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Fig. 1. Our robust feature-aligned seamless parametrization method starts with a mesh annotated with feature edges and parametrization singularities and
holonomies, most of which are enforced as hard constraints, and the rest optimized for alignment (left). Our algorithm produces a seamless parametrization
with all constraints aligned to a high precision, and has the prescribed cones and holonomies (middle). This parametrization can be used as an initial
parameterization for a quantization algorithm producing a quadrangulation (right).

Parametrization is a key element of many geometric modeling tasks. Seam-

less parametrization, in particular, is needed as a starting point for many

algorithms for quadrangulation and conversion to high-order patches, as

well as for the construction of seamless texture maps and displacement maps.

Seamless parametrizations are difficult to compute robustly, in part be-

cause, in general, it is not known if one exists for a givenmesh connectivity or

for a particular configuration of singularities. Recently, Penner-coordinate-

based methods that allow for connectivity changes have been shown to

achieve a perfect success rate on a widely used dataset (Thingi10k).

However, previously proposed Penner coordinate methods do not support

sharp feature alignment or soft alignment with preferred directions on the

surface, both of which are important for practical applications, especially

those involving models with sharp features.

In this paper, we extend Penner coordinates to surfaces with sharp fea-

tures to which the parametrization needs to be aligned. Our algorithm

extends the holonomy signature description of seamless parametrizations to

surfaces with marked feature curves. We describe sufficient conditions for

obtaining feasible solutions and describe a two-phase method to efficiently

enforce feature constraints or minimize residual errors when solutions are

unattainable. We demonstrate that the resulting algorithm works robustly

on the Thingi10k dataset with automatic feature labeling, and the resulting
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1 INTRODUCTION
Seamless parametrization is a critical tool in geometry processing,

used in methods for quad mesh generation, conforming quad and T-

mesh layout construction for high-order surface approximation and

texturing, surface-to-surface mapping, and other contexts where

surface parametrization is essential.

An important variant of the seamless parametrization problem

considers parametrization singularities (cones) and their type, and

more generally the holonomy signature (Section 4) as fixed. These

signatures are typically derived from a cross-field on the surface,

which allows precise control over cone placement and the preferred

resampling directions. This flexibility makes them highly valuable

for many applications.

It is common for meshes, especially those obtained from CAD

models, to have sharp features, either directly known from the source
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Fig. 2. An example of a feature configuration with no feasible solution.
Aligned horizontal features in the middle of faces around the cube force all
of them to have the same parametric coordinate (e.g., same 𝑢). The vertical
short feature line is labeled to be aligned with 𝑣, so can only have parametric
length 0.

model or inferred, e.g., by heuristics or a data-driven algorithm. For

most applications, the parametric directions of the parametrization

need to be aligned with these features. For example, if the down-

stream application is quad meshing, with quads obtained by sam-

pling the parametric lines, these lines should be following feature

lines precisely.

Penner coordinates is an approach to introducing coordinates

on the space of metrics on a mesh, allowing for mesh connectivity

changes, and reducing to just edge lengths for fixed connectivity.

Recent methods using the Penner coordinates have proven robust

and effective in computing seamless parametrizations for (almost)

arbitrary holonomy signatures [Capouellez and Zorin 2024], as

demonstrated on a large dataset of models of a broad range of geo-

metric and topological complexity. However, existing methods based

on Penner coordinates currently do not support the parametrization

feature alignment, i.e., ensuring that marked edges on the input

mesh are aligned with coordinate directions.

This paper addresses this gap by introducing a novel approach

to feature-aligned seamless parametrization. We aim to extend Pen-

ner coordinate-based methods to ensure alignment with features

while maintaining robustness and compatibility with downstream

applications like quadrangulation.

The introduction of feature alignment requires answering two

key questions:

(1) How to handle feature constraints if the connectivity changes?

The ability to flip any edge is critical for the robustness of

algorithms of Capouellez and Zorin [2024] on which we built;

as a consequence, a feature edge may disappear.

(2) How dowe handle cases when feature constraints do not have

a feasible solution? Penner coordinates-based algorithms of

Capouellez and Zorin [2023] and Capouellez and Zorin [2024]

demonstrate strong empirical performance when feasible so-

lutions exist, which is pretty much always for the seamless

parametrization problem without constraints, subject to mild

restrictions [Shen et al. 2022]. This is not the case for feature-

aligned parameterizations, for which inconsistent conditions

are more common; a simple example is shown in Figure 2.

Unfortunately, the question of the existence of solutions is not

mathematically resolved for hard feature constraints with an arbi-

trary feature graph, and the configurations with no solution appear

to be more common. For this reason, we take the relaxation ap-

proach. A standard approach like imposing constraints in a weak

form, e.g., as a penalty term in an optimization, is not a good match

for the task: for the most common application, quadrangulation,

even small deviations from feature lines create undesirable artifacts,

so in the cases when all constraints cannot be satisfied, distributing

the error over all constraints is not appropriate. One can also formal-

ize the problem as finding a maximal feasible set of constraints, but

this problem is NP-hard even in simpler settings. We note that one

can take two approaches to the competing goals of respecting input

feature curve constraints and cone constraints: relax some of the

cone constraints (e.g., allow adding cones [Pietroni et al. 2021], ) or,

as we do, relax some of the feature constraints, leading to different

types of artifacts. These approaches are complementary and may

be combined in the future for optimal results.

Our approach is based on the conjecture that if the feature graph

is a set of trees, then a solution exists, which empirically holds for the

largemajority of meshes in our dataset. In this way, a relatively small

number of constraints are initially eliminated and then reintroduced,

if a solution can be found. We demonstrate that this approach results

in high feature alignment quality and, at the same time, produces

a seamless parametrization for a large dataset of 17,421 meshes. In

summary, our contributions include:

• Formulation of the feature-aligned seamless parametrization

problem in Penner coordinates, supporting mesh connectivity

changes;

• An algorithm for solving the resulting constraint system,

based on partitioning the constraints into hard constraints

and a smaller number of relaxed constraints.

• Evaluation of a complete quadrangulation pipeline, demon-

strating that the resulting seamless parametrizations are suit-

able as the starting point for quantization algorithms for

quadrangulation (we emphasize that our focus is on robust-

ness of the pipeline; we do not aim for state-of-the-art quad

mesh quality).

In the spirit of Capouellez and Zorin [2024], conceptually, the

algorithm (Section 7) is remarkably simple: formulate the problem

as a set of constraints on angles and lengths, and solve this sys-

tem using a variant of Newton’s method; the key to robustness

is that the machinery of Penner coordinates tells us how to allow

for connectivity changes in the process. While there is additional

effort required in the case of feature alignment to make the problem

compatible with Penner coordinate use, the final setup is similar.

2 RELATED WORK
We focus on themost closely relatedwork here; more comprehensive

surveys on parametrization can be found in Naitsat et al. [2021] and

Fu et al. [2021], and on quadrangulation in Bommes et al. [2013b];

Campen [2017].

Our work extends Capouellez and Zorin [2024], and has similar

motivation: our feature-aligned seamless parametrizations provide a

feasible starting point for conforming quad layout algorithms, such

as Bommes et al. [2009]; Campen et al. [2015]; Lyon et al. [2021], T-

mesh algorithms, e.g., Campen and Zorin [2017]; Myles et al. [2014]

or other parametrization optimization methods, e.g., Liu et al. [2018];

Rabinovich et al. [2017]; Schüller et al. [2013].
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Intrinsic methods. Among intrinsic methods, i.e., methods operat-

ing on intrinsic variables, typically angles and lengths [Ben-Chen

et al. 2008; Kharevych et al. 2006; Sheffer and de Sturler 2001; Spring-

born et al. 2008], themost closely related to our work, beyond Penner

coordinate methods [Capouellez and Zorin 2023, 2024] on which

we build, are discrete conformal maps [Campen et al. 2021; Gille-

spie et al. 2021; Springborn et al. 2008] based on the uniformization

theorems of Gu et al. [2018a,b]; Springborn [2020]. None of these

methods were designed to handle feature constraints; both Campen

et al. [2021]; Gillespie et al. [2021] handle boundaries via mesh

doubling. We also use this for features.

Similar to Capouellez and Zorin [2024] we avoid the higher

computational complexity of iterative projection for constraints

used in earlier work on Penner-coordinate-based parametrization

[Capouellez and Zorin 2023], which uses conformal parametriza-

tion to project to the space of metrics with given vertex angles in

an internal optimization loop. We take advantage of the implicit

approximate minimization of the deviation from the initial metric

provided by the extended Newton method.

Seamless parametrization constructions. Theoretical guarantees

of existence for seamless parametrizations are remarkably hard to

obtain even in the absence of features and boundaries. Shen et al.

[2022] provides theoretical guarantees, but is both expensive and

may be numerically fragile. Related methods Campen et al. [2018]

and Zhou et al. [2020] also involve a highly distorted parametrization

stage and do not provide control over loop holonomy angles. Other

works with partial control of holonomy include Levi [2022, 2023].

None of these works consider feature alignment.

Other methods that do aim for feature alignment, often fail to

ensure injectivity or find a feasible solution, e.g., Bommes et al.

[2013a, 2009]; Bright et al. [2017]; Campen et al. [2015]; Hefetz et al.

[2019]; Lipman [2012].

An alternative approach is to construct a T-mesh partition of the

surface that does not necessarily correspond to a valid seamless

parametrization, e.g., by tracing a cross-field, and then modify it

by inserting or merging singularities [Lyon et al. 2021; Myles et al.

2014; Pietroni et al. 2021]. We aim to preserve the singularities, and

more generally the holonomy structure.

We rely on an implementation of the method of Bommes et al.

[2009] for generating cross-fields from which we infer the cone

positions and angles, and to which our parametrization is aligned.

We refer to Vaxman et al. [2016], for a survey.

Quadrangulation. While our focus is on constructing seamless

parametrizations, which can be used in many ways, one of the

main applications is conforming quad layouts with prescribed cones,

holonomies, and feature lines, which requires additional parametriza-

tion transformations. The methods of Campen et al. [2015]; Heis-

termann et al. [2023]; Lyon et al. [2021] describe techniques that,

starting with a seamless parametrization, construct a patch parti-

tion of a mesh with integer parametric arc length assignments that

can be used to produce a perturbed parametrization suitable for

conforming quad meshing. We demonstrate that our parametriza-

tions are of sufficient quality to serve as a starting point for these

algorithms.

We note that other approaches to quadrangulation, e.g., local

[Huang et al. 2018; Jakob et al. 2015] or based on T-mesh tracing

[Myles et al. 2014; Pietroni et al. 2021, 2016], can produce quad

meshes robustly and with feature alignment, but do not preserve

guiding field singularities. Our method belongs to the category of

methods that preserve the field holonomy signature exactly.

3 PROBLEM FORMULATION
We begin with the formulation of the feature-aligned seamless

parametrization problem on a fixed mesh; a critical feature of our

approach is that the triangulation changes as the parametrization

is solved for. This also presents the main challenge in dealing with

the alignment constraints. We will address this in subsequent sec-

tions; here, we establish the problem in its simplest form in intrinsic

variables (angles and lengths), which is necessary to apply Penner

coordinate-based methods.

3.1 Seamless parametrization
We first describe the seamless parametrization problem in intrinsic

variables for meshes without features.

A discrete metric is an assignment of positive lengths ℓ : 𝐸 → R+

to the edges of the mesh that satisfy the triangle equality for each

triangular face 𝑓𝑖 𝑗𝑘 ∈ 𝐹 . A (mostly) flat parametrization with the

sum of angles at almost all vertices equal to 2𝜋 is directly related

to parameterization, i.e., mapping the surface to the plane. Such

mappings can be obtained from an almost everywhere flat metric

by using lengths in a breadth-first layout process to determine

parametric plane positions for each vertex.

Holonomy signature. Let 𝛼
𝑗𝑘
𝑖

denote the interior angle of the

triangle 𝑓𝑖 𝑗𝑘 at vertex 𝑣𝑖 in a metric on the mesh (in our approach,

the metric is variable, and evolves from the initial 3D metric to the

parametrization metric). We define the cone angle at vertex 𝑣𝑖 ∈ 𝑉
to be just the sum of angles∑︁

𝑓𝑖 𝑗𝑘 ∋𝑣𝑖
𝛼
𝑗𝑘
𝑖

= Θ(𝑣𝑖 ) (1)

2𝜋 − Θ(𝑣𝑖 ) is the discrete curvature at 𝑣𝑖 . For most vertices, the

curvature is zero, and there is typically a set of isolated cones with

locations and angles inferred, e.g., from a cross-field.

For a dual loop 𝛾𝑠 of faces on the mesh separated by edges

𝑒𝑠
1
, ..., 𝑒𝑠

𝑁𝑠
, the holonomy angle of the loop is

𝑁𝑠∑︁
𝑚=1

𝑑𝑠𝑚𝛼
𝑠
𝑚 = 𝜅𝑠 (2)

where 𝛼𝑠𝑚 is the angle between 𝑒𝑠
𝑚−1 and 𝑒

𝑠
𝑚 , and 𝑑𝑠𝑚 is 1 if the rota-

tion from 𝑒𝑠
𝑚−1 to 𝑒

𝑠
𝑚 is counterclockwise and −1 if it is clockwise,

and 𝑠 = 1 . . . 2𝑔 (Figure 3).

The holonomy signature of the metric is a collection of the𝑁𝑣 cone

angles Θ(𝑣𝑖 ), one per vertex, and the holonomy angles 𝜅1, ...𝜅2𝑔 for

a system of loops on the surface. The holonomy signature uniquely

determines the holonomy angle of any dual loop on the mesh. That

is, to know the holonomy angle of any dual loop on the surface, it

suffices to know the holonomy signature of the metric. If all entries

of the holonomy signature are integer multiples of 𝜋/2, then the
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Fig. 3. Holonomy constraint notation, adapted from [Capouellez and Zorin
2024].

metric is seamless. As discussed, e.g., in Capouellez and Zorin [2024],

this is equivalent to the notion of seamless parametrization defined

in terms of 𝑢𝑣 coordinates on a mesh, as having 𝑘𝜋/2 rotations of
coordinates on all parametrization cuts.

Seamless parametrization problem. The constrained seamless pa-

rameterization problem for closed surfaces is to find a metric ℓ such

that the holonomy signature of the metric agrees with prescribed

values that are all integer multiples of 𝜋/2. Let Θ̂ denote a vector

of such 𝑁𝑣 − 1 target vertex angles for a connected mesh (one is re-

dundant due to the Gauss-Bonnet theorem) and 2𝑔 target holonomy

angle constraints (If the mesh had several connected components,

one vertex constraint should be dropped per component). Let 𝛼 (ℓ)
denote the vector of all 3𝑁𝑓 corner angles of the metric ℓ . The cone

angle and holonomy angles are linear combinations of the corner

angles 𝛼
𝑗𝑘
𝑖
, so we can express the holonomy signature constraints

as the following linear system:

𝐶𝛼 (ℓ) = Θ̂ (3)

The problem can also be formulated for surfaces with boundaries

and solved by reduction to the closed-surface case (Section 6). This

is a nonlinear, underdetermined system. It is well known that for a

fixed connectivity𝑀 , a solution may not exist for a given holonomy

signature, so we must consider retriangulation to allow for solutions

to be found. It turns out that it is sufficient to consider all possible

triangulations with a fixed vertex set (i.e., there is no need to in-

crease the mesh size, one just needs to flip edges) to ensure solution

existence for important subclasses of problems. Before considering

this in detail, we extend this formulation to meshes with features.

3.2 Feature alignment in intrinsic variables
We call a mesh𝑀 a mesh with features if a subset of edges is tagged

as aligned with a ±𝑢 or ±𝑣 coordinate direction in the parametric

domain. One can already observe the potential for trouble: if mesh

connectivity needs to be changed, in the process of optimization,

how do we deal with feature edges? We will address this question

in Section 4 and subsequent sections.

The constraints for feature alignment in parametric coordinates

are almost trivial: the𝑢 or 𝑣 value at the endpoints of the edge should

be the same. To recast these constraints in intrinsic variables we

formulate these in relative terms. Rather than considering edge align-

ment with parametric direction, we consider parametric-domain

angles between (not necessarily adjacent) edges. For example, if the

Fig. 4. Left: sector constraints; right: component constraint.

edge 𝑒1 is supposed to be aligned with 𝑢 direction, and edge 𝑒2 with

𝑣 , we may require that the angle between them is 𝜋/2 counted along
a chain of faces (dual path) connecting these. One can show that if

there is a homotopy of two paths that does not traverse cone vertices,

the resulting angle does not depend on the choice of the path. Then

if the first edge is aligned with 𝑢 the second is automatically aligned

with 𝑣 . If the graph of such constraints between pairs of edges is

connected, then it is sufficient to align one with a coordinate axis

to have all of them aligned. There is a consistency condition on the

angle assignments (the discrete Gauss-Bonnet theorem) which is

in our tests satisfied automatically by inferring the angles from a

feature-aligned cross-field.

We distinguish between two types of alignment constraints: vertex

sector constraints and feature component constraints. Both are linear

constraints on the angles of the triangulation.

Suppose a vertex 𝑣𝑖 has 𝐾𝑖 incident feature edges, numbered

sequentially in counterclockwise order around a vertex. We assume

that each sector between two sequential feature edges 𝑒𝑟 , 𝑒𝑟+1, is
assigned a target angle 𝑘𝑟𝜋/2, where 𝑘𝑟 is a positive integer, which
we denote Θ̂𝑟 (𝑣𝑖 ), and call the sector angle. We define 𝐾𝑖 sector

constraints for the vertex 𝑣 :∑︁
𝑓𝑖 𝑗𝑘 ∈𝑆𝑟 (𝑣𝑖 )

𝛼
𝑗𝑘
𝑖

= Θ̂𝑟 (𝑣𝑖 ) (4)

where 𝑆𝑟 (𝑣𝑖 ) is the set of triangles in sector 𝑟 . The usual vertex

angle constraint is a special case for 𝐾𝑖 = 1.

If the feature graph has multiple connected components, vertex

sector constraints are not sufficient to enforce alignment, as each

component may rotate in the parametric domain independently in

an arbitrary way. Consider a dual path connecting two edges 𝑒𝑡
0
and

𝑒𝑡
𝑀𝑡

belonging to separate components of the feature graph, and

with edges 𝑒𝑡
1
, . . . 𝑒𝑡

𝑀𝑡−1 shared by two sequential triangles in the

path. We choose the path so that the edges 𝑒𝑡𝑚 are not feature edges.

Similar to the holonomy constraints (2), these constraints sum up

angles 𝛼𝑡𝑚 between 𝑒𝑡𝑚 and 𝑒𝑡
𝑚+1 along the dual path 𝛾𝑡

𝑀𝑡−1∑︁
𝑚=0

𝑑𝑡𝑚𝛼
𝑡
𝑚 = 𝜅

𝑓 𝑐
𝑡 (5)

with 𝑑𝑡𝑚 = ±1 depending on the direction of rotation, and 𝑡 =

1 . . . 𝑁𝑐𝑐 − 1, where 𝑁𝑐𝑐 is the number of connected components.

The main difference between (1) and (4), and between (2) and (5),

is that the original seamless constraints are defined on closed loops

(around a vertex or holonomy loop) and the feature constraints are

defined on open paths.
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While seemingly minor in a fixed-mesh setting, the difference is

drastic when we change mesh connectivity: the two edges the path

connects may disappear, and while conceptually the way to deal

with closed loops under connectivity changes is straightforward

(replace these with a homotopic dual loop), it is much less clear how

to approach the problem with feature edges.

We combine all constraints we are solving for, (1), (2), (4), and (5)

into a single system of constraints on angles:

𝐶 𝑓 𝛼 = Θ̂ (6)

which has exactly the same general form as for the seamless param-

eterization without features; however, the method of [Capouellez

and Zorin 2024] cannot be applied directly to solve this system, for

two reasons mentioned above: the path update under connectivity

changes is not well defined, and we need to alter the algorithm for

solving, and constraints may not be feasible.

4 OVERVIEW OF THE APPROACH
Our approach to extending the Penner coordinate parametrization

to meshes with marked features is based on several ideas.

Our main assumption is that the algorithm of Capouellez and

Zorin [2024] for meshes without features converges to a solution,

which was confirmed by the numerical studies in that paper; with

some important caveats, we reduce the problem of computing a

parametrization with feature alignment to the feature-free case.

Reduction to seamless parametrization. To address the first prob-

lem, we take the following approach.

• We treat the features of the mesh as boundaries, creating two

boundary edges for each feature edge, possibly separating

the mesh into components. Additional constraints on the

lengths of the two sides of the feature are added to ensure

that the complete mesh can be stitched back together after

parametrization

• We apply the double-cover approach (Figure 5) used in the

conformal parametrization ofmesheswith boundary [Campen

et al. 2021], to compute isometry-optimizing parametrizations

of the cut mesh components. In this approach, a mesh with

a boundary is converted to a closed mesh by gluing a copy

along the boundary, and symmetry is enforced between the

two.

This idea addresses the issue of combining mesh changes (specifi-

cally edge flips) with maintaining feature constraints. In the second

step, open-path constraints on features become standard seamless

vertex and holonomy constraints, and the feature lines are first

transformed into the mesh boundary, and then, in turn, into the

symmetry line components on the double cover mesh.

Relaxation. In the case of meshes without feature constraints,

it is known [Shen et al. 2022] that under mild assumptions, there

is a seamless parametrization for any prescribed holonomy. More

specifically, as long as there is at least one cone of valence 3 or 5,

and excluding some minimal cone configurations for the torus. As

we discussed in the introduction, not much is known about similar

conditions formesheswith features. For this reason, most algorithms

for feature-aligned parametrization introduce a relaxation of the

problem: e.g., Myles et al. [2014] and other works may introduce

additional cones and modify holonomies. We take the approach

of relaxing feature constraints. A common approach of imposing

constraints through a penalty function, is not a good match for

the problem, especially if seamless parametrization is used as a

starting point for quadrangulation. In this case, the error in the

constraints (if these cannot be satisfied exactly) is spread uniformly,

likely resulting in misalignment of the resulting quadrangulation

with features in many locations. A preferred approach would be

to identify a maximal feasible subset of the constraints, but this

problem is known to be hard even for linear constraints, and ours

are nonlinear.

Instead, we partition the constraints into the initial set of hard

constraints and treat the problem as a constrained problem for opti-

mizing the remaining constraints. Our approach can be viewed as

similar to Capouellez and Zorin [2023], in which the parametrization

distortion optimization problem is solved by a projected gradient

descent, with a step along the gradient of the objective is combined

with the projection to the constraint set.

We found that the level of robustness similar to the seamless

parametrizations without features can be obtained if the feature

graph is a tree: the infeasible situations we have observed are mostly

related to loops in the graph, so we use it as a starting point, and

eliminate more constraints if it does not succeed in a given number

of iterations.

In principle, this approach can eliminate all constraints, reducing

the problem to seamless parametrization without features for which

we have a robust algorithm. In our experiments on a large dataset,

we found that nearly the same level of robustness is obtained if the

feature graph is reduced to a tree, and all of the relaxed constraints

can be recovered for almost all meshes.

Algorithm overview. Before proceedingwith the details, we review

the algorithm’s steps. To simplify, we do not include the additional

loop for relaxing the tree constraints further, if it does not succeed.

The algorithm’s input is a mesh with features and a cross-field (or, at

minimum, a set of marked cone vertices and an associated holonomy

signature).

• Construct a forest of spanning trees for the feature edges.

The edges in the forest are marked as hard-constraint edges.

The feature graph separates the mesh into components; we

ensure that each component’s boundary contains at least one

edge of the spanning tree.

• To simplify the construction of our system of hard constraints,

we refine the mesh to ensure every face is adjacent to at most

one feature edge.

• Cut the mesh along feature lines, and construct doubles of all

connected components.

• Check for known infeasible holonomy signatures for seamless

parametrization without features.

• Construct initial dual paths for holonomy and feature con-

nection constraints.

• Construct the initial matrices 𝐶 𝑓
of angle-based constraints

in two versions: all feature constraints, and hard constraints

only.

• Iterate the following steps:
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– Use modified Newton’s method with hard constraints only

to get a seamless metric.

– Compute a descent direction as the Newton direction for

the full constraints.

– Use backtracking line search with projection to the hard

constraints along the full constraint direction.

– Terminate once the relaxed constraints are satisfied, or the

triangle quality reaches a given threshold.

• Parameterize each component with an overlay mesh, an ar-

rangement of the original mesh with the mesh with modified

connectivity the parametrization algorithm produces.

• Stitch together connected components along boundaries.

• Simplify the overlay mesh to keep only the edges of the orig-

inal mesh whenever possible.

• Optionally, optimize the mesh with symmetric Dirichlet and

field alignment energies [Bommes et al. 2009; Smith and

Schaefer 2015], with the hard and relaxed constraints sat-

isfied within numerical tolerance imposed as hard.

As the test of suitability of the resulting parametrization for quad-

rangulation, we use it as the input to the quantization pipeline

developed in Campen et al. [2015]; Heistermann et al. [2023]; Lyon

et al. [2021] provided by the authors. We provide additional details

about this stage in Section 8. The pipeline is used largely as it was

in the previous work.

5 BACKGROUND: PENNER COORDINATES
Intrinsic Delaunay connectivity. To define Penner coordinates on

the space of flat metric with a given vertex set of the same topology

(in other words, all metrics that can be obtained by assigning lengths

to edges of a mesh obtained from a given mesh by flips), we first

introduce a canonical choice of connectivity for a given metric.

A (Euclidean) intrinsic edge flip changes the con-

nectivity of the surface mesh without changing the

cone metric it describes. There are many equivalent

connectivities that can be reached through intrin-

sic edge flips, but we can obtain an (almost) unique

canonical choice by using the Delaunay connectiv-

ity. That is, for anymesh (𝑀, ℓ), we can compute an

equivalent (𝑀̃, ℓ̃) = Del(𝑀, ℓ) such that each edge

𝑒 of 𝑀̃ satisfies the intrinsic Delaunay condition

𝛼𝑖 + 𝛼 𝑗 ≤ 𝜋 , where 𝛼𝑖 , 𝛼 𝑗 are the triangle angles
opposite edge 𝑒 .

This condition can be equivalently expressed as a rational expres-

sion in edge lengths defined for any choice of these lengths even

if these do not satisfy triangle inequality; this fact is important for

defining Penner coordinates.

ℓ (𝑎)2 + ℓ (𝑏)2 − ℓ (𝑒)2
2ℓ (𝑎)ℓ (𝑏) + ℓ (𝑐)

2 + ℓ (𝑑)2 − ℓ (𝑒)2
2ℓ (𝑐)ℓ (𝑑) ≥ 0 (7)

The standard flip algorithm, which simply flips any edge that

does not satisfy this local condition, is guaranteed to terminate and

produce a Delaunay mesh, so the Delaunay connectivity can be

computed efficiently in practice.

Penner coordinates. The Delaunay connectivity is an ideal choice

for a fixed cone metric, but it is difficult to maintain the Delaunay

property when deforming a metric, e.g., during optimization. Pen-

ner coordinates represent all cone metrics (𝑀̃, ℓ̃) on an arbitrary

triangulation with the same vertices, using edge-based coordinates

ℓ on a single, arbitrarily chosen, connectivity𝑀0. While for a subset

of metric for which𝑀0 is a Delaunay connectivity, these coincide

with edge lengths, an arbitrary assignment of ℓ , not necessarily

satisfying the triangle inequality, defines a metric.

We first define a change of coordinates 𝜏 (𝑀,𝑀′) : R𝑁𝑒
+ → R𝑁𝑒

+
between any two connectivities𝑀,𝑀′ with the same topology and

vertex set. We use the Ptolemy formula as atomic transition maps

when a single edge 𝑒 is flipped to 𝑒′:

ℓ′ (𝑒′) = ℓ (𝑎)ℓ (𝑐) + ℓ (𝑏)ℓ (𝑑)
ℓ (𝑒) . (8)

This formula can be applied to an assignment of positive numbers

to the edges whether these correspond to actual lengths (i.e., satisfy

triangle inequality) or not. The coordinates for all other edges are left

unchanged. For a sequence of flips of edges 𝑒1, ..., 𝑒𝑛 connecting two

connectivities 𝑀 and 𝑀0, we define the transition map 𝜏 (𝑀,𝑀0) :
R𝑁𝑒
+ → R𝑁𝑒

+ as the composition 𝜏𝑛 ◦ 𝜏𝑛−1 ◦ · · · ◦ 𝜏1 of the transition
maps for the individual flips. These transition maps are smooth and

well-defined, i.e., they do not depend on the sequence of flips used

to construct the map [Penner 1987].

Finally, we define the Penner coordinates, based on the ideas

introduced in Penner [1987] in the form used in Capouellez and

Zorin [2023]:

Definition 5.1. Penner coordinates for a cone metric with Delaunay

length coordinates (𝑀, ℓ), with respect to a connectivity 𝑀0 is a

vector 𝑃𝑀0
(𝑀, ℓ) of positive numbers inR𝑁𝑒

+ defined as 𝑃𝑀0
(𝑀, ℓ) =

𝜏 (𝑀,𝑀0) (ℓ).

Penner coordinates as optimization variables. Penner coordinates

establish a one-to-one correspondence between the space of metrics

on a mesh and R𝑁𝑒
+ . For a fixed mesh𝑀0, any ℓ ∈ R𝑁𝑒

+ is a vector of

Penner coordinates for some metric. Moreover, its canonical Delau-

nay metric representation (𝑀̃, ℓ̃) can be obtained by the Week’s flip

algorithm, which is just the standard flip algorithm for Delaunay

with Ptolemy intrinsic flips substituted for Euclidean intrinsic flips.

By the definition of Penner coordinates, the canonical coordinates

ℓ̃ are just (Delaunay) length coordinates on 𝑀̃ , so the corner an-

gles 𝛼 ( ˜𝜆) of 𝑀̃ are well-defined. Since the change of coordinates

determined by the flip algorithm is smooth, these values are also

differentiable functions of the Penner coordinates.

Penner coordinates thus provide a remarkably simple optimiza-

tion space for cone metrics with implicit retriangulation that only

needs to be performed temporarily when lengths or angles are

required, e.g., for updating gradient or Newton directions. These

coordinates have been used successfully to solve metric optimiza-

tion problems in Capouellez and Zorin [2023] and the constrained

seamless parametrization problem in Capouellez and Zorin [2024].

The latter is solved with a simple extended Newton’s method for

the seamless constraint equation expressed in Penner coordinates:

𝐹 (𝜆) = 𝐶𝛼 (Del(𝑀0, 𝜆)) − Θ̂ = 0 (9)

Here, 𝜆 = 2 log ℓ is the logarithmic Penner coordinate, which is used

to avoid the positivity constraint on Penner coordinates. Although
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a proof of convergence for 𝑔 > 0 is not available yet, the fast and

consistently successful empirical performance on a large dataset

[Zhou and Jacobson 2016] suggests that there may be an underlying

convex formulation.

6 PROBLEM REDUCTION TO SEAMLESS
PARAMETRIZATION WITHOUT FEATURES

We reduce the system of constraints for a mesh with features to a

seamless parametrization problem without features in two steps.

First, we convert the problem to a seamless parametrization problem

with additional constraints on a mesh with boundary, and then, as

the second step, we convert the latter to a seamless parametriza-

tion problem on a mesh without boundary, matching the setting of

Capouellez and Zorin [2024]. The solution of the latter is directly

converted to the solution of our original problem.

Fig. 5. Reduction of the feature-aligned parametrization problem to seam-
less parametrization on a closed mesh.

Conversion to a mesh with boundary. For the input mesh𝑀 , we

construct a cut mesh 𝑀𝑐
by separating it along all feature edges.

The new mesh𝑀 has the same set of faces, and a set of vertices 𝑉 𝑐
,

with a map 𝑎 : 𝑉 𝑐 → 𝑉 mapping each vertex to its ancestor in 𝑉 .

Each vertex 𝑣 in 𝑉 𝑐
corresponds to a single sector of its ancestor

𝑆𝑟 (𝑎(𝑣)). We denote the sector at 𝑎(𝑣) corresponding to a vertex 𝑣

of 𝑀𝑐
by 𝑆 (𝑣). The constraint (4) for a sector 𝑆𝑟 (𝑎(𝑣)) becomes a

constraint on the total vertex angle: if there is only a single sector,

and no feature edges, then it is a non-feature vertex constraint (1),

otherwise it is a constraint on a boundary vertex total angle. The

explicit form of the constraint is∑︁
𝑓𝑖 𝑗𝑘 ∋𝑣𝑖

𝛼𝑖 𝑗𝑘 = Θ̂(𝑆𝑟 (𝑎(𝑣𝑖 ))) (10)

The feature graph partitions the mesh into connected compo-

nents. Each component may have parts of multiple feature graph

components on its boundary. As these are disjoint, each corresponds

to a separate boundary loop of 𝑀𝑐
. The feature component con-

straints (5) become parametric angle constraints between boundary

components. The paths for both the new vertex constraints and

boundary component constraints are still open, but now we can

apply the double cover approach, following [Campen et al. 2021],

to convert them to loops. Similarly to vertices, we have a map for

edges 𝑎 : 𝐸𝑐 → 𝐸, with two edges mapped to each feature edge of

𝑀 , and one for the rest. As we choose the path between 𝑒0 and 𝑒𝑀𝑟

not to pass through feature edges, it maps to a path in one of the

components of𝑀𝑐
. The form of the constraint (5) remains exactly

the same, but now the summation is over edges 𝑒
𝑡,𝑐
𝑚 in𝑀𝑐

, such that

𝑎

(
𝑒
𝑡,𝑐
𝑚

)
= 𝑒𝑡𝑚 .

Boundary length constraints. The above angle constraints are all

that is required for a seamless parametrization of a meshwith bound-

ary. However, for the features, the lengths of the two edges corre-

sponding to the feature on the boundary should match: 𝜆(𝑒𝑖 ) =
𝜆(𝑒 𝑗 ), if 𝑎(𝑒𝑖 ) = 𝑎(𝑒 𝑗 ). As the logarithmic lengths are our variables,

this would be a simple additional linear constraint. However, as

the mesh connectivity may change, a feature edge may no longer

be present in the mesh, and we need a more complex form of this

constraint, which we define explicitly below.

Conversion to a closed mesh. While Capouellez and Zorin [2024]

does not describe seamless parametrizations of meshes with bound-

ary, the extension to open meshes for conformal maps with just

vertex angle constraints was presented in Campen et al. [2021]. The

theory of Penner coordinates is only valid for closed meshes, as

the intrinsic Delaunay triangulation is an essential part of it. The

idea is to extend a mesh with boundary to a closed surface by creat-

ing a symmetric double cover𝑀𝑑
, maintain symmetry throughout

the optimization process, and extract the final parametrization for

meshes by restricting it to one of the symmetric halves. Note that the

edges on the boundary are allowed to be modified: now the feature

edges, corresponding to the boundary edges in𝑀𝑐
, correspond to

the symmetry line of 𝑀𝑑
, which may not have an edge on it but

can be easily constructed by splitting faces crossing it, which are

tracked throughout the optimization.

Double cover. Let 𝑀𝑐′
be a mirrored copy of 𝑀𝑐

, reversing the

orientation of all faces. We glue𝑀𝑐
and𝑀𝑐′

together along the com-

mon boundaries, identifying the vertices and edges on the boundary,

to produce a single closed mesh𝑀𝑑
; we denote the line on𝑀𝑑

along

which 𝑀𝑐
was glued to 𝑀𝑐′

by Σ. 𝑀𝑑
has a reflection symmetry;

there is a natural involution map 𝑅 that maps vertices, edges, and

faces to their reflected copies. Given a discrete metric (or Penner

coordinates) ℓ defined on𝑀𝑐
, we extend it to𝑀𝑐′

(and thus𝑀𝑑
) by

defining ℓ (𝑅(𝑒)) = ℓ (𝑒). That is, edge length is preserved by 𝑅.

The ancestor map 𝑎 for the vertices of 𝑀𝑑
maps them to the

vertices of𝑀𝑐
. In particular, each vertex on the symmetry polyline of

𝑀𝑑
corresponds to a sector of a feature vertex of𝑀 , and a boundary

vertex of𝑀𝑐
.

Now the sector constraints, already transformed into boundary

vertex constraints, take the form of vertex constraints (1) on𝑀𝑑
: we

consider the union of two paths in𝑀𝑑
around a symmetry vertex

𝑣 , one in 𝑀𝑐
, and the other in 𝑀𝑐′

which form a closed loop, and

the total angle in the constraint just doubles. The same is true for

the component constraints, already transformed into constraints

between boundary loops. Taking the union of the path defined by

the edge sequence 𝑒
𝑡,𝑐
0
. . . 𝑒

𝑡,𝑐
𝑀𝑡

and 𝑅

(
𝑒
𝑡,𝑐
0

)
. . . 𝑅

(
𝑒
𝑡,𝑐
𝑀𝑡

)
, we obtain a

closed loop 𝛾𝑑𝑡 passing through 𝑒
𝑡,𝑐
0

= 𝑅

(
𝑒
𝑡,𝑐
0

)
and 𝑒

𝑡,𝑐
𝑀𝑡

= 𝑅

(
𝑒
𝑡,𝑐
𝑀𝑡

)
,

yielding vertex and holonomy constraints:
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∑︁
𝑓𝑖 𝑗𝑘 ∋𝑣𝑖

𝛼
𝑗𝑘
𝑖

= Θ̂ (𝑎(𝑣𝑖 ))) , for 𝑣𝑖 not on Σ∑︁
𝑓𝑖 𝑗𝑘 ∋𝑣𝑖

𝛼
𝑗𝑘
𝑖

= 2Θ̂
(
𝑆𝑟 (𝑎(𝑣𝑖 ))

)
, for 𝑣𝑖 on Σ.

(11)

𝑁𝑟∑︁
𝑚=1

𝑑𝑟𝑚𝛼
𝑟
𝑚 = 𝜅𝑟 , for 𝛾𝑟 not crossing Σ, 𝑟 = 1 . . . 4𝑔.

𝑁𝑡∑︁
𝑚=1

𝑑𝑡𝑚𝛼
𝑡
𝑚 = 2𝜅

𝑓 𝑐
𝑡 , for 𝛾𝑑𝑡 crossing Σ, 𝑡 = 1 . . . 𝑁𝑐𝑐 − 1.

(12)

We note that although there are twice as many non-symmetry vertex

constraints compared to the number of non-feature vertices in 𝑀 ,

only one of each symmetric pair needs to be enforced. Similarly,

for holonomy constraints out of 4𝑔 constraints, only 2𝑔 need to

be enforced. Finally, we observe that the loops composed of two

component constraint paths are independent of all other loops:

as the paths on 𝑀𝑑
connect two boundary components, after the

double construction, the resulting path is a loop around a tunnel

(Figure 5) that forms on the double surface, which was not present

in 𝑀𝑐
. The total genus of 𝑀𝑑

is 2𝑔 + 𝑁𝑐𝑐 − 1, so we expect 4𝑔 +
2𝑁𝑐𝑐 − 2, holonomy constraints. However, the holonomies of loops

following the boundary of𝑀𝑐
are determined by the holonomy of

the symmetry line, which is in turn determined by the boundary

vertex angles because of symmetry enforced on𝑀𝑑
edge lengths,

so these are not needed.

We retain the length constraints between pairs of edges on𝑀𝑐

for𝑀𝑑
. As these are constraints on lengths on the symmetry line Σ,

their number remains the same.

To summarize, we have converted the feature sector and compo-

nent constraints to vertex and holonomy constraints on the double

of the cut mesh. The symmetry of the double cover ensures that the

angles on the two halves of the paths around symmetry vertices and

holonomy paths obtained from component paths are equal, i.e., the

original constraints are satisfied. The important difference, however,

is that now the constraints are compatible with mesh connectivity

changes needed by the Penner-coordinate algorithm [Capouellez

and Zorin 2024].

Updating constraints for changing connectivity. An essential part

of the Penner-coordinate-based algorithms is, for a given choice of

Penner coordinates on a fixed connectivity𝑀𝑑
0
, converting these to

edge lengths on a different connectivity𝑀𝑑 ′
for which these con-

verted lengths are Delaunay, and computing all geometric quantities

there, including the angles and lengths involved in the constraints.

An additional complicating factor is that with the change of trian-

gulation, the dual loops involved in the holonomy constraints may

change.

For the double𝑀𝑑
, following [Campen et al. 2021], we use sym-

metric flips, i.e., if an edge 𝑒 not crossing Σ, is flipped, we also flip

𝑅(𝑒). We note that flipping an edge entirely on Σ leads to a symmet-

ric edge crossing Σ. However, the case of an edge with one vertex

on Σ requires special attention. In this case, 𝑅(𝑒) and 𝑒 cannot be
simultaneously flipped symmetrically. This is related to the fact that

a symmetric Delaunay tesselation may have stable configurations

of two triangles, forming a symmetric trapezoid, for which choos-

ing either diagonal is valid. A complete list of the possible stable

configurations for symmetric flips is given in Campen et al. [2021].

Vertex and holonomy constraints are updated exactly as discussed

in Capouellez and Zorin [2024]. The vertex angle constraints remain

the sum of angles around a vertex, although some edges may be

added or removed.

The boundary length constraints, not present in the previous work,

are updated as follows. A feature edge of the original mesh, which

became a boundary edge of the mesh𝑀𝑐
, is a symmetry-line edge

on𝑀𝑑
in the initial configuration. The flip algorithm applied to𝑀𝑑

to obtain Del(𝑀𝑑 , 𝜆) for a choice of Penner coordinates 𝜆, may elimi-

nate the edge, which would correspond to a line segment connecting

two vertices on Σ, but not in the triangulation. It is a straight line

in the parametric domain, albeit composed of multiple segments.

More precisely, for any edge 𝑒 with endpoints 𝑣𝑖 , 𝑣 𝑗 in the boundary

of𝑀0, the symmetry structure ensures one of the following holds:

(1) 𝑒 remains an edge in𝑀 .

(2) There are symmetric paths of edges 𝑒0 . . . , 𝑒𝑛 and𝑅(𝑒𝑛), . . . , 𝑅(𝑒0)
that bound a union of triangles and quads that cross the sec-

tion of the line of symmetry between 𝑣𝑖 and 𝑣 𝑗 (Figure 6).

In the first case, the length of the edge ℓ (𝑒) can be directly recovered

from the intrinsic metric. In the latter case, let 𝑡0, 𝑞1, . . . 𝑞𝑛 , 𝑡1 be

the sequence of faces of Del(𝑀𝑑 , 𝜆), starting and ending with a

triangle, and with quad faces in between, crossing 𝑒 of the original

triangulation𝑀𝑑
.

The line of symmetry must, by the reflectional symmetry, be the

path between 𝑣𝑖 and 𝑣 𝑗 intersecting these transverse segments at

their midpoints. Using the fact that all edges cross the symmetry

line orthogonally, for the face 𝑡0 we can compute the length of the

edge from the vertex 𝑣𝑖 on the symmetry line to the midpoint of the

perpendicular opposite edge 𝑒⊥
0
using the Pythagorean theorem as

follows:

ℓ2𝑡0 = ℓ (𝑒0)
2 −

(
ℓ (𝑒⊥

0
)

2

)
2

(13)

and similarly for 𝑡1. The situation is only slightly more complicated

for a quadrilateral 𝑞𝑚 , which by symmetry must be an isosceles

trapezoid, where the length of the line between the midpoints of

the transverse edges 𝑒⊥
𝑚−1 and 𝑒

⊥
𝑚 can be computed as follows (see

Figure 6):

ℓ2𝑞𝑚 = ℓ (𝑒𝑚)2 −
(
ℓ (𝑒⊥𝑚) − ℓ (𝑒⊥𝑚−1)

2

)
2

(14)

Fig. 6. A possible connectivity near a feature edge on the flipped double
cover mesh𝑀𝑑 .
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The total length of the symmetry-line edge is, for an edge 𝑒 that

is no longer in the mesh due to flips:

ℓ𝑒 = ℓ𝑡0 + ℓ𝑞1 + · · · + ℓ𝑞𝑚 + ℓ𝑡1 (15)

where the terms of the expression are defined by (13) and (14). If

two edges 𝑒, 𝑒′ in𝑀𝑐
arise from the same feature, i.e., 𝑎(𝑒) = 𝑎(𝑒′),

then we add the logarithmic variable constraint

𝐵𝑎 (𝑒 ) (𝜆) = 2 ln ℓ𝑒 (𝜆) − 2 ln ℓ𝑒′ (𝜆) = 0 (16)

Summary. The overall system of constraints we aim to solve

consists of the constraints (11), (12), and (15), with the angles 𝛼

expressed as functions of the (logarithmic) Penner coordinates 𝜆,

which we concisely write as

𝐹𝑎 (𝜆) =
[
𝐶𝛼 (𝜆) − Θ̂
𝐵(𝜆)

]
= 0 (17)

7 THE ALGORITHM

7.1 Constraint relaxation
As discussed in Section 4, solving the problem with the full con-

straint set is not always possible. For this reason, we construct two

constraint systems all constraints 𝐹𝑎 (𝜆) = 0 defined above, and a

reduced system of hard constraints 𝐹ℎ (𝜆) = 0, which is a subset. All

length constraints are retained, but angle constraints are modified.

We describe a constraint-reduction procedure that reduces the

number of constraints one-by-one and is equivalent to replacing

a single feature edge with a regular edge. We construct a forest of

spanning trees 𝑇 on the feature graph 𝐺 and obtain 𝐹ℎ as a system

of constraints for edges excluding 𝐸 (𝐺) \ 𝐸 (𝑇 ), where 𝐸 (·) is the
set of edges of a graph. We impose the additional constraint (a)

that every feature vertex is adjacent to at least one edge in 𝐸 (𝑇 )
and (b) that every boundary component in𝑀𝑐

contains at least one

edge in 𝐸 (𝑇 ). Note that this means that not all feature edges can be

relabeled, but we can, in the extreme case, reach the situation when

all feature edges are isolated. As we have not observed the need to

relax many edges beyond those needed to reduce a feature graph

to a tree, we do not consider additional transformation cases that

would be needed to eliminate this restriction.

The feature constraints are defined per vertex sector (4) and path

connecting two graph components (5). It is more convenient to

reason in terms of the cut mesh 𝑀𝑐
, for which these constraints

become boundary vertex and boundary loop alignment constraints.

A feature edge 𝑒 in𝑀 corresponds to two separate edges on the

boundary of 𝑀𝑐
, while non-feature edges correspond to a single

edge of𝑀𝑐
. When a single feature edge becomes a non-feature edge,

this corresponds to merging two edges on the boundary of𝑀𝑐
. The

constraint that no vertex is isolated by the relaxation ensures that

all four endpoints of the two boundary edges are distinct, so this

merging modifies the constraint system as follows:

• Four boundary vertex constraints are dropped;

• Two boundary vertex constraints are added;

• One boundary-to-boundary constraint is added.

Two pairs of boundary vertices are identified, creating two new ver-

tices. If the angles assigned to the original vertices were Θ̂(𝑠 (𝑣𝑚)) =

Fig. 7. Transformation of constraints for relaxation of a single edge. Left:
four vertex constraints to be removed. Right: two new vertex constraints
added, and one boundary-to-boundary constraint.

Θ̂𝑚0, and Θ̂(𝑠 (𝑣 ′𝑚)) = Θ̂𝑚1, 𝑚 = 𝑖, 𝑗 , these four constraints are

dropped, and the new vertex constraints are∑︁
𝑓𝑚𝑟𝑡 ∋𝑣𝑚

𝛼𝑚𝑟𝑡 = Θ̂𝑚0 + Θ̂𝑚1, 𝑚 = 𝑖, 𝑗 .

The additional constraint we add is along a path connecting the

edge 𝑒𝑝𝑖 preceding 𝑣𝑖 on the boundary, and 𝑒 𝑗𝑛′ , succeeding 𝑣
′
𝑗
with

the angle Θ̂𝑖0 + Θ̂𝑗1.

As a boundary-to-boundary constraint is only non-redundant if it

connects two boundary loops, we clarify why it needs to be added in

all cases. The transformation of the boundary components of𝑀𝑐 is

shown in Figure 8. In case 1, a boundary loop of𝑀𝑐
is split into two

components, and an additional boundary-to-boundary constraint

needs to be added. In case 2, topology changes, and a holonomy

constraint needs to be added; one can show that it can be expressed

as a composition of a similar boundary-to-boundary constraint as

in case 1, and vertex constraints. Finally, in case 3, two connected

components of 𝑀𝑐 are linked. As one of the vertex constraints in

each component is redundant by the Gauss-Bonnet theorem, once

components are merged, only one of the two is left redundant; the

other needs to be added back. Adding a boundary-to-boundary

constraint instead is sufficient, as the missing vertex constraint

can be expressed as a linear combination of this constraint and

other vertex constraints, so the transformation shown in Figure 7 is

sufficient.

The angle equations of the system 𝐹ℎ (𝜆) = 0 are obtained by

applying the transformation described above (remove 4 constraints,

replace with 3) repeatedly.

Note that these are not specific to the set of feature edges we

eliminate. In our algorithm, we found that reliable results can be

obtained by starting with the forest of spanning trees. However,

if failure is detected, but the seamless parametrization algorithm

without features succeeds, additional constraints can be removed.

7.2 Algorithm
Algorithm 1 shows the pseudocode for the main components of

our algorithm. The main idea of the algorithm is to approximate

the solution of min ∥𝐹𝑎 (𝜆)∥2, subject to the constraint 𝐹ℎ (𝜆) =

0. We assume that the relaxation from 𝐹𝑎 to 𝐹ℎ is sufficient for

𝐹ℎ (𝜆) = 0 to be reliably solved by the method of Capouellez and

Zorin [2024]: function ProjectToHardConstraint is exactly the

extended Newton algorithm from this work, with a different set of
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(2) (3)(1)

Fig. 8. Removal of a single tagged edge 𝑒𝑖 𝑗 , effects on𝑀𝑐 . (1) The two edges
in𝑀𝑐 corresponding to 𝑒𝑖 𝑗 are on the same boundary loop; the operation
splits it into two. (2) Two edges are on different boundary loops of the same
component; the operation creates a handle. (3) Two edges are on boundary
loops of different components; the operation glues these together. Black
dots indicate vertices at which redundant vertex constraints are dropped
in each component, and the orange dot is the constraint that needs to be
reintroduced.

constraints including length. The outer loop in FeatureSeamless

similarly solves the full constraint system but enforces the hard

constraints at every step. As discussed in Capouellez and Zorin

[2024], this approach, involving a pseudoinverse of the Jacobian of

the constraints at every iteration, finding aminimal norm solution to

the linearized constraints, is effectively approximating minimizing

the metric distortion ∥𝜆 − 𝜆0∥ at every iteration, so the algorithm

is driving the solution towards constraints with minimal solution

norm change at every step. Of course, if the constraints are infeasible,

it will never solve 𝐹𝑎 (𝜆) = 0. Our stopping criterion for the outer

iteration is either finding a solution, or degeneration of the triangles

of the Delaunay mesh for the current iteration of Penner coordinates

𝜆, which we found to be correlated with infeasibility, or its step

decreases close to zero.

We note that the ProjectToHardConstraint can, in princi-

ple, also fail similarly, as we have no mathematical guarantees of

feasibility for the reduced system 𝐹ℎ (𝜆) = 0 or that the iteration

converges to a feasible solution even if one exists. An additional

iteration preceding this algorithm is needed to find a system of con-

straints that produces a solution. As a fallback in failure cases, we

use a simple greedy algorithm: arbitrarily remove edges from 𝐸 (𝑇 )
without isolating feature vertices or removing all edges in a bound-

ary component of𝑀𝑐
, until no more edges can be removed. If this

also fails, we simply fall back to the version of the algorithmwithout

feature alignment constraints. Further details of the algorithm are

provided in Appendix C.

7.3 Stitching and Simplification
Stitching. Once the metric is determined, we construct an explicit

parametrization for the mesh. Capouellez and Zorin [2023] a method

to produce a refinement of a single component, possibly with bound-

ary, by tracking the intersection points of flipped edges with the

original connectivity and solving an optimization problem to deter-

mine the barycentric coordinates of the intersections on the edge.

The metric induced on this refined mesh determines a mapping to

the plane via a layout procedure akin to that of Springborn et al.

Algorithm 1: Seamless feature-aligned parametrization al-

gorithm.

Input :manifold mesh with features𝑀 = (𝑉 , 𝐸, 𝐹, 𝐸𝑐 ),
lengths ℓ0 = 𝑒𝜆

0/2
satisfying triangle inequality,

target angles Θ̂ > 0 at non-feature vertices, sectors

of feature vertices, a basis of dual loops, and paths

between feature graph connected components,

respecting the Gauss-Bonnet theorem.

Output : triangle mesh 𝑀̃ = (𝑉 , 𝐸, 𝐹 ),
edge lengths 𝑒

˜𝜆/2
satisfying triangle inequality,

with angles maxΘ ∥Θ − Θ̂∥ ≤ 𝜖𝑐 , and a subset of

feature edges 𝐸𝑐 , satisfying constraints.

1 Function FeatureSeamless(𝑀, 𝜆0, Θ̂):
2 𝜆 ←ProjectToHardConstraint(𝑀, 𝜆0)
3 while not
4 Converged(𝑀, 𝜆) do
5 𝑀̃, ˜𝜆, 𝐷,𝐶 ← DiffMakeDelaunay(𝑀, 𝜆,𝐶)
6 𝐿 ← ∇𝐹𝑎 (∇𝐹𝑎)𝑇
7 Solve 𝐿𝜇 = −𝐹𝑎
8 𝑑 ← (∇𝐹𝑎)𝑇 𝜇
9 𝛽 ← ProjectedLineSearch(𝜆, 𝑑)

10 𝜆 ← 𝜆 + 𝛽𝑑
11 return
12 MakeDelaunay(𝑀, 𝜆)
13 Function ProjectToHardConstraint(𝑀, 𝜆0, Θ̂):
14 𝜆 ← 𝜆0 while notConverged(𝑀, 𝜆) do
15 𝑀̃, ˜𝜆, 𝐷,𝐶 ← DiffMakeDelaunay(𝑀, 𝜆,𝐶)
16 𝐿 ← ∇𝐹ℎ (∇𝐹ℎ)𝑇
17 Solve 𝐿𝜇 = −𝐹ℎ
18 𝑑 ← (∇𝐹ℎ)𝑇 𝜇
19 𝛽 ← LineSearch(𝜆, 𝑑)
20 𝜆 ← 𝜆 + 𝛽𝑑
21 return
22 MakeDelaunay(𝑀, 𝜆)
23 Function ProjectedLineSearch(𝜆, 𝑑):
24 𝛽 ← 1

25 𝜆 ← ProjectToHardConstraint(M, 𝜆0 + 𝛽𝑑)
26 while ∥𝐹𝑎 (𝜆)∥2

2
> ∥𝐹𝑎 (𝜆0)∥2

2
do

27 𝛽 ← 𝛽/2
28 𝜆 ←ProjectToHardConstraint(M, 𝜆0 + 𝛽𝑑)
29 return 𝜆
30 Function DiffMakeDelaunay(𝑀, 𝜆,𝐶):
31 𝑀̃, ˜𝜆 ← 𝑀, 𝜆

32 𝐷 ← Id

33 𝑄 ← {𝑒 |NonDelaunay(𝑀, 𝜆, 𝑒)}
34 while 𝑄 ≠ ∅ do
35 remove 𝑒 from 𝑄

36 𝑀̃, ˜𝜆 ← PtolemyFlip(𝑀̃, ˜𝜆, 𝑒)
37 𝐷 ← DiffPtolemy(𝑀̃, ˜𝜆, 𝑒) · 𝐷
38 𝐶 ← UpdateConstraints(𝑀̃, ˜𝜆,𝐶, 𝑒)
39 return 𝑀̃, ˜𝜆, 𝐷,𝐶
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[2008]. The particular layout depends on a cut to disk of the refined

mesh; we use a cutgraph that only contains edges in the original

mesh and not the inserted edges that cut triangles transversely, so

the parametrization maps refined triangles in the embedded mesh

to connected curved triangles in the parametric domain (see inset).

parametric
curved
triangle

overlay
triangle

The extension to multiple components is

straightforward, but additional considerations

are necessary to stitch components together

across the feature edges to construct a single

manifold mesh with a parametrization. Since

boundary edges may be refined in the overlay

mesh and the two edges split by a feature are

decoupled, they may have different refinements

that need to be stitched together.

Simplification. The final stitched mesh in-

cludes edges of both 𝑀 and the edges of the

final mesh obtained from Del(𝑀𝑑 , 𝜆
𝑓 ), where 𝜆𝑓 is the final metric

produced by the algorithm. Capouellez and Zorin [2023] also de-

scribe a simplification method to remove refinement where possible

without introducing flipped triangles in the parametric domain. This

method does not depend on how the refined mesh was produced; it

only requires a refined mesh with annotations of the mappings from

refined triangles to the original face containing it and from refined

vertices to the endpoints of the edge containing it. By some simple

additional bookkeeping, we can maintain this information during

the stitching process and then apply this simplification procedure

directly. Since the inserted vertices on refined feature edges are

colinear, this simplification naturally preserves feature alignment.

8 EVALUATION
Datasets. Following previous work, we use two datasets in our

evaluation: Myles et al. [2014] and a dataset derived from [Zhou

and Jacobson 2016], similar to [Capouellez and Zorin 2024], i.e.,

obtained by tetrahedral remeshing and extraction of manifold sur-

faces. As a large fraction of meshes in Zhou and Jacobson [2016] are

nonmanifold, and have self-intersections, degenerate triangles, and

other flaws, this makes a large percentage unsuitable for testing.

Our preprocessing allows us to increase the number and topological

complexity of meshes we use, simultaneously improving mesh qual-

ity. While feature preservation by TetWild [Hu et al. 2018], which

we use for remeshing, is imperfect, these are preserved sufficiently

well to test robustness. A simple dihedral-based sharp feature detec-

tor was used to generate features automatically. This is not the best

approach in many cases: we view curved feature detection as a sep-

arate important problem, and our purpose is to test the robustness

of the method and the naive feature detector results in challenging

feature configurations.

Once features are detected, we use an implementation of Bommes

et al. [2009] to generate cross-fields on the surface, using feature

edge directions as additional constraints. The iterative rounding

step of this method was modified to avoid snapping feature sector

angle constraints to 0, which are unsatisfiable. A small number of

meshes for which the resulting global vertex angle constraints were

also theoretically unsatisfiable (3-5 torus topology [Shen et al. 2022],

and tori without cones but with nontrivial holonomy) were modified

with simple heuristics (e.g., random cone pair insertion) to make

them feasible. In total, we obtained 17,421 meshes by this procedure.

Statistics for this dataset are shown in Figure 12, and details of our

procedure are provided in Appendix B

Algorithm robustness and constraint satisfaction. The algorithm

obtained a feature-aligned seamless parametrization for every mesh

in both the dataset of Myles et al. [2014] and the dataset derived from

Zhou and Jacobson [2016] dataset, except for one simple mesh with

torus topology and four cones. While a seamless parametrization

in this case exists, we hypothesize that due to unfortunate cone

location, it may be distorted enough to cause problems (Figure 9).

Fig. 9. The mesh for which the parametrization algorithm with feature
alignment did not converge. The fallback algorithm with no feature align-
ment constraints converges as expected. Note the unfortunate location of
cones, generated by the cross-field optimization; there are two close pairs
of cones, with valences 3 and 5 on the feature curves, and no other cones
on the mesh.

Fig. 10. For an impossible configuration from Section 1, our method relaxes
one of the edges, which ends up misaligned. In the visualized example the
vertical edge is relaxed. Note that in the resulting parametrization, it is
forced by the constraints on other edges to be aligned, but also with the 𝑢
direction, violating constraints on the sector angles at its endpoints.

It produces parametrizations for which all angle constraints (at

cones, on holonomy loops, and alignment) are satisfied with at least

10
−10

accuracy. All parametric-domain triangles in all parametriza-

tions are guaranteed to have the correct orientation, which is vali-

dated by exact predicates [Shewchuk 1996].

As the alignment constraints for some edges are imposed as soft

constraints, we report the distribution of the resulting error.

For 16,444 meshes, all soft constraints were satisfied with 10
−10

accuracy. The distribution of the errors for the remaining constraints

is shown in Figure 14. For 54 meshes, the initial projection to hard

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



12 • Ryan Capouellez, Rodrigo Singh, Martin Heistermann, David Bommes, and Denis Zorin

aligned relaxed
edge

misaligned relaxed
edges

Fig. 11. An example of misaligned relaxed edges on a model in our dataset.
Note that many of the other nearby relaxed edges are actually aligned.

Fig. 12. Thingi10k remeshed dataset statistics. Outliers are aggregated in
the rightmost bin.

constraints did not converge or the resulting metric was was too de-

generate for downstream applications such as, e.g., quadrangulation,

and the fallback method described in Appendix C was employed.

We emphasize that the convergence failure in these cases does not

necessarily imply that a solution does not exist. Capouellez and

Zorin [2024] observed that some form of intrinsic pre-processing is

necessary for the convergence of the Newton’s method for poorly

conditioned meshes. While our remeshed models are initially high

quality, challenging feature alignment constraints can quickly result

in degraded triangle quality. Indeed, for many of our fallback cases,

simply applying the interpolation towards regular Penner coordi-

nates used in Capouellez and Zorin [2024] resulted in convergence

without relaxing any additional hard feature constraints.

parameterization quad mesh
relaxed edges

Fig. 13. Left: a seamless parametrization showing hard constraints (yellow)
and relaxed feature edges which were perfectly aligned by the algorithm.
Right: resulting quad mesh. Note that almost all relaxed feature edges actu-
ally do get aligned by our algorithm, resulting in aligned quadrangulations.

Fig. 14. Distribution of feature alignment errors (worst error per mesh),
measured in radians. The histogram on the right shows the zoomed-in view
of edges with higher deviation from constraints. The number of meshes
with the worst-case alignment error exceeding 0.01 radian, i.e., around 6
degrees, is 346. Meshes with no features trivially have an alignment error of
0.

Metric optimality. Similarly to Capouellez and Zorin [2024], im-

plicitly our algorithm approximately minimizes the norm | |𝜆−𝜆0 | |2.
Figure 15 shows the distributions of distortion with and without

feature constraints. There is a significant increase in distortion, but

overall, our method keeps the distortion within a reasonable range.

Runtime. As with Capouellez and Zorin [2024], the main bottle-

neck of our seamless parameterization method is the linear solve to

find the modified Newton descent directions. The total runtime of

Algorithm 1 is then roughly estimated as the product of the number

of linear solves and the average solve time.

For our method, we found that the average number of solves

required was 18 and the average solve time was 0.155 seconds. On

the same dataset with feature constraints removed, the method of

Capouellez and Zorin [2024] had an average solve count of 10 and

an average solve time of 0.043 seconds. This increase in runtime is

expected as we have more constraints to enforce. Figure 16 shows

the distributions of solve counts and solve times for both.

aligned unaligned

Fig. 15. Distribution of metric errors with and without feature alignment.

Non-degeneracy. While all our parametrizations are valid, some

may have triangles close to degenerate (Figure 17). We show the

distributions of minimal angles and minimal exterior angles (i.e., the

differences between maximal angles and 𝜋 ) for the intrinsic mesh

Del(𝑀𝑑 , 𝜆𝑓 ) (see Section 5) associated with the parametrization
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aligned unaligned

Fig. 16. Distribution of total linear solves required with and without feature
alignment. We also plot the average time of the linear solves over the mesh
size. With alignment, the average solve count is 18 with an average solve
time of 0.155 seconds. Without alignment, the corresponding results are 10
solves and 0.043 seconds.

metric and the refinement of the original mesh needed to remap the

parametrization of the intrinsic mesh to the original.

overlay

layout

Fig. 17. Distribution of minimal angles and exterior angles for the intrinsic
parametrization metric mesh and the refined original mesh. Upper row:
distribution for the intrinsic mesh Del(𝑀, 𝜆𝑓 ) . Lower row: distribution
for the overlay mesh, including the distribution of 112 meshes with worst
interior angle below 10

−6

Quadrangulation suitability. As one of the motivations for seam-

less parametrization is to provide a reliable starting point for quad-

rangulation algorithms, we combined our seamless parametrization

with the algorithms of Campen et al. [2015] and Heistermann et al.

[2023]. For completeness, we briefly summarize the quadrangulation

pipeline here:

• Compute a seamless parametrization, 𝑃𝑠
• "Sanitize" it by perturbing the 𝑢, 𝑣 positions, so that the seam-

less constraints are satisfied bit-exactly [Mandad and Campen

2019].

• Compute a T-mesh partition of the surface, by tracing 𝑢 and

𝑣 isolines on 𝑃𝑠 [Campen et al. 2015].

• Quantize the parametric arc lengths using greedy Bi-MDF

quantization [Heistermann et al. 2023], i.e., assign positive

integers to the arclength of the T-mesh, so that the lengths of

opposite sides of each quad are equal (To obtain coarser quad

meshes, Heistermann et al. [2023] allows for zero-length as-

signments, which are later eliminated). For a seamless starting

point, one always exists, for a sufficiently fine quad meshing

scale [Campen et al. 2015; Heistermann et al. 2023].

• Compute an initial parametrization 𝑃0𝑞 with quantized con-

straints, parametrizing per patch of the T-mesh.

• Optimize the parametrization, to obtain the final one, 𝑃𝑞 ,

by minimizing the symmetric Dirichlet energy [Smith and

Schaefer 2015] with 𝑃𝑠 as a reference.

• Trace integer 𝑢 and 𝑣 isolines of 𝑃𝑞 to obtain a quad mesh

[Ebke et al. 2013].

An important technical aspect of these algorithms, as far as the

input parametrization is concerned is sanitization (cf. [Mandad and

Campen 2019]) which makes the seamless constraints exact before

the next steps of the quantization algorithms. While our algorithm

satisfies the seamless constraints very accurately, for triangles close

to degenerate, even a tiny perturbation needed to make the con-

straints exact may result in an inverted triangle and parametrization

not suitable for quadrangulation. For this reason, we measure how

robust the parametrization is for such a perturbation process. Specif-

ically, we use two measures: the ratio of the triangle height to the

maximal error in the length of edges on which seamless constraints

are imposed 𝑟ℓ and the ratio of minimal angle or exterior angle to

the error in the seam edge orientation 𝑟𝛼 (Figure 18).

Fig. 18. Distribution of measures of sensitivity to vertex perturbation 𝑟ℓ and
𝑟angle, indicating whether the initial step of the quadrangulation process
(sanitization) is likely to fail. Only 2 meshes were below 10.

For all models but 2, this ratio exceeds 10, and for these models,

we can still successfully obtain a quadrangulation.

Figure 19 shows one extreme example demonstrating the robust-

ness of our method. One model in our dataset has an extremely
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spiky surface, with a large fraction of the edges identified as sharp

by our naive feature tagging algorithm. The algorithm succeeds in

this extreme case, producing a parametrization suitable for quad-

rangulation (the usefulness of such quadrangulation is unclear, we

include this example as empirical evidence of robustness).

Fig. 19. A extreme model with dense random sharp features. This model has
85,846 cones, and 111,395 sharp edges, out of 838,947 edges. Left: seamless
parametrization. Right: extracted quad mesh.

Figures 20, 21, 22 show a collection of models from the dataset

with high geometric complexity and salient features based on Zhou

and Jacobson [2016]. For each model, we show the seamless, feature-

aligned parametrization, quadrangulation based on this parametriza-

tion, and histograms of the metric distortion as measured by the

deviation per face of the symmetric Dirichlet energy from the op-

timal value. Our method handles meshes of high topological and

geometric complexity, with genus as high as 4292, while preserv-

ing the input cross-field topology and feature alignment. Note that,

although we are able to obtain a quadrangulation for the highest

genus models in our dataset, these surfaces lack salient features, and

our simple dihedral-based feature detection produces noisy feature

tags akin to those in Figure 19.

Robustness compared to other methods. Our method succeeded

in producing a valid parametrization (but possibly with some mis-

aligned edges) on the closed meshes of the dataset introduced in

Myles et al. [2014] and used in a few papers, with original connec-

tivity and fields as input, as well as on all of 17,421 mesh dataset,

except one model described above.

The method of Myles et al. [2014], uses field tracing (including

tracing sharp features exactly) to create an initial T-mesh quad

partition, which is then adjusted to make it metric-compatible, and,

if this proves to be impossible, inserts cones in some of the quads,

thus solving a somewhat different problem – our method aims to

keep the holonomy signature fixed. By design, the initial T-mesh

will include all sharp features. However, the algorithm may reroute

some patch boundaries, including sharp features, in the process

of T-mesh adjustment. Like our method, it produces a seamless

parametrization on all inputs on the smaller dataset used (around

120 meshes), but inserts cones in some cases (4 meshes, around 3%)

Our relaxation is different: we preserve the holonomy signature

exactly but may relax some of the feature constraints (which may

also be the case for Myles et al. [2014], due to T-mesh modifications

required for approximately 30% of the meshes).

Three other methods were evaluated in that paper on the same

dataset, to obtain a seamless parametrization, alignedwith features if

any are present: Bommes et al. [2013a, 2009] andMIQ combinedwith

the convexified bijectivity constraints [Lipman 2012]. The former

does not guarantee bijectivity, and the latter narrows the space

of admissible solutions by convexifying the bijectivity constraints,

and as a consequence did not find solutions in 25% and 17% cases

respectively, as well as modified some cones.

Other recent methods, Campen and Zorin [2017] and Shen et al.

[2022] do not address feature constraints, and the latter fails on

the highest genus models in the Myles et al. [2014] dataset (6% of

nontrivial genus models, highest genus around 100).

Another recent method, Pietroni et al. [2021], as far as we know,

is the only quadrangulation method that was tested on a dataset

derived from the Thingi10k dataset we are using. It uses a construc-

tion that avoids the need for seamless parametrization but changes

the holonomy signature, similar to Myles et al. [2014]. In terms

of robustness it shows a high, but still substantially lower success

rate on Thingi10k (for 0.5% of inputs no quad mesh was produced

(around 50 meshes out of 9877 in the dataset used), on a variety of

models, including some of the more complex shapes. Figures 20,21,

and 22 include some of these shapes among others.

In a sense, the approach we propose is complementary to the

cone-inserting approaches of Myles et al. [2014] and Pietroni et al.

[2021]: one can expect that e.g., for infeasible configurations, some

are best handled by relaxing the feature constraints as we do, and

other by adding cones.

9 LIMITATIONS AND FUTURE WORK
We have described an approach to solving the seamless parame-

terization problem with feature alignment robustly, at the cost of

relaxing some of the alignment constraints. Our method is based on

solving a system of nonlinear equations in intrinsic variables using a

straightforward modification of Newton’s algorithm while allowing

mesh connectivity to change in the process, which is critical for

robustness.

Limitations. While the robustness of our method is orders of

magnitude higher (based on available data) compared to previously

proposed techniques, just like Capouellez and Zorin [2024], it lacks a

full theoretical justification of convergence, which is only available

for genus 0 version of that method. Even more fundamentally, while

the conditions for solution existence for a seamless parametriza-

tion problem without feature alignment are known, for the feature-

aligned version we consider, there are no known conditions on the

feature graph that guarantee that the solution exists.

Moreover, in cases where the soft constraints are not satisfied

to machine precision, we have empirically observed that it is often

possible to convert a large subset of these soft constraints to hard

constraints without impacting convergence. While we have found

our hard constraint trees to work remarkably well in practice, de-

veloping heuristics to relax as few edges as possible is a potential

direction for future work.

Our method is substantially slower in many cases compared

to Capouellez and Zorin [2024], as it may require multiple iter-

ations, each requiring a hard constraint nonlinear solve, similar to
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genus 387, 32326 faces, 6809 feature edges

genus 60, 27192 faces, 4597 feature edges

genus 148, 87528 faces, 13761 feature edges

genus 130, 78168 faces, 3574 feature edges

genus 102, 38492 faces, 4555 feature edges

genus 204, 42668 faces, 8321 feature edges

Fig. 20. Examples from our dataset with a complex feature graph, large number of cones, and high genus (set 1). Please note that feature detection was based
on simple dihedral angle thresholding, and missing features were not present in the input, rather than removed by our algorithm.
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genus 21, 19848 faces, 1483 feature edges

genus 103, 79832 faces, 14337 feature edges

genus 171, 44386 faces, 8855 feature edges

genus 11, 10900 faces, 2313 feature edges

genus 225, 56706 faces, 11771 feature edges

genus 632, 78388 faces, 13381 feature edges

Fig. 21. Examples from our dataset with a complex feature graph, large number of cones, and high genus (set 2). Please note that feature detection was based
on simple dihedral angle thresholding, and missing features were not present in the input, rather than removed by our algorithm.
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genus 132, 140460 faces, 6116 feature edges

genus 452, 59946 faces, 11721 feature edges

genus 0, 46458 faces, 4425 feature edges

genus 31, 22200 faces, 3009 feature edges

genus 41, 231008 faces, 41426 feature edges

genus 320, 61458 faces, 8900 feature edges

Fig. 22. Examples from our dataset with a complex feature graph, large number of cones, and high genus (set 3). Please note that feature detection was based
on simple dihedral angle thresholding, and missing features were not present in the input, rather than removed by our algorithm.
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Capouellez and Zorin [2023]. Furthermore, while the parametric-

domain meshes with updated connectivity computed using the flip

algorithm are of consistently good quality, remapping to the initial

domain using an overlay mesh does result in a quality decrease,

which can be addressed by an improved overlay construction.

Finally, our parametrization quality in many cases requires im-

provement by a post-optimization process based on fixed mesh con-

nectivity and symmetric Dirichlet/field-alignment energy, which is

often costly. Improving the quality of the parametrization obtained

in Penner coordinates is a possible future direction.
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A BOUNDARY PATH LENGTH DERIVATIVES
The boundary are simple expressions in squared length coordinates,

but we need to take derivatives of logarithmic lengths 𝜆𝑓 = 2 log ℓ𝑓
with respect to logarithmic coordinates 𝜆. The unflipped edge is

trivial, and the flipped edge formula is

𝜕𝐵𝑒

𝜕𝜆𝑒′
=
𝜕 (2 log ℓ𝑒 )

𝜕𝜆𝑒′
=

2

ℓ𝑒

(
𝜕ℓ𝑡0

𝜕𝜆𝑒′
+
𝜕ℓ𝑞1

𝜕𝜆𝑒′
+ · · · +

𝜕ℓ𝑞𝑚

𝜕𝜆𝑒′
+
𝜕ℓ𝑡1

𝜕𝜆𝑒′

)
The derivatives of the individual segment length derivatives are

straightforward. For the transverse triangle 𝑡0 with transverse edge

𝑒⊥
0
, we have:

𝜕ℓ𝑡0

𝜕𝜆𝑒⊥
0

=
−ℓ (𝑒⊥

0
)2

8ℓ𝑡0
,

𝜕ℓ𝑡0

𝜕𝜆𝑒0
=
ℓ (𝑒0)2
2ℓ𝑡0

For a quadrilateral 𝑞𝑚 , we have:

𝜕ℓ𝑞𝑚

𝜕𝜆𝑒⊥
𝑚−1

=
−ℓ (𝑒⊥

𝑚−1) (ℓ (𝑒
⊥
𝑚−1) − ℓ (𝑒

⊥
𝑚))

8ℓ𝑞𝑚

𝜕ℓ𝑞𝑚

𝜕𝜆𝑒⊥𝑚

=
−ℓ (𝑒⊥𝑚) (ℓ (𝑒⊥𝑚) − ℓ (𝑒⊥𝑚−1))

8ℓ𝑞𝑚
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𝜕ℓ𝑞𝑚

𝜕𝜆𝑒𝑚
=
ℓ (𝑒𝑚)2
2ℓ𝑞𝑚

As usual, the full gradient with respect to the Penner coordinates

on the original connectivity can be computed by the chain rule as

∇𝜆0𝜆𝑓 = ∇𝜆𝜆𝑓 · ∇𝜆0𝜆

B DATASET
Manifold remeshing. We remesh all 10,000 models in the Zhou and

Jacobson [2016] dataset with the method of Hu et al. [2020]. We split

nonmanifold edges and vertices to produce a manifold surface mesh;

since the method produces the boundary of a manifold tetrahedral

mesh, this manifold splitting is always possible. We separate each

(possibly disconnected) manifold surface into components. To avoid,

e.g., the trivial isolated tetrahedra often produced by Hu et al. [2020],

we discard separated components with fewer than 500 faces, and

also discard any components with degenerate faces.

Feature inference. We tag all edges with a dihedral angle defect

greater than 60
◦
as a feature edge. If all edges of a triangle are tagged

(a trivially impossible constraint for seamless parameterization with

alignment), we remove the feature tags from these edges. To avoid

spurious features, we also remove any feature graph components

with four or fewer edges.

Hard feature edges. To construct the initial hard constraint subset,

we compute a maximal spanning forest, with edges weighted by

dihedral angle defect. In other words, we select the sharpest feature

edges as hard constraints. In order to construct the feature compo-

nent alignment constraints (Equation 5), we make the simplifying

assumption that every boundary component in the feature cut mesh

contains at least one hard constraint edge. Rather than attempting

to find a spanning forest with this property, we use the following

simple heuristic: if a boundary component does not contain at least

one spanning forest edge, we refine an arbitrary edge in this com-

ponent at the midpoint and add one of the two new edges to the

spanning forest.

Cross-field optimizaiton. To ensure the cross-field can be feature

aligned, we first refine the mesh to ensure every face is adjacent

to at most one feature edge. We also estimate principal curvature

directions on the feature cut mesh [Panozzo et al. 2010], and we

identify salient directions with high anisotropy. We then generate

a cross field with the method of Bommes et al. [2009] on the cut

mesh, with:

(1) feature alignment for boundary faces,

(2) principal curvature direction constraints for salient interior

faces, and

(3) iterative snapping modified to avoid 0 sector angles (which

are unsatisfiable) and interior cones with angle 𝜋/2 (which
result in self adjacent quads).

C ALGORITHM DETAILS
Infeasible constraint correction. After inferring vertex and holo-

nomy constraints from the cross-field, we check for known infeasible

holonomy signatures for seamless parametrization without features.

The two known infeasible signatures, described in Shen et al. [2022],

are:

• a torus with precisely two cones, with target angles 3𝜋/2 and
5𝜋/2, and
• a torus with no cones, but with nontrivial holonomy con-

straints.

In the case of a 3-5 torus where the cones are adjacent vertices, we

attempt to remove the two cones without introducing any 0 sector

angles. If this heuristic fails, we arbitrarily add two additional 3-5

cone pairs. In the case of a torus without cones, we simply remove

any loop holonomy constraints.

Full constraint warm start. Before relaxing constraints, we first

attempt to find a solution for all constraints using the modified

Newton’s method. If the method succeeds, we proceed directly to

generating an explicit parameterization. If the method fails to satisfy

all constraints to machine precision within 50 iterations, we use the

partially converged output as a warm start for 𝜆0 in Algorithm 1.

Termination conditions. We terminate Algorithm 1 once the re-

laxed constraints are satisfied, or if the worst triangle quality (mea-

sured as the ratio of inradius to outradius) is below 10
−3
. We also

terminate if the total number of linear solves (i.e., the Newton di-

rection solves for the hard constraint projection as well as the full

constraint Newton direction solves) exceeds 100.

Fallback. If the initial projection to hard constraints in Algo-

rithm 1 does not converge in 200 iterations, or if the resulting pa-

rameterization is too degenerate for sanitization and quantization,

we greedily reduce the hard feature constraint set using the greedy

heuristic described in Section 7.2, and we project to these reduced

hard constraints from perfectly regular initial Penner coordinates

𝜆0 = 0. This approach generates a feature aligned parameterization

with minimal geometric degeneracy.

Robust layout. The explicit refinement and metric layout method

of Capouellez and Zorin [2023], which we use without modification

for each component of the feature cut mesh, can fail for near degen-

erate metrics in standard double precision due, e.g., to numerical

instability in the angle computations. If the method fails to pro-

duce a numerically seamless parameterization with accuracy 10
−10

,

we fallback to a higher precision implementation with a 100-bit

mantissa, and we round the higher precision result to double preci-

sion. We emphasize that higher precision is only used for the layout

sub-procedure, and the final output of the method is a numerically

seamless parameterization in standard double precision.

D POST-PROCESSING
Given initial 𝑢, 𝑣 coordinates, we optimize a weighted combination

of a 𝑝-norm symmetric Dirichlet energy term 𝐸
𝑝

𝑠𝑦𝑚𝐷𝑖𝑟
[Smith and

Schaefer 2015], which acts a flip-preventing barrier term, and the

orientation energy term 𝐸𝑜𝑟𝑖𝑒𝑛𝑡 of Bommes et al. [2009], which

aligns the parameterization with the target cross field. That is, we

optimize

𝐸 (𝑢, 𝑣) = 𝑤𝑠𝑦𝑚𝐷𝑖𝑟𝐸
𝑝

𝑠𝑦𝑚𝐷𝑖𝑟
(𝑢, 𝑣) +𝑤𝑜𝑟𝑖𝑒𝑛𝑡𝐸𝑜𝑟𝑖𝑒𝑛𝑡 (𝑢, 𝑣) (18)
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Constraints. We enforce the linear seamless and feature alignment

constraints through constraint elimination with a rank-revealing

QR decomposition. We also fix an arbitrary vertex position per con-

nected component of the parameterization, which ensures that our

energy generically has a nonsingular Hessian. In cases where not all

soft feature edges were aligned to machine precision, we use an aug-

mented Lagrangian for the alignment constraints for the misaligned

edges. Even when these alignment constraints cannot be satisfied,

the augmented Lagrangian will still preserve soft alignment dur-

ing the uv-optimization. We emphasize that edges that were fully

aligned by our Penner coordinate method are still enforced by con-

straint elimination and maintained to machine precision.

Optimization. We use Newton’s method to optimize the energy

(or augmented Lagrangian) with respect to the reduced variables

after constraint elimination. In some cases, the solver may fail while

computing the Newton direction due to numerical instability, or the

Newton direction may not be a descent direction, e.g. when using

the augmented Lagrangian. In such cases, we add an exponentially

increasing regularization term to the energy Hessian, which inter-

polates between the Newton direction and gradient direction, until

we obtain a descent direction. We use a backtracking line search to

ensure that the optimization energy decreases and that no triangles

flip during the line step. We terminate when the gradient of the

energy is sufficiently small.

Parameters. In our experiments, we use 𝑤𝑠𝑦𝑚𝐷𝑖𝑟 = 10
−3

and

𝑤𝑜𝑟𝑖𝑒𝑛𝑡 = 1. We initially attempt to use a 6-norm for the symmetric

Dirichlet energy, which reduces the global maximum distortion but

is less numerically stable. If a suitably small gradient is not obtained

in 500 iterations with the 6-norm, we fallback to the more stable

2-norm, again with a maximum of 500 iterations.

E STITCHING ALGORITHM DETAILS
We describe how two edges can be stitched together. Let 𝑒𝑖 𝑗 be a

feature edge split into two boundary edges in𝑀𝑐
, which we denote

ℎ𝑖 𝑗 and ℎ 𝑗𝑖 respectively. Let 𝑣
0

𝑖 𝑗
, ..., 𝑣𝑛

𝑖 𝑗
be the vertices on ℎ𝑖 𝑗 and

𝑣0
𝑗𝑖
, ..., 𝑣𝑚

𝑖 𝑗
the vertices on ℎ 𝑗𝑖 . Generally, the edges of the refined

triangles in the parametric domain may be curved. However, as

described in Section 6, for a boundary edge the symmetry structure

of the double mesh forces the refined edge to be straight. Thus,

𝑣0
𝑖 𝑗
, ..., 𝑣𝑛

𝑖 𝑗
are all colinear, and likewise for 𝑣0

𝑗𝑖
, ..., 𝑣𝑚

𝑖 𝑗
. Consequently,

it is possible to express the interior vertices 𝑣𝑘
𝑖 𝑗
in terms of barycen-

tric coordinates 𝑡𝑘
𝑖 𝑗

with respect to the endpoints 𝑣0
𝑖 𝑗

and 𝑣𝑛
𝑖 𝑗
. We

may thus determine a common refinement by simply using edge

midpoint refinement. More specifically, for each barycentric coor-

dinate 𝑡𝑘
𝑗𝑖
on edge ℎ 𝑗𝑖 , we determine the vertices 𝑣𝑙

𝑖 𝑗
and 𝑣𝑙+1

𝑖 𝑗
such

that 𝑡𝑙
𝑖 𝑗

< 𝑡𝑘
𝑗𝑖

< 𝑡𝑙+1
𝑖 𝑗

and refine the triangle containing these two

vertices such that the newly inserted vertex has barycentric coor-

dinate 𝑡𝑘
𝑗𝑖
. In the case where 𝑡𝑙

𝑖 𝑗
= 𝑡𝑘

𝑗𝑖
, we do not refine the triangle.

The stitching is demonstrated in Figure 23.

Note that this only defines the refinement of the parametric do-

main mesh. We also need to refine the embedded overlay mesh in

a compatible manner. By the overlay construction and layout cut,

the corresponding refinement vertices in the overlay mesh are also

stitched 
parameterization

parameterization
components

overlay components stitched overlay

Fig. 23. Stitching of two overlaymeshes across a boundary edge. The relative
ordering of the inserted vertices for the overlay and the parametrization may
be inconsistent, so we shift the vertices on the overlay edge to be consistent
with the parametrization.

colinear and induce barycentric coordinates 𝑠𝑘
𝑖 𝑗
and 𝑠𝑘

𝑗𝑖
. However,

the barycentric coordinates these vertices induce will generally be

different from those of the parametric domain. If 𝑠𝑘
𝑗𝑖

∉ (𝑠𝑙
𝑖 𝑗
, 𝑠𝑙+1
𝑖 𝑗
),

then the midpoint refinement of the triangle is not well defined. In

order to resolve this, we simply snap 𝑠𝑘
𝑖 𝑗
to 𝑡𝑘

𝑖 𝑗
so that the barycentric

coordinates are consistent in the overlay and parametric domain.

Since all inserted vertices are contained in the edges of the original

mesh, refined triangles do not change orientation in the plane of

the triangle if the refined vertices are moved in this way.

We may iteratively refine all edges by the above procedure, and

then stitch together triangles in the overlay mesh in the obvious

manner to produce a single closed mesh. The final result is a con-

nected refined mesh with a (possibly disconnected) parametrization.
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