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Fig. 1. A collection of offsets computed from models in the Thingi10k dataset. Our algorithm provably computes manifold, watertight, and self-intersection-free
offsets homeomorphic to an infinitesimally small offset (blue) and, with small changes, can also produce traditional offsets (green), and multiple non-intersecting
layers (multicolor).

We introduce Topological Offsets, a novel approach to generate manifold and

self-intersection-free offset surfaces that are topologically equivalent to an

offset infinitesimally close to the surface. Our approach, by construction, cre-

ates a manifold, watertight, and self-intersection-free offset surface strictly

enclosing the input, while doing a best effort to move it to a prescribed

distance from the input. Differently from existing approaches, we embed

the input in a background mesh and insert a topological offset around the

input with purely combinatorial operations. The topological offset is then

inflated/deflated to match the user-prescribed distance while enforcing that

no intersections or non-manifold configurations are introduced.

We evaluate the effectiveness and robustness of our approach on the

Thingi10k dataset, and show that topological offsets are beneficial in multiple

graphics applications, including (1) converting non-manifold surfaces to

manifold ones, (2) creating layered offsets, and (3) reliably computing finite

offsets.
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1 INTRODUCTION
Surface offsets, i.e., the regions at a fixed distance from the input

surface, are a fundamental modeling tool in graphics and CAD. They

are used for designing shapes, computing collision clearances for

manufacturing, morphological operators, collision proxies, bound-

ary layers, nested cages, and many more.

Despite their simple definition, their computation is still an un-

solved challenge. While exact computation in 2D is possible, it is

still an open problem in 3D. This led to a plethora of algorithms

computing approximated versions of offsets: unfortunately, they all

lose crucial properties such as lack of self-intersections, topological

correctness, and geometrical precision and are often restricted to

manifold and non-self-intersecting inputs (Section 2).

Robust and accurate algorithms exist for the special case of offsets

with infinite radius, which have the topology of a sphere: shrink-

wrapping algorithms deform that infinite offset until it tightly wraps

a shape. This is useful for many applications, especially in 3D print-

ing, as it provides a reliable way to inflate shapes with zero thickness

or to topologically repair broken meshes. However, it uncontrollably

loses the internal holes and handles.

We consider the reciprocal case: we introduce offsets with an

infinitesimally small distance from the input and allow them to
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input topological offset

Fig. 2. Our method generates manifold meshes with topological guaran-
tees even if the input (left) is open, non-manifold, non-orientable, and
self-intersecting. The right image is a cut-view of the offset.

topological offset input finite offset

Fig. 3. Topological offsets (blue) always have the same topology for any
given input (white), while the topology of finite offsets (green) depend on
the offset distance

expand. We call the resulting surface a topological offset (Figure 1,

blue).

We observe and prove that the topology of such an offset is

unique and only depends on the input surface. This contrasts tradi-

tional offsets, which we will call finite offsets from now on (Figure 1,

green), where the topology depends on the offset distance. Inter-

estingly, these offsets are also uniquely defined for non-manifold,

non-orientable, and self-intersecting meshes (Figure 2).

We formally define topological offsets (Section 4) and introduce

a purely topological (and thus unconditionally robust) algorithm

to compute it from a tetrahedral background mesh containing the

input (Section 5). The geometry of the resulting offset is then op-

timized using a combination of local operations and interior point

optimization, with a set of conservative topological and geomet-

rical predicates (accounting for floating point rounding errors) to

ensure that the resulting offset keeps the same topology and does

not contain self-intersections.

Our construction is guaranteed to produce offsets with the follow-

ing properties: (1) no intersections, (2) manifold, (3) same topology

as an infinitesimal offset, and (4) strictly enclosing/containing the

input (Figure 3).

Topological offsets enjoy wide practical applica-

bility (Section 6): Non-manifold simplices can be

removed by generating a topological offset around

them and tagging all simplices in the offset region

as outside (see inset). Self-intersections can be re-

paired by replacing a self-intersecting surface with

its topological offset, which is always intersection-

free. With a minor modification, topological off-

sets become finite ones while enjoying the same

robustness, ensuring manifoldness and lack of self-

intersections for any offset distance.

We compare our modified version that produces finite offsets

against the state-of-the-art (finite) offset method [Zint et al. 2023]:

while being robust, this approach produces intersecting offsets on

about 5% of the models, hindering their usability in downstream

applications. We also analyze our topological offsets on a large data

set but we are not aware of any method that produces similar results

that we could compare against.

Our major contributions are:

(1) We formally define topological offsets.
(2) We introduce a robust algorithm to compute them and con-

trol their geometry.

(3) We show that they can be converted into finite offsets, while

ensuring manifoldness and lack of intersection.

(4) We produce layered offsets that strictly enclose each other

by repeatedly adding topological or finite offsets.

(5) We introduce (topological and finite) offsets with spatially

varying distances.

(6) We apply the topological offset to remove non-manifold

edges and vertices while keeping the topological and geo-

metrical changes minimal.

(7) We provide an open-source reference implementation
1

to en-

sure the reproduction of our results and foster the adoption

of this new offset type.

2 RELATED WORK
Voronoi Diagram. Generating an exact offset can be considered a

sub-problem of generating a generalized Voronoi diagram. While

this approach is feasible in 2D, with robust algorithms for computing

2D Voronoi diagrams [Karavelas 2022], the reliable generation of

such a diagram in 3D is still an open problem [Boada et al. 2008;

Yap et al. 2012]. Hemmer et al. compute the exact Voronoi diagram

for arbitrary lines in 3D [Hemmer et al. 2010]. Aubry et al. use the

generalized spherical Voronoi diagram around vertices (which is 2D

and therefore easier to compute) to extract boundary layers [Aubry

et al. 2017]. However, this method cannot handle self-intersections

of the boundary layer, limiting its use to shapes where two non-

adjacent elements are further away than twice the offset distance.

Discrete Offset and Morphological Operations. A volume can be

discretized as a collection of voxels, and a discrete offset can be

defined using morphological operations [Suriyababu et al. 2023],

which are robust and efficient. However, using a grid (uniform or

adaptive) introduces staircase artifacts and inherently limits feature

size, as the memory and computation cost to store the data is high,

even when Dexel data structures are used [Chen et al. 2019]. Other

methods sidestep that issue by performing morphological opera-

tions on point clouds [Calderon and Boubekeur 2014]. However,

the conversion into a point cloud induces a sampling error. [Sellán

et al. 2020] proposes an approach for performing opening and clos-

ing operations on meshes without performing dilation and erosion

explicitly. It does not generate offsets.

Approximate Distance Offsets. A popular compromise between ex-
act and discrete offsets is the use of uniform grids, adaptive grids, or

particles to discretize a distance field from the input surface [Liu and

1
https://github.com/wildmeshing/topological-offsets
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Wang 2010; Meng et al. 2018; Pavić and Kobbelt 2008; Qu et al. 2004;

Wang and Manocha 2013; Zint et al. 2023] and extract the offset as

an isosurface [Ju et al. 2002; Lorensen and Cline 1987]. After the

surface is extracted, a remeshing procedure is applied to improve

mesh quality, reduce element count, and remove self-intersections

[Botsch and Kobbelt 2004]. The advantage of these approaches is

their efficiency in computation cost and memory, as they rely on

decades of work on isosurface extraction to get the initial offset with

high resolution, and they perform the expensive mesh optimization

only on the resulting, possibly adaptive, surface. However, similarly

to discrete methods, they cannot guarantee that the extracted offset

is homeomorphic to the exact offset. Additionally, post-processing

the extracted surface might introduce self-intersections [Zint et al.

2023]. Another approach is to construct linear approximations for

each input triangle per cell and compute plane intersections [Wang

et al. 2024]. This approximation is sufficient to produce sharp fea-

tures in convex regions but the offset might intersect the input for

small offset distances.

Our approach computes an offset guaranteed to be manifold,

intersection-free, and with the unique topology of an infinitesimal

offset. Furthermore, our method can also compute finite offsets and

still enjoys the guarantee of producing a manifold and intersection-

free output.

Approximate Minkowski Sums. An alternative approximation is

to define the offset as the Minkowski sum of an input surface with

a discretized sphere [Campen and Kobbelt 2010a,b; Martinez et al.

2015; Varadhan and Manocha 2004]. These methods create very

dense meshes when using an accurate discretization of the sphere,

making them a good fit only for applications where a coarse approx-

imation of the offset is sufficient (see Figure 5 of [Wang et al. 2020]

for an analysis of memory and time used by this type of algorithms).

Contrarily, the offset distance for topological offsets is adaptive

while keeping a small distance error for finite offsets (Section 6).

Shrink-Wrapping. Shrink-wrapping algorithms [Huang et al. 2020;

Juretić and Putz 2011; Kobbelt et al. 1999; Lee et al. 2009; Martineau

et al. 2016; Suriyababu et al. 2023] shrink an infinite offset contain-

ing the full mesh until it tightly fits the mesh. This approach can be

used to repair meshes reliably [Dai et al. 2024; Portaneri et al. 2022;

Stuart et al. 2013] and it is a popular method to prepare models for

3D printing. The topology of the resulting surface, by construction,

ignores internal holes: while this is a desirable property for mesh

repair, the resulting surfaces are not offsets.

Our approach builds upon ideas in [Portaneri et al. 2022] to use a

tetrahedral background mesh, but uses it to build an infinitesimal

offset instead.

Enclosing Volumes and Boundary Layers. The closest works to

ours are algorithms to construct enclosing volumes around an input,

which are often used for animation cages, shell maps, or interface

tracking in graphics [Brodersen et al. 2008; Jiang et al. 2020; Misztal

and Bærentzen 2012; Porumbescu et al. 2005; Sacht et al. 2015], or

boundary layers in engineering simulation [Garimella and Shephard

2000; Loseille and Löhner 2013]. These methods rely on a displace-

ment in the normal direction (either directly, or via a geometric

flow) which is not well-defined, in general (Figure 4).

input offset layers

Fig. 4. The corner between the two boxes does not have a unique vertex
normal, i.e., there is no direction in which the vertex can be offset without
intersecting the input. Our method does not rely on vertex normals and
can, therefore, handle this case properly. See [Jiang et al. 2020] for a more
detailed discussion.

input, #𝑡 = 7 238 [Guo et al. 2024],

#𝑡 = 417 790 ours, #𝑡 = 23 726

Fig. 5. Our method utilizes local subdivisions instead of a uniform refine-
ment, leading to merely a fraction of triangles. Both, our method and [Guo
et al. 2024], are guaranteed to construct an offset that is homeomorphic to
a closed and manifold input mesh without self-intersections.

Instead of using normals, other approaches construct cages from

volumetric representations of the input. [Calderon and Boubekeur

2017] rely on voxel grids, that are known to be fast and efficient,

but they are not guaranteed to capture the input topology cor-

rectly, as input surfaces can be arbitrarily close. A robust method

for constructing cages is presented in [Guo et al. 2024]. The method

requires closed and manifold meshes without self-intersections as

input, and constructs cages that are guaranteed to be homeomor-

phic to the input. Like our method, it computes the cage topology

using a tetrahedral embedding of the input. However, the tetra-

hedral mesh is uniformly refined and eventually discarded and

therefore no longer available for downstream applications. In con-

trast, our method keeps the tetrahedral mesh and ensures that it

stays inversion-free. Additionally, we only perform local subdivi-

sions instead of a uniform refinement, resulting in a much coarser

initial mesh (Figure 5). Finally, our method can also handle open,

non-manifold, and non-orientable input with self-intersections (Fig-

ure 2).

Multi-Material Remeshing. Our method processes a tetrahedral

background mesh whose faces represent the input geometry: this

is useful to avoid self-intersections in the offset without requiring

explicit collision checks. Our algorithm uses a multi-material mesh
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Fig. 6. An infinitesimal offset family (blue curves). If 𝜖 becomes too large, the
offset changes topology (red curve). We are interested in a topological offset
(green curve) that admits a continuous bijective map to the infinitesimal
one.

optimization similar to [Faraj et al. 2016; Tournois et al. 2023], re-

lying on the multi-material link condition proposed in [Thomas

et al. 2011]. We provide more details on our remeshing algorithm in

Section 5.3.

3 OVERVIEW
We introduce an algorithm for creating topological offsets. Unlike

many other offset methods, we rely on a volumetric meshing algo-

rithm to embed the input into a tetrahedral background mesh before

processing: this increases our running time but provides strong guar-

antees on topology, lack of self-intersections, and termination. Our

guarantees hold even when our algorithm is implemented using

floating point arithmetic (Section 5.4).

Input. The input to our algorithm is a simplicial complex (e.g.,

a non-manifold triangular surface) embedded within a manifold

tetrahedral background mesh embedded in R3
without inverted ele-

ments, plus an offset distance 𝛿 . The manifoldness condition is only

required on the background mesh, not on the input. Additionally, we

require that the simplicial complex is in the interior of the tetrahe-

dral background mesh, i.e., there is a layer of tetrahedra completely

enclosing the input.

Output. The output of our algorithm is a tetrahedral mesh with

the offset (and input) embedded. The embedded triangle mesh of the

offset is guaranteed to be manifold, intersection-free, and watertight.

Our algorithm strives to improve this mesh’s quality and keep a

distance 𝛿 from the input (Section 6). We note that the tetrahedral

mesh is useful in many downstream applications and is easy to

discard if unnecessary.

Summary. We first introduce the theoretical concept of topologi-

cal offsets and prove that their topology is unique for a sufficiently

small 𝜖 (Section 4). This proof requires us to define a locality condi-

tion that strongly relies on a specific type of mesh embedding that

we call simplicial embedding (Definition 2). We then propose an

algorithm to compute them and optionally improve their quality

(Section 5). Crucially, our construction does not require selecting a
sufficiently small 𝜖: it is purely topological and provably produces

an offset homeomorphic to an offset with infinitesimally small 𝜖

(Theorem 4).

4 INFINITESIMAL AND TOPOLOGICAL OFFSET
Consider a smooth, simple, manifold, closed surface 𝐶 with a sin-

gle connected component, and bounded curvature embedded in a

domain Ω. A finite offset O(𝐶, 𝜖) is the set of points at a distance

𝜖 > 0 from the surface,

O(𝐶, 𝜖) = {𝑥 ∈ Ω | ∥𝑐 (𝑥) − 𝑥 ∥2 = 𝜖},

where 𝑐 (𝑥) is the function returning the point of 𝐶 closest to the

point 𝑥 . We can always find an 𝜖𝐶 such that the offset does not

intersect the medial axis of𝐶 , and thus, for such an 𝜖𝐶 , the function

𝑐 (𝑥) is bijective. By repeating the same construction for a simplicial

complex 𝑆 (Figure 6), an 𝜖 for which the function 𝑐 is bijective does

not exist anymore since the medial axis extends to the sharp points

of 𝑆 . However, as we will show in the following, there is still an 𝜖

such that all offsets with a distance smaller than 𝜖 have the same

topology, are manifold, and are free of self-intersections.

Definition 1 (𝜖 Infinitesimal Offset Family). We call Ō(𝑆, 𝜖)
the infinitesimal offset family of a simplicial complex 𝑆 the 1-parameter
family of offsets parametrized by a distance parameter 𝜖 ∈ (0, 𝜖).

To streamline the explanation, we denote withS𝜖 (𝑠) the 𝜖-inflation

of the simplex 𝑠 , i.e., the Minkowski sum of 𝑠 and the ball of radius

𝜖 > 0. Similarly, we use S𝜖 (𝑆) to denote the 𝜖-inflation of all sim-

plices in 𝑆 .

Theorem 1 (Infinitesimal Offsets). For a simplicial complex 𝑆 ,
there is an 𝜖 > 0 such that all offset surfaces 𝜕S𝜖 (𝑆), 0 < 𝜖 ≤ 𝜖 are
manifold surfaces, assuming that faces of 𝑆 are in a general position.

Proof. The distance function to a convex set is 𝐶1 [Rockafellar

and Wets 2009]. The distance function to a union of a finite number

of convex sets is min(𝑑0 . . . 𝑑𝑛) where 𝑑𝑖 is the distance to 𝑖-th

convex set, so clearly piecewise𝐶1 and Lipschitz, as min is Lipschitz

and the composition preserves the Lipschitz property. The offsets

are the level sets of this function.

The specialization of Clarke’s theorem [Borwein and Lewis 2006]

to the scalar functions 𝑓 : R3 → R provides a criterion when the

resulting offset is a manifold. Let 𝑈 ∈ R3
be an open neighborhood

of a point 𝑝 = (𝑥,𝑦, 𝑧), and let 𝑐 = 𝑓 (𝑝). If there is a matrix 2 × 3
matrix 𝐵, such that for any 𝐴 ∈ 𝜕𝑓 (𝑝) (the generalized differential

of 𝑓 ) The matrix

[
𝐴

𝐵

]
is an invertible 3 × 3 matrix, then the level

set 𝑐 = 𝑓 (𝑝) is locally a Lipschitz submanifold.

The generalized differential is the convex hull of gradients of all

distance functions "active" at 𝑝 . Geometrically, this corresponds to

the convex hull of the normal vectors to all simplex offset surfaces

intersecting at 𝑝 .

We do not need to consider a larger number of vectors in the gen-

eralized differential, as such points, if they exist, can be eliminated

by a small change in the offset 𝜖 . In a general position (i.e., for almost

all values of 𝜖 and general position of faces of 𝑆), we can assume

that the level-set surfaces of each face intersect transversally, except

if the point is on a patch shared by two or more such surfaces (e.g.,

a part of the sphere centered at a common vertex of two triangles),

which we exclude from consideration as all offsets share a normal in

this case. In other words, two vectors, in the case of intersection of
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two surfaces and 3 vectors, in the case of three surfaces, are linearly

independent.

Note that if two vectors in the generalized differential are linearly

dependent and point in opposite directions (tangential contact), then

a zero vector is in the convex hull and the matrix 𝐵 required by the

theorem does not exist, but such contact can be removed by a small

perturbation of 𝜖 .

The statement of Clarke’s theorem requires finding two vectors,

𝑣1, and 𝑣2 (the rows of 𝐵) such that for any 𝑤 ∈ 𝜕𝑓 , [𝑣1, 𝑣2,𝑤] are

linearly independent. If there is only one vector in 𝜕𝑓 (𝑝) (𝐶1 point)

then any two orthogonal vectors would suffice. If there are two

vectors, 𝜕𝑓 is a segment of a line in R3
not passing through zero. We

just need to take any two independent vectors in a plane passing

through zero that is parallel to this line. Then (𝑣1, 𝑣2, (1−𝑡)𝑤1+𝑡𝑤2)
are linearly independent for any 0 ≤ 𝑡 ≤ 1, as no vector with the

endpoint on the line is in the span of 𝑣1 and 𝑣2. Similarly, the convex

hull of 3 independent vectors 𝑤𝑖 in 𝜕𝑓 (𝑝) is a subset of a plane, not

containing zero, so we take the vectors 𝑣1 and 𝑣2 to be a basis of a

plane through zero, parallel to this plane. This proves the existence

of 𝐵 in all cases. □

The infinitesimal offsets are all homeomorphic to each other,

which makes their topology unique for all distances smaller than 𝜖 .

To prove this statement, we assume that the simplicial complex 𝑆 is

simplicially embedded (Definition 2) in a tetrahedral background

mesh 𝑀 . If the input is a simplicial complex, such embedding can

always be constructed, possibly with some refinement of 𝑆 , which

does not change its geometry [Diazzi et al. 2023]. The additional

benefit of our proof relying on the background mesh is that it im-

mediately leads to a constructive algorithm for topology-preserving

offset approximation.

Definition 2 (Simplicial Embedding). A tetrahedral mesh 𝑀

is a simplicial embedding of a simplicial complex 𝑆 ⊂ 𝑀 if for any
tetrahedron 𝑡 ∈ 𝑀 the intersection of 𝑆 and 𝑡 is either empty, or is a
vertex, an edge, or a triangle of 𝑆 and 𝑀 .

Locality. We now partition the space into a collection of convex

cells, enabling us to localize the definition of the offset surface. We

subdivide every tetrahedron into four convex regions, using the

pattern shown in Figure 7. We denote withV𝑡 (𝑣) the convex cell

corresponding to a vertex 𝑣 ∈ 𝑡 . We define a convex cell for each

edge 𝑒𝑖 𝑗 between the vertices 𝑣𝑖 and 𝑣 𝑗 by taking the intersection

of the convex cells of its vertices V𝑡 (𝑒𝑖 𝑗 ) = V𝑡 (𝑣𝑖 ) ∩ V𝑡 (𝑣 𝑗 ), and

similarly for every faceV𝑡 (𝑓𝑖 𝑗𝑘 ) = V𝑡 (𝑣𝑖 ) ∩ V𝑡 (𝑣 𝑗 ) ∩ V𝑡 (𝑣𝑘 ) (𝑓𝑖 𝑗𝑘
has vertices 𝑣𝑖 , 𝑣 𝑗 , and 𝑣𝑘 ). We denote as 𝜏𝑆 (𝑠) the open star of the

simplex 𝑠 , which contains 𝑠 and all other simplices in 𝑆 containing

𝑠 . For example, the star of an edge is the edge itself, plus all the

triangles incident to it.

Consider a tetrahedral mesh 𝑀 that is a simplicial embedding of

a simplicial complex 𝑆 . We show that for any choice of 𝑆 , there is a

sufficiently small 𝜖 for which only 𝜏𝑆 (𝑣) of a vertex 𝑣 contributes

to the offset inV𝑡 (𝑣). To do this, we consider the offset we would

obtain by considering the maximal surface that could be embedded

in 𝑀 , which we denote as �̂� , composed of all vertices, edges, and

triangles in 𝑀 . We prove that for this worst case, the locality holds

— in practice, 𝑆 would be a subset of �̂� . This property is crucial, as

v0
v1

v2

v3

A
B

C

D

F

G

H

E

Fig. 7. Illustration of a tetrahedron with its four vertices (left) and a convex
cell in red (right).

it allows us to construct the offset locally, unlike traditional offsets

whose geometry and topology are global properties.

Lemma 1 (Offset Locality). For any tetrahedral mesh 𝑀 embed-
ded in R3, there exists an 𝜖 > 0 such that, for every simplex 𝑠 ∈ �̂�

and every tetrahedron 𝑡 ∈ 𝑀 incident to 𝑠 :(
S𝜖 (�̂�) \ S𝜖 (𝜏�̂� (𝑠))

)
∩V𝑡 (𝑠) = ∅

Proof. All simplices in 𝜏
�̂�
(𝑠) contain 𝑠 , and there is always a

point 𝑝 ∈ 𝑠 contained inV𝑡 (𝑣) since 𝑡 is incident to 𝑠 , and therefore

the distance between all simplices in S𝜖 (𝜏�̂� (𝑠)) andV𝑡 (𝑠) is zero.

All other simplices in �̂� \𝜏
�̂�
(𝑠) have a positive distance fromV𝑡 (𝑠)

as: (1) they cannot intersect the interior of 𝑡 since𝑀 is embedded and

(2) they cannot be in the boundary ofV𝑡 (𝑠) as the intersection of

V𝑡 (𝑠) and 𝑡 is a subset of 𝜏
�̂�
(𝑠). For any 𝜖 smaller than the minimal

distance between S𝜖 (�̂�) \ S𝜖 (𝜏�̂� (𝑠)) andV𝑡 (𝑠) their intersection

is empty. If we pick the smallest 𝜖 for all 𝑠 ∈ �̂� and 𝑡 ∈ 𝑀 , then the

locality condition holds for all convex cellsV𝑡 (𝑠). □

We note that an 𝜖 satisfying the locality property for �̂� also triv-

ially satisfies the same property for any other embedded simplicial

complex 𝑆 ⊂ �̂� .

Lemma 2. Let 𝑋 and 𝑌 be connected closed bounded submanifolds
of R𝑛 with boundaries. Let 𝑓 : 𝑋 → 𝑌 be a continuous injective map,
bijectively mapping 𝜕𝑋 to 𝜕𝑌 , and its inverse on 𝑓 (𝑋 ) is continuous.
Then 𝑓 is a homeomorphism between 𝑋 and 𝑌 .

Proof. As f is continuous, its image 𝑓 (𝑋 ) in 𝑌 is closed and

bounded, as 𝑋 is closed and bounded. As 𝑓 : 𝑋 → 𝑓 (𝑋 ) is a home-

omorphism, 𝑓 maps 𝜕𝑋 to 𝜕𝑓 (𝑋 ), so 𝜕𝑓 (𝑋 ) = 𝜕𝑌 . Suppose 𝑓 (𝑋 )
does not coincide with the whole 𝑌 . As 𝑓 (𝑋 ) is closed, 𝑌 \ 𝑓 (𝑋 ) is

open, by assumption nonempty, and is contained in the interior of

𝑌 (Int(𝑌 )). Int(𝑌 ) is connected because the interior of a connected

manifold is connected. Let 𝑦0 be an interior point of 𝑓 (𝑋 ). Consider

a continuous simple path 𝑝 : [0, 1] → 𝑌 connecting 𝑦0 and a point

in Int(𝑌 ) \ 𝑓 (𝑋 ) (as 𝑋 has interior points and 𝑓 (𝜕𝑋 ) = 𝜕𝑌 , there

are interior points in 𝑓 (𝑋 ), so 𝑦0 exists).

Consider the subset 𝑍 of [0, 1] such that 𝑓 (𝑍 ) is contained in

𝑓 (𝑋 ) and its complement in [0, 1]. As 𝑓 (𝑋 ) is closed, then 𝑍 =

𝑝−1 (𝑓 (𝑋 ) ∩ Im(𝑝)) is closed, and not coinciding with Im(𝑝), so it

has a boundary at an interior point 𝑞 of [0, 1], for which 𝑝 (𝑞) is

contained in 𝑓 (𝑋 ). As it is a boundary point of 𝑍 , any neighborhood

of 𝑝 (𝑞) in𝑌 contains both points of 𝑓 (𝑋 ) and𝑌 \ 𝑓 (𝑋 ), i.e., is on the

boundary of 𝑓 (𝑋 ). But by construction of the path, 𝑝 (𝑞) must be

an interior point of 𝑌 , which contradicts 𝑓 (𝜕𝑋 ) = 𝜕𝑓 (𝑋 ) = 𝜕𝑌 . □
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Fig. 8. Rules to generate the topological offset (orange) for an embedded
simplicial complex (blue). For illustration purposes, we omit the simplicial
decomposition of the polyhedra.

Lemma 3. There is an 0 < 𝜖 ≤ 𝜖 , such that the union of the 𝜖-
inflations of the elements of 𝜏𝑆 (𝑠) of a simplex 𝑠 ∈ 𝑆 ,

S𝜖 (𝜏𝑆 (𝑠)) =
⋃

𝑐∈𝜏𝑆 (𝑐 )
S𝜖 (𝑐),

is a star domain with 𝑠 in its kernel and its boundary 𝜕S𝜖 (𝜏𝑆 (𝑠)) is
manifold.

Proof. Each S𝜖 (𝑐) is the Minkowski sum of two convex primi-

tives (a simplex and a sphere), and it is thus convex. For two star-

shaped domains 𝑟1 and 𝑟2, every point 𝑝 in the intersection of the

two kernels (𝑝 ∈ ker(𝑟1) ∩ker(𝑟2)) has visibility to all points in both

𝑟1 and 𝑟2 and thus belongs to the kernel of the union of 𝑟1 and 𝑟2
(𝑝 ∈ ker(𝑟1 ∪ 𝑟2)). Since 𝑠 is a face of all 𝑐 𝑗 ∈ 𝜏𝑆 (𝑠), 𝑠 is in the kernel

of all S𝜖 (𝑐𝑖 ), and therefore in the kernel of their union. This proves

that S𝜖 (𝜏𝑆 (𝑠)) is a star domain with 𝑠 in its kernel. From Theorem 1,

its boundary is manifold as 𝜏𝑆 (𝑠) is a simplicial complex. □

Using the result of the previous three lemmas, we will show that

a convex cell’s intersection with any infinitesimal offset is either

empty or a disk.

Theorem 2 (Local Disk Topology). For any 𝜖 ∈ (0, 𝜖) and for
any cellV𝑡 (𝑣𝑖 ), the intersection of the cell and the offsetS𝜖 (𝑆)∩V𝑡 (𝑣𝑖 )
is empty iff 𝑆 ∩V𝑡 (𝑣𝑖 ) is empty, otherwise it is a topological disk.

Proof. We consider the four rules in Figure 8 and restrict them

to individual convex cellsV𝑡 (𝑣𝑖 ) of their vertices. We observe that,

after factoring out symmetries, there are only four distinct configu-

rations (Figure 8): (1) the convex cell does not contain any simplex

of 𝑆 , (2) it contains only a vertex of 𝑆 , (3) it contains a vertex and

intersects an edge of 𝑆 , and (4) it contains a vertex and intersects

two edges and a triangle of 𝑆 .

Case (1): Due to locality (Lemma 1), the convex cell does not

contain 𝜕S𝜖 (𝑆).
Case (2): Due to locality (Lemma 1), the convex cellV𝑡 (𝐴) con-

tains a part of 𝜕S𝜖 (𝑆)which, inside the cell, is identical to 𝜕S𝜖 (𝜏𝑆 (𝐴)).
Points. We will show that 𝜕S𝜖 (𝜏𝑆 (𝐴)) intersects the three edges

𝐴𝐵, 𝐴𝐸, and 𝐴𝐷 at one point per edge. Due to locality (Lemma 1),

𝜖 < ∥𝐵 − 𝐴∥, as the offset of 𝐴 would otherwise contribute to

another convex cell. As S𝜖 (𝜏𝑆 (𝐴)) is a star domain with 𝐴 in its

kernel (𝜖 > 0) and 𝐵 outside (𝜖 < ∥𝐵 − 𝐴∥), the edge 𝐴𝐵 must

intersect 𝜕S𝜖 (𝜏𝑆 (𝐴)) exactly once. The same holds for 𝐴𝐸 and 𝐴𝐷 .

From locality, it also follows that 𝜕S𝜖 (𝜏𝑆 (𝐴)) does not intersect any

edge ofV𝑡 (𝐴) that is not incident to 𝐴, as they are also part of other

convex cells.

Curves. We will show that 𝜕S𝜖 (𝜏𝑆 (𝐴)) intersects the three quadri-

lateral faces 𝐴𝐵𝐶𝐷 , 𝐴𝐵𝐹𝐸, and 𝐴𝐸𝐻𝐷 in three simple curves, one

for each face, whose boundary is composed of the vertices identified

before. Due to locality, the sphere 𝜕S𝜖 (𝐴) intersects𝐴𝐵 and𝐴𝐷 , but

not 𝐵𝐶 or 𝐶𝐷 . Therefore, the intersection 𝜕S𝜖 (𝐴) ∩𝐴𝐵𝐶𝐷 = 𝛾 is a

circular segment. Let 𝑟 be a ray from 𝐴 to a point on 𝛾 . 𝑟 intersects

𝜕𝑆𝜖 (𝜏𝑆 (𝐴)) ∩𝐴𝐵𝐶𝐷 in a unique point as 𝑆𝜖 (𝜏𝑆 (𝐴)) ∩𝐴𝐵𝐶𝐷 is star-

shaped with 𝐴 in its kernel (Lemma 3), and all intersection points

are contained in the interior of 𝐴𝐵𝐶𝐷 due to Lemma 1. Therefore, 𝑟

establishes an injective mapping between𝛾 and 𝜕𝑆𝜖 (𝜏𝑆 (𝐴))∩𝐴𝐵𝐶𝐷 .

Due to Lemma 2, this map is bijective. As 𝛾 is a simple curve, it

follows that 𝜕𝑆𝜖 (𝜏𝑆 (𝐴)) ∩𝐴𝐵𝐶𝐷 is also a simple curve. The same

argument can be applied to 𝐴𝐵𝐹𝐸 and 𝐴𝐸𝐻𝐷 .

Patch. The intersection Γ = 𝜕S𝜖 (𝐴) ∩ V𝑡 (𝐴) is a surface with

disk topology (a spherical, simply connected patch) due to locality.

Its boundary 𝜕Γ maps via ray casting, with 𝐴 as origin, to the points

and curves identified before. Ray casting with 𝐴 as origin defines an

injective map from the interior of Γ to Γ𝜏𝑆 = 𝜕S𝜖 (𝜏𝑆 (𝐴)) ∩ V𝑡 (𝐴),
as Γ𝜏𝑆 is a star-shaped domain with 𝐴 in its kernel, and 𝜕S𝜖 (𝜏𝑆 (𝐴))
must not intersect 𝐵𝐹𝐺𝐶 , 𝐹𝐺𝐻𝐸, or 𝐶𝐺𝐻𝐷 (locality).

Both Γ and Γ𝜏𝑆 are connected closed 2-manifold with metric

inherited from R3
with a single boundary (the intersection of both

with the boundary of 𝑉𝑡 is a 1-manifold as we show above). Both

are connected: if it consisted of several connected components with

boundary, then we would have several separate boundary loops.

So only one connected component can have a boundary; the rest

need to be without boundary. But then these connected components

would also be separate components of the entire offset surface, as

there cannot be a continuous path connecting them to any point of

the offset outsideV𝑡 , not intersectingV𝑡 boundary. From Lemma 2,

it follows that the projection is a homeomorphism, and thus Γ𝜏𝑆 is

a disk.

Case (3): Points. 𝜕𝑆𝜖 (𝜏𝑆 (𝐴)) intersects the 4 edges 𝐴𝐸, 𝐴𝐷 , 𝐵𝐹 ,

and 𝐵𝐶 at one point per edge, and it does not intersect any of the

other edges ofV𝑡 (𝐴). The proof is the same as for Case (2) for𝐴𝐸 and

𝐴𝐷 . For 𝐵𝐹 , we observe that 𝜕S𝜖 (𝜏𝑆 (𝐴)) ∩𝐵𝐹 = 𝜕S𝜖 (𝜏𝑆 (𝑒01)) ∩𝐵𝐹
(Lemma 1) and 𝜕S𝜖 (𝜏𝑆 (𝑒01)) is a star domain with 𝐵 in its kernel

(𝜖 > 0) and 𝐹 outside (𝜖 < ∥𝐹 − 𝐵∥), the edge 𝐵𝐹 must intersect

𝜕S𝜖 (𝜏𝑆 (𝐴)) exactly once. The proof for 𝐵𝐶 is similar.

Curves. 𝜕𝑆𝜖 (𝜏 (𝐴)) intersects the 4 quadrilateral faces𝐴𝐵𝐶𝐷 ,𝐴𝐵𝐹𝐸,

𝐵𝐹𝐺𝐶 , and 𝐴𝐸𝐻𝐷 in four curves, one for each face, whose bound-

ary is composed of the vertices identified before. The intersec-

tion of 𝜕S𝜖 (𝐵) ∩ 𝐵𝐹𝐺𝐶 is a circular segment, thus a simple curve.

We establish an injective mapping between 𝜕S𝜖 (𝐵) ∩ 𝐵𝐹𝐺𝐶 and

𝜕S𝜖 (𝜏𝑆 (𝐴)) ∩ 𝐵𝐹𝐺𝐶 via ray casting as in Case (2), using 𝐵 as the

origin and noting that 𝐵 is in the kernel of 𝜕S𝜖 (𝜏𝑆 (𝑒01)) (Lemma 3)

and 𝜕S𝜖 (𝜏𝑆 (𝑒01)) ∩𝐵𝐹𝐺𝐶 = 𝜕S𝜖 (𝜏𝑆 (𝐴)) ∩𝐵𝐹𝐺𝐶 . This map is bijec-

tive due to Lemma 2. The proof for 𝐴𝐸𝐻𝐷 is the same as for Case

(2), using 𝐴 as the ray origin.
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For𝐴𝐵𝐶𝐷 and𝐴𝐵𝐹𝐸, the curves of interest intersect two opposite

sides of the quads, so the polar argument is slightly different. In both

cases, we need to consider 𝐴 as the projection point: the bijection is

between a part of a circle cut out by the sides of the polygon and

the segment of the boundary of S𝜖 (𝑆) ∩𝑉𝑡 (𝐴). Consider points 𝐶′

and 𝐷′ – intersection points on edges 𝐵𝐶 and 𝐴𝐷 . On a small circle

around𝐴, these project to𝐶′′ and 𝐷′′.𝐶′′ is in the interior of𝐴𝐵𝐶𝐷 ,

not on an edge. Any ray through 𝐴 in the interior of 𝐴𝐵𝐶𝐷 and to

the same side from 𝐴𝐶′′ as 𝐷′′, passes through exactly one point of

the circle and one point of 𝜕S𝜖 (𝑆) ∩𝑉𝑡 (𝐴). It remains to prove that

no ray on the other side of 𝐴𝐶′′ intersects 𝜕S𝜖 (𝑆) ∩𝑉𝑡 (𝐴). Suppose

it does: then if we extend it further, it will intersect the segment

𝐵𝐶 on the side closer to 𝐵, i.e. in the interior of S𝜖 (𝑆) ∩ 𝑉𝑡 (𝐴),
this means that it has to intersect 𝜕S𝜖 (𝑆) ∩𝑉𝑡 (𝐴) twice on its way

from 𝐴 to 𝐵𝐶′′ which contradicts the fact that it is star-shaped. We

conclude that there is a bijection.

Patch. Same proof as Case (2).

Case (4): Points. 𝜕S𝜖 (𝜏𝑆 (𝐴)) intersects the 4 edges 𝐴𝐷 , 𝐵𝐶 , 𝐹𝐺 ,

and 𝐸𝐻 at one point per edge, and it does not intersect any of the

other edges ofV𝑡 (𝐴). The proof is the same as Case (2) for 𝐴𝐷 with

A in the kernel, same as Case (3) for 𝐵𝐶 and 𝐸𝐻 , with 𝐵 and 𝐸 in the

kernel, respectively. For 𝐹𝐺 , we observe that 𝜕S𝜖 (𝜏𝑆 (𝐴)) ∩ 𝐹𝐺 =

𝜕S𝜖 (𝜏𝑆 (𝑓012)) ∩ 𝐵𝐹 (Lemma 1) and 𝜕S𝜖 (𝜏𝑆 (𝑓012)) is a star domain

with 𝐹 in its kernel (𝜖 > 0) and 𝐺 outside (𝜖 < ∥𝐺 −𝐺 ∥), the edge

𝐹𝐺 must intersect 𝜕S𝜖 (𝜏𝑆 (𝐴)) exactly once.

Curves. 𝜕S𝜖 (𝜏 (𝐴)) intersects 4 quadrilateral faces 𝐴𝐵𝐶𝐷 , 𝐵𝐹𝐺𝐶 ,

𝐹𝐺𝐻𝐸, and 𝐴𝐸𝐻𝐷 , in four simple curves, one for each face, whose

boundary is composed of the vertices identified before. The proof

for all 4 faces is similar to face 𝐴𝐵𝐶𝐷 of Case (3), using 𝐴, 𝐵, 𝐸, and

𝐴 as projection points.

Patch. Same proof as Case (2).

□

From Theorem 2, it follows that all infinitesimal offsets are home-

omorphic to each other, as a bijective map can be defined between

each disk inside each convex cell.

Topological Offset. We established that infinitesimal offsets of a

simplicial complex are all manifold surfaces homeomorphic to each

other: their topology is unique for a given input surface. To decouple

geometry and topology, we introduce the concept of a topological
offset (Figure 6, green curve), which is a surface that is homeomor-

phic to an infinitesimal offset, but whose geometric embedding is

arbitrary (as long as it does not intersect the input surface). The

reason for not using the infinitesimal offset directly is practical: rep-

resenting it in a mesh might lead to infinitesimally small elements:

on the other hand, topological offsets can be computed reliably and

robustly.

Definition 3 (Topological Offset). A simple surface 𝑂 is a
topological offset of a non-intersecting simplicial complex 𝑆 ⊂ Ω if 𝑂
and 𝑆 do not intersect and𝑂 is homeomorphic to an infinitesimal offset
of 𝑆 , i.e., there exists a continuous and bijective function 𝑐 : 𝑂 → S𝜖 (𝑆)
for any 0 < 𝜖 < 𝜖 .

The function 𝑐 is a topological version of the closest point function

𝑐 used in the offset definition.

(1) Input (2) Simplicial Embedding

(3) Offset Initialization (4) Optimization

Fig. 9. The full 2D pipeline for generating the offset: (1) we start with a
simplicial complex embedded in a background mesh, (2) we make the em-
bedding simplicial (see highlighted vertices), which allows us to (3) generate
an initial topological offset, and (4) we optionally optimize the offset while
keeping the background mesh and offset valid.

5 TOPOLOGICAL OFFSET CONSTRUCTION
We now describe an algorithm (Figure 9) to compute a topological

offset of a simplicial complex 𝑆 . The algorithm has two steps (Sec-

tion 5.1 and Section 5.2) that are parameter-free, followed by an

optional geometrical optimization to improve the offset quality and

embedding, which we will describe in Section 5.3.

Input Preprocessing. If the input simplicial complex is not embed-

ded in a tetrahedral mesh, we embed it using TetWild [Hu et al.

2018]. Note that other algorithms could be used for this step, such

as TetGen [Si 2015] or Robust CDT [Diazzi et al. 2023]. The embed-

ded complex is a subset of the triangles, edges, or vertices in the

tetrahedral mesh tagged as belonging to the complex.

Step 1: Simplicial Embedding. We create a simplicial embedding

(Section 5.1) using a sequence of local operations. The pseudocode

for this step is described in Algorithm 1. This condition is essential
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input no simplicial embedding simplicial embedding

Fig. 10. By making the background mesh a simplicial embedding of the input
(white), we guarantee that the topological offset (blue) is homeomorphic to
the infinitesimal offset family. Without simplicial embedding, the topology
might be different (orange).

Fig. 11. Split operation for a tetrahedron, triangle, and edge.

to ensure the existence of the discrete counterpart of a topological

offset (Figure 10).

Step 2: Offset Insertion. We insert a topological offset in the back-

ground mesh using a topological variant of marching tetrahedra

(Section 5.2).

Step 3: Offset Optimization. Optionally, we optimize the tetrahe-

dral mesh (and consequently the offset) by increasing its quality

and adapting for various applications, as described in Section 5.3.

Output Postprocessing. The output of our algorithm is a tetrahe-

dral mesh with an embedded offset surface. The background mesh

can be discarded if the downstream application only needs the sur-

face mesh.

5.1 Step 1. Simplicial Embedding
We propose an algorithm to convert a simplicial complex embedded

in a tetrahedral background mesh 𝑀 (such as the one generated

by [Hu et al. 2018]) into a simplicial embedding by performing a

sequence of edge splits (Figure 11) to update 𝑀 . Algorithm 1 iterates

over every tetrahedron 𝑡 ∈ 𝑀 , and checks if the boundary of 𝑡 is in 𝑆

(line 2). In that case, it splits the tetrahedron (line 4). It then iterates

the same procedure on all triangles (line 5) and edges (line 8) that

are not in 𝑆 (Figure 12 shows some examples). Note that a split to

an edge or a face is propagated to the tetrahedra intersecting it.

Theorem 3 (Simplicial Embedding of a Simplicial Complex).

Algorithm 1 produces a mesh 𝑀 such that 𝑀 is a simplicial embedding
of 𝑆 .

Proof. After the first loop of Algorithm 1 completes, no tetra-

hedron has four faces in 𝑆 . If a tetrahedron has three or two faces

Algorithm 1 simplicial_embedding(𝑀, 𝑆):

Input: A mesh 𝑀 with an embedded simplicial complex 𝑆

Output: 𝑀′ is a simplicial embedding of 𝑆

1: 𝑀′ ← 𝑀

2: for each tetrahedron 𝑡 ∈ 𝑀′ do
3: if 𝑡 ∩ 𝑆 contains four triangles then
4: 𝑀′ ← split_tetrahedron(𝑀′, 𝑡, 𝑆)

5: for each triangle 𝑡 ∈ 𝑀′ do
6: if 𝑡 ∉ 𝑆 and 𝑡 ∩ 𝑆 contains three edges then
7: 𝑀′ ← split_triangle(𝑀′, 𝑡, 𝑆)

8: for each edge 𝑒 ∈ 𝑀′ do
9: if 𝑒 ∉ 𝑆 and 𝑒 ∩ 𝑆 contains two vertices then

10: 𝑀′ ← split_edge(𝑀′, 𝑒, 𝑆)

11: return𝑀′

Fig. 12. 2D exemplary results for applying Algorithm 1 to make 𝑀 a simpli-
cial embedding of 𝑆 (blue), and the resulting topological offsets (orange). For
illustration purposes, we omit the simplicial decomposition of the polygons.

in 𝑆 , then there is a face or faces that have three edges in 𝑆 , and

these faces will be split in the second loop. Therefore, after the first

two loops, all tetrahedra have no more than one face in 𝑆 . Suppose

a tetrahedron has a face and two or more edges not contained in

this face in 𝑆 . Then there are triangles not in 𝑆 with three edges in

𝑆 that will be split in the second loop, i.e., there is no more than

one edge in 𝑆 after the second loop. Thus, after the first two loops,

a tetrahedron may contain at most one face of 𝑆 and at most one

edge not contained in this face, and some number of vertices of 𝑆 .

Similarly, in the last loop, if there is a face and an edge, or a face

and a vertex, or an edge and a vertex, or two vertices, there will be

always an edge not in 𝑆 with two vertices in 𝑆 that will be split in the

third loop. We conclude that the output is a simplicial embedding

of 𝑆 .

□

5.2 Step 2. Offset Insertion
We insert the discrete topological offset into the background mesh

by using a binary version of marching tetrahedra [Guéziec and

Hummel 1995]: every tetrahedron that contains a vertex, an edge,

or a triangle of the input simplicial complex is partitioned using the

rules in Figure 8. We do not perform an interpolation as suggested in

[Guéziec and Hummel 1995], but we just place the inserted vertices

at the midpoint of the split edges.
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(1) (2) (3)

Fig. 13. Rules to generate the topological offset in 2D. For illustration pur-
poses, we omit the simplicial decomposition of the polygons. A convex cell
as it is used in Theorem 2 is depicted in red.

Theorem 4. The application of the rules in Figure 8 to a simplicial
complex 𝑆 simplicially embedded in a background mesh 𝑀 is a discrete
topological offset homeomorphic to a continuous one.

Proof. Case (1): No elements are added in this case.

Case (2): S𝜖 (𝑆) ∩V𝑡 (𝑣0) is homeomorphic to the orange triangle

in Figure 8 case (2) because it is also a disk intersecting the same

simplices. All other cells in the tetrahedron 𝑡 do not intersect S𝜖 (𝑆).
Thus, the rule constructs a disk homeomorphic to S𝜖 (𝑆) within 𝑡 .

Case (3): The cells V𝑡 (𝑣0) and V𝑡 (𝑣1) have a non-empty in-

tersection with S𝜖 (𝑆), and the offset 𝜕S𝜖 (𝑆) within every cell of

the tetrahedron 𝑡 is a disk (Theorem 2). The cells share the face

𝐵𝐹𝐺𝐶 = V𝑡 (𝑒01) and the disks’ boundaries intersect that face in the

curve 𝜕S𝜖 (𝑆) ∩V𝑡 (𝑒01). It follows that the union of the two disks is

also a disk. The orange polygon (that can be decomposed into two

triangles) in Figure 8 case (3) is also a disk and thus homeomorphic

to S𝜖 (𝑆) within 𝑡 .

Case (4): The cellsV𝑡 (𝑣0),V𝑡 (𝑣1), andV𝑡 (𝑣2) have a non-empty

intersection with S𝜖 (𝑆), and the offset 𝜕S𝜖 (𝑆) within every cell of

the tetrahedron 𝑡 is a disk (Theorem 2). The cells share faces in the

same manner as in case (2), e.g.,V𝑡 (𝑣0) andV𝑡 (𝑣2) share the face

𝐸𝐹𝐺𝐻 = V𝑡 (𝑒02). It follows that the union of the three disks is also

a disk. The orange triangle in Figure 8 case (4) is also a disk and

thus homeomorphic to S𝜖 (𝑆) within 𝑡 .

□

The mesh, composed of all polygons constructed from the rules

in Figure 8, is manifold, as it is homeomorphic to an infinitesimal

offset (Theorem 4) which is manifold (Theorem 1).

While we prove the correctness of our method only for a simplicial

complex embedded in a tetrahedral mesh, it is possible to prove a

similar result in 2D, which leads to the patterns in Figure 13. We

show an example of the 2D algorithm in Figure 14, where the input

is a sequence of marked edges in a triangle mesh.

We note that Algorithm 1 is purely topological. The coordinates

of the vertices of 𝑀 are never used, which makes our algorithm

unconditionally robust. We note, however, that the computation of

the vertex positions after a split might lead to inverted elements if

the rounding error is larger than the length of the edge. We show

an example of such a problematic case in Figure 25, and note that

Fig. 14. Our method can also construct topological offsets in 2D.

Fig. 15. A varying offset distance applied to the armadillo.

input uniform offset distance adapted offset distance

Fig. 16. We prevent offset from getting too close (orange) by locally adapting
the offset distance (blue).

this only happened once in our large-scale evaluations (Section 6).

See Section 5.4 for additional details on this problem.

5.3 Step 3. Offset Optimization
The inserted topological offset depends on the resolution of the

background mesh: a finer mesh will create an offset closer to the

input surface while a coarser mesh will have an offset further away.

To remove this dependence from the background mesh and to allow

customization of the embedded offset, we introduce an optimization

algorithm that modifies the connectivity and geometry of the offset

while preserving its topology and avoiding self-intersections and

intersections with the input.

User Parameters. While the generation of a topological offset does

not require any parameters, we introduce a primary parameter to

control desired distance 𝛿 of the offset from the input simplicial

complex (which could be spatially adaptive, Figure 15). We note that

this is a desideratum: it is, in general, impossible to guarantee an

arbitrary distance while preserving the infinitesimal offset topol-

ogy (Figure 16). The other parameters control the tradeoff between

geometrical accuracy and running time: (1) the maximum normal

deviation 𝜎max = 15◦ which controls how well the mesh should
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Fig. 17. Effect of the offset distance and normal deviation on the output.

input

#𝑡 = 48 126

𝛿 = 1%
#𝑡 = 100 442

𝛿 = 1%
#𝑡 = 2 518

𝛿 = 2%
#𝑡 = 32 082

𝛿 = 2%
#𝑡 = 1 554

𝛿 = 4%
#𝑡 = 10 298

𝛿 = 4%
#𝑡 = 458

Fig. 18. Setting ℓmin = 100% (relative to the bounding box diagonal) and
𝜎max = 90◦ leads to coarse topological offsets. The top row shows the offset
meshes with default parameters.

adapt to the offset curvature (Appendix A), (2) 𝜎min = 2◦ which con-

trols when the offset curvature is considered planar, (3) ℓmax = ∞
and (4) ℓmin = 2𝛿 sin(𝜎max) the maximum/minimum edge length.

Increasing the maximum normal deviation leads to a less smooth

offset surface (Figure 17), while increasing ℓmin leads to coarse re-

sults (Figure 18). Finally, our method can generate outside and inside
offsets if the input is closed and oriented (Figure 19).

Termination. The optimization terminates if the average 𝜎max

does not decrease by more than 0.5◦ across iterations, if both the

maximum and mean distance error do not decrease by more than

0.5%𝛿 , or after 10 iterations.

−2 % input +2 %

Fig. 19. For closed surfaces, our method can generate inside (left) or outside
(right) offsets.

Distance Adaptation Conservative Estimation Optimization

Fig. 20. Overview of our topological offset optimization.

Optimization Overview. The optimization algorithm proceeds in

3 steps (Figure 20): we estimate a spatially adaptive distance 𝛿 that

is as close as possible to 𝛿 (Section 5.3.1), we then use a topological

marching front algorithm to modify the offset to be as close as

possible to 𝛿 (Section 5.3.2), and finally optimize it with a set of

topological and geometrical local operations (Section 5.3.3).

5.3.1 Distance Adaptation. As we enforce the infinitesimal offset

topology, it might happen that two different parts of the offset col-

lide during optimization (Figure 16). We do the best effort to avoid

such collisions by locally reducing the offset distance. After initial-

izing the topological offset, we greedily expand the offset volume

without changing its topology. We then compute the distance of

the expanded volume’s boundary to the input, propagate it back to

the input, and eventually use this newly computed distance as our

spatially varying distance 𝛿 .

Greedy Expansion. To estimate the maximum possible offset dis-

tance, we grow the offset volume using a marching front algorithm.

We add tetrahedra to the offset volume (the volume enclosed by

the offset surface and the input) if they do not modify the topology

of the offset surface. That is, a tetrahedron may only be added to

the offset volume if it intersects the surface in one, two, or three

faces and their incident edges and vertices. We initialize a queue
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Fig. 21. Circle approximation of a triangle to check if it is inside (green) or
outside (red) the offset volume. A circle (grey) is subdivided if it intersects
the offset surface (blue).
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Iterations

Fig. 22. Iterations of the optimization of a topological offset without proper
initialization. While the algorithm manages to lower 𝛿avg, it plateaus around
15%. With proper initialization, it converges to 1.6% in 5 iterations (Figure 23).

with all tetrahedra that are face adjacent to the offset volume. If a

tetrahedron is added to the volume, its face-adjacent neighbors are

added to the queue.

A tetrahedron 𝑡 can only be added to the offset volume if it is

within the offset distance 𝛿 . We conservatively approximate 𝛿 by

enclosing 𝑡 into a sphere (Figure 21). If the sphere is farther than 𝛿 ,

𝑡 is outside. In the other case, we decompose 𝑡 into 8 sub-spheres

and repeat the procedure until either all spheres touching 𝑡 are

outside, one sphere is inside, or the radius is smaller than 10%𝛿 .

In the latter cases, we conservatively consider 𝑡 to be inside. The

output of this procedure is a region of space around the input that

is homeomorphic to the offset volume.

Distance Propagation. We start by assigning the target distance 𝛿

to every vertex on the boundary of the expanded offset volume. Then,

we select every tetrahedron vertex adjacent to the expanded offset

volume, compute the distance between its barycenter and the input,

and update the assigned distance value by selecting the smallest

of the values. To propagate this distance from the boundary to the

input surface, we use harmonic interpolation on the background

mesh. We store the solution on the vertices of the input simplicial

complex as adapted offset distance 𝛿 .

We discard the expanded offset volume after the distance propa-

gation and re-compute it using the new 𝛿 to improve the geometry

of the topological offset before optimization.

𝛿
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= 13.24º

¾
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= 14.97º

¾
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Iterations

Fig. 23. Iterations of the optimization of a topological offset. The average
relative distance error 𝜖avg and normal deviation 𝜎avg converge very fast
when the offset was properly initialized.

5.3.2 Conservative Estimation. Our goal is to expand the offset vol-

ume such that its boundary (the offset surface) is as close as possible

to the adapted offset distance 𝛿 . We expand the offset volume using

the marching front method described in Section 5.3.1, but we modify

the distance approximation to make it conservative. A tetrahedron

𝑡 is only added if it is completely within distance 𝛿 . Similar to Sec-

tion 5.3.1, we measure the distance by enclosing 𝑡 into a sphere.

If the sphere is within 𝛿 , 𝑡 is inside. In the other case, we decom-

pose 𝑡 into 8 sub-spheres and repeat the procedure until either all

spheres touching 𝑡 are inside, one sphere is outside, or the radius is

smaller than 10%𝛿 . In the latter cases, we conservatively consider 𝑡

to be outside. Note that here, the expansion is conservative and not

greedy as in Section 5.3.1.

The conservative estimation does not just improve performance,

but also avoids the optimization to get stuck in local minima (Fig-

ure 22).

5.3.3 Optimization. Our optimization algorithm is composed of

three steps, which are repeated until convergence: (1) we update

a sizing field, (2) we modify the offset mesh, improving its quality

and moving its vertices to the desired distance from the input, and

(3) we modify the background mesh, increasing its quality. In all

iterations, the meshes are modified using a set of local operations,

following [Botsch and Kobbelt 2004]: our algorithm iterates passes

of splits, collapse, swaps, and vertex relocation. These operations

are always performed on the background mesh: if the algorithm

tries to split an edge of the offset mesh, this operation is applied to

the corresponding edge of the background mesh or vice versa. Note

that average normal deviation and relative distance error converge

very fast due to the conservative estimation (Figure 23).

Invariants. The operations are executed only if their effect on the

mesh satisfies the following invariants: (I1) the input surface and the

boundary are not modified, (I2) the orientation of all tetrahedra in

the background mesh is preserved (tested using the exact predicate

in [Shewchuk 1996]) and (I3) the topology of the offset and input

surface is preserved [Vivodtzev et al. 2010].
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Fig. 24. Our topological offsets can handle a large variety of offset distances. Regions where the offset distance was adapted are colored in red.

Theorem 5. Let 𝑀 be a background mesh containing a simplicial
embedding 𝑆 and an offset surface 𝑂 . The mesh 𝑀′ computed after
performing any sequence of local operations satisfying the invariants
I1, I2, and I3 contains a new surface 𝑂 ′ homeomorphic to 𝑂 that does
not intersect 𝑆 .

Proof. 𝑂 ′ is homeomorphic to 𝑂 due to the explicit avoidance

of operations changing its topology (I3), we refer to [Vivodtzev et al.

2010] for details. 𝑂 ′ cannot intersect 𝑆 because I1 and I2 imply that

there is always a continuous bijection between the points in 𝑀 and

𝑀′ [Lipman 2014]. □

It follows from Theorem 5 that topological offsets are preserved

by our mesh optimization.

Step 1: Sizing Field Update. Edge split and collapse operations are

driven by a sizing field that is defined on each edge of the offset

mesh and is initialized with the current length of each edge.

In each update pass, if one of the incident triangles has a shape

regularity below 0.5 or a normal deviation above the user-defined

maximum 𝜎max, we divide the target length by two. If shape regular-

ity is below 0.5 and the normal deviation is above 𝜎min, we increase

the target length by 1.5. After this update, to keep the sizing field

smooth, we cap the target length to 1.5 times the length of any

adjacent edge.

Step 2: Local operations. Every edge that has a length greater than

4/3 of its target length is split. The new vertex is positioned at

the center of the edge. All edges that are shorter than 3/4 of their

target length are collapsed. We perform half-edge collapses. While

there are no extra conditions for splits, a collapse is only performed

if the user-defined maximum normal deviation is not exceeded.

Both operations are scheduled according to the current edge length

but for splits, long edges are prioritized, while for collapse, the

short ones are considered first. Edges are swapped if the operation

increases the minimal triangle shape regularity (Appendix A) of the

two adjacent triangles. The swap is not performed if the normal

deviation before the operation is below the user-defined maximum

and would be above afterward. Long edges are prioritized in the

swap operation. We adapt the vertex relocation method proposed

in [Zint et al. 2023] to work with a spatially varying offset distance.

We compute the offset distance for a vertex as the area-weighted

average of offset distances at the sample points of the adjacent

triangles. If the computed position would cause a tetrahedron from

the background mesh to be flipped, we perform a binary search

along the way to the computed position to find a valid position. If

no valid position can be found, we do not move the vertex.

Figure 24 shows different results of our topological offsets for

different distances on 3 models from Thingi10k [Zhou and Jacob-

son 2016] where the distance was locally adapted (Table 1 shows

the statistics). All the depicted examples have an average relative

distance error below 3%, an average normal deviation below 20◦,
and an average triangle shape regularity of at least 0.78. The quality

metrics are explained in Appendix A.
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input offset volume

Fig. 25. Our method fails if an edge split during the offset initialization
causes tetrahedra to invert due to numerical inaccuracy. In this example,
we try to compute two offsets, one at 10−11 and a second one at 10−12.

Step 3: Embedding Optimization. We use the optimization scheme

that was presented in [Hu et al. 2018] with two minor modifications

(in addition to the aforementioned invariants) to make it more effi-

cient, as we are not interested in obtaining a background mesh of

very high quality: we only want the background mesh to not hinder

the movement of the offset. First, we trigger the update of the sizing

field if the tetrahedron AMIPS energy is above 100 (instead of 8)

and limit the target edge length to three times the length of any

adjacent edge. Second, we only optimize the two-ring neighborhood

of a tetrahedron with AMIPS above 100.

5.4 Robustness and Failure Cases
We now analyze our algorithm from a robustness perspective, dis-

cussing precisely which guarantees it provides and what are the

potential failures.

Step 1 and 2. The decision of where to split is purely topological.

However, the background mesh might flip after the split if an edge

is shorter than the rounding error (Figure 25). This is not a practical

concern, but a fully robust solution could be obtained by using a

hybrid floating point/rational representation, following the same

idea in [Hu et al. 2018].

Step 3. The invariants in the optimization are either purely topo-

logical (I1 and I3), or checked using exact predicates [Shewchuk

1996] (I2). While there are no guarantees that the prescribed distance

will be obtained, this step cannot fail and will always terminate after

10 iterations.

Properties. The generated offsets are thus guaranteed to be home-

omorphic to an infinitesimal offset, do not intersect the input sim-

plicial complex, and their embedding is free of self-intersections.

We show a large-scale validation of our implementation in Sec-

tion 6. We note that using a tetrahedral background mesh makes

these strong guarantees possible, enabling us to reduce challeng-

ing checks (self-intersections, topological correctness) to an exact

Orient3D predicate.

6 RESULTS
We created topological offsets for the entire Thingi10k dataset [Zhou

and Jacobson 2016], which was embedded in a background mesh

using TetWild [Hu et al. 2018] with default settings. We run our

experiments on cluster nodes with a Xeon E5-2690 v2 @ 3.00GHz.
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Fig. 26. Runtime of topological (blue) and finite (green) offsets.

We use the winding number to identify the outer part of the surface

and create a one-sided offset. We skipped the 233 meshes where the

winding number failed to identify a closed internal volume. This left

9 767 meshes in our experiments. We cap the runtime at 24 hours or

stop when the convergence criteria from Section 5.3.3 (Termination)

are met. We compute offsets on the dataset with a target distance

𝛿 = 4% relative to the bounding box size. We are not aware of any

existing method that produces topological offsets, and therefore,

we cannot directly compare with any previous work. To enable

direct comparisons, we introduce a minor variant of our algorithm

to create finite offsets: this variant is described and compared with

state-of-the-art offset methods in Section (Section 7.1).

Large-Scale Testing. Our algorithm produces a valid topological

offset, embedded in a valid background mesh, for all models of the

dataset except for one, where no edge split could be performed with-

out generating inverted elements. For more details on that matter,

see Section 5.4. 55.24% of the models finish within 6 minutes, and

only 275 models (less than 3%) take more than one hour (Figure 26);

these are highly complex models (Figure 27). The overall memory

consumption is low, considering that our method processes tetrahe-

dral meshes. 9 764 models use less than 16 GB of memory, and the

remaining 3 use less than 64 GB.

Density and Quality. Our topological offsets can have many trian-

gles (Figure 28) as they always have the topology of an infinitesimal

offset and, therefore, maintain the details present in the input (Fig-

ure 27). There are few results (Figure 29) with an average normal

deviation larger than 20◦ as the normal deviation error depends

both on the edge length and the offset distance. Our experiments

show that these are models where we adapt the offset distance ev-

erywhere. By reducing the edge length, we can achieve the target

normal deviation even for the adapted offset distance (Figure 30).

Distance Adaptation. The distance adaptation relies on a heuris-

tic that might fail under certain circumstances, since the greedy

expansion (Section 5.3) might overestimate the offset. The geom-

etry of the estimation and the actual topological offset might be
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Fig. 27. For models with high geometric fidelity, the topological offset (blue)
contains way more triangles, whereas finite offsets (green) remove geometric
details.

N
u

m
b

e
r

o
f

m
o

d
e
l
s

0%

10%

20%

30%

40%

50%

0 10K 20K 30K 40K 50K 60K 70K 80K

Number of triangles

Fig. 28. Number of offset triangles of Alpha Wrapping (red), FPO (yellow),
our finite offsets (green), and our topological offsets (blue).

different, and in such a case, the distance might not be adapted

properly. In Figure 31, we adapted the distance for the 2% offset,

while no adaptation was necessary for 7%. The greedy expansion of

4% overestimates the geometry and is more similar to the one of the

7% distance, where no adaptation is necessary; this leads to very

close offsets but never intersecting, as we prohibit that with exact

predicates (Section 5.3). Note that, for this example, the input and

the offsets are of genus 0, so for large distances, the offset converges

to a sphere.

7 APPLICATIONS
We present several applications of our topological offset: an algo-

rithmic variant for producing finite offsets (Section 7.1), construc-

tion of multiple offset layers which guarantees that the offsets are
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Fig. 29. Average normal deviation of Alpha Wrapping (red), FPO (yellow),
our finite offsets (green), and our topological offsets (blue).

Fig. 30. The minimal edge length can be adapted (teal) if the normal devia-
tion is large (blue) for a given offset distance and model (white).

input 2% 4% 7%

Fig. 31. Topological offsets might be very close (but never intersecting) as
the local offset distance adaptation might be inaccurate.
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Fig. 32. With a small modification, our offsets become finite (like those
produced by other methods). Our finite offsets (like our topological ones) are
guaranteed to enclose the input and are manifold and self-intersection-free.

intersection-free (Section 7.2), and the use of topological offsets to

remove non-manifold simplices (Section 7.3).

7.1 Finite Offsets
We can adapt our algorithm to produce finite offsets with minor

modifications (Figure 32). Note that in this case our algorithm does

not produce an offset homeomorphic to an infinitesimal one and,

similarly to all other finite offset methods, is not guaranteed to

compute an offset with the same topology as the exact finite offset

with the prescribed distance, it is only an approximation. However,

our finite offsets are still manifold, self-intersection-free, and enclose

the input.

For finite offsets, we expand the topological offset (Section 5.3.2)

without any topological condition. After we grow the region to the

desired distance, we generate another topological offset around it so

that we can ensure that the offset is manifold, even if the expanded

offset volume is not. While the topology of the topological offsets

is independent of the resolution of the embedding, this is not true

for finite offsets. We compute finite offsets for the entire Thingi10k

dataset and observe that the running time is reduced compared to

topological offsets due to the reduced geometric complexity (Fig-

ure 26); 63.7% of the models finish within 5 minutes. Just 21 models

(0.2%) take more than one hour. None of our finite offsets has a

normal deviation larger than 20◦ (Figure 29).

7.1.1 Comparison. We compare our finite offsets (Section 7.1) with

Feature-Preserving Offsets (FPO) [Zint et al. 2023], and 3D Alpha

Wrapping in CGAL [Alliez et al. 2024]. We run FPO with default

parameters except for the normal deviation which we set to 15◦. For

Alpha Wrapping, we set 𝛼 = 𝛿/5, which he chose to produce similar

results. Note that Alpha Wrapping is not an offsetting method and,

therefore, does not claim to be feature-preserving or topologically

correct. We chose this method to compare against because it comes

with similar guarantees to ours (watertight, orientable, and strictly

contains the input).
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Fig. 33. Relative average distance error of Alpha Wrapping (red), FPO (yel-
low), our finite offsets (green), and our topological offsets (blue).

[Alliez et al. 2024] [Zint et al. 2023] ours

Fig. 34. All three methods perform equally well on simple models. [Alliez
et al. 2024] in red, [Zint et al. 2023] in orange, and ours in green.

Normal Deviation. All four methods produce meshes with similar

average normal deviation (Figure 29). Alpha Wrapping performs

slightly better, which can be explained by the larger number of

triangles (Figure 28).

Offset Distance. We report the average distance error relative to

the user-defined target distance in Figure 33. Again, Alpha Wrapping

(red) performs best, but it also has the largest amount of triangles,

which influences the metric. Our method is adaptive to curvature

and therefore places more triangles where normal deviation is high,

while Alpha Wrapping has a uniform triangle distribution and there-

fore more triangles in flat regions with zero normal deviation.

Qualitative Comparison. On simple models, like the one in Fig-

ure 34, Alpha Wrapping, FPO, and our finite offsets perform equally

well. However, our method requires significantly more time to pro-

duce similar results. Alpha Wrapping and FPO finish in 2.6 and
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[Alliez et al. 2024] [Zint et al. 2023] ours

Fig. 35. Our method is the only one with a varying sizing field.

[Zint et al. 2023] [Alliez et al. 2024] ours input

Fig. 36. Our method (green) is well suited for small offset distances. We use
𝛿 = 0.01% and set ℓmin to the average input edge length (white) for ours
and FPO (orange). For Alpha Wrapping (red), we set 𝛼 = 50𝛿 to achieve
comparable edge lengths.

[Alliez et al. 2024] [Zint et al. 2023] ours

Fig. 37. Offsets generated with different methods.

Fig. 38. Layered finite offsets at 8%, 4%, 2%, 1%, and 0.5% of the bounding
box size.

33.7 seconds, respectively, while our method needs 242 seconds.

This overhead is caused by the background mesh that needs to be

updated. Our method returns a tetrahedral mesh in which the input

and offset are embedded, while the others only generate surfaces.

Our method uses a sizing field to be adaptive to the offset cur-

vature. Flat regions are not unnecessarily refined (Figure 35) while

the mesh is denser in regions with high curvature compared to the

meshes from the other methods.

Our method is well suited for small offset distances (Figure 36).

In this example, we set ℓmin to the input average edge length to

avoid unnecessary refinement. Alpha Wrapping introduces artifacts

in convex regions (we picked 𝛼 so that it creates a similar number

of triangles as the input). For such a small distance, FPO produces

visible intersections (white speckles in Figure 36) and overrefines

the offset even with the minimal edge length restricted.

An extreme challenge for offset methods is when two offsets

are almost colliding (Figure 37). Alpha Wrapping cannot enter the

thin area in between the two offsets. FPO produces a good-looking

result from the outside but generates self-intersections on the in-

terior. Our method produces the desired outcome and is free of

self-intersections.

7.2 Layered Offsets
We can construct multiple (finite or topological) non-intersecting

offset layers by adding a simple condition to the offset initialization

(Figure 38). The outermost layer must be generated first. For the next

layer, the offset volume expansion (Section 5.3.2) must not touch

any previously generated layer. This guarantees that all layers are

intersection-free.

7.3 Manifold Extraction
A common way to remove non-manifold vertices is to duplicate

them and displace them in the opposite normal direction. While

this method is simple, it comes with several drawbacks. First, it

is not guaranteed that a valid normal direction always exists, and

therefore it can fail for certain scenarios. Second, if the mesh was

embedded in a background mesh, the region around the duplicated

vertex needs to be remeshed. For an in-depth discussion of related

work, we refer the reader to [Attene et al. 2009].

We can remove non-manifold simplices from a mesh by con-

structing a topological offset around them. First, we detect all non-

manifold simplices and consider them as the input for our topolog-

ical offset. Second, we remove all simplices from the input mesh

within the offset region, obtaining a manifold mesh.
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Fig. 39. Increase in the number of triangles required to make the meshes
manifold.

Our algorithm is guaranteed to generate manifold meshes and

to keep the embedding valid; however, it might add unnecessary

vertices to the surface. To mitigate this effect, we perform a “clean-

up” after inserting the offset: we collapse edges within the region

of the same non-manifold vertex. We only perform collapses that

maintain a valid embedding. Finally, we push all remaining vertices

to a user-defined offset distance. If the desired distance would cause

tetrahedral inversions, we use a binary search to find a valid position.

If we cannot find a valid position, we keep the vertex where it is.

This method has similarities to one of the methods presented in

[Attene et al. 2009]: this method requires specifying a radius for

the removal of the non-manifold points, and different choices of

this radius will create different topologies. In contrast, our method

is parameter-free and can be implemented robustly using floating-

point computation only.

We run the non-manifold removal algorithm on the 1053 models

from Thingi10k [Zhou and Jacobson 2016], processed by TetWild

[Hu et al. 2018], whose surfaces are non-manifold. The algorithm

succeeds for all models, i.e., there are no issues with floating point

accuracy, no models contain inverted elements, and all surfaces

do not intersect and are manifold. In Figure 39, we summarize the

results: for 970 out of the 1053 models (92%), our method introduces

less than 10% more triangles on the surface. There are only 4 models

where the element count doubles since almost all surface vertices

and edges are non-manifold. Figure 40 shows how non-manifold

vertices and edges are successfully removed.

8 CONCLUDING REMARKS
We introduced topological offsets, an algorithm for computing them

robustly, and demonstrated their relevance in a wide range of graph-

ics applications.

While computationally more expensive than competing finite

offset methods, our algorithm generates the unique topology of an

infinitesimal offset, and guarantees to produce self-intersection-free

offsets that strictly enclose the input. We use these guarantees to

extend our construction to multiple offsets (topological or finite)

non-manifold input manifold output

Fig. 40. Example of removal of non-manifold regions using our algorithm.

that inherit the same guarantees and therefore are strictly enclosing

each other.

Exploring the use of this approach to create layered offsets (bound-

ary layers) with exponentially increasing thickness and their use

for fluid simulation is an exciting avenue for future work. Addition-

ally, we plan to explore parallel or distributed mesh optimization

methods to reduce the running time difference compared to other

offset methods.
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A QUALITY METRICS
Throughout the offset optimization, we use 3 quality metrics to test

for convergence and to determine which operations to perform.

Definition 4 (Triangle Shape Regularity). The shape regular-
ity of a triangle 𝑡 as defined in [Bank and Smith 1997] is its area 𝐴(𝑡)
multiplied by a normalization pre-factor of 4

√
3 and divided by the

sum of squared edge lengths,

𝑞𝑠𝑟 (𝑡) = 4
√

3𝐴(𝑡)/(𝑙21 + 𝑙
2
2 + 𝑙

2
3 ) .

The shape regularity is zero for a degenerate triangle and one for an
equilateral one.

Definition 5 (Triangle Normal Deviation). The normal de-
viation 𝜎 (𝑡) of a triangle 𝑡 is the maximum angle between the offset
normal 𝑛(𝑝) at the triangle center 𝑝𝑐 and the offset normal at any
other point 𝑝𝑖 within the triangle, excluding its boundaries,

𝜎 (𝑡) = max
𝑝𝑖 ∈𝑡
(∡(𝑛(𝑝𝑐 ), 𝑛(𝑝𝑖 )) .

The offset normal can be computed for any point in space by

finding the projection point on the offset and normalizing the vector

from the point in space to its projection. We compute the normal

deviation of a triangle by comparing 𝑛(𝑝𝑐 ) with offset normals close

to the vertices 𝑝𝑣 of the triangle, more precisely at the positions

𝑝𝑖 = 0.1𝑝𝑐 +0.9𝑝𝑣 . This choice is motivated experimentally, as using

more sampling points increases the running time with negligible

improvements in quality.

Definition 6 (Offset Distance Error). The offset distance error
of a point on the offset mesh 𝑂 is the absolute value of the distance of
that point to the surface 𝑆 minus the targeted offset distance 𝛿 .
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