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Fig. 1. Soft body simulations [Ferguson et al. 2023] of twisting a beam in 3D (left) and twisting the inner circle of a fat ring in 2D (right), without (top) and with
(bottom) our continuous validity check. The high-order invalid elements are marked in red, and the scaled Jacobian distribution is shown on the right. Without
our method, the Twist-beam example has 1 and 161 invalid elements at t=3 s and t=7 s respectively; the Twist-ring example has 11 and 31 invalid elements at
t=0.4 s and t=1 s respectively. With our validity check and adaptive quadrature refinement scheme, the simulations do not contain any invalid elements.

We propose a conservative algorithm to test the geometrical validity of

simplicial (triangles, tetrahedra), tensor product (quadrilaterals, hexahedra),

and mixed (prisms) elements of arbitrary polynomial order as they deform

linearly within a time interval.

Our algorithm uses a combination of adaptive Bézier refinement and

bisection search to determine if, when, and where the Jacobian determinant

of an element’s polynomial geometric map becomes negative in the transi-

tion from one configuration to another. In elastodynamic simulation, our

algorithm guarantees that the system remains physically valid during the

entire trajectory, not only at discrete time steps. Unlike previous approaches,

physical validity is preserved even when our method is implemented using

floating point arithmetic. Hence, our algorithm is only slightly slower than

existing non-conservative methods while providing guarantees and while

being an easy drop-in replacement for current validity tests.

To prove the practical effectiveness of our algorithm, we demonstrate

its use in a high-order Incremental Potential Contact (IPC) elastodynamic
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simulator and experimentally show that it prevents invalid, simulation-

breaking configurations that would otherwise occur using non-conservative

methods.
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1 INTRODUCTION
In computer graphics, mechanical engineering, and scientific com-

puting, physical objects are often modeled using meshes composed

of simple elements, such as tetrahedra, hexahedra, and prisms. Each

element is typically associated with two maps: (1) a geometric map

that defines the element’s shape; and (2) a basis map that extends

quantities (such as displacement or velocities) defined at the ele-

ment’s nodes into its interior. For rendering, linear polynomials

(hat functions) are commonly used for both maps, but higher-order

versions are widely employed when greater accuracy is required.

When the basis map is used to interpolate a displacement, the el-

ement’s geometry is derived by combining the initial geometric

map with the basis map, yielding a polynomial whose order corre-

sponds to the highest of the two. A typical example in graphics is the

use of second-order elements in finite element (FE) simulations for

fabrication [Panetta et al. 2015], which generates quadratic curved

elements even if the initial geometric map is piecewise linear.
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In the following, we will overload the term geometry map to

describe the final geometry of an object, which can thus also incor-

porate the displacement basis map. In mathematical notation, this

is defined with a polynomial function:

𝑥 : 𝜎 −→ R𝑛,

where 𝜎 represents a reference element domain (such as a stan-

dard simplex or multi-interval), and 𝑛 denotes the dimension of the

element. See Figure 2 for examples.

During animation or simulation, objects are deformed by modify-

ing the geometry map, the basis map, or both: these modifications

are usually performed by applying linear transformations to the

map coefficients. Note that, for a piecewise linear geometric map,

this reduces to the usual interpolation of the coordinates of the

mesh vertices. Similarly, for curved meshing, it is also typical to

start with a piecewise linear mesh and then curve its elements to

reduce the approximation error [Toulorge et al. 2013].

Since these meshes are used to represent physical objects, a basic,

yet elusive, requirement is that the geometry of the object does not

self-intersect at any time during deformation. This condition can

be violated in two ways: (1) by a global intersection or (2) by a local

lack of injectivity of the geometric map. The first problem has been

studied thoroughly in the parametrization and simulation literature,

at least for linear elements [Smith and Schaefer 2015; Wang et al.

2021a]. The second condition has been considered mostly in the

context of mesh parametrization, and, even in that case, no robust

algorithm exists (see Section 3). In this work, we focus on the latter.

Problem statement. We denote with 𝑥 a geometric map that is

dynamically changing over time and we study its injectivity. This

reduces to studying the sign of the determinant of its Jacobian |𝐽𝑥 |
to assess the continuous validity of the element, i.e., if, where and

when |𝐽𝑥 | becomes negative. We note that this is a subtly challenging

problem even for the simple case of a linear triangle (Figure 3): an

element that is valid in its initial and final configurations might

become invalid during the trajectory.

Conservative answer. An indispensable requirement for the ro-

bustness of simulations is that they employ conservative algorithms:

that is, a program that only reports results whose correctness cannot

be influenced by approximation errors. Thus, a Boolean predicate

(such as asking whether an element is valid or not) is required to

return a third "undecided" value if the approximation error is large

enough to make the naive result unreliable. Conversely, if the algo-

rithm returns an answer, that answer must be provably correct. In

the context of continuous validity, we wish to find the maximum

time step 𝑡∗ such that the element is provably valid at all times in

[0, 𝑡∗): a conservative answer can be any value 𝑡 ∈ [0, 𝑡∗). Obviously,

in practice, it is also desirable that 𝑡 be as close to 𝑡∗ as possible.

Brief summary of the state of the art. A common approach among

practitioners is testing the validity of elements by just computing

the value of |𝐽𝑥 | at quadrature points at every time step, as done,

e.g., by Dey et al. [2001]. This might fail to detect invalidity even

in static tests, let alone the continuous case. Smith and Schaefer

[2015] study the continuous problem for the specific case of 2D

linear triangles, reducing it to a quadratic root finding, which is

solved numerically; this approach is hard to extend to 3D or to

higher-order polynomials. Other approaches exist to resolve the

static test for high-order elements [Johnen et al. 2014], but they are

neither conservative nor easily extensible to the continuous test.

More detail on the state of the art is provided in Section 3.

Contribution. We introduce the first generic formulation and al-

gorithm for the continuous validity test of elements, supporting

the most common types — such as triangles, quadrilaterals, tetra-

hedra, prisms, and hexahedra — and extending to high-order basis

and geometric maps. Our algorithm is provably conservative when

implemented using floating-point arithmetic, meaning that if an

element is detected to be valid, it is guaranteed to remain valid

throughout the entire specified time interval. This level of robust-

ness, crucial for algorithmic reliability, has not been achieved by

any previous method.

If an element becomes invalid at any point, our algorithm pro-

vides a conservative estimate of the inversion time and introduces

a custom quadrature rule that accurately reflects the detected inver-

sion. Specifically, this means that the numerical integration diverges

when the element inverts, a property not provided by adaptive quad-

rature rules commonly used in high-order finite elements.

While designed for the dynamic case, our algorithm can also be

used for the static case, with minor modifications: in this setting,

our algorithm is the first algorithm to provide a conservative static

geometrical validity test for high-order elements.

Evaluation. Our algorithm is designed and implemented for high

performance, as its use-case is within optimization loops requir-

ing the testing of large datasets: on static checks, we demonstrate

that our test is competitive in terms of runtime with current non-

conservative methods, being slightly slower while guaranteeing a

conservative answer. To quantitatively evaluate the correctness and

efficiency of our approach and compare it with more specialized

alternatives, we construct a dataset of 2D and 3D time-dependent

queries whose ground truth is computed using (extremely expen-

sive) symbolic root finding.

Applications. Having access to a conservative check we discov-

ered that it is very common for high-order FE simulations to contain

invalid elements in their solution; we show examples in PolyFEM

in Figures 1 and 12. This seems to be a common problem with high-

order FE codes: for example, FEBio [Maas et al. 2012] also uses a

static check only at quadrature points. This issue is rarely mentioned

in the literature [Anderson et al. 2014; Dobrev et al. 2019] and we

are not aware of other papers proposing a solution. We believe that

the presence of invalidity is due to the use of insufficiently accurate

quadrature to capture the infinite elastic potential inside some of

the most distorted elements. This is a major source of both the nu-

merical fragility of this software and inaccuracy in the solution as

physically invalid configurations are reported as the simulation re-

sult. By replacing the validity check and the quadrature in PolyFEM

with our approach, we show that these issues disappear and the

impact on performance is moderate.

Impact. We believe our algorithm will be an essential addition to

the growing toolkit of robust geometric building blocks used in mod-

ern parametrization, meshing, and simulation algorithms. To foster

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: June 2025.
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Fig. 2. A reference domain 𝜎 is mapped to linear elements (Left) and quadratic elements (Right). Quadratic elements can be given either by an initial quadratic
geometry or by combining an initial linear geometry with a quadratic displacement. Geometric maps on a Lagrangian basis are specified by mapping the
domain points 𝑃𝑖 to control points 𝑥 𝑗 (𝑃𝑖 ) . Blue and red areas denote a positive and negative determinant of the Jacobian, respectively. In both cases, element
𝑥2 (𝜎 ) is invalid. In the linear case, the whole element is inverted, while in the quadratic case, only a small portion of 𝑥2 (𝜎 ) is inverted.
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Fig. 3. A dynamic linear element with linear trajectories that flips twice
in a time interval, resulting in an element that is valid at both time steps,
but invalid in the transition. Assuming point 𝐴 remains fixed, the arrows
represent the velocities of points 𝐵 and 𝐶 to reach the final position. The
color of each element indicates the sign of the determinant at time 𝑡 : blue
if positive and red if negative. The dynamic element’s Jacobian determinant
is a univariate polynomial in 𝑡 of degree 2, with two distinct roots in [0, 1].

its adoption, we provide an open-source reference implementation

at https://gitlab.com/fsichetti/hocgv.

2 OVERVIEW OF THE METHOD
Given a dynamic element 𝑥 (𝜎) deforming linearly over the time

interval [0, 1], we study the determinant of its Jacobian |𝐽𝑥 | (Sec-

tions 5 and 6). The polynomial |𝐽𝑥 | can have a high order in both

its spatial and temporal variables (Appendix A). To ensure a conser-

vative answer, we employ a custom bisection root-finding method

controlled by an accuracy parameter 𝛿 > 0. Let 𝑡∗ denote the earliest

time at which 𝑥 (𝜎) becomes invalid (i.e., |𝐽𝑥 | turns negative). We

return a time 𝑡∗ > 𝑡∗ − 𝛿 and a point 𝑃 ∈ 𝜎 such that |𝐽𝑥 | is positive

everywhere for 𝑡 ≤ 𝑡∗, and |𝐽𝑥 (𝑃, 𝑡) | becomes negative for some

𝑡 ≤ 𝑡∗ + 𝛿 . This guarantees that the element can safely deform up to

time 𝑡∗ while the point 𝑃 is used to adaptively refine the quadrature

rule, steering the simulation away from invalid configurations (Sec-

tion 7). If the element remains valid throughout, we simply return

𝑡∗ = 1.

The parameter domain of a dynamic element has both space and

time dimensions. Our test proceeds by bisecting the time dimension:

it maintains lower 𝑡∗ and upper 𝑡∗ bounds for the critical inversion

time, and terminates when the difference between these bounds

is smaller than 𝛿 , or when the element is confirmed to be valid

throughout the interval. The algorithm employs a priority queue of

sub-domains, which are created by recursively splitting the initial

space-time domain.

For a given sub-domain 𝑆 , we compute a minimum inclusion
function that returns an interval 𝐼 , which is guaranteed to contain

the minimum value of |𝐽𝑥 | (𝑆): if 𝐼 is strictly positive, the element is

valid in 𝑆 ; if 𝐼 is strictly negative, the element is invalid somewhere

within 𝑆 (but it is not necessarily invalid everywhere in 𝑆); if 𝐼

contains zero, nothing can be said and further refinement of 𝑆 is

necessary. The minimum inclusion function is a crucial component

of our method; details on its definition and computation are provided

in Sections 4.3 and 6.1, respectively.

Another key aspect of the algorithm is the decoupling of re-

finements in the spatial and temporal dimensions. While the time

dimension may require refinement until the interval between 𝑡∗ and

𝑡∗ is lower than 𝛿 , the spatial dimensions usually need less refine-

ment. In essence, bisection along the time axis is primarily driven

by the need to narrow the bounds of 𝑡∗, while subdivision of the

spatial domain is employed to resolve indeterminate configurations.

Details and pseudo-code are given in Section 5.1.

To account for numerical errors, we employ interval arithmetic.

The value of parameter 𝛿 allows for a trade-off between computation

time and the accuracy of the estimation; however, regardless of the

parameter choice, the algorithm always provides a conservative

estimation.

Example. Consider the quadratic element in Figure 4(a). It is valid

at 𝑡 = 0, becomes invalid at some intermediate time 𝑡∗ < 0.5, and

then returns to a valid state at a later time, remaining valid until

𝑡 = 1.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: June 2025.
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Fig. 4. (a): A 2D quadratic element with linear trajectories is valid at the start and end positions but locally inverted during the transition. (b): Its parametric
domain is an upright triangular prism, where the vertical axis represents time and each horizontal slice represents the space domain at a given time. The red
region denotes the portion of the domain in which the determinant | 𝐽𝑥 | is not positive. The dynamic element’s Jacobian determinant is a trivariate polynomial
in 𝜉1, 𝜉2, 𝑡 of order 2 in its space variables and order 2 in the time variable. (c): The root finding algorithm bisects the time domain and quadrisects the spatial
domain to isolate a thin slice [𝑡∗, 𝑡∗ + 𝛿 ] containing the critical time of inversion 𝑡∗. In the first step, both space and time dimensions are refined, generating
eight sub-domains, which are pushed into a priority queue. (d): For clarity we show a side view for the following steps. Only the time dimension is bisected:
the analysis of sub-domains that do not intersect the invalid region increases the value of 𝑡∗ while the analysis of sub-domains that do intersect the invalid
region decreases the value of 𝑡∗ until convergence. (e): If all dimensions were refined at all steps, many more sub-domains would be generated, thus killing
performance.

The parameter domain for this dynamic element can be visualized

as in Figure 4(b) with an upright triangular prism, where each hori-

zontal slice of the prism represents the spatial domain at a specific

time, and time progresses along the vertical axis from 0 to 1. Notably,

the element inversion occurs within a localized wedge (red volume

in the figure) during the times when the element is invalid. In gen-

eral, inversions can occur anywhere within the domain, including

regions away from vertices.

The minimum inclusion function is evaluated first for the whole

prism. The result is an interval that contains zero, thus the domain

is subdivided as in Figure 4(c) along both the time and the space

dimensions, and eight sub-prisms are pushed to the priority queue.

While processing the four prisms corresponding to the time interval

[0, 0.5], the minimum inclusion function returns a strictly positive

interval for three of them, which are discarded from the queue;

and it returns a strictly negative interval for the fourth one, which

intersects the red wedge: this domain is bisected only in the time

dimension and its two children are pushed onto the queue. Sub-

domains spanning earlier times are processed first.

In the subsequent refinements (Figure 4(d), side view), the mini-

mum inclusion function will always be strictly negative, hence only

bisection in the time dimension will occur: the analysis of valid

intervals that do not intersect the red wedge contributes to increas-

ing the value of 𝑡∗ while the analysis of intervals that do intersect

the red wedge contributes to decreasing the value of 𝑡∗, until con-

vergence. Note that, if the domain were always subdivided along

space and time, as in Figure 4(e), many more subdomains would be

generated and the algorithm could become much slower. For the

3D order 3 armadillo dataset (Table 2, Figure 9), with 10% target

error, the naive approach has an average processing time of ∼7𝑚𝑠

per element, whereas our approach takes ∼230𝜇𝑠 per element on

average. For higher element orders, or queries with higher precision,

the maximum number of subdivisions used in the naive approach

must be limited (otherwise the check will consume unreasonable

amounts of memory), and the test can fail to produce an estimate

within precision on some elements.

3 RELATED WORK
We briefly describe polynomial bases and their use in graphics,

methods for checking static and continuous validity of elements,

and discuss their application in FEA and meshing. We conclude with

an overview of robust predicate evaluation techniques, which we

use in our algorithm.

High-Order Bases and Geometry for Finite Element Analysis. Linear

basis functions are often a sub-optimal choice in many contexts.

For example, Schneider et al. [2022] advocate for the use of high-

order bases for elliptic PDEs; Bargteil and Cohen [2014], Mezger

et al. [2009], Suwelack et al. [2013], Ushakova [2011] use high-order

elements for animation; and Mandad and Campen [2020] propose to

use a high-order basis for parametrization. Our algorithm provides

a guaranteed-conservative check for the validity of these elements,

increasing the robustness of any method using a high-order basis.

A related, but distinct, concept is the use of high-order geometry,

where the geometry of an element is represented using a high-order

polynomial. More commonly,𝐶0
[Jiang et al. 2021a] or𝐶𝑘

geometric

maps (IGA) [Cottrell et al. 2009] are used. The latter option is popular

in mechanical engineering, where IGA envisions the use of the same

representation for both interpolating the physical quantities and for

representing the geometry.

Despite the different uses, our algorithm applies to generic poly-

nomials, hence it can be used as is to ensure the validity of the

geometric map.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: June 2025.
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Static Element Inversion Check. The special case of checking the

geometric validity of a linear triangle/tetrahedron in a static setting

has been solved in a seminal paper by Shewchuk [1997], where

a robust predicate called orient2d/orient3d is introduced. This

paper revolutionized mesh generation and simulation, providing a

reliable, yet efficient, solution to one of the basic primitives used by

meshing and simulation algorithms. To the best of our knowledge,

this approach has not been extended to elements with higher order;

such extension is challenging because an element may flip at certain

points while remaining valid at others, as in the example shown on

the right side of Figure 2.

For high-order simplicial elements, a common approach to test for

element inversion consists in testing only their quadrature points

[Dey et al. 2001; Gargallo-Peiró et al. 2015; Maas et al. 2012; Schnei-

der et al. 2019]: while effective at avoiding NaNs in the integration

of certain diverging elastic potentials, this approach is not conser-

vative, leading to incorrect stresses (Figure 13). An efficient method

has been introduced by Johnen et al. [2018, 2013, 2014], where the

Jacobian determinant of the element is represented in Bézier form:

the inversion check then reduces to testing the positivity of the

Bézier coefficients as they undergo adaptive refinement. Their im-

plementation relies on floating point arithmetic, and therefore it is

not conservative and can miss inversions (we provide a numerical

example in Appendix E). We take inspiration from this check and

similarly use adaptive Bézier subdivision to derive a continuous

test: our algorithm solves a different problem by adding the time

dimension and is designed to be conservative due to its judicious

use of rational and interval arithmetic.

For the special case of hexahedral elements, which are commonly

used in commercial finite element analysis software, this problem

has been extensively studied by Ushakova [2011]. Unfortunately,

these tests are insufficient to guarantee validity but are used nonethe-

less due to their efficiency. Vavasis [2003] proposes a sufficient con-

dition but does not provide a conservative algorithm that takes

advantage of it. Johnen et al. [2017] propose an optimized version of

Johnen et al. [2014] specifically for linear hexahedral elements, how-

ever, the approach still suffers from the same floating point issues

as the original test. George and Borouchaki [2014] similarly pro-

pose a recursive subdivision-based method for static tensor product

elements; we are not aware of a publicly available implementation

of this method.

A radically different approach is taken by Marschner et al. [2020],

where a Sum-of-Squares (SOS) relaxation is used to compute the

minimum Jacobian determinant, reducing the problem to solving a

sequence of small semidefinite programming problems of increasing

complexity. The method offers generality and an elegant formu-

lation, but is relatively expensive computationally (multiple SDP

solves per element), and only guarantees injectivity up to numerical

precision of an iterative convex solver, which might result in invalid

elements.

All the methods described above are designed to handle static

checks exclusively, which is insufficient for validating deforming

elements over time.

Continuous Element Inversion Check. To the best of our knowl-

edge, the only paper explicitly addressing the problem of checking

the validity of an element that deforms over time is by Smith and

Schaefer [2015]. They propose an algorithm to estimate the safest

step before an inversion for 2D linear elements by using the closed

form of the roots of a degree 2 polynomial. Their approach is how-

ever not conservative due to floating point rounding, as we show in

Section 8. Furthermore, the method does not scale to linear 3D ele-

ments – where the polynomial is of order 3 and robust root finding

is not trivial – nor higher order elements – where the polynomial

is multivariate and closed forms for the roots may not even be

available.

The problem is also discussed by Anderson et al. [2014] for high-

order element remapping and by Dobrev et al. [2019] for high-order

meshing, however no algorithm for the validity check is proposed.

Our algorithm could be used in their setting to provide a conserva-

tive validation of their resulting elements.

High-Order Meshing. High-order meshing requires a high-order

validity check to ensure that elements are valid after curving. We

refer to Geuzaine et al. [2015] and Jiang et al. [2021b] for an overview

of the state of the art of high-order meshing. Our contribution

can be used, in its reduced form for static validity, as a provably

conservative check in any of these meshing algorithms to increase

their robustness.

Interval Arithmetic. According to the IEEE 754 standard, the re-

sult of a floating point operation is a rounded value of the exact

result. Instead of computing a single rounded value, one can com-

pute an interval that contains the exact result by simply rounding

in both directions. Replacing FP numbers with intervals slows the

calculations by an order of magnitude on average but, on the other

hand, enables a provably correct implementation of geometric al-

gorithms [Snyder 1992]. Intervals are provided by many existing

libraries such as CGAL [Brönnimann et al. 1998], Boost [Schling

2011], Filib and Filib++ [Lerch et al. 2006], BIAS [Knuppel 1994] and

GAOL [Goualard 2005]. We point the reader to Tang et al. [2023]

for a detailed comparison of these tools. When full portability is not

required, modern SIMD architectures can be exploited to speed up

interval arithmetic significantly. The basic idea is to store both the

bounds in a single register that can host 128 bits, which is the space

required by two double precision FP numbers, and then perform

each operation on the entire register simultaneously. This approach,

first introduced by Lambov [2008], is employed in the numeric ker-

nel of the indirect predicates library [Attene 2019], which we use in

our implementation.

We use intervals to represent inclusion functions and to guarantee

that any possible rounding error is always tracked so as to provide

a correct polynomial evaluation.

4 PRELIMINARIES AND NOTATIONS
We address 𝑛-dimensional (𝑛 = 2, 3) high-order meshes consisting of

elements of various types. The geometry of every element is defined

by a polynomial map. We will refer to the order 𝑝 of a polynomial as

the maximum exponent of a single variable (as opposed to the usual

notion of degree). Table 1 gives a summary of symbols defined in

the following and used throughout.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: June 2025.
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Table 1. Symbols used in the text and where they are defined.

Symbol Meaning Def.

𝑛 dimension of element and embedding space 4

𝑠 dimension of simplicial part of element 4.1

𝜎, 𝜎𝑛𝑠 static reference element (with dimensions) 4.1

𝜉1, . . . 𝜉𝑛 spatial coordinates 4.1

𝑝 order of an element / polynomial 4.2

𝑥 geometric map of an element 4.2

|𝐽𝑥 | Jacobian determinant of 𝑥 4.2

I intervals on the real line 4.3

□𝑓 inclusion function for 𝑓 4.3

□min 𝑓 minimum inclusion function for 𝑓 4.3

𝑡 time coordinate 5

𝜎, 𝜎𝑛𝑠 dynamic reference element (with dim.) 5

𝑥 dynamic geometric map of an element 5

𝑡∗ minimum time at which |𝐽𝑥 | vanishes 5

𝑡∗, 𝑡∗ lower and upper bounds to 𝑡∗ 5

𝛿 user-specified accuracy 5

𝑙max maximum level of recursion 5

𝜓−,𝜓+ time-only subdivision maps 5

𝜓𝑞 𝑞-th subdivision map 5

C𝑝𝜎 subset of indices of corners of element 𝜎 6

T±B→B time-only subdivision matrix 6

T𝑞B→B 𝑞-th subdivision matrix 6

Γ
𝑝
𝜎 set of domain points of order 𝑝 on 𝜎 A

𝛾𝑖 domain point A

I𝑝𝜎 set of indices of points of Γ
𝑝
𝜎 A

L𝑚
𝑖

𝑖-th Lagrange polynomial of order𝑚 A

B𝑚
𝑖

𝑖-th Bernstein polynomial of order𝑚 A

𝑓 L vector of coefficients in Lagrange form A

𝑓 B vector of coefficients in Bézier form A

TL→B transition matrix from Lagrange to Bézier A

4.1 Reference Element Domains
For each type of element, we define a common reference domain (or

reference element) 𝜎𝑛𝑠 ⊂ [0, 1]𝑛 to use as the coordinate domain.

Definition 1 (Reference Domain). Let 𝑛, 𝑠 ∈ N, 1 ≤ 𝑠 ≤ 𝑛. The
𝑛-dimensional reference domain 𝜎𝑛𝑠 ⊂ [0, 1]𝑛 is the locus of points
with coordinates (𝜉1, . . . , 𝜉𝑛) that satisfy the system of inequalities:

𝜉𝑖 ≥ 0 ∀𝑖 ∈ {1, . . . , 𝑛}

1 −
𝑠∑︁
𝑖=1

𝜉𝑖 ≥ 0 (1)

𝜉𝑖 ≤ 1 ∀𝑖 ∈ {𝑛 − 𝑠 + 1, . . . , 𝑛}

With this notation, we have a general parameter space that works

for all the most commonly used FEM elements. The element 𝜎1
1 is

the unit segment; 𝜎2
1 is the unit square; 𝜎2

2 is the standard triangle;

𝜎3
1 is the unit cube; 𝜎3

2 is the unit triangular prism; 𝜎3
3 is the standard

tetrahedron. More generally, 𝜎𝑛𝑠 is the tensor product of a standard

𝑠-simplex with a standard (𝑛 − 𝑠)-hypercube
1
.

1
Note that, the unit segment can be seen both as a 1-simplex and as a 1-hypercube;

to avoid any ambiguity, we always treat it as a simplex, so that, e.g., the unit square

Fig. 5. Reference elements with domain points of order 3: triangle, square,
tetrahedron, hexahedron, prism.

Fig. 6. Above: A domain 𝜎2
2 with its domain points of order 3 and the

geometric map 𝑥 to the physical element 𝑥 (𝜎2
2 ) with Lagrange control

points. Below: likewise for an element 𝜎3
3 of order 2.

4.2 High-Order Elements
A generic polynomial 𝑓 : 𝜎 −→ R can be defined with a basis of

polynomials: we consider here the Lagrange basis – which is most

common in FEM – and the Bernstein basis that gives the Bézier form.

Both representations define 𝑓 as a linear combination of the basis

functions with control coefficients associated with domain points
that form a regular grid over the reference element; the number of

domain points sets the order 𝑝 of the polynomial (Figure 5).

For a given order and dimension, pre-computed conversion ma-

trices allow us to convert between these two representations in

both directions. The Lagrange and Bézier forms and the conversion

matrices are detailed in Appendix A.

Geometric Map. The geometric map 𝑥 : 𝜎𝑛𝑠 −→ R𝑛 that maps a

reference element 𝜎𝑛𝑠 into the physical element 𝑥 (𝜎𝑛𝑠 ) is represented

by specifying its set of control points, where each control point is a

𝑛-dimensional point (Figure 6). Each coordinate of 𝑥 is expressed

with a multivariate polynomial, which is the tensor product of a

𝑠-variate polynomial of degree 𝑝 with (𝑛−𝑠) univariate polynomials

of degree 𝑝 , each in a different variable. It follows that the map 𝑥

has order 𝑝 in all its variables (even though its total degree may be

higher).

In the following, we study the determinant of the Jacobian 𝐽𝑥
of the geometric map 𝑥 , denoted |𝐽𝑥 |, which is also a multivariate

polynomial in the same variables as 𝑥 , but of a different order. In

is regarded as the tensor product of a 1-simplex with a 1-hypercube, rather than as a

2-hypercube.
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particular, the number of terms of |𝐽𝑥 | rapidly increases with the

dimension and order of the element. See Appendix A for details.

4.3 Minimum Inclusion Function
Informally speaking, given a real function 𝑓 and a domain 𝐷 , an

inclusion function for 𝑓 over 𝐷 returns an interval that bounds the

range of values of 𝑓 in 𝐷 . Inclusion functions are widely used in root

finding and in the evaluation of robust predicates [Snyder 1992]. In

our case, we are rather interested in an interval that just contains

the minimum value of 𝑓 .

Let I be the space of intervals on the real line. For 𝑎 = [𝑎, 𝑎] ∈ I, let

us define𝑤 (𝑎) = 𝑎−𝑎 the width of interval 𝑎. Let𝐴 = 𝑎1×· · ·×𝑎𝑛 ∈
I𝑛 be a 𝑛-dimensional interval; we extend the definition of width as

𝑤 (𝐴) = max𝑛
𝑗=1𝑤 (𝑎 𝑗 ) . Given 𝐷 ⊆ R𝑛 compact, we further extend

the definition of width as 𝑤 (𝐷) = min𝐴⊇𝐷 𝑤 (𝐴).
Let Ω ⊆ R𝑛 be a compact domain, let 𝑓 be a real function defined

on Ω, and let us denote P(Ω) the subsets of Ω. Given a function

𝑓 : Ω −→ R, an inclusion function for 𝑓 is a function □𝑓 : PΩ −→ I
such that, for any 𝐷 ⊆ Ω we have

∀𝜉 ∈ 𝐷 𝑓 (𝜉) ∈ □𝑓 (𝐷) .
We say □𝑓 to be convergent if for any 𝐷 ⊆ Ω

𝑤 (𝐷) → 0⇒ 𝑤 (□𝑓 (𝐷)) → 0.

In particular, if 𝐷 shrinks about 𝜉 , then □𝑓 (𝐷) shrinks about 𝑓 (𝜉).

Definition 2 (Minimum inclusion function). A minimum in-
clusion function for the function 𝑓 is a function □min 𝑓 : P(Ω) −→ I
such that, for any 𝐷 ⊆ Ω we have

min
𝜉∈𝐷

𝑓 (𝜉) ∈ □min 𝑓 (𝐷).

If the lower end of □min 𝑓 (𝐷) is positive, we know that 𝑓 is always

positive in 𝐷 ; if the upper end is negative, we know that 𝑓 has

negative values, but is not necessarily negative everywhere, in 𝐷 ;

otherwise, nothing can be said about the sign of 𝑓 in 𝐷 .

A convergent inclusion function can be used to find a root of

a function 𝑓 by subdividing the initial domain Ω until it becomes

sufficiently small. Likewise, one can use a convergent minimum

inclusion function to find the portions of Ω where 𝑓 is positive, by

recursively subdividing the domain. The type of subdivision used

to perform refinement depends on the shape of Ω. For instance,

while bisection can be used for a multi-interval domain, simplicial

domains may require less trivial subdivision rules (Appendix B).

4.4 Interval and Rational Arithmetic
Interval arithmetic consists of a set of operations defined on the

set of real intervals I such that if 𝜉 ∈ 𝐴𝜉 ∈ I and 𝜁 ∈ 𝐴𝜁 ∈ I, then

(𝜉∗𝜁 ) ∈ 𝐴𝜉 ∗𝐴𝜁 , where ∗ in the right-hand side is the interval version

of the operation. If the exact result of an operation on floating

point numbers falls between two representable values, rounding

is required. We make our computations conservative by replacing

floating point numbers with singleton intervals (i.e., intervals with

matching endpoints), and rounding the left end of the result down

and the right end up for every subsequent interval operation. In our

code, we use the implementation of Attene [2020]. More details are

provided in Appendix C.

Interval arithmetic does not prevent the propagation of error; it

merely keeps track of it. One way to implement exact arithmetic is

via rational numbers: as long as an algorithm only involves rational

operations, we can represent numbers exactly as fractions of integer

values since every floating point number is also rational. The main

drawback of rational arithmetic is that it can be orders of magnitude

slower than interval arithmetic because the bits needed to encode

each fraction increase with computations. For this reason, our use

of rational arithmetic is limited to off-line computations.

5 CONTINUOUS GEOMETRICAL VALIDITY
In a dynamic simulation, the elements of the mesh move and deform

over time. Like space, time is discretized into time steps, which are

typically regular. We assume that the control points move along

straight-line trajectories at each time step, and, without loss of

generality, we can assume each transition occurs between time

𝑡 = 0 and time 𝑡 = 1. Following Definition 1 we have:

Definition 3 (Dynamic reference element). Let 𝜎𝑛𝑠 be a refer-
ence element. The dynamic element 𝜎𝑛𝑠 of 𝜎𝑛𝑠 is the (𝑛+1)-dimensional
reference element 𝜎𝑛+1𝑠 = 𝜎𝑛𝑠 × [0, 1].

Assuming linear trajectories, the dynamic geometric map 𝑥 :
R𝑛+1 → R𝑛 of order 𝑝 for 𝜎𝑛𝑠 is expressed by linear interpolation

of the 𝑛-dimensional geometric maps 𝑥0 (𝜉) and 𝑥1 (𝜉) of the static

element at the two consecutive time steps:

𝑥 (𝜉, 𝑡) = 𝑥0 (𝜉) + 𝑡 (𝑥1 (𝜉) − 𝑥0 (𝜉)) . (2)

This map is of order 𝑝 in the 𝜉 variables and linear in 𝑡 .

5.1 Continuous Validity Test
Assuming that the input element is valid at time 𝑡 = 0, the continuous
validity test consists of determining whether or not the Jacobian

determinant |𝐽𝑥 (𝜉) | is everywhere greater than 0 on 𝜎 at all times

in [0, 1]. If this is not the case, the algorithm should find the earliest

time 𝑡∗ ∈ (0, 1] in which the element becomes invalid – hence, it is

valid within [0, 𝑡∗).

Target accuracy. Since finding an exact solution is not necessary

and very expensive, we instead settle for a conservative estimate

𝑡∗ that is close to 𝑡∗ up to a given user-provided threshold 𝛿 , i.e.

𝑡∗ ∈ [𝑡∗, 𝑡∗ +𝛿]. Moreover, since we assumed that 𝑡∗ > 0, we require

that 𝑡∗ be strictly positive as well, regardless of the value of 𝛿 . This

threshold is used to trade off accuracy and time performance.

Early termination. An intrinsic challenge of both the static and

dynamic problems is that certifying the positivity of a polynomial

can be arbitrarily hard. Therefore, there is no upper bound on the

number of subdivisions required to assess the validity of an element.

To prevent the algorithm from taking unreasonable time, we em-

ploy a termination criterion that triggers when refinement becomes

excessive. In these extreme cases, we halt and provide an estimate

𝑡∗ that may not be within 𝛿 of the true value 𝑡∗, but is nevertheless

conservative.

Let the depth of a subdomain 𝑆 be the number of subdivisions

required to obtain 𝑆 from the initial domain. In our implementation

we stop when the depth of a subdomain 𝑆 exceeds a threshold 𝑙max.

How often this condition is triggered in practice depends on the
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dataset and element type. In our benchmark, choosing a value of

𝑙max = 7 was enough to reach the desired precision of 10−2
on all

but very few 3D tensor product elements. We refer to Table 2 and

Section 9 for details.

Minimum inclusion function. We rely on a convergent inclusion

function, which comes together with a procedure to decompose an

element into sub-elements. For the sake of clarity and generality, we

first describe our algorithm avoiding the details on how we define

our inclusion function and domain subdivision strategy, which we

detail in Section 6. We also use 𝐽 = |𝐽𝑥 | as a short-hand notation for

the determinant of the Jacobian of the dynamic element at hand.

Given a generic inclusion function □𝐽 on the domain 𝜎𝑛𝑠 , we de-

fine a minimum inclusion function as follows: let □𝐽 (𝐷) = [𝐽𝐷 , 𝐽𝐷 ]
then

□min 𝐽 (𝐷) = [𝐽𝐷 , min
𝜉𝑖 ∈D𝐷

𝐽 (𝜉𝑖 )],

where D𝐷 is a small set of samples in 𝐷 . In practice, we sample 𝐽

at these points to bound the minimum of 𝐽 from above. Note that,

if 𝐽 is negative at any of those samples, we know that the element

becomes invalid in 𝐷 .

Subdivision Maps. Given a reference domain 𝜎 = 𝜎𝑛𝑠 , we define a

set of 𝑄 linear maps {𝜓𝑞 : 𝜎 −→ 𝜎}𝑞 called the subdivision maps of

𝜎 , and we call𝜓𝑞 (𝜎) a subdomain of 𝜎 ; we require that the union of

all subdomains is 𝜎 , and the intersection of any two subdomains is

either empty or has dimension less than 𝑛. We define the standard

subdivision maps for 𝑛 ∈ {2, 3} that we use in our implementation

in Appendix B. In the following, we always assume that 𝑄 = 2𝑛 .

For a time dependent reference domain 𝜎 = 𝜎𝑛𝑠 , its subdivision

maps are the same as 𝜎𝑛+1𝑠 , but we also define two additional time
subdivision maps, denoted𝜓− and𝜓+, such that𝜓− (𝜎) and𝜓+ (𝜎)
are respectively the lower and upper half of 𝜎 when bisected in the

time dimension only.

Pseudo-Code. The pseudo-code of the algorithm is given in Algo-

rithm 1. The algorithm takes in input a polynomial 𝐽 (𝜉, 𝑡) defined

on domain 𝜎 and the thresholds 𝛿 and 𝑙𝑚𝑎𝑥 and returns a time

𝑡∗ without invalid configurations, and within a time 𝛿 of an in-

valid configuration. The algorithm keeps internal current lower

and upper bounds for 𝑡∗, initializing them to 0 and 1, respectively.

Given a subdomain 𝑆 ⊂ 𝜎 , pseudocode functions StartTime(𝑆)
and EndTime(𝑆) return respectively the minimum and maximum

values of the time coordinate for points in 𝑆 .

The algorithm uses a priority queue 𝑃 (line 2) of subdomains of 𝜎 ,

with a related priority function ≺ (line 28) giving higher priority to

sub-domains that span intervals of time with an earlier start point

(that is, a lower minimum 𝑡 ). The initial domain 𝜎 is pushed into the

priority queue 𝑃 (line 5); then elements are popped from the 𝑃 one

by one (line 13), and if their minimum inclusion function does not

guarantee their validity, they are subdivided and their subdomains

are pushed to 𝑃 . See the next paragraph for the subdivision strategy.

This continues until the queue becomes empty or an early exit condi-

tion is met. By construction, the priority function ≺ guarantees that

when we pop an element 𝑆 from the queue, then 𝐽 is positive at all

times before StartTime(𝑆), and 𝑡∗ can then be updated accordingly.

Algorithm 1 Maximum valid time step with inclusion functions

1: functionMaxValidStep(𝐽 , 𝛿, 𝑙max)

2: 𝑃 ←PriorityQueue(≺) ⊲ priority queue for subdomains
3: 𝑡∗ ← 1 ⊲ initialize upper bound of 𝑡∗

4: 𝑡∗ ← 0 ⊲ initialize lower bound of 𝑡∗

5: Push(𝑃, 𝜎)

6: 𝐹 ← false ⊲ flag of whether an invalidity has been found
7: 𝑙 ← 0 ⊲ maximum subdivision depth reached so far
8: while true do
9: if 𝐹 ∧ (𝑡∗ − 𝑡∗ ≤ 𝛿) ∧ (𝑡∗ > 0) then ⊲ reached accuracy

10: return 𝑡∗ ⊲ conservative estimate of 𝑡∗

11: if IsEmpty(𝑃 ) then
12: return 1

13: 𝑆 ←Pop(𝑃 ) ⊲ get the next subdomain from 𝑃

14: 𝑙 ← max{𝑙, Depth(𝑆)} ⊲ update maximum depth
15: if 𝑙 > 𝑙max then ⊲ maximum level reached: give up
16: return 𝑡∗ ⊲ conservative estimate of 𝑡∗

17: 𝑡∗ ← StartTime(𝑆) ⊲ everything before this time is valid
18: 𝐼 ←□min 𝐽 (𝑆) ⊲ check minimum inclusion
19: if High(𝐼 ) ≤ 0 then ⊲ there is an invalidity in 𝑆

20: if EndTime(𝑆)< 𝑡∗ then
21: 𝐹 ← true

22: 𝑡∗ ← EndTime(𝑆)

23: Push(𝑃,𝜓− (𝑆)) ⊲ bisect on the 𝑡 axis only
24: Push(𝑃,𝜓+ (𝑆)) ⊲ bisect on the 𝑡 axis only
25: else if ¬(Low(𝐼 ) > 0) then
26: for 𝑞 ∈ {1, . . . , 𝑄} do
27: Push(𝑃,𝜓𝑞 (𝑆)) ⊲ subdivide on 𝜉 and bisect on 𝑡

28: function ≺(𝑆0, 𝑆1) ⊲ priority function
29: if StartTime(𝑆0) ≠ StartTime(𝑆1) then ⊲ lower time first
30: return StartTime(𝑆0)<StartTime(𝑆1)

31: else ⊲ for ties, prioritize boxes most likely to be invalid
32: return High(□min 𝐽 (𝑆0))<High(□min 𝐽 (𝑆1))

Early exits occur if the required accuracy 𝛿 is achieved (line 9),

meaning that the difference between 𝑡∗ and 𝑡∗ is less than 𝛿 , or the

maximum depth 𝑙max has been reached (line 15), meaning that we

pop from the queue an interval that comes from a sequence of 𝑙max
subdivisions.

Subdivision Strategy. If the interval 𝐼 returned by□min 𝐽 (𝑆) is com-

pletely negative – meaning that 𝑆 contains negative values of 𝐽 (line

19) – then the upper bound 𝑡∗ is updated, and element 𝑆 is bisected

along the time dimension only, with the two resulting subdomains

being pushed into 𝑃 . Conversely, if interval 𝐼 contains zero, the

element 𝑆 is split along all its dimensions (line 25), including time,

according to the subdivision scheme of reference element 𝜎 ; again,

the resulting elements are pushed into 𝑃 . Finally, no subdivision

is necessary if 𝐼 only contains positive values, and the space-time

region occupied by 𝑆 will not be considered again for the remainder

of the algorithm.

Note that, by bisecting only the time dimension (line 19), we

postpone any refinement of the spatial dimensions until we find a

time interval in which 𝐽 may potentially be positive everywhere.

This strategy allows us to avoid many unnecessary refinements
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in the space dimensions, and to decouple the subdivision on time

(controlled by accuracy 𝛿) from the subdivision in space (which does

not have an accuracy requirement).

6 IMPLEMENTATION
The implementation of our method requires designing a minimum

inclusion function □min 𝑓 and a corresponding subdivision strategy

that uses robust computations while keeping the runtime sufficiently

low to enable its use within a simulation loop.

6.1 Inclusion Functions for Space and Time
As observed by Snyder [1992], interval arithmetic provides a univer-

sal way to design inclusion functions. Given a polynomial 𝑓 : Ω −→
R and 𝐷 ⊆ Ω, let 𝐴𝐷 be the smallest multi-interval containing 𝐷 .

We could define

□𝑓 (𝐷) = 𝑓 (𝐴𝐷 ),
where the evaluation of 𝑓 on the right side is intended with interval

arithmetic, and thus returns an interval. Any strategy subdividing

𝐷 and reducing 𝐴𝐷 (e.g., bisection along all coordinates) provides a

convergent inclusion function.

We tried this approach, but the inclusion functions may be very

loose about 𝑓 and require many refinement steps to converge, or

even get stuck on nearly invalid elements due to the numerical error

accumulating too fast for the inclusion function to keep up with.

We compare the time performance for the static case only in Table 3.

We instead follow the approach proposed by Johnen et al. [2014] for

the static validity test and extend it to our continuous setting.

Overview of Bézier Refinement. Let 𝑓 be the order 𝑚 polynomial

of which we want to find the minimum on 𝜎 (in our case, 𝑓 = |𝐽𝑥 |).
Our inclusion function is based on the Bézier representation of

𝑓 and a recursive decomposition of 𝜎 . The reason why we want

to represent our polynomial in the Bézier basis is the convex hull

property [Farin 2001], by which the values of 𝑓 on 𝜎 are bounded

by the minimum and maximum coefficients of 𝑓 when expressed in

the Bézier basis.

To obtain the vector of Bézier coefficients 𝑓 B of 𝑓 , we first com-

pute its vector of Lagrange coefficients 𝑓 L , which can be obtained

by simply evaluating 𝑓 at the domain points; then we premultiply

𝑓 L with a change of basis matrix TL→B that we shall call transfor-
mation matrix, which is described in detail in Appendix A.

Let Ī𝑚𝜎 be the set of indices of the control points of 𝑓 and C̄𝑚𝜎 ⊂
Ī𝑚𝜎 be the set of indices corresponding to the corners of 𝜎 at time 1.

Since the Bézier basis is interpolating at the corners of the domain

(i.e. 𝛽 𝑗 = 𝑓 (𝛾 𝑗 ) for all 𝑗 ∈ C̄𝑚𝜎 ), we define the minimum inclusion

function as

□min 𝑓 (𝜎) = [ min
𝑖∈Ī𝑚𝜎

𝛽𝑖 , min
𝑗∈ C̄𝑚𝜎

𝛽 𝑗 ] . (3)

Therefore, if all entries of 𝑓 B are positive we know the element is

valid everywhere, and if any of the corner entries is non-positive

we know that the element is invalid at the end time. Otherwise, the

interval returned by the inclusion function contains zero, and we

need to refine the search by subdividing 𝜎 .

The subdivision of 𝜎 is performed via another set of change of

basis matrices, dubbed subdivision matrices, T𝑞B→B , for 𝑞 = 1, . . . , 𝑄 .

Premultiplication of 𝑓 B by these matrices gives a Bézier represen-

tation of 𝑓 on a smaller portion of the domain, which can be used

to compute tighter bounds local to each subdomain. These matrices

are defined in Appendix A.

Time-only refinement. Bisection in the time dimension only is

performed analogously by multiplication of 𝑓 B with two time sub-
division matrices T−B→B and T+B→B , also described in Appendix A.

6.2 Robust Computation
Rational Precomputation of matrices. All the transformation and

subdivision matrices TL→B , T𝑞B→B , and T±B→B are only depen-

dent on element type (tetrahedron, hexahedron, etc.) and order, and

as such can be precomputed offline. Since we want to minimize

the accumulation of error in our computations, and all entries of

these matrices are rational, we construct these matrices using exact

rational arithmetic for each element type and order. The outcome

is a rational matrix, which we convert to intervals by rounding the

two endpoints outward if the exact value cannot be represented

as a floating point number. The resulting interval is guaranteed

to contain the exact value of the fraction while being as tight as

possible.

Intervals. The input to our check is the set of Lagrange control

points for the elements of a mesh, represented in floating point.

Each floating point coordinate is converted to a singleton interval

(i.e. an interval with zero width) and all subsequent operations are

performed in interval arithmetic with conservative rounding.

Summary. The combination of rational precomputation and in-

terval arithmetic ensures that our algorithm is conservative while

maintaining a low computational cost (Section 8): the rational pre-

computation is performed only once offline and does not affect

runtime, while the use of interval arithmetic adds a minor (∼2×)

overhead over a direct floating point implementation.

6.3 Acceleration
Global Queries. In practical applications, one is often interested

in the maximum time for which all elements are valid. We refer to

this as a global dynamic query and give a strategy to accelerate it.

After an invalid element has been found (with estimated valid time

step 𝑡∗), it becomes unnecessary to validate the other elements at

later times: 𝑡∗ will anyhow be the maximal allowed step. It might be

tempting to terminate early as soon as an inverted element has been

found. However, this is not conservative as some other elements

may still have a lower 𝑡∗. We thus keep track of the smallest value of

𝑡∗ found in previous checks and leverage the fact that 𝑡∗ can never

decrease in Algorithm 1 to stop computation on an element as soon

as its estimate for 𝑡∗ exceeds the running minimum.

The order in which elements are processed matters for global

queries: it is beneficial to process elements that are most likely

invalid first, as it will provide higher opportunities for this pruning

strategy to be effective. For this reason, we first sort the polynomials

according to their constant term, in ascending order. For the order 3

Armadillo mesh in Figure 9, this strategy improves the total running

time by about 60% over running the queries individually; whereas

the speedup is less relevant for the order 2 mesh (about 12%).
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Parallelization. Validity checks for meshes are trivially paral-

lelized by processing elements in batches. To avoid any synchro-

nization between different threads, every batch of queries assigned

to a thread 𝑖 does an independent sorting and keeps its own running

minimum 𝑡∗𝑖 to use as an early termination condition, as explained

in the previous paragraph.

Precomputation of Jacobian determinant. The input to the sub-

division procedure is a Lagrange representation of the Jacobian

determinant polynomial of the element. This only depends on the

shape and order of the element, as well as its control points.

For each element type and order combination, we symbolically

compute the expression of each Lagrange coefficient in terms of

the control point coordinates, and remove common subexpressions

with CSE [Muchnick 1997] (we use the implementation in SymPy

[Meurer et al. 2017]). This approach increases the compilation time

but provides dramatic runtime performance boosts: for the order 3

Armadillo dataset, we get a speedup of about 20×.

7 APPLICATION TO SIMULATION
Incremental potential time-stepping [Kane et al. 2000] is becoming

popular in graphics [Li et al. 2020] and biomechanics [Martin et al.

2024] due to its robustness to extreme deformation and contact[Chen

et al. 2022; Fang et al. 2024, 2021; Ferguson et al. 2023, 2021; Huang

et al. 2024a,b; Lan et al. 2022a, 2023, 2022b, 2021; Li et al. 2021, 2023a,

2022, 2024; Shen et al. 2024]. We briefly summarize the approach

here, without contact handling, as it is relevant to motivate the need

for a continuous dynamic positivity check in physical simulation:

as part of this overview, we will show that the check alone is insuf-

ficient, as IPC also requires a consistent invalidity-aware quadrature

rules, which we introduce in Section 7.1.

7.1 Continuous Validity in Simulation
The updated displacement 𝑢𝑡+1 of an object at the next time step is

computed solving an unconstrained non-linear energy minimization:

𝑢𝑡+1 = arg min
𝑢

𝐸 (𝑢,𝑢𝑡 , 𝑣𝑡 ), (4)

where𝑢𝑡 is the displacement at the step 𝑡 , 𝑣𝑡 is velocity, and𝐸 (𝑢,𝑢𝑡 , 𝑣𝑡 )
is a time-stepping Incremental Potential [Kane et al. 2000]. We refer

to Li et al. [2020] for more details.

For common non-linear material models, this potential is infinite

when an element has a negative Jacobian, as the Jacobian determi-

nant appears in the denominator of the expression. A physically

valid trajectory cannot reach a state with infinite potential: however,

this is a challenging condition to enforce in practice.

Line Search. The potential 𝐸 is minimized with a descent algo-

rithm (gradient descent or Newton), which computes a local approx-

imation of a descent direction: this approximation might, for a finite

step length, cross a region with infinite potential (Figure 7). This is

a typical challenge in collision detection [Wang et al. 2021b], but

is rarely considered for the elastic potential – the only work we

know that considers this problem, in 2D only, is Smith and Schaefer

[2015]. This challenge can be solved using a continuous inversion

check within the line search, which is the focus of our work. To the

best of our knowledge, state-of-the-art IPC solvers Li et al. [2020]

Fig. 7. Potential landscape and one descent step from the black point. The
descent step to the red point is invalid since it crosses an invalid region with
infinite potential.

Fig. 8. The function is infinite in the bright yellow region, and its integral
over the whole triangle is also infinite. Numerical integration using a fixed
quadrature rule (left) erroneously produces a finite value. Our adaptive
quadrature technique (right) puts quadrature points in the infinite-valued
region and correctly captures the behavior of the function.

and Schneider et al. [2019] use a static check instead of a continuous

one, which cannot guarantee trajectory validity.

Quadrature. Non-linear elastic potentials cannot be integrated

exactly with numerical quadrature (as they are not polynomials),

leading to unbounded errors for diverging potentials. We show

in Figure 8 an example of an element with an infinite potential

integrated with both a standard fixed quadrature rule and the adap-

tive quadrature derived by our algorithm: only in the second case

does the numerical integration correctly diverge. The use of a fixed

quadrature leads to solver failures as the direction computed us-

ing quadrature is not a descent direction and might thus block the

progress of the solver.

7.2 Invalidity-Aware Quadrature Rules
Our algorithm can output additional information to generate adap-

tive quadrature schemes: The goal is to produce a set of quadrature

points for the static element 𝜎 such that at least one of the points

would end up in an invalid region at time 𝑡∗, correctly making the

integral computed using quadrature diverge at that time.

Tracking Subdivisions. In Algorithm 1, each subdomain keeps

track of the sequence of subdivisions of 𝜎 that were taken to produce

it. However, since we only require a quadrature rule for 𝜎 and not 𝜎 ,

it is sufficient to keep track of spatial subdivisions: this means that

when an element is subdivided in time only using𝜓+ and𝜓− , the
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sequence of the children will match that of the parent; and when

an element is subdivided in all dimensions using the subdivision

scheme𝜓𝑞
for 𝜎 , pairs of subdomains that span the same region of

space at different times will share the same sequence.

To produce the adaptive quadrature rule, our algorithm uses the

sequence of spatial subdivisions of the element whose minimum

inclusion function reduced 𝑡∗ for the last time, or equivalently, the

element that found the earliest invalidity. Unless the early exit con-

dition for maximum depth is triggered, such invalidity is guaranteed

to be in [𝑡∗, 𝑡∗ + 𝛿]. In the very rare cases when the algorithm fails

to find an invalid point and gives up earlier, we instead return the

subdivision sequence of the element with the deepest hierarchy,

which is likely to be very close to an invalid region. In this case, the

optimization step will still be guaranteed to be valid for its duration.

Adaptive Quadrature. This information is then used to partition

the static element by recursively subdividing it using the very same

sequence of subdivisions, as in Figure 8 (right). A standard quad-

rature rule is applied to every subelement of 𝜎 , and the integral is

evaluated as the sum of integrals on all subdomains. However, in

order to guarantee that the newly placed quadrature points would

indeed intersect an invalid region in the full time step, it is required

that the quadrature rule contain all points in the sampling set D𝐷

used to compute the minimum inclusion function, projected onto 𝜎 ;

for example, if D𝐷 is the set of corners of 𝜎 , the selected scheme

must place quadrature points at the corners of 𝜎 .

8 RESULTS
Our algorithm is implemented in C++, using PolyFEM [Schneider

et al. 2019] for finite element (FE) system construction, IPC Toolkit

[Ferguson et al. 2020] for evaluating IPC potentials and collision

detection, Pardiso [Alappat et al. 2020; Bollhöfer et al. 2019, 2020]

for the large linear systems in our global Newton solves, [Attene

2019, 2020] for interval computation, GMP [Granlund and the GMP

development team 2012] for rational computation, and OpenMP

[Dagum and Menon 1998] for parallelization.

The simulation experiments are run on a cluster node with an

Intel Cascade Lake Platinum 8268 processor limited to 16 threads

and 32Gb of memory. The benchmark experiments are run single-

threaded on a laptop computer with an AMD Ryzen 7 4000 processor

and 16GB of memory.

Our reference implementation, used to generate all results, and

our evaluation datasets will be released as an open-source project.

8.1 Benchmark of filtered queries
Collection and Ground Truth. We collect queries of element in-

version checks from elastodynamic simulation data using IPC [Li

et al. 2020] and the Neo-Hookean elasticity model. We pick two 2D

models and two 3D models shown in Figure 9. We bend the bar and

compress the kangaroo in 2D, whereas for 3D models we twist them

by 90◦ while compressing them by 20%. Note the queries included

in the benchmark are a subset of the entire simulation, since the vast

majority of elements are valid. For collection, we discard all queries

where the initial configuration is invalid, which might happen as

the positivity check in IPC [Li et al. 2020] is not conservative; in

each line search in the nonlinear solves, we evaluate the Jacobian

Armadillo Bunny

Deformed DeformedRest Rest

Kangaroo Bar

Deformed DeformedRest Rest

Fig. 9. Initial and final frames of simulations from which queries are ex-
ported. The parts in cyan are used as handles to twist and compress the
model while the deformation occurs in the parts in yellow.

at every quadrature point 𝐽𝑖 for 𝑖 = 1, 2, . . . , 𝑛 and collect elements

with elements with min𝑖 𝐽𝑖 ≤ 0 or min𝑖 𝐽𝑖/max𝑖 𝐽𝑖 < 0.2.

Our benchmark contains 172000 2D queries from the Kangaroo

model (orders 1 through 4), 54985 3D queries from the Armadillo

model (orders 1 through 3), 19800 3D queries from the Bunny model

(orders 1 through 3), 130291 queries for the Bar model of order 1,

and 31879 queries for the Bar model of order 2 (Table 2).

Correctness. To validate correctness we compute the times of

inversion by symbolically computing the roots of |𝐽𝑓 |with minimum

𝑡 using Mathematica [Wolfram Research 2023] (see Appendix D).

We restrict the ground truth to order 1 and 2 for triangles, and

order 1 for quads and tetrahedra, due to the limitations of symbolic

solvers: for a higher-order basis, Mathematica could not return a

result within 6 hours on some of the elements. To the best of our

knowledge, ours is the first dataset containing conservative times

of inversion. Our algorithm correctly detects all invalid elements

and returns conservative answers for the inversion times.

Efficiency. The average per-element cost of our algorithm in-

creases with the degree, from around 1.5𝜇s for order 1 (both in

2D and 3D) to around 10𝜇s for order 4 in 2D and 300𝜇s for order

3 in 3D. Invalid elements are more expensive to process on aver-

age, as they require subdivisions until precision is reached, whereas

most valid elements can be resolved in a single iteration if all their

Bézier coefficients are positive. See Table 2 and Figures 10 and 11

for details.

When restricted to the static case (i.e., check the validity of an

element at a given time), our algorithm becomes considerably faster

than the dynamic one (by a factor of about 50× on the order 3

Armadillo), and it has a running time slightly faster (2×) than the

non-conservative static baseline used in PolyFEM and FEBio, which

consists of checking the sign of |𝐽𝑥 | obtained with (inexact) float-

ing point computations only at quadrature points thanks to our

optimizations. See Table 3 for details.
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Table 2. Results of our continuous validity test on 2D and 3D datasets element types and orders. We report the number of elements (total, valid on the whole
interval, invalid at some time) and processing time in microseconds per element (average, average for valid elements, average for invalid elements, median,
maximum, standard deviation). On some datasets, marked with an asterisk (*), the algorithm “gives up” on very few elements and returns a conservative
answer: see details in Section 9. In all other cases, the algorithm reaches the target precision of 1% on all elements.

Dataset Element 𝑛 𝑠 𝑝 Element count Time per element (𝜇s)

tot val inv avg avg val avg inv med max std

Kangaroo Triangles 2 2 1 172800 146248 26552 1.60 1.32 3.10 1.40 205.40 0.85

2 172800 145602 27198 2.14 1.69 4.54 1.89 42.53 1.10

3 172800 145623 27177 3.83 3.10 7.75 3.28 67.26 1.86

4 172800 145613 27187 9.28 7.94 16.45 7.96 309.19 4.03

Bar 2D Quadrangles 2 1 1 112887 14816 98071 3.93 2.95 4.07 3.84 10203.74 34.23

2 83653 75085 8568 74.67 7.89 659.96 2.93 2046480.70 10296.53

Armadillo Tetrahedra 3 3 1 54985 51605 3380 1.56 1.44 3.43 1.47 21.58 0.53

2 54985 48599 6386 9.90 7.34 29.41 5.31 6726.90 40.37

3 54985 47988 6997 362.79 130.92 1953.05 44.00 78411.99 1593.81

Bunny Tetrahedra 3 3 1 19800 19561 239 1.47 1.45 3.51 1.40 49.38 0.63

2 19800 19058 742 7.27 5.91 42.22 5.31 1729.90 24.56

3 19800 18954 846 175.41 65.97 2627.34 43.02 60907.39 1294.73

Bar 3D Hexahedra 3 1 1 56031 24918 31113* 325.33 11.10 576.99 16.55 6650064.32 39487.14

Prisms 3 2 1 82403 56913 25490* 246.64 8.22 778.96 2.38 2407415.47 16401.57

8.2 Comparisons
We are not aware of any other algorithm that provides a continuous

validity check for elements of arbitrary order, so we compare it with

algorithms that solve only a subset of the problem.

Linear Continuous. For the special case of triangular elements

with linear basis, Smith and Schaefer [2015] propose to use a sym-

bolic solver to find the roots of |𝐽𝑓 |. While extremely efficient (1𝜇s

on average), this approach can fail to produce correct results due

to numerical errors: on the 26552 invalid elements in the linear

Kangaroo dataset (Figure 9), their method fails to detect inversions

13324 times, producing a time step larger than the ground truth

maximum. Attempting to be conservative with a "large" numerical

threshold of 10−5
still fails in 1563 tests (∼5%).

This method is limited to linear triangles, and cannot be extended

to other elements or degrees due to its reliance on closed-form

expressions for the roots.

Static High Order. For the special case of static validity check for

elements of arbitrary type and order, Johnen et al. [2014] introduce a

method based on adaptive subdivision. In the static case, our solution

implements the same algorithm, but with robust arithmetic and

additional pre-computations for the Jacobian and transformation

matrices. When implemented with double precision floating point

arithmetic, this method is more efficient than our static approach

(on the 3D Armadillo model of order 3 our method takes 3𝜇𝑠 longer

per element on average, see Table 3), however it is not robust. We

provide one example of an inverted element incorrectly detected as

valid by the floating point implementation in Appendix E. Code is

available at https://gitlab.com/fsichetti/hocgv.

Table 3. Comparison of methods for static validity checks, performed at
𝑡 = 1 on the order 3 Armadillo dataset. We list the number of detected
valid and invalid elements, the number of elements for which the test was
undecided, and the average and median computation times per element.
Sampling at quadrature points is fast, but incorrectly classifies several
invalid elements as valid; bisection with a robust interval-based inclusion
function is fast on "easy" elements, but struggles a lot with nearly-inverted
elements and fails to classify several of them; our implementation of the
Bézier refinement based inclusion check by Johnen et al. [2014] and our
conservative method give the same results; our method is guaranteed correct
at a slight performance cost. Our precomputations (last two rows) decrease
the computation time by at least an order of magnitude.

Static algorithm #val #inv #und avg 𝜇s med 𝜇s

Quadrature Points 48214 6771 - 16 16

Interval Bisection 46281 6561 2143 1400 23

FP Bézier (no optim.) 48050 6935 0 71 78

Ours (no optim.) 48050 6935 0 86 95

FP Bézier 48050 6935 0 5 5

Ours 48050 6935 0 8 8

8.3 Elastodynamic Simulation
We integrate our check within the PolyFEM software [Schneider

et al. 2019] and use it to reproduce a selection of the bundled elasto-

dynamic simulations. We report our findings as we integrated the

check, since they highlight some fundamental issues with existing

high-order FE solvers and the non-linear material models commonly

used in graphics and engineering.

Potential Formulation. In the simulation, we minimize the Neo-

Hookean energy with Newton’s method. The Neo-Hookean energy

density has the form of

𝑤𝑒 (𝐹 ) :=
𝜇

2
(Tr[𝐹𝐹𝑇 ] − 2 − 2 log(det 𝐹 )) + 𝜆

2
log2 (det 𝐹 ), (5)
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Table 4. Simulation Statistics. Columns from left to right: simulation dimension, geometric and solution bases orders, number of cells, number of time steps,
peak memory usage, the average time of the simulation per time step, the average time of our check per time step, the average time of each check over the
entire mesh, and average time of the simulation per time step using the quadrature point check in PolyFEM instead of ours (baseline)

.

Order Mem Timing (sec)

dim geom soln # Cells # Steps (GB) total / step check / step check / query total / step (baseline)

Beam-twist 3 1 2 1740 400 1.4 16 5.7 0.067 7.6

Ring-twist 2 1 2 1136 100 0.7 0.72 0.16 0.011 0.15

Mat-twist 3 1 2 2166 250 1.3 10 2.9 0.069 6.9

Armadillo-rollers 3 1 2 5978 230 3.3 114 27 0.19 111

Microstructure 3 4 2 6414 25 2.9 531 472 5.6 52

where 𝐹 is the deformation gradient matrix (2 × 2 or 3 × 3), 𝜆 and 𝜇

are Lamé parameters. Call 𝐽𝑑 and 𝐽𝑟 the Jacobians of the deformed

element and rest element respectively, the deformation gradient is

𝐹 = 𝐽𝑑 (𝐽𝑟 )−1 .

Suppose the rest element is valid, i.e., det 𝐽𝑟 > 0; then the positivity

of det 𝐹 = det 𝐽𝑑/det 𝐽𝑟 depends solely on det 𝐽𝑑 , i.e. the Jacobian

determinant that we are checking. As long as det 𝐽𝑑 > 0, Equation (5)

is valid.

Baseline Simulator. Our baseline simulator is PolyFEM [Schneider

et al. 2019], using the convergent IPC formulation [Li et al. 2023b]

on tetrahedral meshes, quadratic Lagrangian bases and the Neo-

Hookean material model [Ogden 2013]. PolyFEM uses only a static

inversion check on the quadrature points: in Figures 1 and 12 we

show that the final result contains many invalid elements leading

to NaN in stress (Figure 13A). These invalid elements are not de-

tected using the check on quadrature points alone, but are correctly

identified by our conservative check (Figure 13B).

Conservative Line-Search Only. Replacing the static sampling in-

validity check with our conservative and continuous check without

adaptive quadrature leads to convergence issues in the solver. When

the elements become close to inversion, the negative gradient di-

rection is not a descending direction. This happens due to the error

in the numerical integration of the potential, that can be solved

by using our adaptive quadrature method. All the simulations in

our experiments suffer from this issue: the simulation halts after

several steps (twist-beam fails at time step 145, armadillo-rollers at

33, mat-twist at 141, ring-twist at 28, and the microstructure at 7).

Conservative Line-Search + Adaptive Quadrature. This solution

works but dramatically increases the number of non-linear iterations

needed in the Newton method. The remaining issue is that, while

the Neo-Hookean energy density is infinite at the point where the

Jacobian determinant is zero, it grows at a slow rate. Mathematically,

when the Jacobian determinant is exactly zero at one point and

positive everywhere else, the integral of the Neo-Hookean energy

still may be finite: consider the integral of a 1D function 𝑓 (𝑥) =
− log( |𝑥 |) on the interval [−1, 1], although it has a singularity at

𝑥 = 0, the integral is∫ 1

−1
− log( |𝑥 |)𝑑𝑥 = −2

∫ 1

0
log(𝑥)𝑑𝑥 = 2 < ∞

This is undesired since it leads to NaN in Equation (5) and stress

evaluation, causing failure of the simulation. This problem can be

mitigated by adding an additional barrier term
𝜇

det 𝐹 to Equation (5).

While this solution formally fixes the problem (and also practically

fixes it in our experiments), it makes the potential harder to minimize

while changing the material model: we are not aware of any analysis

of this problem, and we believe it is an exciting avenue for future

work.

Observations. With these modifications, PolyFEM produces re-

sults without invalid elements. We note that given that the ma-

terial models are infinite for invalid elements, the existing non-

conservative approaches often create solutions that are non-physical.

A more detailed study of the effect of these errors could be an inter-

esting venue for future work.

A second observation is that the issue with the slow growth of

the Neo-Hookean potential (and others, such as Mooney-Rivlin)

is likely due to the misuse of these models for deformations that

are outside of the regime they are designed to handle. It would be

interesting to carefully study experimentally how accurate these

material models are under extreme deformations, and see if it is

possible to design other material models which are numerically

more suitable for interior point optimization.

High-Order IPC. We reproduce simulation examples that use high-

order finite elements in Ferguson et al. [2023], including Mat-twist,

Armadillo-rollers, and Microstructure (Figure 12). In Figure 1, we

include two more examples: Beam-twist and Ring-twist. A video of

these simulations is provided as additional material. In the Beam-

twist, we apply Dirichlet boundary conditions on the two sides of

the beam, rotate one side, and keep the other side fixed; in the Ring-

twist, we apply Dirichlet boundary conditions to rotate the inner

circle of the ring with constant speed and allow the outer circle free

to move. In Figure 12, the simulation results in Ferguson et al. [2023]

have flipped elements since the simulator only checks Jacobian at

quadrature points in each element, while with our conservative

check and adaptive quadrature, there is no flipped element. We

report the statistics in Table 4. For quadratic elements, the runtime

of our method is at worst comparable to the solve time and can be

as fast as 23% of the solve time; for quartic geometric elements and

quadratic solutions, our method is much slower than the solve time,

since the solve is on quadratic elements while the Jacobian check

should be performed on the quartic elements.
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Fig. 10. Statistics for the Kangaroo datasets. Top to bottom: elements of
order 1, 2, 3, 4; Left to right: number of space subdivisions (#ssub), time
subdivisions (#tsub), and time to test an element. Green valid elements; red
invalid (𝑡∗ < 1) elements.

9 CONCLUSIONS
We introduced a formulation for continuous inversion test and a

corresponding conservative and efficient algorithm. Our solution

addresses an open problem in existing finite element solver and

parametrization algorithms, increasing robustness and providing,

for the first time, a guarantee for interior point solvers to stay within

the space of valid elements. While the issue does appear for linear

elements, invalid elements are more commonly present in existing

algorithms that use high-order bases. We believe our algorithm,

and its reference implementation, will be a drop-in replacement for

Fig. 11. Statistics for the Armadillo datasets. Top to bottom: elements of
order 1, 2, 3; Left to right: number of space subdivisions (#ssub), time sub-
divisions (#tsub), and time to test an element. Green valid elements; red
invalid (𝑡∗ < 1) elements.

existing non-conservative checks used in many graphics algorithms

that will increase robustness for a minor performance cost.

Limitations. The cost of our algorithm increases with the poly-

nomial degree, especially for tensor product elements. While this

is compatible with many applications in graphics and engineering

(up to cubic tetrahedra, linear hexahedra/prisms), it is not scalable

to very high-order FEM, where elements of order 20 or more are

routinely used.

Additionally, similarly to all bisection algorithms, our approach

might require a lot of refinement in certain queries where it is

challenging to find the roots: while we could not find such a case

for simplicial elements, our dataset contains some tensor product

elements (57 hexahedra and 26 prisms) for which the algorithm

exceeds the available memory on the personal machine where the

benchmark was run, and must be stopped early via the 𝑙max param-

eter (set to a maximum subdivision depth of 7): our algorithm still

returns a conservative answer. Altering the subdivision strategy

mitigates this issue and allows the algorithm to converge on the

whole dataset: exploring better heuristics for subdivision may be a

fruitful endeavor for improvement.
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Mat-twist

Microstructure

Armadillo-rollers

Fig. 12. Simulation examples in [Ferguson et al. 2023] with (right) and with-
out (left) our inversion check. The high-order elements with non-positive
Jacobian points are shown in red. On the left, the numbers of flipped ele-
ments are 20, 45, and 24 from top to bottom. Our method guarantees the
positivity of Jacobian.

(A) (B)

Von Mises Stress0 3e7

Fig. 13. Von Mises stress distribution of Ring-twist in Figure 1. The NaN
is shown in red. (A) Without our method, NaN appears on elements with
flipped points. (B) With our Jacobian check and adaptive quadrature, the
stress is everywhere finite.

Future Work. Thanks to our approach, we discovered a previously

unreported numerical problem with existing material models under

extreme compression, which was obfuscated by inaccurate quadra-

ture rules. We believe evaluating these material models in extreme

compression regimes would be an interesting avenue for future

work. Additionally, we discovered that high-order elastodynamic

FE solvers often introduce inverted elements in their solutions: their

effect on simulation accuracy requires further investigation, which

is now possible since our test can detect them.

To further reduce the computational cost, it would be interesting

to investigate the possibility of parallelizing individual queries or

adapting our approach for massively parallel graphic processing

units.

ACKNOWLEDGMENTS
This work was supported in part through the NYU IT High Per-

formance Computing resources, services, and staff expertise. This

work was also partially supported by the NSF grants OAC-2411349

and IIS-2313156, a gift from Adobe Research, and by the MUR-PRIN

Project N. 2022YB4NRS "FabDesign".

REFERENCES
Christie Alappat, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager, Olaf

Schenk, Jonas Thies, and Gerhard Wellein. 2020. A Recursive Algebraic Coloring

Technique for Hardware-Efficient Symmetric Sparse Matrix-Vector Multiplication.

ACM Transactions on Parallel Computing 7, 3, Article 19 (June 2020), 37 pages.

R. W. Anderson, V. A. Dobrev, Tz. V. Kolev, and R. N. Rieben. 2014. Monotonicity in high-

order curvilinear finite element arbitrary Lagrangian–Eulerian remap. International
Journal for Numerical Methods in Fluids 77, 5 (Oct. 2014), 249–273. https://doi.org/

10.1002/fld.3965

M. Attene. 2019. Indirect Predicates Library. https://github.com/MarcoAttene/Indirect_

Predicates.

M. Attene. 2020. Indirect predicates for Geometric Constructions. Computer-Aided
Design 126 (2020), 102856.

A. W. Bargteil and E. Cohen. 2014. Animation of Deformable Bodies with Quadratic

Bézier Finite Elements. ACM Trans. Graph. 33, 3 (May 2014), 1–10.

Matthias Bollhöfer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk. 2019. Large-

scale Sparse Inverse Covariance Matrix Estimation. SIAM Journal on Scientific
Computing 41, 1 (2019), 380–401.

Matthias Bollhöfer, Olaf Schenk, Radim Janalik, Steve Hamm, and Kiran Gullapalli.

2020. State-of-the-Art Sparse Direct Solvers. Parallel Algorithms in Computational
Science and Engineering (2020), 3–33.

H. Brönnimann, C. Burnikel, and S. Pion. 1998. Interval Arithmetic Yields Efficient

Dynamic Filters for Computational Geometry. In Proc. 14th Symp. on Comp. Geom.
(Minneapolis, Minnesota, USA). ACM, New York, NY, USA, 165–174.

Yunuo Chen, Minchen Li, Lei Lan, Hao Su, Yin Yang, and Chenfanfu Jiang. 2022. A

unified newton barrier method for multibody dynamics. ACM Trans. Graph. 41, 4,

Article 66 (July 2022), 14 pages. https://doi.org/10.1145/3528223.3530076

J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. 2009. Isogeometric Analysis: Toward
Integration of CAD and FEA. Wiley.

Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-Standard API

for Shared-Memory Programming. IEEE Comput. Sci. Eng. 5, 1 (jan 1998), 46–55.

https://doi.org/10.1109/99.660313

S. Dey, R.M. O’Bara, and M.S. Shephard. 2001. Towards curvilinear meshing in 3D: the

case of quadratic simplices. Computer-Aided Design 33, 3 (2001), 199–209.

V. Dobrev, P. Knupp, T. Kolev, K. Mittal, and V. Tomov. 2019. The Target-Matrix

Optimization Paradigm for High-Order Meshes. SIAM Jou. Sci. Comp. 41, 1 (2019),

B50–B68.

Yu Fang, Minchen Li, Yadi Cao, Xuan Li, Joshuah Wolper, Yin Yang, and Chenfanfu

Jiang. 2024. Augmented Incremental Potential Contact for Sticky Interactions.

IEEE Transactions on Visualization and Computer Graphics 30, 8 (2024), 5596–5608.

https://doi.org/10.1109/TVCG.2023.3295656

Yu Fang, Minchen Li, Chenfanfu Jiang, and Danny M. Kaufman. 2021. Guaranteed

globally injective 3D deformation processing. ACM Trans. Graph. 40, 4, Article 75

(July 2021), 13 pages. https://doi.org/10.1145/3450626.3459757

G. Farin. 2001. Curves and Surfaces for CAGD: A Practical Guide (5th ed.). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

Zachary Ferguson et al. 2020. IPC Toolkit. https://ipc-sim.github.io/ipc-toolkit/. https:

//ipc-sim.github.io/ipc-toolkit/

Z. Ferguson, P. Jain, D. Zorin, T. Schneider, and D. Panozzo. 2023. High-Order Incre-

mental Potential Contact for Elastodynamic Simulation on Curved Meshes. In ACM
SIGGRAPH 2023 Conference Proceedings (, Los Angeles, CA, USA,) (SIGGRAPH ’23).
Association for Computing Machinery, New York, NY, USA, Article 77, 11 pages.

Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois,

Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo. 2021.

Intersection-free rigid body dynamics. ACM Trans. Graph. 40, 4, Article 183 (July

2021), 16 pages. https://doi.org/10.1145/3450626.3459802

A. Gargallo-Peiró, X. Roca, J. Peraire, and J. Sarrate. 2015. Distortion and quality

measures for validating and generating high-order tetrahedral meshes. Engineering
with Computers 31, 3 (2015), 423–437.

P.L. George and H. Borouchaki. 2014. Validity of Lagrange (Bézier) and rational Bézier

quads of degree 2. 99, 8 (2014), 611–632. https://doi.org/10.1002/nme.4696

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: June 2025.

https://doi.org/10.1002/fld.3965
https://doi.org/10.1002/fld.3965
https://github.com/MarcoAttene/Indirect_Predicates
https://github.com/MarcoAttene/Indirect_Predicates
https://doi.org/10.1145/3528223.3530076
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/TVCG.2023.3295656
https://doi.org/10.1145/3450626.3459757
https://ipc-sim.github.io/ipc-toolkit/
https://ipc-sim.github.io/ipc-toolkit/
https://ipc-sim.github.io/ipc-toolkit/
https://doi.org/10.1145/3450626.3459802
https://doi.org/10.1002/nme.4696


16 • Federico Sichetti, Zizhou Huang, Marco Attene, Denis Zorin, Enrico Puppo, and Daniele Panozzo

C. Geuzaine, A. Johnen, J. Lambrechts, J. F. Remacle, and T. Toulorge. 2015. The
Generation of Valid Curvilinear Meshes. Springer International Publishing, Cham,

15–39.

F. Goualard. 2005. Gaol: NOT Just Another Interval Library. https://sourceforge.net/

projects/gaol/.

T. Granlund and the GMP development team. 2012. GNU MP: The GNU Multiple Precision
Arithmetic Library (5.0.5 ed.). http://gmplib.org/.

Kemeng Huang, Floyd M. Chitalu, Huancheng Lin, and Taku Komura. 2024a. GIPC:

Fast and Stable Gauss-Newton Optimization of IPC Barrier Energy. ACM Trans.
Graph. 43, 2, Article 23 (March 2024), 18 pages. https://doi.org/10.1145/3643028

Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider,

Daniele Panozzo, and Denis Zorin. 2024b. Differentiable solver for time-dependent

deformation problems with contact. ACM Trans. Graph. 43, 3, Article 31 (May 2024),

30 pages. https://doi.org/10.1145/3657648

Z. Jiang, Z. Zhang, Y. Hu, T. Schneider, D. Zorin, and D. Panozzo. 2021a. Bijective and

coarse high-order tetrahedral meshes. ACM Trans. Graph. 40, 4 (2021), 1–16.

Z. Jiang, Z. Zhang, Y. Hu, T. Schneider, D. Zorin, and D. Panozzo. 2021b. Bijective and

coarse high-order tetrahedral meshes. ACM Trans. Graph. 40, 4 (2021), 1–16.

A. Johnen, C. Geuzaine, T. Toulorge, and J.-F. Remacle. 2018. Efficient computation of the

minimum of shape quality measures on curvilinear finite elements. Computer-Aided
Design 103 (2018), 24–33.

A. Johnen, J.-F. Remacle, and C. Geuzaine. 2013. Geometrical validity of curvilinear

finite elements. J. Comput. Phys. 233 (2013), 359–372. https://doi.org/10.1016/j.jcp.

2012.08.051

A. Johnen, J. F. Remacle, and C. Geuzaine. 2014. Geometrical Validity of High-Order

Triangular Finite Elements. Eng. with Comput. 30, 3 (2014), 375–382.

A. Johnen, J.-C. Weill, and J.-F. Remacle. 2017. Robust and efficient validation of the

linear hexahedral element. Procedia Engineering 203 (2017), 271–283.

C. Kane, J. E. Marsden, M. Ortiz, and M. West. 2000. Variational integrators and the

Newmark algorithm for conservative and dissipative mechanical systems. Internat.
J. Numer. Methods Engrg. 49, 10 (2000), 1295–1325.

O Knuppel. 1994. PROFIL/BIAS - A fast interval library. Computing 53, 3 (1994), 277–287.

https://doi.org/10.1007/BF02307379

B. Lambov. 2008. Interval Arithmetic Using SSE-2. In Reliable Implementation of Real
Number Algorithms: Theory and Practice, P. Hertling, C. M. Hoffmann, W. Luther,

and N. Revol (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 102–113.

Lei Lan, Danny M. Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang. 2022a. Affine

body dynamics: fast, stable and intersection-free simulation of stiff materials. ACM
Trans. Graph. 41, 4, Article 67 (July 2022), 14 pages. https://doi.org/10.1145/3528223.

3530064

Lei Lan, Minchen Li, Chenfanfu Jiang, Huamin Wang, and Yin Yang. 2023. Second-order

Stencil Descent for Interior-point Hyperelasticity. ACM Trans. Graph. 42, 4, Article

108 (July 2023), 16 pages. https://doi.org/10.1145/3592104

Lei Lan, Guanqun Ma, Yin Yang, Changxi Zheng, Minchen Li, and Chenfanfu Jiang.

2022b. Penetration-free projective dynamics on the GPU. ACM Trans. Graph. 41, 4,

Article 69 (July 2022), 16 pages. https://doi.org/10.1145/3528223.3530069

Lei Lan, Yin Yang, Danny Kaufman, Junfeng Yao, Minchen Li, and Chenfanfu Jiang.

2021. Medial IPC: accelerated incremental potential contact with medial elastics.

ACM Trans. Graph. 40, 4, Article 158 (July 2021), 16 pages. https://doi.org/10.1145/

3450626.3459753

M. Lerch, G. Tischler, J.W.V. Gudenberg, W. Hofschuster, and W. Kramer. 2006. FILIB++,

a Fast Interval Library Supporting Containment Computations. ACM Trans. Math.
Softw 32, 2 (2006), 299–324.

M. Li, Z. Ferguson, T. Schneider, T. Langlois, D. Zorin, D. Panozzo, C. Jiang, and D. M.

Kaufman. 2020. Incremental Potential Contact: Intersection- and Inversion-free

Large Deformation Dynamics. ACM Trans. Graph. (SIGGRAPH) 39, 4, Article 49

(2020).

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele

Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2023b. Convergent Incremental

Potential Contact. arXiv:2307.15908 [math.NA]

Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021. Codimensional incremental

potential contact. ACM Trans. Graph. 40, 4, Article 170 (July 2021), 24 pages. https:

//doi.org/10.1145/3450626.3459767

Xuan Li, Yu Fang, Lei Lan, Huamin Wang, Yin Yang, Minchen Li, and Chenfanfu Jiang.

2023a. Subspace-Preconditioned GPU Projective Dynamics with Contact for Cloth

Simulation. In SIGGRAPH Asia 2023 Conference Papers (Sydney, NSW, Australia) (SA
’23). Association for Computing Machinery, New York, NY, USA, Article 1, 12 pages.

https://doi.org/10.1145/3610548.3618157

Xuan Li, Yu Fang, Minchen Li, and Chenfanfu Jiang. 2022. BFEMP: Interpenetration-free

MPM–FEM coupling with barrier contact. Computer Methods in Applied Mechanics
and Engineering 390 (2 2022). https://doi.org/10.1016/j.cma.2021.114350

Xuan Li, Minchen Li, Xuchen Han, Huamin Wang, Yin Yang, and Chenfanfu Jiang. 2024.

A Dynamic Duo of Finite Elements and Material Points. In ACM SIGGRAPH 2024
Conference Papers (Denver, CO, USA) (SIGGRAPH ’24). Association for Computing

Machinery, New York, NY, USA, Article 97, 11 pages. https://doi.org/10.1145/

3641519.3657449

S. A. Maas, B. J. Ellis, G. A. Ateshian, and J. A. Weiss. 2012. FEBio: Finite Elements for

Biomechanics. Jou. of Biomechanical Engineering 134, 1 (2012).

M. Mandad and M. Campen. 2020. Efficient piecewise higher-order parametrization

of discrete surfaces with local and global injectivity. Computer-Aided Design 127

(2020), 102862.

Z. Marschner, D. Palmer, P. Zhang, and J. Solomon. 2020. Hexahedral Mesh Repair via

Sum-of-Squares Relaxation. Computer Graphics Forum 39, 5 (Aug. 2020), 133–147.

L. Martin, P. Jain, Z. Ferguson, T. Gholamalizadeh, F. Moshfeghifar, K. Erleben, D.

Panozzo, S. Abramowitch, and T. Schneider. 2024. A systematic comparison between

FEBio and PolyFEM for biomechanical systems. Computer Methods and Programs in
Biomedicine 244 (2024), 107938.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kir-

pichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh,

Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi,

Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry,

Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal,

Robert Cimrman, and Anthony Scopatz. 2017. SymPy: symbolic computing in

Python. PeerJ Computer Science 3 (Jan. 2017), e103. https://doi.org/10.7717/peerj-

cs.103

J. Mezger, B. Thomaszewski, S. Pabst, and W. Straßer. 2009. Interactive physically-based

shape editing. Computer Aided Geometric Design 26, 6 (Aug. 2009), 680–694.

Steven S Muchnick. 1997. Advanced Compiler Design and Implementation. Morgan

Kaufmann, Oxford, England.

R.W. Ogden. 2013. Non-Linear Elastic Deformations. Dover Publications. https://books.

google.com/books?id=52XDAgAAQBAJ

Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis

Zorin. 2015. Elastic textures for additive fabrication. ACM Transactions on Graphics
34, 4 (July 2015), 1–12. https://doi.org/10.1145/2766937

B. Schling. 2011. The Boost C++ Libraries. XML Press (2011).

T. Schneider, J. Dumas, X. Gao, D. Zorin, and D. Panozzo. 2019. PolyFEM. https:

//polyfem.github.io/.

T. Schneider, Y. Hu, X. Gao, J. Dumas, D. Zorin, and D. Panozzo. 2022. A Large-Scale

Comparison of Tetrahedral and Hexahedral Elements for Solving Elliptic PDEs with

the Finite Element Method. ACM Trans. on Graph. 41, 3 (2022), 1–14.

Xing Shen, Runyuan Cai, Mengxiao Bi, and Tangjie Lv. 2024. Preconditioned Nonlinear

Conjugate Gradient Method for Real-time Interior-point Hyperelasticity. In ACM
SIGGRAPH 2024 Conference Papers (Denver, CO, USA) (SIGGRAPH ’24). Association

for Computing Machinery, New York, NY, USA, Article 96, 11 pages. https://doi.

org/10.1145/3641519.3657490

J. R. Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic and Fast Robust

Geometric Predicates. Discrete & Computational Geometry 18, 3 (Oct. 1997), 305–363.

J. Smith and S. Schaefer. 2015. Bijective Parameterization with Free Boundaries. ACM
Trans. Graph. 34, 4, Article 70 (2015), 9 pages.

J Snyder. 1992. Interval Analysis For Computer Graphics. ACM SIGGRAPH (1992),

121–130.

S. Suwelack, D. Lukarski, V. Heuveline, R. Dillmann, and S. Speidel. 2013. Accurate

surface embedding for higher order finite elements. In Proceedings of the 12th ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’13). ACM.

X. Tang, Z. Ferguson, T. Schneider, D. Zorin, S. Kamil, and D. Panozzo. 2023. A Cross-

Platform Benchmark for Interval Computation Libraries. In Parallel Processing and
Applied Mathematics, R. Wyrzykowski, J. Dongarra, E. Deelman, and K. Karczewski

(Eds.). Springer International Publishing, Cham, 415–427.

Thomas Toulorge, Christophe Geuzaine, Jean-François Remacle, and Jonathan Lam-

brechts. 2013. Robust untangling of curvilinear meshes. J. Comput. Phys. 254 (Dec.

2013), 8–26. https://doi.org/10.1016/j.jcp.2013.07.022

O. V. Ushakova. 2011. Nondegeneracy tests for hexahedral cells. Computer Methods in
Applied Mechanics and Engineering 200, 17–20 (2011), 1649–1658.

S. Vavasis. 2003. A Bernstein-Bezier Sufficient Condition for Invertibility of Polynomial

Mapping Functions. (2003).

Bolun Wang, Zachary Ferguson, Teseo Schneider, Xin Jiang, Marco Attene, and Daniele

Panozzo. 2021a. A Large-scale Benchmark and an Inclusion-based Algorithm for

Continuous Collision Detection. ACM Trans. Graph. 40, 5, Article 188 (sep 2021),

16 pages. https://doi.org/10.1145/3460775

B. Wang, Z. Ferguson, T. Schneider, X. Jiang, M. Attene, and D. Panozzo. 2021b. A

Large-scale Benchmark and an Inclusion-based Algorithm for Continuous Collision

Detection. ACM Trans. Graph. 40, 5 (2021), 1–16.

Inc. Wolfram Research. 2023. Mathematica, Version 13.3. https://www.wolfram.com/

mathematica Champaign, IL.

A LANGRANGE AND BÉZIER FORMS OF |𝐽𝑥 |
Let 𝑓 : 𝜎𝑛𝑠 −→ R be a polynomial of order 𝑝 defined on a standard

element according to Definition 1. We detail the representation of 𝑓

in Lagrange and Bézier forms and the conversions between these

two representations.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: June 2025.

https://sourceforge.net/projects/gaol/
https://sourceforge.net/projects/gaol/
http://gmplib.org/
https://doi.org/10.1145/3643028
https://doi.org/10.1145/3657648
https://doi.org/10.1016/j.jcp.2012.08.051
https://doi.org/10.1016/j.jcp.2012.08.051
https://doi.org/10.1007/BF02307379
https://doi.org/10.1145/3528223.3530064
https://doi.org/10.1145/3528223.3530064
https://doi.org/10.1145/3592104
https://doi.org/10.1145/3528223.3530069
https://doi.org/10.1145/3450626.3459753
https://doi.org/10.1145/3450626.3459753
https://arxiv.org/abs/2307.15908
https://doi.org/10.1145/3450626.3459767
https://doi.org/10.1145/3450626.3459767
https://doi.org/10.1145/3610548.3618157
https://doi.org/10.1016/j.cma.2021.114350
https://doi.org/10.1145/3641519.3657449
https://doi.org/10.1145/3641519.3657449
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://books.google.com/books?id=52XDAgAAQBAJ
https://books.google.com/books?id=52XDAgAAQBAJ
https://doi.org/10.1145/2766937
https://polyfem.github.io/
https://polyfem.github.io/
https://doi.org/10.1145/3641519.3657490
https://doi.org/10.1145/3641519.3657490
https://doi.org/10.1016/j.jcp.2013.07.022
https://doi.org/10.1145/3460775
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica


High-Order Continuous Geometrical Validity • 17

Lagrange form. Let Γ
𝑝
𝜎 = (1/𝑝)Z𝑛 ∩ 𝜎 be a grid of uniformly

distributed domain points of 𝜎 , and I𝑝𝜎 be its set of indices (Figure 5).

The Lagrange basis of order 𝑝 consists of |Γ𝑝𝜎 | order 𝑝 polynomials

such that for each point 𝛾𝑖 ∈ Γ
𝑝
𝜎 , L𝑝

𝑖
(𝛾 𝑗 ) = 𝛿𝑖 𝑗 . A function 𝑓 is

represented in the Lagrange basis as:

𝑓 (𝜉) =
∑︁
𝑖∈I𝑝𝜎

𝑦𝑖L𝑝

𝑖
(𝜉), (6)

where 𝑦𝑖 = 𝑓 (𝛾𝑖 ) for 𝑖 ∈ I𝑝𝜎 .

Bézier form. aThe same function 𝑓 can be expressed equivalently

in Bézier form by using a Bernstein basis on the same set Γ
𝑝
𝜎 of

domain points:

𝑓 (𝜉) =
∑︁
𝑖∈I𝑝𝜎

𝛽𝑖B𝑝𝑖 (𝜉), (7)

where the B𝑝
𝑖

are Bernstein polynomials of order 𝑝 and the 𝛽𝑖 are

their corresponding control coefficients. Unlike the Lagrange case,

𝛽𝑖 equals 𝑓 (𝛾𝑖 ) only at the corners of 𝜎 . However, the graph of 𝑓 is

contained in the convex hull of points (𝛾𝑖 , 𝛽𝑖 ), providing a simple

way to bound 𝑓 from below and above at all points of 𝜎 [Farin 2001].

Transformation matrix. Let us denote 𝑓 L the vector consisting

of all the 𝑦𝑖 , and likewise, 𝑓 B the vector consisting of all the 𝛽𝑖 , for

𝑖 ∈ I𝑝𝜎 . We can convert between the two representations through

transformation matrices [Johnen et al. 2014]:

𝑓 L = TB→L 𝑓 B 𝑓 B = TL→B 𝑓 L . (8)

Such matrices depend only on the reference element 𝜎𝑛𝑠 and the

order 𝑝 thus can be computed once for each element type and

order. Matrix TB→L is easily computed by evaluation of Bernstein

polynomials on Γ
𝑝
𝜎 :

(TB→L)𝑖 𝑗 = B
𝑝

𝑗
(𝛾𝑖 ) ∀𝑖, 𝑗 ∈ I𝑝𝜎 (9)

and TL→B is the inverse of TB→L .

Subdivision matrices. For each 𝑞, we first build a transformation

matrix from the Bézier basis to the Lagrange basis that interpolates

the domain points 𝜓𝑞 (Γ(𝑚)) of the 𝑞-th subdomain. This is anal-

ogous to building matrix TB→L , by sampling the Bézier basis on

𝜓𝑞 (Γ(𝑚)) instead of Γ(𝑚):

(T𝑞B→L)𝑖 𝑗 = B
𝑚
𝑗 (𝜓

𝑞 (𝛾𝑖 )) ∀𝑖, 𝑗 ∈ I𝜎 (𝑚). (10)

Then we multiply it with the Lagrange-to-Bézier matrix to build

T𝑞B→B = TL→BT
𝑞

B→L , (11)

which allows us to go directly from the Bézier coefficients on the

domain to the Bézier coefficients on each subdomain.

Time subdivision matrices. Time subdivision matrices defined by

plugging the time subdivision maps

𝜓− (𝜉, 𝑡) = (𝜉, 𝑡/2), 𝜓+ (𝜉, 𝑡) = (𝜉, (𝑡 + 1)/2) (12)

in Equation (10) and using Equation (11) as above.

Representations of the Jacobian determinant. Given a standard

element 𝜎𝑛𝑠 as above, let us define 𝑚△ = 𝑛𝑝 − 𝑠 and 𝑚□ = 𝑛𝑝 − 1.

Let us denote 𝑖0 =𝑚△ − (
∑𝑠

𝑗=1 𝑖 𝑗 ) and 𝜉0 = 1 − (∑𝑠
𝑗=1 𝜉 𝑗 ).

The Lagrange basis polynomials used to represent the Jacobian

determinant |𝐽𝑥 (𝜉) | on reference element 𝜎 = 𝜎𝑛𝑠 are:

L𝜎
𝑖1,...,𝑖𝑛

(𝜉1, . . . , 𝜉𝑛) = ©­«
𝑠∏
𝑗=0

ℓ
𝑖 𝑗 ,𝑚△
𝑖 𝑗

(𝜉𝑖 𝑗 )
ª®¬ ©­«

𝑛∏
𝑗=𝑠+1

ℓ
𝑚□,𝑚□
𝑖 𝑗

(𝜉𝑖 𝑗 )
ª®¬ (13)

ℓ
𝑞,𝑚

𝑗
(𝜁 ) =

∏
𝑘∈{0,...,𝑞}\{ 𝑗 }

𝑚𝜁 − 𝑘
𝑗 − 𝑘 (14)

The Bézier basis polynomials used to represent the Jacobian de-

terminant |𝐽𝑥 (𝜉) | on reference element 𝜎 = 𝜎𝑛𝑠 are:

B𝜎𝑖1,...,𝑖𝑛 (𝜉1, . . . , 𝜉𝑛) =
((

𝑚△
𝑖0, . . . , 𝑖𝑠

)
𝜉
𝑖0
0 . . . 𝜉

𝑖𝑠
𝑠

) 𝑛∏
𝑗=𝑠+1

𝑏
𝑚□
𝑖 𝑗
(𝜉𝑖 𝑗 ) (15)

𝑏
𝑞

𝑗
(𝜁 ) =

(
𝑞

𝑗

)
𝜁 𝑗 (1 − 𝜁 )𝑞− 𝑗 (16)

where B𝜎
𝑖1,...,𝑖𝑛

is the product of an order 𝑚△ Bernstein polynomial

on the 𝑠-simplex basis, in the variables 𝜉1, . . . , 𝜉𝑠 , with an order𝑚□
Bernstein polynomial on the (𝑛 − 𝑠)-tensor product basis in the

variables 𝜉𝑠+1, . . . , 𝜉𝑛 , which is itself a product of (𝑛 − 𝑠) univariate

Bernstein polynomials of order𝑚□. It is easy to see that

• the order of |𝐽𝑥 (𝜉) | in {𝜉1, . . . , 𝜉𝑠 } is𝑚△ = 𝑛𝑝 − 𝑠;
• the order of |𝐽𝑥 (𝜉) | in {𝜉𝑠+1, . . . , 𝜉𝑛} is𝑚□ = 𝑛𝑝 − 1.

Notice that on 𝑛-simplices (𝑠 = 𝑛) and 𝑛-hypercubes (𝑠 = 1), |𝐽𝑥 | has

the same order in every variable.

Extension to Dynamic. For the dynamic case, we add a term for

time to the Bézier basis construction, an order𝑛 univariate Bernstein

polynomial in 𝑡 :

B̄𝜎𝑖1,...,𝑖𝑛 (𝜉1, . . . , 𝜉𝑛, 𝑡) = B𝜎𝑖1,...,𝑖𝑛,𝑖𝑡 (𝜉1, . . . , 𝜉𝑛)𝑏𝑛𝑖𝑡 (𝑡) (17)

It is easy to see that the order of |𝐽𝑥 | remains the same as the static

case in its spatial variables, while it is 𝑛 in its time variable. The

number of polynomials in the Bernstein basis, which is equal to the

number of terms of the given polynomial, increases combinatorially

with the dimension 𝑛 and order 𝑝 and is given by

𝑁 =

(
𝑛𝑝

𝑠

)
(𝑛𝑝)𝑛−𝑠 , 𝑁 = 𝑁 (𝑛 + 1), (18)

for the static and the dynamic case, respectively. Note that, this com-

binatorial growth poses intrinsic limitations to scaling the problem

up in degree and dimension. Nevertheless, it remains tractable for

the most common cases, as exemplified in Table 5.

B SUBDIVISION RULES
The subdivision functions 𝜓𝑞

for the various types of elements

are listed below. Their related subdomains are shown in the insets

(red bullet = origin). The dynamic elements for 𝑛 = 3 require 4D

hypercubes (for tensor product) and hyper-prisms (for simplicial

and mixed).
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Element name 𝑛 𝑠 𝑝 𝜉1...𝑠 𝜉𝑠+1...𝑛 𝑡 𝑁

Linear triangle 2 2 1 0 - 2 3

Quadratic triangle 2 2 2 2 - 2 18

Cubic triangle 2 2 3 4 - 2 45

Quartic triangle 2 2 4 6 - 2 84

Quintic triangle 2 2 5 8 - 2 135

Bilinear quadrangle 2 1 1 1 1 2 12

Biquadratic quadrangle 2 1 2 3 3 2 48

Bicubic quadrangle 2 1 3 5 5 2 108

Linear tetrahedron 3 3 1 0 - 3 4

Quadratic tetrahedron 3 3 2 3 - 3 80

Cubic tetrahedron 3 3 3 6 - 3 336

Quartic tetrahedron 3 3 4 9 - 3 880

Bilinear tri. prism 3 2 1 1 2 3 36

Biquadratic tri. prism 3 2 2 4 5 3 360

Trilinear hexahedron 3 1 1 2 2 3 108

Triquadratic hexahedron 3 1 2 5 5 3 864

Table 5. Order of | 𝐽𝑥 (𝜉 ) | in the spatial variables 𝜉 and the time variable 𝑡 ,
and the number 𝑁̄ of its terms for a generic order 𝑝 map on 𝜎̄𝑛

𝑠 .

Triangle.

𝜓 1 (𝜉 ) = (𝜉1/2, 𝜉2/2)
𝜓 2 (𝜉 ) = ( (𝜉1 + 1)/2, 𝜉2/2)
𝜓 3 (𝜉 ) = (𝜉1/2, (𝜉2 + 1)/2)
𝜓 4 (𝜉 ) = ( (1 − 𝜉1 )/2, (1 − 𝜉2 )/2)

1 2

3

4

Quad.

𝜓 1 (𝜉 ) = (𝜉1/2, 𝜉2/2)
𝜓 2 (𝜉 ) = ( (𝜉1 + 1)/2, 𝜉2/2)
𝜓 3 (𝜉 ) = (𝜉1/2, (𝜉2 + 1)/2)
𝜓 4 (𝜉 ) = ( (𝜉1 + 1)/2, (𝜉2 + 1)/2)

1 2

3 4

Tetrahedron. The subdivision of the tetrahedron is non-trivial: it

is split into four tetrahedra incident at the corners of the domain

(corresponding to subdomains 1–4) and a central octahedron, which

is further split into four tetrahedra (domains 5–8).

𝜓 1 (𝜉 ) = (𝜉1/2, 𝜉2/2, 𝜉3/2)
𝜓 2 (𝜉 ) = ( (𝜉1 + 1)/2, 𝜉2/2, 𝜉3/2)
𝜓 3 (𝜉 ) = (𝜉1/2, (𝜉2 + 1)/2, 𝜉3/2)
𝜓 4 (𝜉 ) = (𝜉1/2, 𝜉2/2, (𝜉3 + 1)/2)
𝜓 5 (𝜉 ) = ( (1 − 𝜉2 − 𝜉3 )/2, 𝜉2/2, (𝜉1 + 𝜉2 + 𝜉3 )/2)
𝜓 6 (𝜉 ) = ( (1 − 𝜉2 )/2, (𝜉1 + 𝜉2 )/2, (𝜉2 + 𝜉3 )/2)
𝜓 7 (𝜉 ) = ( (𝜉1 + 𝜉2 )/2, (1 − 𝜉1 )/2, 𝜉3/2)
𝜓 8 (𝜉 ) = (𝜉1/2, (𝜉2 + 𝜉3 )/2, (1 − 𝜉1 + 𝜉2 )/2)

Hexa. The subdivision of a hexahedron works both for a static

hexahedral domain and a dynamic quad domain. In the latter case,

the third coordinate is time.

𝜓 1 (𝜉 ) = (𝜉1/2, 𝜉2/2, 𝜉3/2)
𝜓 2 (𝜉 ) = ( (𝜉1 + 1)/2, 𝜉2/2, 𝜉3/2)
𝜓 3 (𝜉 ) = (𝜉1/2, (𝜉2 + 1)/2, 𝜉3/2)
𝜓 4 (𝜉 ) = ( (𝜉1 + 1)/2, (𝜉2 + 1)/2, 𝜉3/2)
𝜓 5 (𝜉 ) = (𝜉1/2, 𝜉2/2, (𝜉3 + 1)/2)
𝜓 6 (𝜉 ) = ( (𝜉1 + 1)/2, 𝜉2/2, (𝜉3 + 1)/2)
𝜓 7 (𝜉 ) = (𝜉1/2, (𝜉2 + 1)/2, (𝜉3 + 1)/2)
𝜓 8 (𝜉 ) = ( (𝜉1 + 1)/2, (𝜉2 + 1)/2, (𝜉3 + 1)/2)

Prism. The subdivision of a prism works both for a static prism

domain and a dynamic triangle domain. In the latter case, the third

coordinate is time.

𝜓 1 (𝜉 ) = (𝜉1/2, 𝜉2/2, 𝜉3/2)
𝜓 2 (𝜉 ) = ( (𝜉1 + 1)/2, 𝜉2/2, 𝜉3/2)
𝜓 3 (𝜉 ) = (𝜉1/2, (𝜉2 + 1)/2, 𝜉3/2)
𝜓 4 (𝜉 ) = ( (1 − 𝜉1 )/2, (1 − 𝜉2 )/2, 𝜉3/2)
𝜓 5 (𝜉 ) = (𝜉1/2, 𝜉2/2, (𝜉3 + 1)/2)
𝜓 6 (𝜉 ) = ( (𝜉1 + 1)/2, 𝜉2/2, (𝜉3 + 1)/2)
𝜓 7 (𝜉 ) = (𝜉1/2, (𝜉2 + 1)/2, (𝜉3 + 1)/2)
𝜓 8 (𝜉 ) = ( (1 − 𝜉1 )/2, (1 − 𝜉2 )/2, (𝜉3 + 1)/2)

Hypercube. This is a 4-hypercube that works as a domain for a

dynamic hexahedral element.

𝜓 1 (𝜉, 𝑡 ) = (𝜉1/2, 𝜉2/2, 𝜉3/2, 𝑡/2, 𝑡/2)
𝜓 2 (𝜉, 𝑡 ) = ( (𝜉1 + 1)/2, 𝜉2/2, 𝜉3/2, 𝑡/2, 𝑡/2)
𝜓 3 (𝜉, 𝑡 ) = (𝜉1/2, (𝜉2 + 1)/2, 𝜉3/2, 𝑡/2)
𝜓 4 (𝜉, 𝑡 ) = ( (𝜉1 + 1)/2, (𝜉2 + 1)/2, 𝜉3/2, 𝑡/2)
𝜓 5 (𝜉, 𝑡 ) = (𝜉1/2, 𝜉2/2, (𝜉3 + 1)/2, 𝑡/2)
𝜓 6 (𝜉, 𝑡 ) = ( (𝜉1 + 1)/2, 𝜉2/2, (𝜉3 + 1)/2, 𝑡/2)
𝜓 7 (𝜉, 𝑡 ) = (𝜉1/2, (𝜉2 + 1)/2, (𝜉3 + 1)/2, 𝑡/2)
𝜓 8 (𝜉, 𝑡 ) = ( (𝜉1 + 1)/2, (𝜉2 + 1)/2, (𝜉3 + 1)/2, 𝑡/2)
𝜓 9 (𝜉, 𝑡 ) = (𝜉1/2, 𝜉2/2, 𝜉3/2, 𝑡/2, (𝑡 + 1)/2)
𝜓 10 (𝜉, 𝑡 ) = ( (𝜉1 + 1)/2, 𝜉2/2, 𝜉3/2, 𝑡/2, (𝑡 + 1)/2)
𝜓 11 (𝜉, 𝑡 ) = (𝜉1/2, (𝜉2 + 1)/2, 𝜉3/2, (𝑡 + 1)/2)
𝜓 12 (𝜉, 𝑡 ) = ( (𝜉1 + 1)/2, (𝜉2 + 1)/2, 𝜉3/2, (𝑡 + 1)/2)
𝜓 13 (𝜉, 𝑡 ) = (𝜉1/2, 𝜉2/2, (𝜉3 + 1)/2, (𝑡 + 1)/2)
𝜓 14 (𝜉, 𝑡 ) = ( (𝜉1 + 1)/2, 𝜉2/2, (𝜉3 + 1)/2, (𝑡 + 1)/2)
𝜓 15 (𝜉, 𝑡 ) = (𝜉1/2, (𝜉2 + 1)/2, (𝜉3 + 1)/2, (𝑡 + 1)/2)
𝜓 16 (𝜉, 𝑡 ) = ( (𝜉1 + 1)/2, (𝜉2 + 1)/2, (𝜉3 + 1)/2, (𝑡 + 1)/2)

Hyperprism 1. This is the tensor product of a tetrahedron with an interval

that works as a domain for a dynamic tetrahedral element.
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𝜓 1 (𝜉, 𝑡 ) = (𝜉1/2, 𝜉2/2, 𝜉3/2, 𝑡/2)
𝜓 2 (𝜉, 𝑡 ) = ( (𝜉1 + 1)/2, 𝜉2/2, 𝜉3/2, 𝑡/2)
𝜓 3 (𝜉, 𝑡 ) = (𝜉1/2, (𝜉2 + 1)/2, 𝜉3/2, 𝑡/2)
𝜓 4 (𝜉, 𝑡 ) = (𝜉1/2, 𝜉2/2, (𝜉3 + 1)/2, 𝑡/2)
𝜓 5 (𝜉, 𝑡 ) = ( (1 − 𝜉2 − 𝜉3 )/2, 𝜉2/2, (𝜉1 + 𝜉2 + 𝜉3 )/2, 𝑡/2)
𝜓 6 (𝜉, 𝑡 ) = ( (1 − 𝜉2 )/2, (𝜉1 + 𝜉2 )/2, (𝜉2 + 𝜉3 )/2, 𝑡/2)
𝜓 7 (𝜉, 𝑡 ) = ( (𝜉1 + 𝜉2 )/2, (1 − 𝜉1 )/2, 𝜉3/2, 𝑡/2)
𝜓 8 (𝜉, 𝑡 ) = (𝜉1/2, (𝜉2 + 𝜉3 )/2, (1 − 𝜉1 + 𝜉2 )/2, 𝑡/2)
𝜓 9 (𝜉, 𝑡 ) = (𝜉1/2, 𝜉2/2, 𝜉3/2, (𝑡 + 1)/2)
𝜓 10 (𝜉, 𝑡 ) = ( (𝜉1 + 1)/2, 𝜉2/2, 𝜉3/2, (𝑡 + 1)/2)
𝜓 11 (𝜉, 𝑡 ) = (𝜉1/2, (𝜉2 + 1)/2, 𝜉3/2, (𝑡 + 1)/2)
𝜓 12 (𝜉, 𝑡 ) = (𝜉1/2, 𝜉2/2, (𝜉3 + 1)/2, (𝑡 + 1)/2)
𝜓 13 (𝜉, 𝑡 ) = ( (1 − 𝜉2 − 𝜉3 )/2, 𝜉2/2, (𝜉1 + 𝜉2 + 𝜉3 )/2, (𝑡 + 1)/2)
𝜓 14 (𝜉, 𝑡 ) = ( (1 − 𝜉2 )/2, (𝜉1 + 𝜉2 )/2, (𝜉2 + 𝜉3 )/2, (𝑡 + 1)/2)
𝜓 15 (𝜉, 𝑡 ) = ( (𝜉1 + 𝜉2 )/2, (1 − 𝜉1 )/2, 𝜉3/2, (𝑡 + 1)/2)
𝜓 16 (𝜉, 𝑡 ) = (𝜉1/2, (𝜉2 + 𝜉3 )/2, (1 − 𝜉1 + 𝜉2 )/2, (𝑡 + 1)/2)

Hyperprism 2. This is the tensor product of a prism with an interval that

works as a domain for a dynamic prism element.

𝜓 1 (𝜉 .𝑡 ) = (𝜉1/2, 𝜉2/2, 𝜉3/2, 𝑡/2)
𝜓 2 (𝜉 .𝑡 ) = ( (𝜉1 + 1)/2, 𝜉2/2, 𝜉3/2, 𝑡/2)
𝜓 3 (𝜉 .𝑡 ) = (𝜉1/2, (𝜉2 + 1)/2, 𝜉3/2, 𝑡/2)
𝜓 4 (𝜉 .𝑡 ) = ( (1 − 𝜉1 )/2, (1 − 𝜉2 )/2, 𝜉3/2, 𝑡/2)
𝜓 5 (𝜉 .𝑡 ) = (𝜉1/2, 𝜉2/2, (𝜉3 + 1)/2, 𝑡/2)
𝜓 6 (𝜉 .𝑡 ) = ( (𝜉1 + 1)/2, 𝜉2/2, (𝜉3 + 1)/2, 𝑡/2)
𝜓 7 (𝜉 .𝑡 ) = (𝜉1/2, (𝜉2 + 1)/2, (𝜉3 + 1)/2, 𝑡/2)
𝜓 8 (𝜉 .𝑡 ) = ( (1 − 𝜉1 )/2, (1 − 𝜉2 )/2, (𝜉3 + 1)/2, 𝑡/2)
𝜓 9 (𝜉 .𝑡 ) = (𝜉1/2, 𝜉2/2, 𝜉3/2, (𝑡 + 1)/2)
𝜓 10 (𝜉 .𝑡 ) = ( (𝜉1 + 1)/2, 𝜉2/2, 𝜉3/2, (𝑡 + 1)/2)
𝜓 11 (𝜉 .𝑡 ) = (𝜉1/2, (𝜉2 + 1)/2, 𝜉3/2, (𝑡 + 1)/2)
𝜓 12 (𝜉 .𝑡 ) = ( (1 − 𝜉1 )/2, (1 − 𝜉2 )/2, 𝜉3/2, (𝑡 + 1)/2)
𝜓 13 (𝜉 .𝑡 ) = (𝜉1/2, 𝜉2/2, (𝜉3 + 1)/2, (𝑡 + 1)/2)
𝜓 14 (𝜉 .𝑡 ) = ( (𝜉1 + 1)/2, 𝜉2/2, (𝜉3 + 1)/2, (𝑡 + 1)/2)
𝜓 15 (𝜉 .𝑡 ) = (𝜉1/2, (𝜉2 + 1)/2, (𝜉3 + 1)/2, (𝑡 + 1)/2)
𝜓 16 (𝜉 .𝑡 ) = ( (1 − 𝜉1 )/2, (1 − 𝜉2 )/2, (𝜉3 + 1)/2, (𝑡 + 1)/2)

C INTERVAL ARITHMETIC
The interval type we use defines the following operations and relations:

−[𝑥, 𝑥 ] = [−𝑥, −𝑥 ]
[𝑥, 𝑥 ] + [𝑦, 𝑦 ] = [𝑥 + 𝑦, 𝑥 + 𝑦 ]

[𝑥, 𝑥 ] [𝑦, 𝑦 ] = [min(𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦),max(𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦) ]
min( [𝑥, 𝑥 ], [𝑦, 𝑦 ] ) = [min(𝑥, 𝑦),min(𝑥, 𝑦) ]
max( [𝑥, 𝑥 ], [𝑦, 𝑦 ] ) = [max(𝑥, 𝑦),max(𝑥, 𝑦) ]

[𝑥, 𝑥 ] = [𝑦, 𝑦 ] ⇔ 𝑥 = 𝑦 ∧ 𝑥 = 𝑦

[𝑥, 𝑥 ] > [𝑦, 𝑦 ] ⇔ 𝑥 > 𝑦

The division between intervals should be avoided, as the divisor may

contain 0. However, a division of an interval by an exact number is acceptable;

in our code, we have only divisions by 2, which is however exact even in

floating point.

Note that there is no total ordering of intervals, so for example, [𝑥, 𝑥 ] ≰
0⇏ [𝑥, 𝑥 ] > 0.

In our implementation, outward rounding is achieved by internally stor-

ing the lower end of the interval with the opposite sign and changing the

processor rounding mode to always rounding up. This ensures that the

interval’s width increases only when the actual floating-point computation

is inexact.

D GROUND TRUTH
We designed a Mathematica script that computes symbolically the roots of

| 𝐽𝑥 | for a given element. The script receives in input the type, dimension 𝑛,

and order 𝑝 of an element together with the control points describing its

geometric map at times 𝑡 = 0 and 𝑡 = 1. This is the same input taken by our

test. The script computes the symbolic expression of | 𝐽𝑥 | , which is a polyno-

mial in 𝑛 + 1 variables, finds its roots inside the domain 𝜎̄ , and returns the

minimum value of 𝑡 in which a root is found. First, we use FindInstance
to check if the region where 𝐽 ≤ 0 is empty. If so, the element is valid

throughout; otherwise, we use Minimize to find the minimum time 𝑡 in

such a region. The scripts will be released as part of our open-source code.

E FAILURE CASE FOR FLOATING POINT ALGORITHM
We present an artificial example where floating point error causes an invalid

element to be detected as valid by the non-robust implementation of the

static validity check. Consider the static quadratic triangle with control

points:

v00 = (0.0, -1.0)
v20 = (0.9999999999999997, -1.0)

v02 = (-1.1093356479670479e-16, -3.3306690738754696e-16)
v01 = (0.5, -0.75)
v11 = (0.75, -0.25)

v10 = (0.25000000000000017, -0.5)
control points v00, v20, and v02 are the three vertices of the triangle, and v01,

v11, v10 are the edge midpoints. The value of the Jacobian determinant is

positive at all control points, except v00. At this point, the Jacobian is

𝐽00 =(4v𝑥01 − 3v𝑥00 − v𝑥20 ) (4v
𝑦

10 − 3v𝑦00 − v𝑦02 )−
(4v𝑥10 − 3v𝑥00 − v𝑥02 ) (4v

𝑦

01 − 3v𝑦00 − v𝑦20 )
=-1.1093356479670467e-16 < 0

when computed with exact rational arithmetic. However, when tested with

the floating point implementation, the Jacobian determinant at this ver-

tex evaluates to 2.220446049250313e-16 > 0; because all other Bézier

coefficients are positive as well, the element is classified as valid.

Our conservative implementation takes representation error into account

and does not converge for this element, meaning that the algorithm will

stop after 𝑙max subdivisions leaving the element undecided, and thus it will

be treated as invalid.
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