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Figure 1: A base mesh composed of three cubes (a); the mesh is adaptively refined to smooth three straight edges (b); the same mesh
uniformly refined at level 2 by using the standard Catmull Clark subdivision scheme (c).

Abstract

We present a method for editing the LOD of quad meshes, which
supports both adaptive refinement and adaptive coarsening. Start-
ing at a base mesh, we generate a quad-dominant mesh which is
consistent with the Catmull-Clark subdivision. Consistency is both
topological and geometrical: an adaptively subdivided mesh co-
incides with the uniformly subdivided mesh wherever the level of
subdivision is uniform, and the limit surface is the same. Subdi-
vided meshes contain a majority of quad elements and a moder-
ate amount of triangles and pentagons in the regions of transition
across different levels of detail. Topological LOD editing is con-
trolled with local conforming operators, which support both mesh
refinement and mesh coarsening and work on a plain mesh without
the need of cumbersome hierarchical data structures.
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1 Introduction

Although advances in graphics hardware and API’s provide sup-
port for real time rendering of smooth surfaces [Gee 2008; Castaño
2008; Eisenacher et al. 2009; Patney and Owens 2008], polygonal
modeling still remains a primary approach for applications that re-
quire computational intensive tasks other then rendering, such as
video games and finite element methods. A polygonal mesh may
be also used for intermediate computations, even if a smooth sur-
face is to be rendered. It is therefore useful to support modeling
and manipulation of polygonal meshes that, on one hand, have a
controlled budget of polygons and, on the other hand, are close to
ideal smooth surfaces.

In the context of polygonal modeling, quad-based surface represen-
tations are often preferred to triangle-based ones, since they provide
a more stable and better controllable framework for texturing, mod-
eling and geometric computations. One notable property of quads
is the possibility to be naturally aligned to anisotropic design fea-
tures, as well as to line fields, such as those corresponding to prin-
cipal curvatures [Alliez et al. 2003; Bommes et al. 2009; Marinov
and Kobbelt 2004].

A standard approach to polygonal modeling consists of starting
from a coarse base mesh, which is then interactively edited and re-
fined to model the features of the desired shape. Mesh subdivision
is often used to this purpose [Maillot and Stam 2001]. Non-trivial
shapes generally require the base mesh to be subdivided adaptively
to model different parts: tiny but relevant features will require a
much finer mesh than large uniform areas. But subdivision is gen-
erally meant as a global process, and adaptive subdivision of quad
meshes is non trivial: local refinement of quads produces non-quad
faces and this process, if performed in an uncontrolled manner, can
soon destroy the regular structure of a mesh. On the other hand,
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Figure 2: A base mesh represents either the coarse version of a shape or the control mesh of a smooth shape (a); the mesh is adaptively
refined to obtain a better polygonal model (b); vertices of the refined mesh are moved to their limit position to approximate the smooth
subdivision surface (c).

several authors have remarked that quad-dominant meshes contain-
ing a small amount of non-quad elements can be more flexible and
more effective than purely quad meshes in capturing surface fea-
tures, and they may enrich the design space [Myles et al. 2008;
Stam and Loop 2003]. For instance, triangular and pentagonal el-
ements can be used to collapse, split and merge lineal features and
line fields, as well as to model the surface in the proximity of sin-
gularities.

In this paper, we propose a method to edit the LOD of a quad mesh
through local operators for both mesh refinement and mesh coars-
ening (see Figure 2). Our method generates quad-dominant meshes
containing a small amount of triangular and pentagonal transition
elements, which are consistent with a Catmull-Clark subdivision of
the base mesh. Consistency is both topological and geometrical,
i.e., an adaptively subdivided mesh coincides with a uniformly sub-
divided mesh wherever the level of subdivision is uniform, and the
limit surface is the same. Our approach naturally preserves the sur-
face flows and lineal features defined on the base mesh. LOD edit-
ing is controlled with local conforming operators, which support
both refinement and coarsening and work on a plain mesh with-
out the need of cumbersome hierarchical data structures. We also
present an interactive tool built on top of our method that supports
editing a mesh through LOD brushes.

The rest of the paper is organized as follows. In Section 2, we
briefly discuss related work. In Section 3, we introduce the neces-
sary background. In Section 4, we describe our adaptive subdivi-
sion scheme. In Section 5 we discuss our implementation and we
present experimental results. In Section 6 we make some conclud-
ing remarks.

2 Related work

Classical subdivision patterns, such as the face quadrisection, are
meant to be applied to all faces of a mesh together, and generate
non-conforming meshes when applied selectively. Red-green trian-
gulations [Bank et al. 1983] support adaptive refinement of triangle
meshes by applying triangle quadrisection adaptively, and then sub-

dividing some triangles further, to fix non conforming situations.
Variants of red-green triangulations were developed in [Pakdel and
Samavati 2007; Zorin et al. 1997] to support multi-resolution edit-
ing of meshes and they adopt either the Loop or the butterfly sub-
division schemes to set the geometry of the refined mesh. The
RGB subdivision proposed in [Panozzo and Puppo 2009; Puppo
and Panozzo 2009] extends red-green triangulations with the same
subdivision schemes to a fully dynamic adaptive scheme supporting
both local refinement and coarsening. The

√
3 subdivision [Kobbelt

2000] and the 4-8 subdivision [Velho and Zorin 2001] for triangle
meshes are subdivision schemes based on different patterns that can
be implemented through local conforming operators, making them
naturally adaptive. In [Kraemer et al. 2009], an extension of the
half-edge data structure that allows the representation of multires-
olution subdivision surfaces is presented. The multiresolution half-
edges allow to adaptively refine a mesh, with either the Loop or the
Catmull-Clark scheme. Adaptive methods similar in spirit to red-
green triangulations were proposed for quad meshes in [Müller and
Jaeschke 1998] and [Xu and Kondo 1999], to extend the classical
Catmull-Clark and Doo-Sabin subdivision schemes. These meth-
ods are essentially based on introducing extra patterns to eliminate
T-vertices, and they generate quad-dominant meshes containing tri-
angular elements at transitions across levels of subdivision. The
adaptive scheme proposed in [Kobbelt 1996] generates purely quad
meshes by using transition elements subdivided with a Y pattern.
The requirement of maintaining a purely quad mesh is paid in terms
of a certain over-refinement, because elements are refined by in-
troducing two boundary vertices at a time. Moreover, Y patterns
may destroy the natural alignment of elements (see Figure 7(c)).
All these methods are based on a two-step approach, i.e., a non-
conforming mesh is built first, which is fixed next with special sub-
division patterns. Such an approach makes interactive LOD editing
unwieldy, especially if also coarsening tasks should be supported.

3 Background

We deal with manifold polygonal meshes containing triangles,
quads and pentagons, adopting standard terminology. A quad mesh



Figure 3: The stencils used in the Catmull-Clark subdivision
scheme. Numbers are weights assigned to vertices in the linear
combination: n is the valence of the even vertex; β = 3

2N
and

γ = 1
4N

.

is a polygonal mesh where all faces are quads, while a quad-
dominant mesh is a mesh where most faces are quads. A vertex v
in a quad mesh (or in a quad-dominant mesh containing just quads
in the star of v) is regular if it has valence four; otherwise it is said
to be extraordinary. The edge neighbors of a vertex v in a quad[-
dominant] mesh are those vertices connected to v through edges;
the face neighbors of v are those vertices opposite to v on its inci-
dent quads.

The Catmull-Clark subdivision [Catmull and Clark 1978] is an ap-
proximating scheme for subdivision surfaces that can be applied to
any polygonal mesh and converges to a C2 surface if applied to
a regular quad mesh. The subdivision pattern for a quad face is
quadrisection, i.e., a face is subdivided into four new faces by split-
ting each edge with a new vertex, and connecting each such vertex
with another new vertex at the center of the face. A new vertex v
introduced at level l+ 1 of subdivision is called an odd vertex, and
the position of its control point pl(v) at level l + 1 is computed as
a wighted average of control points of vertices surrounding it that
belong to level l, according to the stencils and weights depicted in
Figure 3. An odd vertex that splits an edge is said to be of type E,
while an odd vertex inserted in the middle of a quad is said to be of
type F .

Vertices already present at level l, called the even vertices are relo-
cated at level l + 1, through a weighted sum of their position and
the positions of their edge and face neighbors at level l, according
to the stencil and weights depicted in Figure 3. Therefore, for each
vertex v introduced at level l, there exist an infinite sequence of
control points pl(v), pl+1(v), . . . , p∞(v), that define the positions
of v at level l and all successive levels, where p∞(v) is the position
of v on the limit surface.

Stam [Stam 1998b] derived a method for evaluating the position
on the limit surface of any point of a subdivided mesh. More re-
cently, Loop and Schaefer [Loop and Schaefer 2008] have proposed
a simpler and more efficient method that approximates Catmull-
Clark subdivision surfaces with bicubic patches. However, when
subdivision is used for polygonal modeling, one is often not inter-
ested in knowing the limit positions of vertices, but rather to locate
them correctly at the desired level of subdivision. To this purpose,

any control point pk(v) for a vertex v introduced at level l, with
0 ≤ l < k can be computed directly just from the positions pl of
v and of all its even and odd neighbors at level l. In Section 4.2.1,
we derive a multi-pass closed form for computing directly control
points at an arbitrary level k, which provides a basis for the effective
and efficient computation of correct control points in an adaptively
subdivided mesh.

4 Adaptive quad subdivision

Our aim is to provide a mechanism to edit the LOD of a mesh
through local operations that modify the mesh locally, while main-
taining it compatible with the Catmull-Clark scheme (henceforth
called the standard subdivision). Compatibility is defined as fol-
lows. Given a base mesh Γ0, then:

1. An adaptive mesh Γ built starting at Γ0 may contain all and
only those vertices that appear in the standard subdivision of
Γ0;

2. If all vertices of a given face f appearing in a the standard
subdivision of Γ0 belong to Γ, then either f , or a subdivision
of it also belongs to Γ;

3. If Γ contains a vertex v introduced at level l in the standard
subdivision, then the control point pl(v) will be the same both
in Γ and in the standard subdivision. If Γ contains also all
vertices in the standard (even) stencil of v at level l, then for
any k ≥ l the control point pk(v) will be the same both in Γ
and in the standard subdivision.

Note that, if a uniform subdivision of Γ0 at a given level l is com-
puted incrementally by adding all its vertices through our scheme,
then it will be both topologically and geometrically coincident with
the standard subdivision at level l, hence also the limit surface will
be the same.

We edit the mesh by local refinement operations that split one edge
by inserting a vertex, and local coarsening operations that merge a
pair of edges by removing a vertex. A local operation eliminates
faces in the neighborhood of the vertex to be inserted/removed, and
re-tessellates the hole with new faces, fulfilling requirements 1 and
2 above. This will be the subject of Section 4.1. Moreover, con-
trol points of vertices involved in the operation are computed and
updated, according to requirement 3 above, by fetching vertices in
their stencils. This will be the subject of Section 4.2.

4.1 Topological operators

Since quadrisection splits all edges of a face, it cannot be applied
selectively while maintaining the mesh conforming. In order to sup-
port transitions between different levels of subdivision, we devise
alternative patterns that split one edge at a time. Figure 4 illustrates
such a set of patterns, and related operators. These patterns produce
quad-dominant meshes containing some triangular and pentagonal
faces, which preserve the flow of lines of the base mesh (see Sec-
tion 5.1 for a discussion). Other patterns, e.g. containing just quads
and triangles could be also used with straightforward modifications
of the method described below.

A key idea is that local operators subdivide a mesh by splitting one
edge at a time, they always produce conforming triangulations, and
they can be controlled just on the basis of attributes of local entities,
i.e., types and levels of vertices, edges and faces. All rules that
control operators are purely topological. Just for the sake of clarity,
in the figures we will use fixed shapes to depict the different types
of faces that may appear in our adaptive meshes: squares (type 0);
rectangles(type 3); diamonds (type 4); square triangles (type 2); and



Figure 4: The diagram of patterns for adaptive subdivision of a
quad. Types of faces and patterns are denoted by labels placed in-
side and beside them, respectively. Transitions between adjacent
patterns are labeled with the corresponding refinement and coars-
ening operators.

pentagons with three collinear vertices, having the shape of either a
square or a rectangle (type 1 and 5, respectively).

Consider a base mesh Γ0. We assign level zero to all its vertices and
edges, and type standard to all its edges. A selectively refined mesh
will also contain vertices and edges labeled according to their level
of subdivision; edges will be labeled with either type standard or
type extra. The only extra edges are those internal to patterns P2a
and P2b, which have the same level l of their parent face (i.e., face
0 in pattern P0); the remaining edges are standard and they have
level either l or l + 1 as in the standard subdivision. The level of a
face in a mesh Γ is defined to be the lowest among the levels of its
edges. Note that the type of a face is uniquely defined by the types
and levels of its edges, and the type of a pattern is also uniquely
defined by levels of edges in its boundary.

4.1.1 Refinement operators

According to definitions above, all faces in the base mesh are stan-
dard at level zero. Local subdivision operators can be applied itera-
tively to Γ0 to generate a conforming mesh Γ composed of faces of
the six types illustrated in Figure 4.

We say that an edge e at level l ≥ 0 is refinable (i.e., it can split)
if and only if it is standard and its two adjacent faces f0 and f1
are both at level l. In case of a boundary edge, only one such face
exists. We split an edge e at level l, by inserting at its midpoint a
new vertex v at level l + 1. The edges generated by the two halves
of e are standard at level l + 1. Note that levels of vertices and
standard edges comply with the standard subdivision.

Splitting an edge e at level lmay affect an area as large as that of the
standard faces incident at e at level l. Tessellations on the two sides
of e can be treated independently and each of them depends on the
type of the face f incident at e and on its configuration. It is readily
seen from Figure 4 that in all cases the type of face f incident at

splitting edge e and the levels and labels of edges of f are sufficient
to characterize the type of operator to be applied. This fact allows
us to pre-compute and store in a lookup table the local tessellations
to be deleted from, and to be plugged into a mesh. Note that all split
operators affect the whole area covered by a pattern, except for 3-
split, which affects just the area covered by face of type 5 in pattern
P3. In fact, the other two (standard) faces at level l + 1 may be
actually refined independently at higher levels before this operator
is applied.

By simple combinatorial analysis, it is easy to verify that the set of
refinement operators is closed with respect to the meshes obtained,
i.e.: if we start at a mesh Γ0 containing all standard faces at level
0 and we proceed by applying any legal sequence composed of the
operators above, the resulting mesh will be composed of faces of the
types defined above, and all its refinable edges can be split through
the same set of operators. In particular, all vertices of a standard
subdivision up to a given level l can be added without adding any
vertex of a level higher than l and the same uniform mesh generated
from the standard subdivision scheme will be obtained. Finally note
that the meshes we generate obey requirements 1 and 2 defined at
the beginning of Section 4. Thus our mechanism provides a suit-
able topological basis to implement any adaptive scheme for the
quadrisection pattern.

If an edge e at level l is of standard type, but it is not refinable, we
trigger recursive refinement of each face f incident at e and having
a level < l. Recursive refinement is performed by recognizing the
type of f and forcing refinement of either two (for pattern P1) or
one (for all other patterns) of its edges at level < l.

4.1.2 Coarsening operators

Local merge operators invert edge split operators defined above, by
removing one vertex v at level l + 1 that splits an edge e at level
l. As before, at most the area spanned by the faces incident at e at
level l may be affected, and the tessellations of such two areas are
treated independently.

A vertex v at level l + 1 is potentially removable if the levels of its
incident faces are: l+1 for standard faces (type 0), and l otherwise.
A potentially removable vertex is removable if it is of type E (i.e.,
it splits an edge of the previous level) and faces in its neighborhood
can be arranged to form two patterns of the diagram, sharing a pair
of edges at level l + 1 incident at v. Vertices of type F (i.e., split-
ting a face of the previous level) do not trigger any merge operator,
because they are removed together with vertices of type E from op-
erators 3a/b-merge. Such vertices are discarded easily because a
potentially removable vertex v at level l+ 1 is of type F if and only
if either it has exactly four adjacent vertices at level l+ 1, or its star
is formed by two standard faces and one face of type 5.

We divide the neighborhood of (internal) vertex v of type E in two
halves as follows: there are at most four (standard) edges at level
l+ 1 incident at v; among them, only two edges e′ and e′′ have the
other end vertex at level ≤ l; thus the pair e′, e′′ cover the edge e
that was split by v and they divide the neighborhood.

For each half neighborhood, we recognize the pattern adjacent to
the pair e′, e′′ and we apply the corresponding merge operator, as
depicted in Figure 4. Operators 1-merge and 2a/b-merge can be
applied by checking just the types of faces f ′ and f ′′ incident at e′

and e′′. In order to discriminate between operators 3a-merge and
4-merge it is also necessary to check the type of face(s) adjacent
to f ′ and f ′′ inside the pattern. Finally, operator 3b-merge needs
checking also the other face of type 0 adjacent to the face of type
5 within pattern P3: in fact, v is not removable if such a face has
been refined further.



It is easy to verify that the merge operators are consistent with the
split operators and they have similar properties: all merge opera-
tors affect the whole area covered by a pattern, except for 4-merge,
which affects just half a pattern; local tessellations to implement
operators are precomputed and stored in a lookup table (in fact, the
same lookup table that is used for the split operators); the meshes
we generate through merge operators obey requirements 1 and 2
defined at the beginning of Section 4.

The set of refinement operators is also closed with respect to the
meshes obtained. If we start at a mesh Γ obtained from Γ0 through
refinement, we can apply merge operators in any legal order to
go back to Γ0; moreover, any intermediate mesh could be refined
through split operators. So we can mix split and merge operators in
any order while preserving consistency.

4.2 Computing control points

Control points of all vertices are computed using the stencils in Fig-
ure 3. Since we work selectively, it is not trivial to find the right ver-
tices to use for a stencil, and to compute the control points at their
proper levels. In this section, we first introduce some tools for the
computation of control points and the navigation of the mesh, and
next we discuss how to use them to maintain geometry up-to-date.
In Subsection 4.2.1 we derive a multi-pass formula for the Catmull-
Clark subdivision, which allows us to compute in closed form the
control point of any vertex at any level of subdivision. On this ba-
sis, in Subsection 4.2.2 we introduce a mechanism for computing
the control point of a given vertex incrementally, as its neighbors
are inserted into the mesh. In Subsection 4.2.3 we introduce opera-
tors to navigate an adaptively subdivided mesh that are based on the
concepts of topological angle and length, which allow us to retrieve
stencils efficiently. Updates to control points must be made for odd
vertices during refinement, and for even vertices both during refine-
ment and during coarsening. We discuss such operations in detail
in Subsections 4.2.4, 4.2.5 and 4.2.6, respectively.

4.2.1 Multi-pass formulae for the Catmull-Clark subdivision

Let us consider a vertex v inserted at level l. If l = 0 then v belongs
to the base mesh and its geometry p0(v) is known, otherwise its
control point pl(v) is computed on the basis of stencils for odd
vertices (see Figure 3).

By applying the concept of multi-step subdivision rule [Kobbelt
2000] to the analysis of the Catmull Clark scheme developed in
[Stam 1998b], we derive equations that compute the control point
of v and any level k on the basis of its initial position and on the
positions of its neighbors at level l.

Lemma 1 The control point pk(v) of an internal vertex v, inserted
at level l, for k > l is given by

pk(v) = sk11v + sk12

NX
i=1

v2i + sk13

NX
i=1

v2i−1 (1)

where sk11, sk12 and sk13 are defined below in the proof, and vertices
in the summations are the edge and face neighbors of v at level l,
respectively.

Similarly, if v is a boundary vertex we have

pk(v) = sbk11v + sbk12(v0 + v1). (2)

Proof. Following Stam [Stam 1998b] the portion of subdivi-
sion matrix involving an internal vertex v and its 2N neighbors

v1, . . . , v2N has the following structure:

S =

0BBBBBBBB@

an bn cn bn cn bn . . . bn cn bn cn

d d e e 0 0 . . . 0 0 e e

f f f f 0 0 . . . 0 0 0 0

d e e d e e . . . 0 0 0 0

f 0 0 f f f . . . 0 0 0 0

...
. . .

...
d e 0 0 0 0 . . . e e d e

f f 0 0 0 0 . . . 0 0 f f

1CCCCCCCCA
where an = 1 − 7

4N
, bn = 3

2N2 , cn = 1
4N2 , d = 3

8
, e = 1

16
and

f = 1
4

.

If v = (v, v1, . . . , v2N )T , then the product Sv gives the control
point of v and all its neighbors at the next level of subdivision.
Thus, the control point of v after k levels of subdivision can be com-
puted by using matrix Sk and multiplying the first row of such a ma-
trix by v. We can obtain Sk from the decomposition S = UΛU−1,
where U is the matrix of eigenvectors and Λ is the diagonal matrix
of eigenvalues. Then we will have Sk = UΛkU−1. Actually, we
are interested just in the first row of such a matrix.Moreover, by
symmetry, we know that all coefficients sk1(2j) for j = 1, N in the
first row of Sk must be equal, and the same applies to coefficients
sk1(2j−1) for j = 1, N . Thus, it is sufficient to compute just coeffi-
cients sk11, sk12 and sk13. From Stam [Stam 1998b], we have that the
first row of matrix U is:

U1,∗ = (1, 16µ2
2 − 12µ2 + 1, 16µ2

3 − 12µ3 + 1, 0, . . . , 0)

with αn = 5N2 − 30N + 49, µ2, µ3 = 1
8N

(−7 + 3N ∓ √αn),
and we also we have that

Λ = diag(1, µ2, µ3, . . .)

For our purposes, we can disregard all the other eigenvalues. If we
explicit the first three elements of the first row of Sk we obtain

sk1j = u11u
−1
1j + u12µ

k
2u
−1
2j + u13µ

k
3u
−1
3j . (3)

We now need to compute u−1
ij for i, j = 1, 2, 3. From UU−1 = I

we obtain:
u11u

−1
1j + u12u

−1
2j + u13u

−1
3j = z (4)

with z = 1 if j = 1, z = 0 elsewhere. Since S = UΛU−1 we
have:

u11u
−1
1j + u12µ2u

−1
2j + u13µ3u

−1
3j = S1j (5)

Stam decomposes matrix S in a block-diagonal matrix Ŝ by defin-
ing a matrix T such that Ŝ = TST−1. Using the same notation
we have that T−1ŜT = S, thus T−1Ŝ−1T = S−1. Matrix Ŝ−1

can be computed easily in symbolic form by inverting each diagonal
block of Ŝ independently. We use such a decomposition to compute
matrix S−1. We omit the detailed computation here for the sake of
brevity. By inverting S = UΛU−1 we obtain S−1 = UΛ−1U−1,
which leads to another set of equations of the form:

u11u
−1
1j + u12µ

−1
2 u−1

2j + u13µ
−1
3 u−1

3j = S−1
1j (6)

By resolving the linear system formed by Equations 4, 5 and 6 with
a fixed j = 1, 2, 3 we obtain an explicit formula for u−1

1j , u−1
2j and

u−1
3j . The algebraic manipulations required for the computation of

the solution of the three systems are rather ugly, we report only the
solutions already substituted in Equation 3:

s
k
11 =

√
αn(11N − 35)(βn,k − γn,k) + 5αn(βn,k + γn,k)

2 · 8kλn

+
N

N + 5



s
k
12 =

−2
√
αn(4N − 16)(βn,k − γn,k)− 4αn(βn,k + γn,k)

2 · 8kλnN
+

4

N(N + 5)

s
k
13 =

−√αn(3N − 3)(βn,k − γn,k)− αn(βn,k + γn,k)

2 · 8kλnN
+

1

N(N + 5)

with a = 3N−7
N

, b =
√
αn

N
, βn,k = (a + b)k, γn,k = (a − b)k,

λn = 5N3 − 5N2 − 101N + 245

Hence, the control point of vertex v after k levels of subdivisions
(following the level at which v was inserted as an odd vertex) is
pk(v) = Sk1,∗v, i.e.:

pk(v) = sk11v + sk12

NX
i=1

v2i + sk13

NX
i=1

v2i−1.

For a boundary vertex, the corresponding portion of subdivision
matrix is:

S =
1

8

0@ 6 1 1
4 4 0
4 0 4

1A .

In this case, we can compute the decomposition explicitly:

U =

0@ 1 1 0
1 −2 1
1 −2 −1

1A , U−1 =

0@ 2
3

1
6

1
6

1
3
− 1

6
− 1

6

0 1
2
− 1

2

1A
and Λ = diag(1, 1

4
, 1

2
). Therefore we have:

sbk11 =
1

3

 
2 +

„
1

4

«k!
sbk12 = sbk13 =

1

6

 
1−

„
1

4

«k!
.

Hence, the control point of a border vertex v after k levels of sub-
divisions (following the level at which v was inserted as an odd
vertex) is

pk(v) = sbk11v + sbk12(v0 + v1).

�

Note that, by computing the limits for k →∞ of equations 1 and 2
we obtain the well known limit positions of internal and boundary
vertices, respectively:

p∞(v) =
N

N + 5
v +

4

N(N + 5)

NX
i=1

v2i +
1

N(N + 5)

NX
i=1

v2i+1

and
p∞(v) =

2

3
v +

1

6
(v0 + v1).

4.2.2 Incremental summations

We build the stencils of even vertices incrementally, while neigh-
bors of a vertex are inserted in the adaptively refined mesh, and to
speed-up computation of control points as the neighborhood of a
vertex changes.

In a standard subdivision, if a vertex v is inserted at a level l > 0,
two of its edge neighbors already belong to the mesh, while the
other two edge neighbors as well as its four face neighbors are in-
serted at the same time and level as v, and the control points at
level l of all such vertices are computed. In an adaptive subdivision,
some neighbors of v might be inserted at a later time. Therefore,

Figure 5: Topological angles: a width is assigned to each vertex
in each face.

it is not always possible to apply Equation 1 right after inserting v
in the mesh. We thus use an approximation of such equations as
long as not all neighbors of v are available. In the data structure
encoding the mesh, for each vertex v inserted at level l, we store its
control point pl(v) and we reserve two other fields to store the sums
SUMedge(v) and SUMface(v) of control points at level l of its edge
and face neighbors, respectively. We also store two counters of
contributions already stored in SUMedge(v) and SUMface(v). At
startup, we fill such fields for all vertices of the base mesh.

For a generic vertex v inserted at level l > 0, its control point
pl(v) is computed and stored when creating v as an odd vertex
(see Section 4.2.4), while SUMface(v) and SUMedge(v) are com-
puted incrementally, as the control points of neighbors of v become
available. Initially, we set both SUMedge(v) and SUMface(v) to
4 ∗ pl(v). Every time a control point pl(vi) for a neighbor of v at
level l becomes available, its value is accumulated by substituting
it to an instance of pl(v) in either SUMedge(v) or SUMface(v),
depending on the position of vi in the stencil of v.

A vertex v is represented in the mesh with a control point at level
k, where k is the smallest level of its incident edges. As long as
the correct value of the two sums is not known, v will be repre-
sented with an approximation of its position computed by Equa-
tion 1 with the values of sums currently stored at SUMedge(v) and
SUMface(v). Note that the quality of the approximation progres-
sively increases as new control points are inserted, and the formula
becomes exact as soon as all contributions from neighbors of v be-
come available.

4.2.3 Topological Angles and Lengths

Fetching stencils in an adaptively refined mesh requires navigating
the mesh. In order to support navigation efficiently, we assign a
topological width to every pair Face-Vertex (F, V ) in a mesh. The
values are assigned to faces of the various types as indicated in Fig-
ure 5. An angle with topological width of 6 is said to be flat. Such
values are not related to geometrical values, we call them “angles”
since they satisfy some properties of geometrical angles, which we
will show in the following. We do not need to store angle widths,
since they can be found efficiently from types of faces and edges,
and levels of vertices.

We now give some invariants on angles that will be useful for mesh
navigation.

Lemma 2 If an edge e is split into two edges e0 and e1 by adding
a vertex v, both angles formed by e0 and e1 are flat.

Proof. Figure 5 shows the only possible ways to split an edge. It
is readily seen that in all cases the sum of angles on each side of a
pair e0e1 is 6. �

Lemma 3 The width of a topological angle between a pair of edges
is invariant upon editing operations on the mesh.

Proof. Consider a pair of edges e and e′ incident at v and one
of the two angles they form at v. It is sufficient to analyze editing
operations that affect faces spanned by such an angle. For each such
face f , there are three possible cases, which are readily verified



by comparing transitions depicted in Figure 4 with angles depicted
in Figure 5: If the editing operation neither splits f with an edge
incident at v, nor merges t with an adjacent face around v, then the
angle of f at v is unchanged; If the angle of f at v is split into two
angles, then sum of widths of such angles is equal to the width of
the angle of f at v before split; If f is merged with another face f ′

adjacent to it around v, by deleting their common edge, then either
e and e′ are merged into a single edge, or the width of angle at v of
the new face is equal to the sum of widths of angles of f and f ′ at
v. �

Lemma 4 No matter how an edge e is subdivided into a chain of
edges e0, . . . , ek, angles between two consecutive edges ei−1 and
ei, i = 1, . . . , k are flat.

Proof. The proof follows from the above two lemmas by noting
that every split produces flat angles and such angles are invariant
upon subsequent editing operations. �

Topological lengths are assigned to standard edges inductively: an
edge at level 0 has unit length; an edge at level l + 1 has half the
length of an edge at level l.

The previous definitions and lemmas allow us to define a set of
operators for mesh navigation, which help us extracting from an
adaptively refined mesh a view of the same mesh at a lower level of
subdivision. We define switch operators similar to those proposed
in [Brisson 1993], plus two new operators, called rotate and move,
that are specific for our meshes. All operators use a unique identifier
of position in a mesh, called a pos, which contains a vertex v, an
edge e incident at v, and a face f bounded by e. Given a pos p,
we will denote by p.v, p.e and p.f its related vertex, edge and face,
respectively.

1. p.switchVertex(), p.switchEdge() and p.switchFace() move
to the adjacent pos which differs from p just for the vertex,
the edge and the face, respectively.

2. p.rotate(i): executes an alternate sequence of p.switchEdge()
and p.switchFace() operators until a topological angle of
width i has been spanned.

3. p.move(l): executes an alternate sequence of
p.switchVertex(), possibly followed by p.rotate(6) and
p.switchFace() operators until the length of an edge at level
≤ l has been traversed. If the first edge traversed has a level
< l (i.e., its length is larger than required) the operation has
no effect.

Lemma 5 The rotate and move primitives are invariant during
editing, every result that we obtain on a level of the subdivision
is invariant in any deeper level. For invariant we mean that if we
consider a uniformly refined mesh at level l and we apply one of the
previous operation on it, we obtain exactly the same result that we
would get on another mesh at any further subdivision level.

Proof. The rotate primitive is invariant since the angle it spans is
invariant by Lemma 3. The move primitive is invariant since if we
refine a mesh we can only add vertices at a higher level, and any
angle we add along the line traversed by the Move operation has a
width of 6, which is skipped by the Move operation. �

The invariance lemmas shown in the previous section guarantee
that, starting at a splitting edge p.e at level l, we can navigate
the mesh by moving to adjacent triangles of the stencil at level
l (through a p.rotate(3) operation) and we can follow chains of
edges until we reach the other end of an edge at level l (through a
p.move(l) operation).

Figure 6: An example of mesh traversal to fetch the stencil of an
odd vertex v. A spanning tree of the neighborhood of v is traversed
through move and rotate operations. Move operations are decom-
posed into sequences of switch.Vertex, rotate and switch.Face; ro-
tate operations for a given angle are decomposed into sequences of
switch.Edge and switch.Face (see magnified region).

4.2.4 Control points for odd vertices during refinement

In the sequel, for the sake of brevity, we will address only internal
vertices. Boundary vertices are treated in the same way by using
the suitable stencils and corresponding multi-pass formulae.

Let v be a vertex of type E introduced at level l + 1 of subdivision
by splitting a refinable edge e at level l. In order to compute control
point pl+1(v), we need to fetch the eight vertices in the stencil of v
at level l, and their control points pl. Referring to Figure 3, vertices
v0 and v1 of the stencil of v are the endpoints of edge e, so they are
found immediately. The other vertices of the stencil are not trivial
to fetch since the faces defined by v0, v1, v2, v3 and v1, v0, v4, v5
may have been refined further. Fetching can be performed through a
combination of move and rotate operators. Since these operators are
not influenced by editing operation on the mesh, we are guaranteed
that the stencil will be fetched correctly also if the mesh has been
refined (see Figure 6).

Any odd vertex v of type F is inserted by operator 2a/b-split to-
gether with a vertex v′ of type E, and the stencil of v is in fact a
subset of the stencil of v′, so we do not need to fetch it separately.

If the control point at level l is not available for some vertex vi in
the stencil of v, then recursive refinement must be triggered to insert
in the mesh all neighbors of vi at its insertion level li. To this aim,
it is necessary to recursively split the edges in the neighborhood of
vi until all faces incident in it are of level greater or equal to li. This
can be done with a recursive split of all standard edges incident at
vi and having a level lower than li, followed by an analysis of the
incident faces. If an incident face f is of type 4, then a recursive
split of the standard edge with lower level of one of the two triangles
that share an extra edge with f is necessary.

This can be done simply by traversing in counter-clockwise order
the edges incident at vi. Every time an edge at a level lower than li
is found, we recursively split it. The algorithm halts when a com-
plete scan of the edges is performed without performing any split.
The additional splits required for faces of type 4 can be performed
by traversing the faces and splitting a single edge for every face of
type 4 found. Note that a regular vertex may have standard incident



edges that differ for at most two levels, thus the number of new
vertices to be computed during this operation is usually quite small.

Computation of control points may trigger some over-refinement
of the mesh, which might be not necessary to fulfill LOD require-
ments. This is similar to what happens in other adaptive subdivision
schemes [Kobbelt 2000; Seeger et al. 2001; Velho and Zorin 2001].
Since we wish to avoid over-refinement of the result, edge splits
performed during computation of control points, which are unnec-
essary according to LOD requirements, are marked as temporary
and inserted in a queue. A temporary vertex becomes permanent
in case one of its incident edges undergoes a standard edge split.
At the end of selective refinement, this queue is scanned, and all
vertices that are still temporary are removed by performing corre-
sponding edge merge operators.

After v has been inserted at level l, we must find all the possible
vertices that give contribution to compute summations SUMedge(v)
and SUMface(v). This is done again with a navigation algorithm
based on topological angles. The stencil that we want to identify
can be incomplete, i.e. some vertices may not be present in the
mesh, and we have no a priori information on the level of refinement
the portions of stencil currently available. We traverse the stencil
with a breath-first strategy, starting at v and navigating on subsets
of all possible paths that we can use to reach a vertex vi of the
stencil. The algorithm starts by identifying the standard edges at
level li incident at v. For each edge ei, connecting v with another
vertex vi, the algorithm navigates the stencil using rotate and move
operators until either vi−1 and vi+1 are found, or it is detected that
they are not present in the mesh.

For each candidate vc found, we must check what kind of contribu-
tion is needed:

1. If the level of vc is l, we simply accumulate pl(vc) on
SUMedge(v) or SUMface(v), depending if vc being an edge
or a face neighbor of v, respectively;

2. If the level of vc is< l and all the neighbors in the even stencil
of vc are present, we compute the correct control point, and
we accumulate it on SUMedge(v) or SUMface(v), exactly as
before.

In both cases, we keep track of the fact that vc has given its contri-
bution to v by keeping a counter for each vertex. This is necessary
both to understand when all neighbors have given their contribution
and to avoid accumulating a contribution twice, since a vertex can
be deleted from the mesh and introduced again at a later time. This
operation is performed also in the opposite direction, since every
candidate can need the contribution of v to compute its own sum-
mations.

As soon as a vertex v at level l receives the contribution from all
the vertices in its stencil, its correct control point can be computed
at every level ≥ l. We call such a vertex a complete vertex. In this
case we immediately provide its contribution to all vertices of level
≥ l that are present in its stencil.

4.2.5 Control points for even vertices during refinement

The case of even vertices is simpler. When a new vertex v is in-
serted to split an edge e, this may affect the control points of the
candidate vertices in its neighborhood. For each such vertex vi, if
the minimum level of edges incident at vi has increased to level k,
then the current position of vi is updated to pk(vi). Otherwise no
action is required. Note that value pk(vi) will be approximated as
long as vi is not complete. This approximation greatly reduces the
popping effect during selective refinement and it converges to the

correct position as more points in the stencil of v are inserted into
the mesh.

4.2.6 Control points during coarsening

The removal of a vertex v must undo the updates to the contibu-
tion counter and to the contribution accumulators SUMedge and
SUMface for every vertex in the stencil of v. This is done by
straightforward adaptations of the algorithms described above. We
do not remove contributions from complete vertices, which already
have sufficient information to compute their correct control points
at all levels.

5 Implementation and Results

We have implemented our scheme under the OpenMesh library
[Ope ] by using its standard data structures. The data structure to
represent a mesh has been extended just with attributes to keep the
level and type of each edge, and the level of each vertex, as well as
summations and counters to compute its control points. Assuming
a maximum of 16 levels of subdivision, which is more than suffi-
cient for practical purposes, such attributes can be maintained with
one byte per edge, and one byte and six floats per vertex.

In order to analyze space occupancy, we note that our scheme im-
plicitly encodes the subdivision hierarchy corresponding to a quad-
tree representation, by representing just the leaves. In the case of
a complete tree, which encodes a uniform subdivision, we encode
about 67% of the total number of quad-tree nodes. In compari-
son with the multi-resolution half-edge data structure presented in
[Kraemer et al. 2009], our scheme uses about 33% less space. In
fact, a space occupancy of about 3% more than that of a full quad-
tree is reported in [Kraemer et al. 2009].

Our prototype running on a single core of a T9300 Intel Core Duo
at 2.5 Ghz can insert/remove about 40K vertices per second. The
framework can thus easily support interactive LOD editing even
with large meshes.

We have developed an application, which supports editing the level
of detail of a mesh by either refining or coarsening it through adap-
tive subdivision. The user is allowed either to perform single re-
finement/coarsening operations, or to use two brush tools, one for
refining and the other for coarsening the area of mesh spanned by
the brush, by setting the desired level of subdivision. A prototype
of our application is released to the public domain at our web site
http://ggg.disi.unige.it.

Figure 2(a) shows a rough polygonal model designed in Blender by
merging a cylindrical handle to a lathe object. In Figure 2(b) the
mesh has been refined by a few strokes of brush in our tool in order
to refine the joints between the handle and the bottle as well as to
improve its overall shape. The coarsening brush as well as single
local refinement operations have been used during editing for ad-
justing over-refined parts and fine-tuning. Note that the pot-bellied
part has been refined anisotropically in order to better approximate
shape in the direction of higher curvature. Transitions across differ-
ent LODs involve pentagonal faces. In Figure 2(c) all vertices have
been moved to their limit positions.

Figure 1 shows a simple L-shaped block with a hole. We have re-
fined the hole anisotropically, we have smoothened two convex and
one concave edge with two levels of subdivision, and we have re-
fined anisotropically a strip traversing the top faces of the object
with one level of subdivision. The different colors represent the
different types of faces (see Figure 4): green, blue and dark red
faces are quads; yellow and orange faces are pentagons; and light
red faces are triangles. As it can be seen by comparing Figures 1 (b)



Figure 7: Preserving flows in a quad mesh: (a) two flows of in-
tegral lines traverse a quad element in orthogonal directions; (b)
flow is preserved by uniform subdivision; (c) some adaptive pat-
terns destroy the flow and do not allow for consistent labeling of
edges; while others maintain the flow but introduce non-quad ele-
ments (d). Arrows denote flows traversing elements.

(c) (d)(b)(a)

Figure 8: Triangular and (a) pentagonal (b) transition elements
collapse and split/merge the flow in one direction, respectively.
Catmull-Clark subdivision of triangles (c) and pentagons (d) does
not preserve the flows, though.

and (c) the adaptively refined mesh contains a much smaller number
of faces than the uniform Catmull Clark subdivision at level two,
while it approximates well the shape in the regions of interest. In
fact, it can be seen that in the adaptively refined mesh, the most re-
fined parts are identical to the corresponding parts in the uniformly
refined mesh. In Figures 1 (b) and (c) all vertices are taken to their
limit position.

5.1 Alignment with surface flows

In many cases, the alignment of edges of a quad mesh are rele-
vant to the modeled shape. One example is when edges are aligned
with shape features, another is when they are aligned with a line
field defined on the surface [Bommes et al. 2009]. For instance, it
is well known in the finite element methods that good anisotropic
meshes for a given budget of elements can be obtained if elements
are aligned to principal directions of curvature [Shewchuk 2002],
and this is also true for shape approximation.

If the edges of quads are properly aligned with curvature, or with
any other line field defined on the surface, the edges of each quad
can be colored with two colors, say red and blue, depicting two
orthogonal flows on the surface (see Figure 9). These flows are
obviously preserved through quadrisection of quads (see Figures
7(a) and (b)), but they can be deviated by some adaptive patterns
(see Figure 7(c)).

As already mentioned, triangular and pentagonal faces in a quad-
dominant mesh can be used to collapse and split/merge flows, re-
spectively, as depicted in Figures 8(a) and (b). Note that the direct
Catmull-Clark subdivision of non-quad meshes would not preserve
flows. See Figures 8(c) and (d). We have used the pattern depicted
in Figure 7(d) instead of the Y pattern of Figure 7(c) for configura-
tion P2b of our adaptive scheme, since it allows us preserving the
same flows of its parent quad. It is straightforward to see that also
the other patterns of our scheme preserve flows, therefore the flows
defined by edges of elements in an adaptively refined mesh will be
consistent with those of the base mesh.

Figures 9 shows a base mesh representing a torus, with edges

Figure 9: A torus with edges aligned to principal curvature direc-
tions and an adaptive subdivision of it.

Figure 10: An adaptive subdivision of the CAD model of a screw.

aligned with principal directions of curvature, and an adaptively
subdivided mesh obtained from it. Blue and red flows are shown
both on edges and on faces by means of suitable textures. An ex-
ample of adaptive refinement of a CAD model of a screw with red
edges aligned to feature lines is shown in Figure 10.

6 Conclusion

The adaptive subdivision scheme we have presented has several ad-
vantages: it is fully compliant with the Catmull-Clark scheme; it
is fully dynamic, i.e., the mesh can be freely refined and coarsened
through local operators; it does not require any hierarchical data
structure; and it preserves the orientation of mesh elements accord-
ing to flows defined on the surface.

The same approach can be extended in several directions. A base
mesh containing non-quad elements (e.g., in the proximity of singu-
larities) is better suited than a purely quad mesh in order to maintain
alignment of elements. In order to correctly manage such meshes,
our scheme can be easily extended to process a quad/triangle base
mesh, by integrating in the same framework local operators to adap-



tively refine and coarsen triangles [Puppo and Panozzo 2009], and
composite computation of control points through averaging and
smoothing [Stam and Loop 2003]. Another easy extension is to
support management of creases and corners: it is sufficient to let
the user flag creases in the base meshes, and to use stencils for
creases (which are the same as stencils for boundary edges) during
refinement.

Our current framework provides an approximated estimate of limit
points of the subdivision surface, because the summations of neigh-
bors used to evaluate the limit position of a vertex are not exact if
not all neighbors are present in an adaptively refined mesh. A cor-
rect evaluation of the limit position at all vertices can be obtained
by incorporating the mechanism proposed by Stam [Stam 1998a],
which involves computing a polynomial patch for each face of the
base mesh and tracing the parametric coordinates of each vertex
that refines a given patch. A more efficient, although still approx-
imated, solution can also be obtained by incorporating in a similar
way the evaluation method described in [Loop and Schaefer 2008].

Our prototype tool is proposed mainly for interactive use in polyg-
onal modeling. However, it can be easily extended to batch tasks,
in which refinement/coarsening operations to be performed are se-
lected automatically on the basis of LOD requirements. For in-
stance, it may be useful to drive selective refinement either accord-
ing to edge length (to obtain a more uniform mesh), or according
to curvature (to obtain a better, possibly anisotropic, approximation
of curved surfaces). In this case, many independent split/merge op-
erations could be performed together on a mesh during selective
refinement. Implementation of selective refinement on a data paral-
lel architecture is probably possible and could be investigated.
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