, the query goes higher in
the spatial index, the BFS will be shorter and there will be
more vertices to filter; if f > 1, the query stays lower in the
spatial index, the BFS will propagate along more clusters,
but there will be less vertices to filter. We empirically found
f = 10 to give the best results with all datasets.

Note that the query output is approximated, compared to
a BFS on the original mesh connectivity. In fact, while the
vertices inside SC span a connected portion of M, this com-
ponent may exceed the search sphere S, and there is no guar-
antee that it remains connected after the vertices outside S
have been discarded. Theoretically, clusters could give ex-
actly the same problem as simple range search (figure 1) -
and in fact they sometimes do. The key difference is the scale
at which this happens: on the whole mesh, a point inside the
range search could be arbitrarily far along the surface from
the query point, while in a cluster this is limited to the small
connected component it contains and the distance it spans.

Algorithm 2 delete (Cluster D)
1: for Ci ∈ D.children do
2: for Sj ∈ D.siblings do
3: if distance(nearSibling,Ci) > distance(Sj,Ci) then
4: nearSibling← Sj
5: end if
6: end for
7: nearSibling.addVertices(Ci.vertices)
8: Ci.parent← nearSibling
9: nearSibling.addChild(Ci)

10: for Sj ∈ Ci.siblings do
11: if Sj.parent 6= nearSibling ∧ Sj.parent 6= D then
12: Sj.parent.addSibling(nearSibling)
13: nearSibling.addSibling(Sj.parent)
14: end if
15: end for
16: end for
17: for Si ∈ D.siblings do
18: Si.removeSibling(D)
19: end for

c© The Eurographics Association 2011.



L. Rocca, N. De Giorgis, D. Panozzo, E. Puppo / Fast neighborhood search on polygonal meshes

mesh #vertices mesh with topology plain mesh spatial index building time
Cat 27894 1.703MB 0.958MB 0.526MB 0.258s

Victoria 45659 2.787MB 1.568MB 0.866MB 0.491s
Happy 543652 33.182MB 18.665MB 10.163MB 6.652s
Raptor 1000080 61.040MB 34.335MB 18.824MB 12.589s

Table 1: Datasets used, how much space they use and how long it takes to compute the spatial index on them.

In practice, approximation errors are negligible results for
real world multi-scale applications (Section 4). Also note
that the parameter f tunes not only performance but also ac-
curacy. As this value grows, clusters found in a given query
become smaller and the chance of getting errors decreases.
In this regard, the value of f = 10 also guarantees good ac-
curacy.

4. Results

In this section we present the results obtained with our im-
plementation of the proposed spatial index. Experiments
were run on a PC with a 2.67Ghz Core i5 processor equipped
with 8Gb of memory, using a single core. Our prototype im-
plementation uses [VCG] to store the mesh and its adjacency
relationships and [APG] to compute the minimum bounding
sphere. We benchmarked our algorithm on four datasets: the
Cat, Victoria, Happy Buddha and Raptor. The first two were
chosen since they are rich of protrusions, allowing us to test
the correctness of results; while the other two were selected
to test performances on large datasets.

4.1. Space usage

Early experiments showed that the performance of large
queries was unaffected, even when computing just the first
five levels of the hierarchy, and keeping only the last three.
Therefore, the first two levels (the base level and its suc-
cessor, containing clusters that span 10 vertices at most) are
discarded and only three more levels are computed. It is our
intuition that huge meshes which can barely fit in the main
memory of today’s machines could use another level at most.

With these optimizations, the whole structure, compre-
hensive of an additional reference to the lowest level clus-
ters inside the vertices representation, costs about half than
the input mesh (vertices and faces maintained in an indexed
structure), as shown in table 1. The two data structures to-
gether (mesh plus index) cost less than maintaining the same
mesh with its topology (indexed structure with adjacencies).

4.2. Pre-processing time

In table 1, we show the time required to build the spatial
index. The pre-processing time is negligible if an application
needs to perform neighborhood search for each vertex in a
mesh. For example, on the raptor dataset, the cost of a single

query with our spatial index with radius 65 times the average
edge is 0.26ms. This means that it would take 260s to run
it on every vertex. When pre-processing time is added, the
total time goes up to only 272s. As a comparison, the cost
of running all such queries using the BFS is of 2250s ( 2.25s
for a single query).

4.3. Querying a neighborhood

To understand how well queries perform on the spatial index,
we compared them to a BFS search on the mesh topology,
and to a 3D range search. The latter has been implemented
as a simple scan of all vertices of the mesh, without any fur-
ther optimization. It is used to show how range search gets
wrong results with respect to BFS, but it also gives an esti-
mate of the cost of traversing all vertices. Of course, range
search could be made faster by adopting any spatial index,
but the final results would be the same. Yet, even with a sim-
ple linear scan is faster than BFS for relatively large neigh-
borhoods. Results are shown in Table 2 and Figure 4. The
range of queries varies from two to ninety times the average
edge length of the considered mesh. We compare the differ-
ent methods in terms of correctness and speed.

Correctness. The BFS always returns the correct answer.
As expected, the cluster query tends to behave more like a
BFS than the range search. The graphs of the number of ver-
tices found for the query on the cat’s tail and victoria’s hand
show that results are similar to those obtained with a BFS.
Both make a big jump when the arm of victoria and the tail
of the cat end, the only difference being that for the cluster
query this happens at a scale which is slightly smaller than
that of the BFS, but still quite large in absolute terms. On
the contrary, the range search starts capturing extra (wrong)
vertices at a much smaller scale.

Speed. The graphs show a strong boost for our method. The
running times of both the cluster query and the BFS are func-
tions of the number of output vertices, but the cluster query
runs an order of magnitude faster at almost all scales. The
BFS remains competitive only for very small radii of search
(up to about 3 times the average edge length). It is interest-
ing to notice that for large radii (with respect to the size of
the mesh) the BFS soon becomes slower even than range
search based on linear scan. Only in the case of the raptor
the BFS remains competitive with respect to range search.
In this case the mesh is so big that the query always spans a
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Table 2: Query performances in the different datasets: (a) Cat, (b) Victoria, (c) Happy, (d) Raptor. The query radius goes from
two times the average edge to ninety times the average edge. In the first row, the time elapsed; in the second row the number of
vertices found.

relatively small portion of it, even with the largest radius we
used.

Interestingly, by profiling our query (Subsection 3.3) over
the whole benchmark, we found that the range search phase
takes up the 85% of the running time, whereas the climbing
up phase has a negligibile cost, and the breadth first search
phase takes up the rest of the time. This suggests that per-
formance could be further improved with small additional
space overhead, by endowing each cluster with a standard
spatial index supporting 3D range search.

5. Conclusions

We have introduced a spatial index that is specifically tai-
lored to support neighborhood queries on polygonal meshes.
The spatial index can be coupled with a standard indexed
structure for the mesh, yielding a total storage cost smaller
than maintaining a topological data structure, and it can be
built off-line efficiently. The performance of on-line queries
beats by one order of magnitude a standard BFS, while re-
turning an approximated result that is much closer to the ex-
act one than that obtained with a simple 3D range search.
Performance could be further improved by combining our
hierarchy of clusters with a standard spatial index inside
each cluster.

We believe that our spatial index can be successfully ap-
plied in a number of geometry processing tasks, especially
those connected with global or multi-scale processing. We
are planning to adopt this data structure to improve the per-
formance of our multi-scale method for curvature and crease
estimation [PPR10].
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(a) (b) (c)

(d) (e)

Figure 4: Examples of queries: (a) Cat, radius = 40.0; (b) Victoria, radius = 50.0; (c) Happy, radius = 85.0; (d) Raptor, radius
= 70.0, (e) Victoria’s hand, radius = 10.0. The input vertex, a red dot in the pictures, is the same for benchmarks depicted in
table 2. The BFS result is shown in green, the cluster search in yellow and the range search in blue. When results coincide,
green vertices cover yellow ones, which in turn cover the blue ones. Also note that in (e) both yellow and blue vertices are
wrong, but the yellow ones are only three edges away from the green ones. In fact, when the query is repeated with radius =
10.1 they become green.
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