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Abstract

We present a method for producing quad-dominant subdivided meshes, which supports both adaptive refinement
and adaptive coarsening. A hierarchical structure is stored implicitly in a standard half-edge data structure, while
allowing us to efficiently navigate through the different level of subdivision. Subdivided meshes contain a majority
of quad elements and a moderate amount of triangles and pentagons in the regions of transition across different
levels of detail. Topological LOD editing is controlled with local conforming operators, which support both mesh
refinement and mesh coarsening.We show two possible applications of this method: we define an adaptive subdi-
vision surface scheme that is topologically and geometrically consistent with the Catmull-Clark subdivision; and
we present a remeshing method that produces semi-regular adaptive meshes.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations; Computer Graphics [I.3.6]: Methodology
and Techniques—Graphics data structures and data types

1. Introduction

Polygonal modeling is the main modeling paradigm for ap-
plications that require computational intensive tasks other
then rendering, such as video games and finite element meth-
ods. In this context, quad-based meshes are often preferred
to triangle-based ones, since they provide a more stable and
better controllable framework for texturing, modeling and
geometric computations. One notable property of quads is
the possibility to be naturally aligned to anisotropic design
features, as well as to line fields, or cross fields, such as those
corresponding to principal curvatures [BZK09, DBG∗06,
KNP07, RLL∗06].

A standard approach to polygonal modeling consists of
starting from a coarse base mesh, which is then interac-
tively edited and refined to model the features of the de-
sired shape. One main goal is to obtain a meshe having a
controlled budget of polygons, while being close to an ideal
smooth surface. Mesh subdivision is often used to this pur-
pose [MS01]. Non-trivial shapes may require adaptive sub-
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division to model different parts: tiny but relevant features
will require a much finer mesh than large uniform areas.
But subdivision is generally meant as a global process, while
adaptive refinement of quad meshes is non trivial: local re-
finement of quads produces non-quad faces and this process,
if performed in an uncontrolled manner, can soon destroy the
regular structure of a mesh.

On the other hand, several authors have remarked that
quad-dominant meshes containing a small amount of non-
quad elements can be more flexible and more effective than
purely quad meshes in capturing surface features, and they
may enrich the design space [MNP08, SL03]. For instance,
triangular and pentagonal elements can be used to collapse,
split and merge lineal features and line fields, as well as to
model the surface in the proximity of singularities.

In this paper, we propose a method to adaptively refine a
quad mesh through local operators for both mesh refinement
and mesh coarsening (see Figures 10 and 1). Our method
generates an implicit hierarchy of adaptively refined quad-
dominant meshes, each containing a small amount of trian-
gular and pentagonal transition elements. The adaptive sub-
division patterns preserve the surface flows and lineal fea-
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(a) (b)

Figure 1: Subdivision surface: (a) The control mesh of a
smooth object, is adaptively subdivided (b) and its vertices
are moved to their limit position.

(a) (b)

Figure 2: Remeshing: (a) A simple mesh used to impose
the base topology; (b) an adaptively remeshed model is ob-
tained by selective refinement and projection of vertices to
the reference shape.

tures, which are defined on the base mesh, at all meshes in
the hierarchy.

Our hierarchy is implicit, meaning that only a mesh at any
intermediate level of refinement is encoded at each time,
while all other meshes of the hierarchy can be easily ob-
tained from it, by means of local conforming operators,
which support both refinement and coarsening and work on
a plain mesh without the need of cumbersome hierarchical
data structures. We also provide traversal operators that work
on an adaptively refined mesh M, while supporting naviga-
tion of any mesh coarser than M in the implicit hierarchy.

We present two possible applications of our framework:
an adaptive subdivision surface scheme that is consistent
with the standard Catmull-Clark scheme; and a remeshing
method that, starting from a sketched base mesh and a target
shape, allows to produce a quad-dominant mesh with semi-
regular topology and the geometry of the target shape.

2. Related work

Adaptive subdivision: Mesh refinement in polygonal mod-
eling is most often based on subdivision patterns. Classical
patterns, such as the face quadrisection, used in classical
subdivision schemes, are meant to be applied to all faces of
a mesh together, and generate non-conforming meshes when
applied selectively. Red-green triangulations [BSW83] sup-
port adaptive refinement of triangle meshes by applying tri-
angle quadrisection adaptively, and then subdividing some
triangles further, to fix non conforming situations. Variants
of red-green triangulations were developed in [PS07,ZSS97]
to support multi-resolution editing of meshes and they adopt
either the Loop or the butterfly subdivision schemes to set
the geometry of the refined mesh. The RGB subdivision pro-
posed in [PP09a, PP09b] extends red-green triangulations
with the same subdivision schemes to a fully dynamic adap-
tive scheme supporting both local refinement and coarsen-
ing. The

√
3 subdivision [Kob00] and the 4-8 subdivision

[VZ01] for triangle meshes are subdivision schemes based
on different patterns that can be implemented through lo-
cal conforming operators, making them naturally adaptive.
In [KCB09], an extension of the half-edge data structure
that allows the representation of multiresolution subdivision
surfaces is presented. The multiresolution half-edges allow
to adaptively refine a mesh, with either the Loop or the
Catmull-Clark scheme. Adaptive methods similar in spirit
to red-green triangulations were proposed for quad meshes
in [MJ98] and [XK99], to extend the classical Catmull-Clark
and Doo-Sabin subdivision schemes.

CLOD models: The interested reader may refer to
[LRC∗02] for a book on this subject. Generally speaking,
a CLOD model consists of a base mesh at coarse resolu-
tion, plus a set of local modifications that can be applied
to the base mesh to refine it. Such modifications are usu-
ally arranged in a hierarchical structure, which consists of
a directed acyclic graph (DAG) in the most general case.
Meshes at intermediate level of detail correspond to cuts in
the DAG, and algorithms for selective refinement work by
moving a front through the DAG and doing/undoing modifi-
cations that are traversed by this front. This general frame-
work, as shown in [Pup98], encompasses almost all CLOD
models proposed in the literature and it can be applied to the
hierarchies generated by

√
3 subdivision and 4-8 subdivi-

sion as well. In [KL03], a CLOD model is introduced, which
achieves better adaptivity by using local modifications more
freely than in previous models. CLOD models can provide
meshes at intermediate LOD, where detail can vary across
the mesh and through time, at a virtually continuous scale
and with fast procedures that work on-line even for huge
meshes. The scheme proposed in [DWS∗97] is very popu-
lar and most authors refer to it in order to implement their
selective refinement algorithms. One generalization is given
by 4-k meshes [VG00], which have in fact a strong relation
with 4-8 subdivision [VZ01].
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Figure 3: The diagram of patterns for adaptive subdivision
of a quad. Types of faces and patterns are denoted by labels
placed inside and beside them, respectively. Transitions be-
tween adjacent patterns are labeled with the corresponding
refinement and coarsening operators.

3. Adaptive quad subdivision

We deal with manifold polygonal meshes containing trian-
gles, quads and pentagons, adopting standard terminology.
A quad mesh is a mesh where all faces are quads; a quad-
dominant mesh is a mesh where most faces are quads. A ver-
tex v in a quad mesh (or in a quad-dominant mesh containing
just quads in the star of v) is regular if it has valence four;
otherwise it is said to be extraordinary. The edge neighbors
of a vertex v in a quad[-dominant] mesh are those vertices
connected to v through edges; the face neighbors of v are
those vertices opposite to v on its incident quads.

We edit the mesh by local refinement operations that split
one edge by inserting a vertex, and local coarsening opera-
tions that merge a pair of edges by removing a vertex. A local
operation eliminates faces in the neighborhood of the vertex
to be inserted/removed, and re-tessellates the hole with new
faces. This will be the subject of Section 3.1. The iterative
application of local operators define an implicit hierarchy,
described in Section 3.2. In Section 3.3 the concept of topo-
logical angles and lenghts are introduced and used to define
navigation algorithms that allows us to navigate through the
subdivided mesh and across the different levels of the im-
plicit hierarchy.

3.1. Topological operators

The most common pattern for uniform subdivision of quad
meshes is quadrisection: each face is subdivided into four

new faces by splitting each edge with a new vertex, and con-
necting each such vertex with another new vertex at the cen-
ter of the face. In the following, a vertex that splits an edge
will be said to be of type E, while a vertex inserted in the
middle of a face will be said to be of type F.

Since quadrisection splits all edges of a face, it cannot
be applied selectively while maintaining the mesh conform-
ing. In order to support transitions between different lev-
els of subdivision, we devise alternative patterns that split
one edge at a time. Figure 3 illustrates such a set of pat-
terns, and related operators. These patterns produce quad-
dominant meshes containing some triangular and pentagonal
faces, which preserve the flow of lines of the base mesh (see
Section 3.4 for a discussion). Other patterns, e.g. containing
just quads and triangles could be also used with straightfor-
ward modifications of the method described below.

A key idea is that local operators subdivide a mesh by
splitting one edge at a time, they always produce conforming
triangulations, and they can be controlled just on the basis of
attributes of local entities, i.e., types and levels of vertices,
edges and faces. All rules that control operators are purely
topological. Just for the sake of clarity, in the figures we will
use fixed shapes to depict the different types of faces that
may appear in our adaptive meshes: squares (type 0); rectan-
gles(type 3); diamonds (type 4); right triangles (type 2); and
pentagons with three collinear vertices, having the shape of
either a square or a rectangle (type 1 and 5, respectively).

Consider a quad mesh Γ0, called the base mesh. We assign
level zero to all its vertices and edges, and type standard to
all its edges. A selectively refined mesh will also contain
vertices and edges labeled according to their level of sub-
division; edges will be labeled with either type standard or
type extra. The only extra edges are those internal to patterns
P2a and P2b, which have the same level l of their parent face
(i.e., face 0 in pattern P0); the remaining edges are standard
and they have level either l or l + 1, as in the standard sub-
division. The level of a face in a mesh Γ is defined to be the
lowest among the levels of its edges. Note that the type of a
face is uniquely defined by the types and levels of its edges,
and the type of a pattern is also uniquely defined by levels of
edges in its boundary.

3.1.1. Refinement operators

According to definitions above, all faces in the base mesh
are standard at level zero. Local subdivision operators can
be applied iteratively to Γ0 to generate a conforming mesh Γ

composed of faces of the six types illustrated in Figure 3.

We say that an edge e at level l ≥ 0 is refinable (i.e., it can
split) if and only if it is standard and its two adjacent faces
f0 and f1 are both at level l. In case of a boundary edge,
only one such face exists. We split an edge e at level l, by
inserting at its midpoint a new vertex v at level l + 1. The
edges generated by the two halves of e are standard at level
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l+1. Note that levels of vertices and standard edges comply
with the standard subdivision.

Splitting an edge e at level l may affect an area as large as
that of the standard faces incident at e at level l. Tessellations
on the two sides of e can be treated independently and each
of them depends on the type of the face f incident at e and
on its configuration. It is readily seen from Figure 3 that in
all cases the type of face f incident at splitting edge e and the
levels and labels of edges of f are sufficient to characterize
the type of operator to be applied. This fact allows us to pre-
compute and store in a lookup table the local tessellations to
be deleted from, and to be plugged into a mesh. Note that
all split operators affect the whole area covered by a pattern,
except for 3-split, which affects just the area covered by face
of type 5 in pattern P3. In fact, the other two (standard) faces
at level l+1 may be actually refined independently at higher
levels before this operator is applied.

By simple combinatorial analysis, it is easy to verify that
the set of refinement operators is closed with respect to the
meshes obtained, i.e.: if we start at a mesh Γ0 containing all
standard faces at level 0 and we proceed by applying any le-
gal sequence composed of the operators above, the resulting
mesh will be composed of faces of the types defined above,
and all its refinable edges can be split through the same set of
operators. In particular, all vertices of a standard subdivision
up to a given level l can be added without adding any vertex
of a level higher than l and the same uniform mesh generated
from the standard subdivision scheme will be obtained.

If an edge e at level l is of standard type, but it is not re-
finable, we trigger recursive refinement of each face f inci-
dent at e and having a level < l. Recursive refinement is per-
formed by recognizing the type of f and forcing refinement
of either two (for pattern P1) or one (for all other patterns)
of its edges at level < l.

3.1.2. Coarsening operators

Local merge operators invert edge split operators defined
above, by removing one vertex v at level l + 1 that splits an
edge e at level l. As before, at most the area spanned by the
faces incident at e at level l may be affected, and the tessel-
lations of such two areas are treated independently.

A vertex v at level l+1 is potentially removable if the lev-
els of its incident faces are: l +1 for standard faces (type 0),
and l otherwise. A potentially removable vertex is removable
if it is of type E (i.e., it splits an edge of the previous level)
and faces in its neighborhood can be arranged to form two
patterns of the diagram, sharing a pair of edges at level l +1
incident at v. Vertices of type F (i.e., splitting a face of the
previous level) do not trigger any merge operator, because
they are removed together with vertices of type E from oper-
ators 3a/b-merge. Such vertices are discarded easily because
a potentially removable vertex v at level l + 1 is of type F if
and only if either it has exactly four adjacent vertices at level

l+1, or its star is formed by two standard faces and one face
of type 5.

We divide the neighborhood of (internal) vertex v of type
E in two halves as follows: there are at most four (standard)
edges at level l+1 incident at v; among them, only two edges
e′ and e′′ have the other end vertex at level≤ l; thus the pair
e′, e′′ cover the edge e that was split by v and they divide
the neighborhood. For each half neighborhood, we recog-
nize the pattern adjacent to the pair e′, e′′ and we apply the
corresponding merge operator, as depicted in Figure 3. Op-
erators 1-merge and 2a/b-merge can be applied by checking
just the types of faces f ′ and f ′′ incident at e′ and e′′. In or-
der to discriminate between operators 3a-merge and 4-merge
it is also necessary to check the type of face(s) adjacent to f ′

and f ′′ inside the pattern. Finally, operator 3b-merge needs
checking also the other face of type 0 adjacent to the face of
type 5 within pattern P3: in fact, v is not removable if such a
face has been refined further.

It is easy to verify that the merge operators are consis-
tent with the split operators and they have similar properties:
all merge operators affect the whole area covered by a pat-
tern, except for 4-merge, which affects just half a pattern;
local tessellations to implement operators are precomputed
and stored in a lookup table (in fact, the same lookup table
that is used for the split operators).

The set of refinement operators is also closed with respect
to the meshes obtained. If we start at a mesh Γ obtained
from Γ0 through refinement, we can apply merge operators
in any legal order to go back to Γ0; moreover, any intermedi-
ate mesh could be refined through split operators. So we can
mix split and merge operators in any order while preserving
consistency.

3.2. Transition space and implicit hierarchy

Following the approach of [PP09b], it is possible to define
a transition space for our adaptive subdivision scheme. A
transition space is a graph where each node corresponds to
an adaptive mesh, and each arc corresponds to the applica-
tion of an atomic local operation, as defined in Section 3.1.
In the graph, a path from node a to node b corresponds to a
set of atomic operations that transform the mesh associated
with a into the mesh associated with b. Since all operators
are invertible, it is always possible to execute also the inverse
sequence of operations. Note that multiple paths may exist
between a pair of nodes.

Consequently, the application of the local operators to a
base mesh defines a (virtually unlimited) subdivision hierar-
chy. We do not need to store the hierarchy explicitly. Starting
from a single node n, we are able to determine what opera-
tions are valid and subsequently what arcs of the graph are
incident with n. In other words, we always know the subdivi-
sion hierarchy locally, around our current mesh, and we are
able to navigate the graph by applying local operators.
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Figure 4: Topological angles: a width is assigned to each
vertex in each face.

3.3. Topological angles and lengths

In order to support navigation efficiently, we assign a topo-
logical width to every angle defined by a pair Face-Vertex
(F,V ) in a mesh. The values are assigned to faces of the var-
ious types as indicated in Figure 4. An angle with topologi-
cal width of 6 is said to be flat. Such values are not related to
geometrical values, we call them “angles" since they satisfy
some properties of geometrical angles, which we will show
in the following. We do not need to store angle widths, since
they can be found efficiently from types of faces and edges,
and levels of vertices.

We give next some invariants on angles that will be useful
for mesh navigation.

Lemma 1 If an edge e is split into two edges e0 and e1 by
adding a vertex v, both angles formed by e0 and e1 are flat.

Proof. Figure 4 shows the only possible ways to split an
edge. It is readily seen that in all cases the sum of angles on
each side of a pair e0e1 is 6. �

Lemma 2 The width of a topological angle between a pair
of edges is invariant upon editing operations on the mesh.

Proof. Consider a pair of edges e and e′ incident at v and
one of the two angles they form at v. It is sufficient to analyze
editing operations that affect faces spanned by such an angle.
For each such face f , there are three possible cases, which
are readily verified by comparing transitions depicted in Fig-
ure 3 with angles depicted in Figure 4: If the editing opera-
tion neither splits f with an edge incident at v, nor merges
t with an adjacent face around v, then the angle of f at v is
unchanged; If the angle of f at v is split into two angles, then
the sum of widths of such angles is equal to the width of the
angle of f at v before split; If f is merged with another face
f ′ adjacent to it around v, by deleting their common edge,
then either e and e′ are merged into a single edge, or the
width of angle at v of the new face is equal to the sum of
widths of angles of f and f ′ at v. �

Lemma 3 No matter how an edge e is subdivided into a
chain of edges e0, . . . ,ek, angles between two consecutive
edges ei−1 and ei, i = 1, . . . ,k are flat.

Proof. The proof follows from the above two lemmas by
noting that every split produces flat angles and such angles
are invariant upon subsequent editing operations. �

Topological lengths are assigned to standard edges induc-
tively: an edge at level 0 has unit length; an edge at level
l +1 has half the length of an edge at level l.

The previous definitions and lemmas allow us to define a
set of operators for mesh navigation, which help us extract-
ing from an adaptively refined mesh a view of the same mesh
at a lower level of subdivision. We define switch operators
similar to those proposed in [Bri93], plus two new operators,
called rotate and move, that are specific for our meshes. All
operators use a unique identifier of position in a mesh, called
a pos, which contains a vertex v, an edge e incident at v, and
a face f bounded by e. Given a pos p, we will denote by p.v,
p.e and p.f its related vertex, edge and face, respectively.

1. p.switchVertex(), p.switchEdge() and p.switchFace()
move to the adjacent pos which differs from p just for
the vertex, the edge and the face, respectively.

2. p.rotate(i): executes an alternate sequence of
p.switchEdge() and p.switchFace() operators until
a topological angle of width i has been spanned.

3. p.move(l): executes an alternate sequence of
p.switchVertex(), possibly followed by p.rotate(6)
and p.switchFace() operators until the length of an edge
at level ≤ l has been traversed. If the first edge traversed
has a level < l (i.e., its length is larger than required) the
operation has no effect.

The effect of operators is exemplified in Figure 9: sin-
gle arrows correspond to switch and rotate operators; the ex-
panded view shows the decomposition of a rotate(6) oper-
ator in terms of switches; sequences of vertical arrows cor-
respond to move operators for the length of one edge at the
coarsest level.

Lemma 4 The rotate and move primitives are invariant dur-
ing editing, every result that we obtain on a level of the sub-
division is invariant in any deeper level. For invariant we
mean that if we consider a uniformly refined mesh at level l
and we apply one of the previous operation on it, we obtain
exactly the same result that we would get on another mesh
at any further subdivision level.

Proof. The rotate primitive is invariant since the angle it
spans is invariant by Lemma 2. The move primitive is invari-
ant since if we refine a mesh we can only add vertices at a
higher level, and any angle we add along the line traversed
by the Move operation has a width of 6, which is skipped
by the Move operation; moreover, the topological length of
any chain of edges splitting an edge e is also invariant by
definition. �

The invariance lemmas shown in the previous section
guarantee that, starting at a splitting edge p.e at level l, we
can navigate the mesh by moving to adjacent faces of the
stencil at level l (through a p.rotate(3) operation) and we
can follow chains of edges until we reach the other end of an
edge at level l (through a p.move(l) operation).

3.4. Alignment with surface flows

In many cases, the alignment of edges of a quad mesh are
relevant to the modeled shape. For instance, both in the
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Figure 5: Preserving flows in a quad mesh: (a) flows tra-
verse a quad element in orthogonal directions; (b) flows are
preserved by uniform subdivision; (c) some adaptive pat-
terns break flows and do not allow for consistent labeling of
edges; while others maintain flows but introduce non-quad
elements (d).

(c) (d)(b)(a)

Figure 6: Triangular and (a) pentagonal (b) transition el-
ements collapse and split/merge the flow in one direction,
respectively. Catmull-Clark subdivision of triangles (c) and
pentagons (d) does not preserve the flows, though.

finite element methods and in shape approximation, good
anisotropic meshes for a given budget of elements can be
obtained if elements are aligned to principal directions of
curvature [She02]. If quads are properly aligned with a line
field defined on the surface, then edges can be colored with
two colors, say red and blue, depicting two orthogonal flows
on the surface (see Figure 7). These flows are obviously pre-
served through quadrisection of quads - see Figures 5(a) and
(b) - but they can be deviated by some adaptive patterns - see
Figure 5(c).

Triangular and pentagonal faces in a quad-dominant mesh
collapse and split/merge flows, respectively, as depicted in
Figures 6(a) and (b). Note that the direct application of
Catmull-Clark patterns to non-quad meshes would not pre-
serve flows. See Figures 6(c) and (d). We have used the pat-
tern depicted in Figure 5(d) instead of the more popular Y
pattern of Figure 5(c) for configuration P2b of our adaptive
scheme, since it allows us preserving the same flows of its
parent quad. It is straightforward to see that also the other
patterns of our scheme preserve flows.

Figures 7 shows a base mesh representing a torus, with
edges aligned with principal directions of curvature, and
an adaptively subdivided mesh obtained from it. Flows are
shown on edges and faces by means of textures.

4. Adaptive Catmull-Clark subdivision

In this section we will use our method to edit the LOD of a
mesh through operations that modify the mesh locally, while

Figure 7: A torus with edges aligned to principal curvature
directions and an adaptive subdivision of it.

maintaining it compatible with the Catmull-Clark scheme
(henceforth called the standard subdivision). Compatibility
is defined as follows. Given a base mesh Γ0, then:

1. An adaptive mesh Γ built starting at Γ0 may contain all
and only those vertices that appear in the standard subdi-
vision of Γ0;

2. If all vertices of a given face f appearing in a the stan-
dard subdivision of Γ0 belong to Γ, then either f , or a
subdivision of it also belongs to Γ;

3. If Γ contains a vertex v introduced at level l in the stan-
dard subdivision, then the control point pl(v) will be the
same both in Γ and in the standard subdivision. If Γ con-
tains also all vertices in the standard (even) stencil of v at
level l, then for any k ≥ l the control point pk(v) will be
the same both in Γ and in the standard subdivision.

Our mechanism provides a suitable topological basis to
implement an adaptive scheme for the quadrisection pattern.
In paticular, a uniform subdivision at a given level l com-
puted incrementally by adding all its vertices through our
scheme will be both topologically and geometrically coinci-
dent with the standard subdivision at level l, hence also the
limit surface will be the same.

Note that the meshes refined selectively as described in
the previous section naturally fulfill requirements 1 and 2.
Thus in the following we will concentrate on requirement 3.

4.1. Catmull-Clark subdivision

The Catmull-Clark subdivision [CC78] is an approximating
scheme for subdivision surfaces that can be applied to any
polygonal mesh and converges to a C2 surface. The subdi-
vision pattern is quadrisection. A new vertex v introduced at
level l+1 of subdivision is called an odd vertex, and the po-
sition of its control point pl(v) at level l + 1 is computed as
a weighted average of control points of vertices surrounding
it that belong to level l, according to the stencils and weights
depicted in Figure 8.

Vertices already present at level l, called the even vertices
are relocated at level l +1, with a weighted sum of their po-
sition and the positions of their edge and face neighbors at
level l, according to the stencils depicted in Figure 8. There-
fore, for each vertex v introduced at level l, there exist an in-
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Figure 8: The stencils of the Catmull-Clark subdivision.
Numbers are weights of vertices in the linear combination:
n is the valence of the even vertex; β = 3

2N and γ = 1
4N .

finite sequence of control points pl(v), pl+1(v), . . . , p∞(v),
that define the positions of v at level l and all successive lev-
els, p∞(v) being the position of v on the limit surface.

In principle, it is possible to adopt either exact methods
[Sta98], or fast approximated methods [LS08] for the direct
evaluation of the limit position of any point of a subdivided
mesh. However, evaluation requires that: the parametric co-
ordinates of each point, with respect to the face of the base
mesh containing it, are known; and the geometry of all con-
trol points of the base mesh in the neighborhood of such a
face are retrieved. Since we only encode the adaptively re-
fined mesh, retrieving such information may be unpractical,
involving traversal of a large area.

We therefore develop an alternative method that makes
use just of close neighbors of any given vertex. Any control
point pk(v) for a vertex v introduced at level l, with 0≤ l < k
can be computed directly just from the positions pl of v and
of all its even and odd neighbors at level l. In Section 4.2.1,
we derive a multi-pass closed form for computing directly
control points at an arbitrary level k, which provides a basis
for the effective and efficient computation of correct control
points in an adaptively subdivided mesh.

4.2. Computing control points

Since we work selectively, it is not trivial to find the right
vertices to use for a stencil, and to compute the control points
at their proper levels. In this section, first we introduce some
tools for the computation of control points, and next we dis-
cuss how to use them to maintain geometry up-to-date. In

Subsection 4.2.1 we present a multi-pass formula for the
Catmull-Clark subdivision, which allows us to compute in
closed form the control point of any vertex at any level of
subdivision. On this basis, in Subsection 4.2.2 we introduce
a mechanism for computing the control point of a given ver-
tex incrementally, as its neighbors are inserted into the mesh.
Updates to control points must be made for odd vertices dur-
ing refinement, and for even vertices both during refinement
and during coarsening. We discuss such operations in detail
in Subsections 4.2.3, 4.2.4 and 4.2.5, respectively.

4.2.1. Multi-pass subdivision

Let us consider a vertex v inserted at level l. If l = 0 then v
belongs to the base mesh and its geometry p0(v) is known,
otherwise its control point pl(v) is computed on the basis of
stencils for odd vertices (see Figure 8).

By applying the concept of multi-step subdivision rule
[Kob00] to the analysis of the Catmull Clark scheme de-
veloped in [Sta98], we derive equations that compute the
control point of v and any level k on the basis of its initial
position and on the positions of its neighbors at level l.

Lemma 5 [PP10] The control point pk(v) of an internal
vertex v, inserted at level l, for k > l is given by

pk(v) = sk
11v+ sk

12

N

∑
i=1

v2i + sk
13

N

∑
i=1

v2i−1 (1)

where sk
11, sk

12 and sk
13 are defined below, and vertices in the

summations are the edge and face neighbors of v at level l,
respectively.

sk
11 =

√
αn(11N−35)(βn,k− γn,k)+5αn(βn,k + γn,k)

2 ·8kλn
+

N
N +5

sk
12 =
−2
√

αn(4N−16)(βn,k− γn,k)−4αn(βn,k + γn,k)

2 ·8kλnN
+

4
N(N +5)

sk
13 =

−√αn(3N−3)(βn,k− γn,k)−αn(βn,k + γn,k)

2 ·8kλnN
+

1
N(N +5)

with a = 3N−7
N , b =

√
αn

N , βn,k = (a+ b)k, γn,k = (a− b)k,
λn = 5N3−5N2−101N +245

Similarly, if v is a boundary vertex we have

pk(v) = sbk
11v+ sbk

12(v0 + v1). (2)

Note that, by computing the limits for k→∞ of equations
1 and 2 we obtain the well known limit positions of internal
and boundary vertices, respectively:

p∞(v) =
N

N +5
v+

4
N(N +5)

N

∑
i=1

v2i +
1

N(N +5)

N

∑
i=1

v2i+1

and

p∞(v) =
2
3

v+
1
6
(v0 + v1).
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4.2.2. Incremental summations

In a standard subdivision, if a vertex v is inserted at a level
l > 0, two of its edge neighbors already belong to the mesh,
while the other two edge neighbors as well as its four face
neighbors are inserted at the same time and level as v, and
the control points at level l of all such vertices are computed.
In an adaptive subdivision, some neighbors of v might be
inserted at a later time. Therefore, it is not always possible
to apply Equation 1 right after inserting v in the mesh.

We use an approximation of Equation 1 as long as not all
neighbors of v are available. In the data structure encoding
the mesh, for each vertex v inserted at level l, we store its
control point pl(v) and we reserve two other fields to store
the sums SUMe(v) and SUM f (v) of control points at level
l of its edge and face neighbors, respectively. We also store
two counters of contributions already stored in SUMe(v) and
SUM f (v). At startup, we fill such fields for all vertices of the
base mesh.

For a generic vertex v inserted at level l > 0, its control
point pl(v) is computed and stored when creating v as an odd
vertex (see Section 4.2.3), while SUM f (v) and SUMe(v) are
computed incrementally, as the control points of neighbors
of v become available. Initially, we set both SUMe(v) and
SUM f (v) to 4 ∗ pl(v). Every time a control point pl(vi) for
a neighbor of v at level l becomes available, its value is ac-
cumulated by substituting it to an instance of pl(v) in either
SUMe(v) or SUM f (v), depending on the position of vi in the
stencil of v.

A vertex v is represented in the mesh with a control point
at level k, where k is the smallest level of its incident edges.
As long as the correct value of the two sums is not known,
v will be represented with an approximation of its position
computed by Equation 1 with the values of sums currently
stored at SUMe(v) and SUM f (v). Note that the quality of the
approximation progressively increases as new control points
are inserted, and the formula becomes exact as soon as all
contributions from neighbors of v become available.

4.2.3. Control points for odd vertices during refinement

In the sequel, for the sake of brevity, we will address only
internal vertices. Boundary vertices are handled similarly.

Let v be a vertex of type E introduced at level l+1 of sub-
division by splitting a refinable edge e at level l. In order to
compute control point pl+1(v), we need to fetch the vertices
in the stencil of v at level l.Referring to Figure 8, vertices
v0 and v1 of the stencil of v are the endpoints of edge e, so
they are found immediately. The other vertices of the stencil
are not trivial to fetch since the faces defined by v0,v1,v2,v3
and v1,v0,v4,v5 may have been refined further. This can be
done with a combination of move and rotate operators. Since
these operators are not influenced by editing operations, then
the stencil will be fetched correctly also if the mesh has been
refined (see Figure 9).

Figure 9: An example of mesh traversal to fetch the stencil
of an odd vertex v. A spanning tree of the neighborhood of v
is traversed through move and rotate operations. Move op-
erations are decomposed into sequences of switchVertex, ro-
tate and switchFace; rotate operations are decomposed into
sequences of switchEdge and switchFace.

Any odd vertex v of type F is inserted by operator 2a/b-
split together with a vertex v′ of type E, and the stencil of v
is in fact a subset of the stencil of v′, so we do not need to
fetch it separately.

If the control point at level l is not available for some ver-
tex vi in the stencil of v, then recursive refinement must be
triggered to insert in the mesh all neighbors of vi at its inser-
tion level li. To this aim, it is necessary to recursively split
the edges in the neighborhood of vi until all faces incident in
it are of level greater or equal to li. This can be done with a
recursive split of all standard edges incident at vi and having
a level lower than li, followed by an analysis of the incident
faces. If an incident face f is of type 4, then a recursive split
of the standard edge with lower level of one of the two trian-
gles that share an extra edge with f is necessary.

This can be done simply by traversing in counter-
clockwise order the edges incident at vi. Every time an edge
at a level lower than li is found, we recursively split it. The
algorithm halts when a complete scan of the edges is per-
formed without performing any split. The additional splits
required for faces of type 4 can be performed by traversing
the faces and splitting a single edge for every face of type 4
found. Note that a regular vertex may have standard incident
edges that differ for at most two levels, thus the number of
new vertices to be computed during this operation is usually
quite small.

Computation of control points may trigger some over-
refinement of the mesh, which might be not necessary to
fulfill LOD requirements. This is similar to what happens
in other adaptive subdivision schemes [Kob00, SHHG01,
VZ01]. Since we wish to avoid over-refinement of the result,
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edge splits performed during computation of control points,
which are unnecessary according to LOD requirements, are
marked as temporary and inserted in a queue. A temporary
vertex becomes permanent in case one of its incident edges
undergoes a standard edge split. At the end of selective re-
finement, this queue is scanned, and all vertices that are still
temporary are removed by performing corresponding edge
merge operators.

After v has been inserted at level l, we must find all pos-
sible vertices that give contribution to compute summations
SUMe(v) and SUM f (v). This is done again with a naviga-
tion algorithm based on topological angles. The stencil that
we want to identify can be incomplete, i.e. some vertices
may not be present in the mesh, and we have no a priori in-
formation on the level of refinement the portions of stencil
currently available. We traverse the stencil with a breath-first
strategy, starting at v and navigating on subsets of all possi-
ble paths that we can use to reach a vertex vi of the sten-
cil. The algorithm starts by identifying the standard edges at
level li incident at v. For each edge ei, connecting v with an-
other vertex vi, the algorithm navigates the stencil using ro-
tate and move operators until either vi−1 and vi+1 are found,
or it is detected that they are not present in the mesh.

For each candidate vc found, we must check what kind of
contribution is needed:

1. If the level of vc is l, we simply accumulate pl(vc) on
SUMe(v) or SUM f (v), depending if vc being an edge or
a face neighbor of v, respectively;

2. If the level of vc is < l and all the neighbors in the even
stencil of vc are present, we compute the correct control
point, and we accumulate it on SUMe(v) or SUM f (v),
exactly as before.

In both cases, we keep track of the fact that vc has given its
contribution to v by keeping a counter for each vertex. This is
necessary both to understand when all neighbors have given
their contribution and to avoid accumulating a contribution
twice, since a vertex can be deleted from the mesh and intro-
duced again at a later time. This operation is performed also
in the opposite direction, since every candidate can need the
contribution of v to compute its own summations.

As soon as a vertex v at level l receives the contribution
from all the vertices in its stencil, we cal it complete and
its correct control point can be computed at every level ≥ l.
In this case, we immediately provide its contribution to all
vertices of level ≥ l that are present in its stencil.

4.2.4. Control points for even vertices during refinement

The case of even vertices is simpler. When a new vertex v is
inserted to split an edge e, this may affect the control points
of the candidate vertices in its neighborhood. For each such
vertex vi, if the minimum level of edges incident at vi has
increased to level k, then the current position of vi is updated
to pk(vi). Otherwise no action is required. Note that value

(a) (b) (c)

Figure 10: A base mesh (a) is adaptively refined to smooth
three sharp edges and round the hole (b); the same mesh
uniformly refined by using the standard Catmull Clark sub-
division scheme (c).

pk(vi) will be approximated as long as vi is not complete.
This approximation reduces the popping effect during selec-
tive refinement and it converges to the correct position as
more points in the stencil of v are inserted.

4.2.5. Control points during coarsening

The removal of a vertex v must undo the updates to the con-
tibution counter and to the contribution accumulators SUMe
and SUM f for every vertex in the stencil of v. This is done
by straightforward adaptations of the algorithms described
above. We do not remove contributions from complete ver-
tices, which already have sufficient information to compute
their correct control points at all levels.

4.3. Results

We have developed an interactive application that allows us
editing the LOD of a subdivided mesh by means of a brush
tool. Figure 1(a) shows a rough polygonal model designed
in Blender by merging a cylindrical handle to a lathe object.
In Figure 1(b) the mesh has been edited by a few strokes of
brush in order to refine the joints between the handle and the
bottle, as well as to improve its overall shape. A coarsen-
ing brush as well as single local refinement operations have
been used for adjusting over-refined parts and fine-tuning.
Note that the pot-bellied part has been refined anisotropi-
cally in order to better approximate shape in the direction of
higher curvature. Transitions across different LODs involve
pentagonal faces.

Figure 10 shows a simple L-shaped block with a hole. We
have refined the hole anisotropically, we have smoothened
two convex and one concave edge with two levels of subdi-
vision, and we have refined anisotropically a strip traversing
the top faces of the object with one level of subdivision. The
different colors represent the different types of faces (see
Figure 3): green, blue and dark red faces are quads; yellow
and orange faces are pentagons; and light red faces are trian-
gles. As it can be seen by comparing Figures 10 (b) and (c)
the adaptively refined mesh contains a much smaller number
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of faces than the uniform Catmull Clark subdivision at level
two, while it approximates well the shape in the regions of
interest. In fact, it can be seen that in the adaptively refined
mesh, the most refined parts are identical to the correspond-
ing parts in the uniformly refined mesh.

5. Semi-regular remeshing via adaptive subdivision

In this section we present a remeshing method, which can
be either user-assisted, or fully automatic, and it is able to
produce a semi-regular adaptively refined mesh representing
a given shape. The method starts with a sketched base mesh,
which is refined and fitted to the input shape. Selective re-
finement can be either user-assisted or error-driven.

5.1. Generation and fitting of a base mesh

The target shape is given as a mesh T at high resolution.
We start form a coarse quad mesh M, providing a drasti-
cally simplified, yet consistent, version of the shape. Mesh M
can be generated either manually, or automatically by means
of a simplification method, such as the one in [TPC∗10].
The overall assumption is that M is roughly projectable to
T along surface normals, i.e., the projections of points of
M roughly subdivide the surface of T into patches with the
same connectivity of M. There is no need that M achieves
perfect projectability, since this will improve during subse-
quent refinement. For a shape of genus zero without large
protrusions or cavities, such as the head in Figure 2, a base
mesh as simple as a meshed cube can be used to the pur-
pose; for more complex shapes with non-zero genus and/or
having important protrusions and cavities, such as the horse
of Figure 11, or the gargoyle of Figure 12a, a more elabo-
rated base mesh may be necessary. The connectivity of M
affects final meshing, since the directions of edges will be
preserved during refinement.

Given M, we fit it to the target mesh T through spatial
projection: for every vertex v of M, we compute its normal
nv; we shoot a ray in direction of nv and another ray in the
opposite direction; and we displace v to the closest point hit
from a ray. Ray shooting is supported by means of a spatial
index that contains all faces of mesh T , which is created once
and for all at the beginning of computation. We use a simple
regular grid, but more complex and efficient data structures
may be adopted for huge datasets [Sam05].

This fitting procedure works well in most cases, support-
ing interactive editing speed. We have noticed stability prob-
lems only if the initial fitting of mesh M to T is very poor,
i.e., M lacks entire features of the shape, or the shape con-
tains very thin features. Better and more stable results can
be obtained if a parametrization of T is available, which is
defined on M. In this case, ray shooting is not necessary, and
both surface mapping and smoothing (see also next subsec-
tion) can be done via parametrization.

5.2. Editing operations and tangent space smoothing

Editing operations described in Section 3 are applied to se-
lectively refine mesh M. For every refining operation, a ver-
tex of type E is created, which is initially placed at the mid-
point of the splitting edge; an additional vertex of type F is
also created in pattern P3, which is initially placed at the
barycenter of the subdivided face. The normal of each new
vertex is estimated, and the vertex is displaced to its projec-
tion to the target mesh, as before. Interactive refinement is
supported through brush tools, similarly to the case of adap-
tive subdivision. In this case, either refinement or coarsen-
ing operations are applied, up to a prescribed level of sub-
division, in the area spanned by the brush. Automatic error-
driven refinement is explained in the next section.

To increase the quality of meshing, smoothing is per-
formed in tangent space, by displacing the position of ver-
tices tangentially on the surface of T . The aim of tangen-
tial smoothing is to obtain quad faces with a better (i.e.,
more rectangular) shape. After each local operation, we con-
sider all vertices in the 2-ring of faces affected by the opera-
tion. For each such vertex v, we execute a step of Laplacian
smoothing - i.e., v is displaced to the barycenter of its neigh-
bors - followed by a re-projection to the target mesh. In case
a conformal parametrization of T has been defined on M,
computation can be carried out more easily and accurately
in parametric space.

5.3. Error-driven remeshing

While a user-assisted approach may be useful in many con-
texts, some times a fully automatic algorithm is to be pre-
ferred. We define the approximation error associated to every
face f of the current mesh M as the RMS difference between
f and the patch spanned by its projection on T :

1
Area( f )

√∫
f
(p−φT (p))2d p,

where function φT provides the normal projection of a given
point of M to the target mesh T . Computation is discretized
on a set of samples selected uniformly on each face f :

1
k

k

∑
i=0
|si−φT (si)|

where k is the number of samples, and si is a sample point in-
side f . To obtain a uniform sampling, the number of samples
per face f depends on its area:

k =
Area( f )
Area(M)

∗ vt

with Area( f ) the area of f , Area(M) the total area of mesh
M, and vt the number of vertices of the target mesh T .

To sample triangles, we pick points on the unique plane
that contains the triangle. For quads, we pick samples in the
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(a) (b) (c)

Figure 11: Remeshing the Rampart dataset: (a) target model; (b) base mesh manually sketched; (c) remeshing of the dataset
that highly refines the head and the saddle.

bilinear patch that interpolates the four vertices. For pen-
tagons, we first triangulate and then sample each triangle
separately.

Faces of M are maintained in a priority queue and refine-
ment is perfomed iteratively. The face with the largest error
is extracted from the queue at each iteration, and it is refined
with a local operation. For a face f of type 0, 1, 3, or 5, at
level l, its edge e at level l yielding the largest error is se-
lected for split. The error associated to an edge is computed
similarly by sampling along it. For a face of type 2 at level l,
its standard edge at level l is split. For a face f of type 4, its
adjacent face of type 2 yielding the largest error is refined,
and a vertex of type F is inserted consequently inside f .

After each iteration, error is computed for the new faces
resulting from refinement, and they are inserted in the pri-
ority queue accordingly. Iteration may be carried out until
either a certain budget of faces has been reached, or when er-
ror gets below a given threshold, depending on user’s needs.
A result of this automatic remeshing procedure is shown
in Figure 12. The original target mesh has been simplified
with [TPC∗10] to obtain the base mesh M, and then it has
been remeshed with our algorithm.

6. Implementation

We have implemented our scheme under the OpenMesh li-
brary [Ope] by using its standard data structures. The data
structure to represent a mesh has been extended just with
attributes to keep the level and type of each edge, and the
level of each vertex. Assuming a maximum of 16 levels of
subdivision, which is more than sufficient for practical pur-
poses, such attributes can be maintained with one byte per
edge, and one byte per vertex. For adaptive subdivision only,
also summations and counters to compute control points are
maintained, requiring additional six floats per vertex.

(a) (b)

Figure 12: Fully automatic remeshing of the Gargoyle
dataset. (a) The base mesh generated using [TPC∗10]. (b)
Remeshed model.

In order to analyze space occupancy, we note that our
scheme implicitly encodes the subdivision hierarchy corre-
sponding to a quad-tree representation, by representing just
its leaves. In the case of a complete tree, which encodes a
uniform subdivision, we encode about 67% of the total num-
ber of quad-tree nodes. Our scheme uses about 33% less
space than the multi-resolution half-edge data structure pre-
sented in [KCB09], and about 3% more space than a full
quad-tree, encoded as in [KCB09].

Our prototype running on a single core of a T9300 Intel
Core Duo at 2.5 Ghz can insert/remove about 40K vertices
per second. The framework can thus easily support interac-
tive LOD editing even with large meshes.
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7. Conclusion

The adaptive subdivision scheme we have presented has sev-
eral advantages: it is fully dynamic, i.e., the mesh can be
freely refined and coarsened through local operators; it does
not require any hierarchical data structure; and it preserves
the orientation of mesh elements according to flows defined
on the base mesh.

A base mesh containing non-quad elements (e.g., in the
proximity of singularities) is better suited than a purely quad
mesh in order to maintain alignment of elements. In order to
correctly manage such meshes, our scheme can be easily ex-
tended to process a quad/triangle base mesh, by integrating
in the same framework local operators to adaptively refine
and coarsen triangles [PP09b].

Implementation of selective refinement on a data parallel
architecture is probably possible and could be investigated.
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