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Fig. 1. We transfer an artist-designed pu�er coat dressed on a human-shaped mannequin to a collection of SMPL humans (le�) and virtual non-human
characters (right). The undressed avatars and complete results are shown in Figure 11 and Figure 12.

Manual design of garments for avatars requires a large e�ort. Garment
retargeting methods can save manual e�orts by automatically deforming
an existing garment design from one avatar to another. Previous methods
are limited to human avatars with small variations in body shapes, while
non-human avatars with unrealistic characteristics widely appear in games
and animations. In this paper, the goal is to retarget artist-designed garments
on a standard mannequin to a more general class of avatars. While there is
a lack of training data of various avatars wearing garments, we propose a
training-freemethod that performs optimizations on themesh representation
of the garments, with a combination of loss functions that preserve the
geometrical features in the original design, guarantee intersection-free, and
�t the garment adaptively to the avatars. Our method produces simulation-
ready garment models that can be used later in avatar animations.
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1 INTRODUCTION

Adapting artist-designed garments to new characters manually re-
quires a lot of e�ort. Garment retargeting methods aim to auto-
matically transfer existing garments from one avatar to another,
saving the manual e�ort of editing the garment models. Existing
methods [Lin et al. 2024; Pons-Moll et al. 2017; Wang 2018] have
focused on transferring between human bodies with di�erent body
sizes, supporting relatively small deformation over the retargeted
garments. However, in games and animation, avatars appear widely
with extreme body proportions that defy human norms [Coros et al.
2010; Geijtenbeek et al. 2013; Hecker et al. 2008; Jiang et al. 2023; Li
et al. 2023; Yamane et al. 2010]. Our aim is to perform garment re-
targeting in a manner that can allow for the variation and topology
di�erences seen in game avatars.
In this paper, our goal is to support the retargeting of designed

garments between avatars, especially those with unrealistic char-
acteristics, including out-of-distribution proportions, voids, and
detached components (Figure 1). Beyond the more extreme defor-
mations anticipated, we wish to make no assumptions of global
correspondence between avatar surfaces, breaking the requirements
of previous works [Brouet et al. 2012; Lin et al. 2024; Pons-Moll et al.
2017]. Relaxing this is more general, but further, with such corre-
spondences, garment deformation under extreme cases can become
distorted due to the large disparity in body shapes of our target
avatars – leading to distorted �nal garment shapes after transfer.
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Instead, we purposefully enforce positional constraints over spe-
ci�c boundaries of the garments, e.g., cu�s and hems, which do not
require manual e�ort to specify and are not too restrictive. Next,
we preserve the look of the individual garment by penalizing lo-
cal shape changes – maintaining the anticipated look embedded
in the original model. Together, our technique provides an easily
controllable balance between �tting on the avatar and the shape of
the garment, to achieve the artist’s look of the clothing on the �nal
avatar.
The core of our approach is a multi-objective optimization of

the garment geometry, represented as a triangular mesh, that pre-
serves the geometric properties of the original design, avoids self-
intersections and intersections between the garment and avatar,
while adaptively �tting the transferred garment to the new avatar.
The key features of our approach include:

• An intersection-free initialization for the optimization that
embeds the target avatar into the original garment design.

• An optimization on the garment mesh with a combination
of loss functions to preserve the geometric quality of the
retargeted garment, avoiding intersections between the gar-
ment and the new avatar, and adaptive �t of the garment
to the target avatar body, including a select set of guiding
constraints.

• It avoids not only intersections between the avatar and gar-
ment but also intersections between garments and self-intersections,
enabling multi-layer garment retargeting.

We demonstrate the e�ectiveness of our approach by transferring
a set of garments of various types designed on a standardmannequin
to a set of avatars with di�erent body shapes.We also provide a small
number of useful tuning controls to adapt the �t in the presence of
ambiguity. While no previous research showcases like results, for
comparison, we compare our results with those of a commercial
tool that supports a wide variety of avatars.

2 RELATED WORK

We build o� of a growing body of work in computer graphics on
cloth modeling. Many techniques o�er solutions tied to speci�c
applications and their needs, for example, garment model recon-
struction [Corona et al. 2021; Dong et al. 2023; Guo et al. 2021; Li
et al. 2024; Pons-Moll et al. 2017; Xiu et al. 2023] from 3D scans or
2D images, sewing pattern generation [He et al. 2024; Liu et al. 2023;
Pietroni et al. 2022] and arrangement [Liu et al. 2024], physics sim-
ulations of garments [Grigorev et al. 2024, 2023; Santesteban et al.
2022; Zheng et al. 2025], etc. However, our work is most informed
by the speci�c focus of retargeting for garments [Brouet et al. 2012;
Pons-Moll et al. 2017].
We further distinguish works in garment retargeting into two

categories: re-�tting techniques for virtual try-on and those for
clothing virtual characters, each serving distinct application areas
with di�ering requirements. Virtual try-on aims to make real-world
clothing �t realistically on human shapes in support of the com-
mercial clothing market. In this area, a number of approaches per-
form retargeting directly from image to image, such as [Ge et al.
2021; Sekine et al. 2014; Yang et al. 2020]. For immersive 3D ap-
plications like open-world games and animations, unlike virtual

try-ons, the input garments and avatars are normally in the form
of 3D models, and it is desirable to have the �tted garments as
3D models, instead of images or animations, to allow interactions
with surrounding environments and downstream applications like
skeletal animation or physics simulation. Closer to our aims, there
have been some recent works that output the �tted garments as
3D models [Brouet et al. 2012; Guan et al. 2012; Patel et al. 2020;
Pons-Moll et al. 2017; Wang et al. 2018]. Still, these methods target
dressing humans, where the body shapes can be represented as a
smooth parametric space [Anguelov et al. 2023; Loper et al. 2015;
Pavlakos et al. 2019] with �nite dimensions. Virtual characters de-
signed by artists have possibly unrealistic body shapes and much
higher diversity that cannot be represented by a set of parameters,
e.g., elementals [Ho�man et al. 2023], walking animals [Chun et al.
2023], and robots [Hopkins et al. 2024]. While there is plenty of
data on images of dressed humans for training a model to retarget
garments on humans, there is a lack of data on dressed characters in
animations and games. Unlike human photos, dressed virtual char-
acters require signi�cant e�orts from professional artists, making it
di�cult to adopt data-driven approaches.

In complement, some methods [Li et al. 2024; Wang 2018; Wang
et al. 2018] for virtual try-on restrict the garment models to be
fabricable, by assuming a pre-de�ned sewing pattern of the garment.
The garment shape space is thus reduced to the boundary curve
shapes of each patch. Although this is a valid requirement for real-
world garments, garments for virtual characters are often more
imaginative and do not adhere to these assumptions, which is why
our method operates directly on the 3D garment model instead of
2D sewing patterns.

O�set-based Retargeting. A number of prior works [Guan et al.
2012; Lin et al. 2024; Ma et al. 2020; Pons-Moll et al. 2017] make
use of the one-to-one correspondence between avatars and transfer
garments by explicitly mapping the displacement between the input
garment and avatar, to the target avatar. Although this kind of ap-
proach is e�cient, it has major limitations: (a) The correspondence
between avatars should not be distorted, limiting the variation in
body shapes. (b) To enable an accurate displacement map, the gar-
ment should be close to the avatar surface, and both avatar surfaces
should stay reasonably smooth. (c) Unlike optimization methods,
explicit evaluation may introduce uncontrollable intersections and
distortion.

Optimization-based Retargeting. Unlike o�set methods, opti-
mization methods allow more control over the retargeted garment
from the users and can enforce constraints like intersection-free
and shape preservation. Closest to our work, [Brouet et al. 2012]
proposes a method to directly operate on the 3D model of the gar-
ment to transfer from one avatar to the other. To accomplish this,
however, they require a cross-parametrization between the source
and target avatars, which is a di�cult problem on its own for models
with large di�erences, thus requiring considerable constraints on
the design of avatar bodies. Further, such global correspondence
may not be possible at all, e.g., avatars with voids and disconnected
pieces. Further, their shape preservation is enforced by preserving
the triangle normals on the garment surface. In contrast, we relax
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this constraint to allow rotations and anisotropic scaling, providing
more �exibility in the retargeting.

Physics-aware Retargeting. As a special class of optimization-
based methods, physics-aware retargeting involves constraints on
the physics simulation of garments. [Wang 2018] transfers garments
between human bodies, preserving the geometry and stretching
of garments in physics simulations. However, they are limited to
body shapes with small di�erences and garments that �t tightly,
unsuitable for loose clothes like skirts and jackets. [Wang et al. 2018]
performs retargeting by optimizing 2D sewing patterns of garments.
Their work preserves desired characteristics of clothing, e.g., fold
patterns and draping e�ects, in physics simulations. In contrast, we
sidestep the need for a sewing pattern of the garment and instead
work on the 3D model directly. [Wol� et al. 2023] presents a method
to design and optimize the shape of a garment for a range of poses,
such that the garment respects the user input constraints, and �ts
comfortably but tightly in all poses. [Bartle et al. 2016] o�ers an edit-
ing tool that allows the user to modify the 3D garments in physics
simulations directly and automatically updates the corresponding
sewing patterns based on the 3D geometry change. Our work aims
to preserve the pure geometry of the garment during retargeting,
thus, the behavior in physics simulations is beyond the scope of this
work.

3 METHOD

3.1 Problem Formulation

Our retargeting method directly modi�es 3D garments, without
assuming corresponding 2D sewing patterns, and performs opti-
mizations to balance between shape preservation, �t, and collisions.
We use + , �, � to denote collections of vertices, triangular faces,
and edges, respectively.

Input. The input of our method includes a source avatar dressed in
an artist-designed garment and a target avatar. Each avatar model
and garment model is represented as a triangular mesh (+ , � ), where
+ ∈ R

=×3, � ∈ N
<×3. Each row of+ contains the 3D coordinate of a

vertex, and each row of � contains the vertex indices of a triangular
face, with =, < being the number of vertices and faces, respectively.
We denote the source avatar, the garment, and the target avatar mesh
by (+ B0, �B0), (+6, �6), (+ C0, � C0), respectively. We assume that
the garment mesh is manifold and has no self-intersections, but the
avatar meshes may be non-manifold, disconnected, possibly with
self-intersections and degenerate triangles. This relaxed assumption
on the target avatar allows our method to �t garments designed by
professional artists to avatars created by non-professional users. In
addition, we assume that avatars are rigged, i.e., have an animation
skeleton. Our algorithm does not restrict the number of nodes in
the skeleton, one can provide more nodes for �ner control or fewer
nodes to reduce manual e�ort. We denote the skeletons of the source
and target avatars as (+ B1 , �1 ) and (+ C1 , �1 ) respectively.

The output of our method is a new garment mesh that shares the
same connectivity as the source garment mesh, which preserves the
shape of the source garment while �tting well to the target avatar,
with the guarantee of no intersection between the avatar and the
garment or self-intersection on the garment itself.

3.2 Algorithm Overview

Our algorithm optimizes the source garment geometry to minimize
a collection of objectives, including shape preservation, �t, and colli-
sions. We use IPC [Li et al. 2020] for collision handling instead of the
more popular (in garment simulation) approaches based on penalty
forces or signed distance as it allows us to robustly handle self-
collisions of garments. Its guarantee of creating intersection-free
results, even for avatars with complex geometry and thin features, is
precious in this setting, as the results have higher visual �delity and
can be directly used in cloth simulation pipelines. Additionally, IPC
can handle contact between co-dimensional (i.e. non-volumetric)
objects [Li et al. 2021] such as surfaces and rods, opening the door
to retargeting multiple and complex garments (Figure 6).
However, using IPC introduces an additional requirement: the

source garment needs to be positioned on the target avatar without
self-intersections. One of our key contributions is thus an algorithm
to create this initial state based on projection and adaptive re�ne-
ment to shrink the avatar to the skeleton. We then embed the shrunk
avatar into the source garment and in�ate the avatar to its original
shape during the optimization while preserving the garment shape.
In summary, the main steps of our algorithm are outlined as follows
and are also summarized in Figure 2.

Step 1 Project the target avatar mesh onto its skeleton and embed
the projected avatar into the source avatar (Section 3.3).

Step 2 Run an optimization with both the target avatar and garment
meshes as DoFs. This step in�ates the projected target avatar
back to its original shape while maintaining the garment
shape and guaranteeing the result remains intersection-free
(Section 3.5).

Step 3 Fix the target avatar shape and run an optimization on the
garment mesh only, to �t the garment to the target avatar
while maintaining the garment shape and intersection-free
condition (Section 3.6).

The objectives used in Steps 2 and 3 are discussed in Section 3.4.

3.3 Step 1. Initialization

To run the optimization, an initialization of the garment on the
target avatar is required. IPC [Li et al. 2020] requires the input
meshes to be intersection-free, so the garment cannot be directly
overlaid on the target avatar. However, since we do not care about
the self-intersection of the avatar, instead of deforming the garment,
we can shrink the target avatar to �t inside the garment as the
initial guess and in�ate the target avatar back to its original shape
using optimization. A naive way is to shrink the target avatar to a
single point at the center of the source avatar. In this way, however,
the limbs of the target avatar all lie at the trunk of the body at the
beginning of the optimization, so there is a high probability that
the limbs do not get into the correct sleeve or trouser leg during
the in�ation. Instead, we shrink the target avatar to its skeleton,
making sure that the limbs overlap with the corresponding limb
bones, and map the target skeleton to the source skeleton based on
the correspondence (Figure 2). In this way, the limbs are surrounded
by the corresponding sleeves or trouser legs at the beginning of the
optimization.
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Source garment Target avatar Step 1. Project to skeleton Step 2. Inflate avatar Step 3. Shrink to fit

Target skeleton Source skeleton

Adaptive subdivion

Map to source skeleton

Closest point projection

Fig. 2. Illustration of the algorithm pipeline.
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Fig. 3. Illustration of resolving a triangle spanning multiple bones (gray). (A)
In the triangle △E1E2E3 (blue), there are 4 bone joints (dark gray) between
E1 and E3, 3 between E2 and E3, and 1 between E1 and E2. Therefore, we
pick edge E1E3 and insert 4 vertices (yellow) uniformly on the edge. (B) The
triangle is split into 5 smaller triangles, and each inserted vertex is moved
to an intermediate bone joint between E1 and E3. (C) A�er the operations,
all edges (including newly added ones) span over at most 3 joints.

To shrink the target avatar to its skeleton, for each vertex E8 ∈ + C0

on the target avatar, we �rst �nd the closest point Ẽ8 on the bone
48 ∈ �1 that E8 belongs to, and move E8 to Ẽ8 . Although all vertices
in + C0 now lie on the target skeleton, the triangular mesh does not
necessarily overlap with the skeleton, since one triangle may span
multiple bones when its three vertices are projected to di�erent
bones (Figure 3A).
To resolve these triangles, we subdivide them and project the

re�ned points onto the joints of skeleton bones. More speci�cally,
within each triangle that spans over multiple bones, we count the
number of bone joints between every two vertices. If we consider the
bones as nodes and bone joints as edges, the skeleton forms a graph.
The number of bone joints between two vertices on two di�erent
bones is essentially the shortest path length between the two bones
in the graph, which can be precomputed using the Floyd–Warshall
algorithm. As in Figure 3, we then adopt a greedy approach and
pick the farthest pair of vertices, subdivide the edge into multiple
segments by inserting intermediate vertices, and move each inter-
mediate vertex to the intermediate bone joints. The original triangle
is subdivided into multiple smaller triangles accordingly, and each
new triangle spans over strictly less number of bones compared
with the original triangle. Note that we do not subdivide the adja-
cent triangles accordingly, i.e., the subdivision is non-conforming,
since we do not require the avatar mesh to be conforming in the
optimization. We perform this operation for all triangles that span

over multiple bones iteratively until all triangles exactly overlap
with the skeleton.

Remark. The iterative process terminates in a �nite number of
iterations, bounded by the number of skeleton bones, since the
number of bones that each triangle spans strictly reduces after every
subdivision. In practice, it terminates in 2~4 steps in our examples.

3.4 Objectives

Before discussing the optimization algorithms in Steps 2 and 3, we
�rst introduce the objectives used.

De�nitions. Denote G as the garment surface, X ⊂ �6 × �6 as
the collection of all pairs of adjacent triangles on the garment. For
variables de�ned on the current garment, we use ·B to represent the
corresponding variable de�ned on the source garment (e.g., EB8 and
E8 ).

3.4.1 Collision. We adopt the collision barrier potential from IPC
[Li et al. 2020] to handle collision. For completeness, we brie�y re-
peat the formulation below. Given a triangular mesh (+ , � ), denote
� as the edges of the mesh. Denote T as the set of all primitives
(vertices, edges, faces), and B ⊂ T ×T as the set of all non-adjacent
and non-incident primitive pairs. The intersection-free constraint
boils down to enforcing the distance 3: > 0 between primitive pairs
continuously in the optimization, for every pair : ∈ C ⊂ B, where
C contains all non-incident point-triangle pairs and all non-adjacent
edge-edge pairs in the mesh. Note that we only care about the self-
collision of the garment and collisions between the garment and the
avatar, so we do not include primitive pairs from the avatar itself.

The barrier potential is de�ned as

Lcontact :=
∑

:∈C

1 (3: ), (1)

where 1 (·) : R → R is a �2 smooth function that converges to
in�nity as the input tends to zero:

1 (3) :=

{

−(3 − 3̂)2 log
(

3

3̂

)

, 0 < 3 < 3̂

0, 3 ≥ 3̂ .

We use 3̂ = 0.002 andFcontact = 108 in our examples.

Remark. The barrier potential Equation (1) not only avoids inter-
sections but also avoids triangles being degenerate, because in a
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degenerate triangle, one vertex overlaps with its opposite edge, i.e.,
the distance between the vertex and edge is zero. Thanks to this, we
can safely assume that the triangle normals and edge tangents are
always well-de�ned when constructing other loss terms.

3.4.2 Surface shape. The retargeted garment should preserve the
surface shape of the input garment: e.g., a �at T-shirt should stay
�at, wrinkles on the garment should stay as wrinkles, etc. On the
other hand, some deformation should be allowed: e.g., the sleeves
and trouser legs should elongate or shorten freely if needed, and the
surface should rotate/translate freely to enable retargeting between
avatars at di�erent poses and scale freely to accommodate for body
size change.
Inspired by [Araújo et al. 2023], we constrain the surface shape

by penalizing the di�erence in deformations between every pair
of adjacent triangles. For a pair of triangles C1 = △E1E2E3 and C2 =
△E2E1E4 sharing the same edge E1E2, the di�erence in deformations
between the two triangles can be measured by considering their
impact on the same vector EB3E

B
4. Suppose the deformation from CB8

to C8 is g8 (8 = 1, 2), which can be viewed as a 3 × 3 matrix, then the
penalty is de�ned as

;surf (C1, C2) :=













g1
EB4 − EB3
∥EB4 − EB3∥

− g2
EB4 − EB3
∥EB4 − EB3∥













2

,

where ∥ · ∥ is the Frobenius norm. The total similarity term is then
de�ned as

Lsurf :=
∑

(C1,C2 ) ∈X

Fsurf (C1, C2) ;surf (C1, C2), (2)

whereFsurf (C1, C2) is the area of C1 and C2 on the source garment. The
remaining question is how to compute the g8 G for any vector G ∈ R

3.
We take g1 as an example. Vectors 41 := E2 − E1 and 42 := E3 − E1
span the plane of triangle C1, denote = := 41 × 42 as the normal of C1,
then the deformation g1 is uniquely de�ned by the mapping from
{4B1, 4

B
2, =

B } to {41, 42, =}. Suppose G = 214
B
1 + 224

B
2 + 23=

B for some
28 ∈ R, 8 = 1, 2, 3, then g1G = 2141 +2242 +23=. {28 } can be computed
by solving a linear system

[21, 22, 23]
⊤
= [4B1, 4

B
2, =

B ]−1 G .

The Lsurf is de�ned in a way such that any a�ne transformation
over the entire geometry does not change its value, which is critical
when the target and source avatars have very di�erent body ratios.

Remark. Our surface preservation term is di�erent from the simi-
larity energy used in [Araújo et al. 2023]. They treat g8 as degrees
of freedom and solve the nonlinear system by alternating steps
between solving the vertex positions and transformations. They
can accelerate the convergence using this method since each step
becomes a quadratic problem that is easy to solve. However, in our
case, due to the high nonlinearity of the collision potential in Sec-
tion 3.4.1, we cannot gain better convergence by alternating steps,
so instead, we de�ne the energy using purely vertex positions and
solve the complete problem using the Projected Newton’s method.

3.4.3 Positional. The positional constraint aims to preserve the
position of the garment relative to the underlying avatar, e.g., the
sleeve (trouser leg) length should accommodate the change of arm
(leg) length. Without a correspondence between the avatar surfaces,

the relative location preservation in [Brouet et al. 2012] cannot
be used. Instead, we use the position information relative to the
skeleton bones. For a point EB on the source garment, suppose the
bone in the source skeleton closest to EB is bone 4 ∈ �1 . We project
EB onto 4 and obtain the barycentric coordinate FB . Similarly, for
the corresponding point E on the current garment, we project it to
the same bone 4 and obtain the current barycentric coordinate F .
The positional constraint for this point is de�ned as

;pos (E) := (FB −F)2 .

Note that during the in�ation step, the node positions of the current
skeleton are a linear interpolation with coe�cient C (Section 3.5)
between the source and target skeleton nodes. The total positional
term is then de�ned as

Lpos :=
∑

E∈mG

Fpos (E);pos (E), (3)

where mG represents the boundary of the garment surface,Fpos(v)
is the average length of edges at E on the source garment. We use
Fpos = 10 to prioritize the positional constraint.

3.4.4 Fit. We opt to enforce a similar level of tightness from the
original garment in the retargeted garment. To measure the distance
from the points on the garment to the avatar, we convert the avatar
mesh to a Signed Distance Field (SDF). By evaluating the SDF on a
point ? on the current garment, we obtain the distance � (?) from
? to the avatar mesh. The �t loss can then be de�ned as

L�t =

∫

G�t

� (?)2 3?, (4)

where G�t ⊂ G is the part of the current garment surface that
should �t, which can be decided based on the distance between the
source avatar and garment. Note that we only include L�t in the
last step of our algorithm, i.e. when the target avatar mesh has been
in�ated to its original shape, since the intermediate avatar during
in�ation may not be a closed mesh that corresponds to a meaningful
volume. The choice ofF�t depends on the desired �t of the garment,
we use F�t = 2 in our examples. We study the in�uence of F�t in
Section 4.6 and show the ability to control the �t of the retargeted
garments.

3.4.5 Curve Shape. Apart from the distortion of the surface shape,
the distortion of seamlines and boundary curves (e.g., cu�s and
hems) also signi�cantly in�uences the visual e�ects. Therefore, we
enforce extra constraints to regularize the geometry of curve loops.
By the fundamental theorem of curves [Carmo 2016], the shape

of a smooth 3D curve, with non-zero curvature, is uniquely deter-
mined by its curvature and torsion. Therefore, we can constrain the
boundary curve shape by penalizing the change of the discretized
curvature and torsion:

Lcurve := Lcurvature + Ltorsion .

Similar toLsurf, we carefully de�neLcurve such that it is invariant
under rotation, translation, and uniform scaling. However, it is
undesirable to allow anisotropic scaling in Lcurve – a circular cu�
should not become an ellipse freely unless the �t term wants it to
�t tightly to an elliptical wrist.
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De�nition. Each boundary curve of the garment mesh is sup-
posed to be a closed polyline. Denote the vertices of the polyline
as E1, E2, . . . , E< , where E< = E1, and edge directions 48 := E8+1 − E8
and 4̂8 := 48/∥48 ∥!2 for 8 = 1, . . . , < − 1.

Curvature. The curvature for the polyline under the discrete setting
can be quanti�ed using the dot product U8 between the two incident
edges at every vertex E8 :

U8 := −4̂8−1 · 4̂8 (8 = 1, . . . , < − 1) .

The curvature term penalizes the change of cosU

Lcurvature :=

<−1
∑

8=1

F8 (U
B
8 − U8 )

2, (5)

where UB8 , U8 are the dot products on the source and current garment,
respectively,F8 := (∥4B8−1∥!2 + ∥4B8 ∥!2 )/2.

Torsion. Unlike curvature, the computation of discrete torsion
requires every three consecutive edges. We de�ne E0 := E<−1 for
convenience. De�ne

% (E,F) := E − (F · E) F,

which projects vector E to the plane with unit normalF . We project
edges 4̂8−1, 4̂8+1 to the plane with normal 48 , and compute

V8 := % (4̂8+1, 4̂8 ) · % (−4̂8−1, 4̂8 ),

W8 := (% (4̂8+1, 4̂8 ) × % (−4̂8−1, 4̂8 )) · 4̂8 ,

then the torsion term is de�ned as

Ltorsion :=

<−1
∑

8=1

F8 (V
B
8 − V8 )

2 +F8 (W
B
8 − W8 )

2,

where VB8 , W
B
8 are the values computed on the source garment.

Remark. On the one hand, Lcurve is invariant under rigid body
transformations and scaling; on the other hand, forcing Lcurve = 0

gives us a curve with the same shape up to a scaling and rigid body
transformation.

3.5 Step 2. Avatar Inflation

In the in�ation step of the optimization, we introduce one variable
C ∈ [0, 1] to linearly interpolate between the shrunk avatar vertices
+ Bℎ8=: and the target avatar vertices + C0

+0 (C) := C + C0 + (1 − C) + Bℎ8=: ,

which is used as the current avatar shape in collision handling.
Similarly, the current skeleton used in Section 3.4.3 is

+1 (C) := C + C1 + (1 − C) + B1 .

We can consider C = 0 at the beginning of the optimization, and the
in�ation step is essentially trying to enforce an equality constraint
of C = 1 in the optimization under collision constraints. We use
the Augmented Lagrangian (AL) method to enforce this equality
constraint, in which the loss becomes

LAL :=
_1

2
(1 − C)2 + _2 (1 − C),

where _1, _2 are updated in the outer loop of AL to push C towards
1. Please refer to the supplement for details. The total loss in Step 2
is then de�ned as

LStep 2 := LAL + Lsurf +Fpos Lpos

+Fcontact Lcontact + Lcurve .
(6)

Note that we do not include L�t in Step 2 for two reasons: (a) The
�t objective �ghts against the AL penalty on C and slows down
the convergence – the former term pushes the garment toward the
avatar, while the latter forces the avatar to in�ate. (b) The SDF used
inL�t changes as the avatar geometry changes, thus, the derivatives
of the objective require di�erentiating through the mesh to the SDF
conversion process, which is potentially non-di�erentiable.

Once the optimization can snap from the current C value to C = 1

without causing intersections, even though the gradient is not close
to zero, we snap C to 1 and move to Step 3. When snapping C to 1,
it is critical to perform CCD and guarantee that this change in C is
intersection-free continuously, so that the garment does not pass
through any thin features of the avatar.

3.6 Step 3. Garment Fit

In this step, we treat C = 1 in Step 2 as a constant, i.e., the target
avatar is fully in�ated to its original shape, and we keep its shape
�xed in this step of the optimization. Now that the avatar shape is
�xed, we convert the mesh to an SDF using OpenVDB [Museth 2013]
to use in the �t term. We replace the LAL with L�t and minimize
the following objective until convergence.

LStep 3 := F�tL�t + Lsurf +Fpos Lpos

+Fcontact Lcontact + Lcurve .
(7)

Please refer to the supplement for the summary of weights.

3.7 Implementation

We use the Projected Newton’s method [Li et al. 2020; Teran et al.
2005] to solve the nonlinear system in the inner loop of the Aug-
mented Lagrangian method. We implemented our algorithm using
Sympy [Meurer et al. 2017] for generating e�cient C++ code to
compute derivatives, IPC Toolkit [Ferguson et al. 2020] for comput-
ing contact potentials and robust CCD, OpenVDB [Museth 2013]
for SDF evaluation, and Pardiso [Alappat et al. 2020; Bollhöfer et al.
2019, 2020] for solving linear systems. All our experiments are run
on aMacBook Prowith the AppleM3Max CPU, limited to 16 threads
and 64GB of memory. Please refer to the supplement for additional
algorithm details.

4 EVALUATION

To demonstrate the e�ectiveness of our method, we use it to retar-
get garments between both human models and game avatars, and
compare our method with the �tting tool in Roblox Studio. We also
include ablation studies on objectives.

4.1 Game Avatars

In Figure 11, we demonstrate our method by retargeting a collection
of 6 garments designed on a mannequin to 9 avatars, in total 54
combinations are obtained. Both our garments and avatars are highly
diverse. Our garments include a full-body jumpsuit that �ts tightly
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to the body, a pu�er coat that �ts loosely, and a skirt that naturally
drapes. Our avatars include skeletons made of weakly connected
bones, elementals made of �oating stones and crystals, giants, and
a fox girl with unrealistic body ratios, a wolf man with double
heads, and robotics with intricate wires and chips. Our method
has shown robustness in these examples despite the variation in
body shapes and the complexity of the models. Although we do
not consider physics simulations in the retargeting, the draping of
skirts, wrinkles of the sweaters, and bumps on the pu�er jackets
are visually preserved. For a more challenging example, we retarget
the pu�er jacket from a mannequin to a dinosaur (Figure 4).
The 54 combinations’ average runtime is 97 seconds, with the

maximum being 432 seconds. The number of vertices in avatars is
between 2000 and 6000, and the number of vertices in garments is
between 600 and 6000.

Original Garment Target Avatar Dressed Avatar

Fig. 4. Retargeting a pu�er jacket from human to a dinosaur.

4.2 Comparison with Roblox Studio

Roblox’s creator tools provide an accessory �tting tool [Roblox 2025]
that retargets the garment dressed on one avatar to another avatar.
The tool asks users to manually create a cage mesh to cover each
garment and avatar tightly (Figure 5), which requires much more
manual e�ort than embedding a skeleton. We perform a comparison
with their method on the same set of caged avatars and garments.
As shown in Figure 5, our method has less distortion around the
sleeves and waist and better preserves the overall skirt shape. In
addition, our method supports controllable tightness as shown in
Figure 8, providing more �exibility to users.

4.3 Human Avatars

In Figure 12, we show the e�ectiveness of our method on retargeting
between SMPL human avatars [Loper et al. 2015], which has been
extensively studied in prior works [Brouet et al. 2012; Lin et al. 2024;
Pons-Moll et al. 2017; Wang et al. 2018]. Our method generates
high-quality garments for the target human bodies with di�erent
body shapes. Since these prior works do not have open-source code,
we are not able to conduct a comparison on the same avatar and
garment.

4.4 Multiple Layers of Garments

Since we do not assume the target avatar to be a volumetric object,
our method can be easily extended to retarget multiple layers of
garments on one avatar and maintain intersection-free between
layers. Once a garment is retargeted to the avatar, we treat it as

segac ratavAsegac tnemraG

Source garments Ours Roblox Studio

Fig. 5. Comparisons between our method and Roblox Studio. Top: The re-
targeting results of both methods. Bo�om: Manually designed cage meshes
(black) are needed as input for the Roblox Studio method. Artifacts are
marked in red show excessive fit in the sleeves and overly tight regions
elsewhere.

part of the avatar and rerun our algorithm to wear a new layer of
garment over it. We show one such example in Figure 6 with three
layers of garments. For simplicity, we treat the inner layers as �xed
when we optimize the subsequent layer. However, it is possible to
optimize the inner layers as well to accommodate the outer layer,
e.g., if the outer layer is a tight garment that compresses the inner
layers, which we leave as future work.

(1) (4)(2) (3)

Fig. 6. Retargeting multiple layers of garments on one avatar. (1) Target
avatar. (2) Target avatar wearing a jumpsuit. (3) Target avatar wearing the
pu�er jacket over the jumpsuit. (4) Wearing a skirt on top of (3).

4.5 Stress test

As a stress test for our method, we retarget a jumpsuit from the
mannequin to an avatar with much longer arms (Figure 7). We
visualize the element-wise Lsurf on the optimized garment to show
the geometric distortion.
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Dressed GarmentTarget Avatar Geometric Distortion

10−6

10−3

Fig. 7. Stress test. Retargeting the jumpsuit to an avatar with long arms.
The geometric distortion is visualized on the right in a logarithmic scale.

4.6 Ablations

The optimization minimizes a collection of objectives that balance
each other; a reasonable choice of weights is needed to obtain the
desired results.

Fit. The weight F�t controls the tightness of the garment on the
target avatar. We show the e�ect ofF�t on the optimized garment in
Figure 8. With smallF�t, the optimized garment tends to preserve
the original shape, therefore the body part remains straight even
though the target avatar has an inverted triangle body shape; with
large F�t, the optimized garment �ts more tightly on the target
avatar to accommodate the slim waist.

Source Garment w=0

w=0.1 w=1 w=10

Target Avatar

Fig. 8. Influence of Ffit on the retargeting.

Positional. The positional constraint is based on the skeletons
embedded in the avatars, therefore, by perturbing the node positions
of an existing skeleton, one can obtain di�erent results on the same
avatar. In Figure 9, we show that by modifying the skeleton nodes
corresponding to the neck and waist, one can change the height of
the collar and hem. The original garment is shown in Figure 4.

Curve Shape Constraint. The Lcurve objective allows one to pre-
serve the shape of seamlines or boundary curves in addition to
preserving the surface shape. As shown in Figure 10, without the
curve shape constraint, the neck of the retargeted vest fails to retain
its "V" shape due to the widened shoulder of the target avatar; with
such constraint, the "V" neck is well-preserved without sacri�cing
the overall surface shape.

Higher neck Higher waist

Fig. 9. Influence of skeleton node positions on the retargeting for the same
avatar. The embedded skeleton (bo�om) and the corresponding retargeted
garment (top) are shown in each column.

Source Garment Without curve constraints With curve constraints

Fig. 10. Influence of Lcurve on the retargeting. The undressed avatar is
shown in Figure 8. The "V" shape at the neck is be�er preserved with the
constraint.

5 CONCLUSIONS

We introduce a robust and �exible pipeline to automatically re-
target garments from one avatar to many others, which greatly
reduces manual e�orts in applications including game design and
animations. It is e�ective not only for human avatars with di�erent
body shapes but also for game avatars with possibly non-realistic
body shapes, �oating body parts, or voids, where correspondence
between avatars with reasonable quality is impossible. We demon-
strate the e�ectiveness of our method on all-pair combinations from
a collection of avatars and garments with high diversity. The two
key components of our method are a novel projection scheme that
produces an intersection-free initialization for the subsequent opti-
mizations, and a combination of objectives that meet the criteria of
garment retargeting.
Our method has several limitations. First, we rely on the ani-

mation skeletons to position the garment onto the target avatar,
assuming the target and source avatars have the same number of
arms and legs and can be put in the same pose. Retargeting from
humanoid avatars to non-humanoids like tetrapods or even octo-
puses can be an interesting topic given the rise in generative models.
Second, our approach does not include physics simulations and thus
ignores the physics of the garments. However, as shown by the
�gures, the output garments retain the physical e�ects like wrinkles
and draping that appear on the original design. Lastly, our method
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Fig. 11. Garments designed on a mannequin (le�) are dressed onto various avatars. Undressed avatars are shown on top.

is limited to manifold meshes, which puts restrictions on the design
process.

ACKNOWLEDGMENTS

We would like to extend our thanks to the Layered Clothing Quality
team at Roblox for their help and support, especially Kelvin Lau,
Adam Burr, Ervin Teng, and Murilo Coutinho. We would also like to
thank the Roblox Creator, BlueFoxClaw, for the use of their Anime
Fox Girl model in our examples.
This work was also partially supported by the NSF CAREER

award under Grant No. 1652515, the NSF grants OAC-2411349,
OAC-1835712, CHS-1908767, CHS-1901091, IIS-2313156, a Sloan
Fellowship, and a gift from Adobe Research.

REFERENCES
Christie Alappat, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager, Olaf

Schenk, Jonas Thies, and Gerhard Wellein. 2020. A Recursive Algebraic Coloring
Technique for Hardware-E�cient Symmetric Sparse Matrix-Vector Multiplication.
ACM Trans. Parallel Comput. 7, 3, Article 19 (June 2020), 37 pages. https://doi.org/
10.1145/3399732

Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers,
and James Davis. 2023. SCAPE: Shape Completion and Animation of People (1 ed.).
Association for Computing Machinery, New York, NY, USA. https://doi.org/10.
1145/3596711.3596797

Chrystiano Araújo, Nicholas Vining, Silver Burla, Manuel Ruivo de Oliveira, Enrique
Rosales, and Alla She�er. 2023. Slippage-Preserving Reshaping of Human-Made 3D
Content. ACM Transaction on Graphics 42, 6 (2023). https://doi.org/10.1145/3618391

Aric Bartle, Alla She�er, Vladimir G. Kim, Danny M. Kaufman, Nicholas Vining, and
Floraine Berthouzoz. 2016. Physics-driven pattern adjustment for direct 3D garment
editing. ACM Trans. Graph. 35, 4, Article 50 (jul 2016), 11 pages. https://doi.org/10.
1145/2897824.2925896

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

https://doi.org/10.1145/3399732
https://doi.org/10.1145/3399732
https://doi.org/10.1145/3596711.3596797
https://doi.org/10.1145/3596711.3596797
https://doi.org/10.1145/3618391
https://doi.org/10.1145/2897824.2925896
https://doi.org/10.1145/2897824.2925896


10 • Zizhou Huang, Chrystiano Araújo, Andrew Kunz, Denis Zorin, Daniele Panozzo, and Victor Zordan

Fig. 12. Garments retargeting from a mannequin (le�) onto SMPL human models [Loper et al. 2015].

Matthias Bollhöfer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk. 2019.
Large-scale Sparse Inverse Covariance Matrix Estimation. SIAM Journal on Sci-
enti�c Computing 41, 1 (2019), A380–A401. https://doi.org/10.1137/17M1147615
arXiv:https://doi.org/10.1137/17M1147615

Matthias Bollhöfer, Olaf Schenk, Radim Janalik, Steve Hamm, and Kiran Gullapalli. 2020.
State-of-the-Art Sparse Direct Solvers. (2020), 3–33. https://doi.org/10.1007/978-3-
030-43736-7_1

Remi Brouet, Alla She�er, Laurence Boissieux, and Marie-Paule Cani. 2012. Design
preserving garment transfer. ACMTrans. Graph. 31, 4, Article 36 (July 2012), 11 pages.
https://doi.org/10.1145/2185520.2185532

Manfredo P. Do Carmo. 2016. Di�erential Geometry of Curves and Surfaces (2nd ed.).
Dover Publications.

Courtney Chun, Jose Velasquez, and Haixiang Liu. 2023. Creating the Art-Directed
Groom for Legend in Disney’s "Strange World". In ACM SIGGRAPH 2023 Talks (Los
Angeles, CA, USA) (SIGGRAPH ’23). Association for Computing Machinery, New
York, NY, USA, Article 7, 2 pages. https://doi.org/10.1145/3587421.3595441

Enric Corona, Albert Pumarola, Guillem Alenya, Gerard Pons-Moll, and Francesc
Moreno-Noguer. 2021. SMPLicit: Topology-Aware Generative Model for Clothed
People. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 11875–11885.

Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2010. Generalized biped
walking control. ACM Trans. Graph. 29, 4, Article 130 (July 2010), 9 pages. https:
//doi.org/10.1145/1778765.1781156

Zijian Dong, Xu Chen, Jinlong Yang, Michael J Black, Otmar Hilliges, and Andreas
Geiger. 2023. Ag3d: Learning to generate 3d avatars from 2d image collections.
In Proceedings of the IEEE/CVF international conference on computer vision. 14916–
14927.

Zachary Ferguson et al. 2020. IPC Toolkit. https://ipc-sim.github.io/ipc-toolkit/
Yuying Ge, Yibing Song, Ruimao Zhang, Chongjian Ge, Wei Liu, and Ping Luo. 2021.

Parser-free virtual try-on via distilling appearance �ows. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 8485–8493.

Thomas Geijtenbeek, Michiel van de Panne, and A. Frank van der Stappen. 2013. Flexible
muscle-based locomotion for bipedal creatures. ACM Trans. Graph. 32, 6, Article
206 (Nov. 2013), 11 pages. https://doi.org/10.1145/2508363.2508399

Artur Grigorev, Giorgio Becherini, Michael Black, Otmar Hilliges, and Bernhard
Thomaszewski. 2024. Contourcraft: Learning to resolve intersections in neural
multi-garment simulations. In ACM SIGGRAPH 2024 Conference Papers. 1–10.

Artur Grigorev, Bernhard Thomaszewski, Michael J Black, and Otmar Hilliges. 2023.
HOOD: Hierarchical Graphs for Generalized Modelling of Clothing Dynamics.
Computer Vision and Pattern Recognition (CVPR).

Peng Guan, Loretta Reiss, David A Hirshberg, Alexander Weiss, and Michael J Black.
2012. Drape: Dressing any person. ACM Transactions on Graphics (ToG) 31, 4 (2012),
1–10.

Jingfan Guo, Jie Li, Rahul Narain, and Hyun Soo Park. 2021. Inverse Simulation:
Reconstructing Dynamic Geometry of Clothed Humans via Optimal Control. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Kai He, Kaixin Yao, Qixuan Zhang, Jingyi Yu, Lingjie Liu, and Lan Xu. 2024. DressCode:
Autoregressively Sewing and Generating Garments from Text Guidance. ACM
Transactions on Graphics (TOG) 43, 4 (2024), 1–13.

Chris Hecker, Bernd Raabe, Ryan W. Enslow, John DeWeese, Jordan Maynard, and
Kees van Prooijen. 2008. Real-time motion retargeting to highly varied user-created
morphologies. In ACM SIGGRAPH 2008 Papers (Los Angeles, California) (SIGGRAPH
’08). Association for Computing Machinery, New York, NY, USA, Article 27, 11 pages.
https://doi.org/10.1145/1399504.1360626

Jonathan Ho�man, Te Hu, Paul Kanyuk, Stephen Marshall, George Nguyen, Hope
Schroers, and Patrick Witting. 2023. Creating Elemental Characters: From Sparks
to Fire. In ACM SIGGRAPH 2023 Talks (Los Angeles, CA, USA) (SIGGRAPH ’23).
Association for Computing Machinery, New York, NY, USA, Article 51, 2 pages.
https://doi.org/10.1145/3587421.3595467

Michael A. Hopkins, Georg Wiedebach, Kyle Cesare, Jared Bishop, Espen Knoop, and
Moritz Bächer. 2024. Interactive Design of Stylized Walking Gaits for Robotic
Characters. ACM Trans. Graph. 43, 4, Article 137 (July 2024), 16 pages. https:
//doi.org/10.1145/3658227

Yu Jiang, Zhipeng Li, Mufei He, David Lindlbauer, and Yukang Yan. 2023. HandAvatar:
Embodying Non-Humanoid Virtual Avatars through Hands. In Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems (Hamburg, Germany)
(CHI ’23). Association for Computing Machinery, New York, NY, USA, Article 309,
17 pages. https://doi.org/10.1145/3544548.3581027

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential
Contact: Intersection- and Inversion-free Large Deformation Dynamics. ACM Trans.
Graph. (SIGGRAPH) 39, 4, Article 49 (2020).

Minchen Li, DannyM. Kaufman, and Chenfanfu Jiang. 2021. Codimensional Incremental
Potential Contact. ACM Trans. Graph. (SIGGRAPH) 40, 4, Article 170 (2021).

Tianyu Li, Jungdam Won, Alexander Clegg, Jeonghwan Kim, Akshara Rai, and Sehoon
Ha. 2023. ACE: Adversarial Correspondence Embedding for Cross Morphology
Motion Retargeting from Human to Nonhuman Characters. In SIGGRAPH Asia 2023
Conference Papers (Sydney, NSW, Australia) (SA ’23). Association for Computing
Machinery, New York, NY, USA, Article 46, 11 pages. https://doi.org/10.1145/
3610548.3618255

Yifei Li, Hsiao-yu Chen, Egor Larionov, Nikolaos Sara�anos, Wojciech Matusik, and
Tuur Stuyck. 2024. Di�Avatar: Simulation-Ready Garment Optimization with Di�er-
entiable Simulation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 4368–4378.

Siyou Lin, Zhe Li, Zhaoqi Su, Zerong Zheng, Hongwen Zhang, and Yebin Liu. 2024.
LayGA: Layered Gaussian Avatars for Animatable Clothing Transfer. In ACM
SIGGRAPH 2024 Conference Papers (Denver, CO, USA) (SIGGRAPH ’24). Associ-
ation for Computing Machinery, New York, NY, USA, Article 37, 11 pages. https:
//doi.org/10.1145/3641519.3657501

Chen Liu, Weiwei Xu, Yin Yang, and Huamin Wang. 2024. Automatic Digital Garment
Initialization from Sewing Patterns. ACM Trans. Graph. 43, 4, Article 74 (July 2024),
12 pages. https://doi.org/10.1145/3658128

Lijuan Liu, Xiangyu Xu, Zhijie Lin, Jiabin Liang, and Shuicheng Yan. 2023. Towards
Garment Sewing Pattern Reconstruction from a Single Image. ACM Trans. Graph.
42, 6, Article 200 (Dec. 2023), 15 pages. https://doi.org/10.1145/3618319

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. 2015. SMPL: A Skinned Multi-Person Linear Model. ACM Trans. Graphics
(Proc. SIGGRAPH Asia) 34, 6 (Oct. 2015), 248:1–248:16.

Qianli Ma, Jinlong Yang, Anurag Ranjan, Sergi Pujades, Gerard Pons-Moll, Siyu Tang,
and Michael J. Black. 2020. Learning to Dress 3D People in Generative Clothing. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kir-
pichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh,
Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P.Muller, Francesco Bonazzi,
Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry,
Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal,
Robert Cimrman, and Anthony Scopatz. 2017. SymPy: symbolic computing in
Python. PeerJ Computer Science 3 (Jan. 2017), e103. https://doi.org/10.7717/peerj-

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

https://doi.org/10.1137/17M1147615
https://arxiv.org/abs/https://doi.org/10.1137/17M1147615
https://doi.org/10.1007/978-3-030-43736-7_1
https://doi.org/10.1007/978-3-030-43736-7_1
https://doi.org/10.1145/2185520.2185532
https://doi.org/10.1145/3587421.3595441
https://doi.org/10.1145/1778765.1781156
https://doi.org/10.1145/1778765.1781156
https://ipc-sim.github.io/ipc-toolkit/
https://doi.org/10.1145/2508363.2508399
https://doi.org/10.1145/1399504.1360626
https://doi.org/10.1145/3587421.3595467
https://doi.org/10.1145/3658227
https://doi.org/10.1145/3658227
https://doi.org/10.1145/3544548.3581027
https://doi.org/10.1145/3610548.3618255
https://doi.org/10.1145/3610548.3618255
https://doi.org/10.1145/3641519.3657501
https://doi.org/10.1145/3641519.3657501
https://doi.org/10.1145/3658128
https://doi.org/10.1145/3618319
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103


Intersection-Free Garment Retargeting • 11

cs.103
Ken Museth. 2013. VDB: High-Resolution Sparse Volumes with Dynamic Topology.

ACM Trans. Graph. 32, 3, Article 27 (jul 2013), 22 pages. https://doi.org/10.1145/
2487228.2487235

Chaitanya Patel, Zhouyingcheng Liao, and Gerard Pons-Moll. 2020. TailorNet: Pre-
dicting Clothing in 3D as a Function of Human Pose, Shape and Garment Style. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A.
Osman, Dimitrios Tzionas, and Michael J. Black. 2019. Expressive Body Capture: 3D
Hands, Face, and Body from a Single Image. In Proceedings IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). 10975–10985.

Nico Pietroni, Corentin Dumery, Raphael Falque, Mark Liu, Teresa A Vidal-Calleja,
and Olga Sorkine-Hornung. 2022. Computational pattern making from 3D garment
models. ACM Trans. Graph. 41, 4 (2022), 157–1.

Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J. Black. 2017. ClothCap:
seamless 4D clothing capture and retargeting. ACM Trans. Graph. 36, 4, Article 73
(jul 2017), 15 pages. https://doi.org/10.1145/3072959.3073711

Roblox. 2025. Accessory Fitting Tool | Documentation - Roblox Creator Hub — cre-
ate.roblox.com. https://create.roblox.com/docs/art/accessories/accessory-�tting-
tool. [Accessed 15-01-2025].

Igor Santesteban, Miguel A. Otaduy, and Dan Casas. 2022. SNUG: Self-Supervised
Neural Dynamic Garments. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 8140–8150.

Masahiro Sekine, Kaoru Sugita, Frank Perbet, Björn Stenger, and Masashi Nishiyama.
2014. Virtual �tting by single-shot body shape estimation. In Int. Conf. on 3D Body
Scanning Technologies, Vol. 406. Citeseer, 413.

Joseph Teran, Eftychios Sifakis, Geo�rey Irving, and Ronald Fedkiw. 2005. Robust
quasistatic �nite elements and �esh simulation. In Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (Los Angeles, California)
(SCA ’05). Association for Computing Machinery, New York, NY, USA, 181–190.
https://doi.org/10.1145/1073368.1073394

HuaminWang. 2018. Rule-free sewing pattern adjustment with precision and e�ciency.
ACM Trans. Graph. 37, 4, Article 53 (jul 2018), 13 pages. https://doi.org/10.1145/
3197517.3201320

Tuanfeng Y. Wang, Duygu Ceylan, Jovan Popović, and Niloy J. Mitra. 2018. Learning a
shared shape space for multimodal garment design. ACM Trans. Graph. 37, 6, Article
203 (Dec. 2018), 13 pages. https://doi.org/10.1145/3272127.3275074

KatjaWol�, PhilippHerholz, Verena Ziegler, Frauke Link, Nico Brügel, and Olga Sorkine-
Hornung. 2023. Designing Personalized Garments with Body Movement. Computer
Graphics Forum 42, 1 (Jan. 2023), 180–194. https://doi.org/10.1111/cgf.14728

Yuliang Xiu, Jinlong Yang, Xu Cao, Dimitrios Tzionas, and Michael J. Black. 2023. ECON:
Explicit Clothed Humans Optimized via Normal Integration. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 512–523.

Katsu Yamane, Yuka Ariki, and Jessica Hodgins. 2010. Animating non-humanoid
characters with human motion data. In Proceedings of the 2010 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (Madrid, Spain) (SCA
’10). Eurographics Association, Goslar, DEU, 169–178.

Han Yang, Ruimao Zhang, Xiaobao Guo, Wei Liu, Wangmeng Zuo, and Ping Luo. 2020.
Towards photo-realistic virtual try-on by adaptively generating-preserving image
content. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 7850–7859.

Yang Zheng, Qingqing Zhao, Guandao Yang, Wang Yifan, Donglai Xiang, Florian
Dubost, Dmitry Lagun, Thabo Beeler, Federico Tombari, Leonidas Guibas, et al. 2025.
Physavatar: Learning the physics of dressed 3d avatars from visual observations. In
European Conference on Computer Vision. Springer, 262–284.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/3072959.3073711
https://create.roblox.com/docs/art/accessories/accessory-fitting-tool
https://create.roblox.com/docs/art/accessories/accessory-fitting-tool
https://doi.org/10.1145/1073368.1073394
https://doi.org/10.1145/3197517.3201320
https://doi.org/10.1145/3197517.3201320
https://doi.org/10.1145/3272127.3275074
https://doi.org/10.1111/cgf.14728

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Problem Formulation
	3.2 Algorithm Overview
	3.3 Step 1. Initialization
	3.4 Objectives
	3.5 Step 2. Avatar Inflation
	3.6 Step 3. Garment Fit
	3.7 Implementation

	4 Evaluation
	4.1 Game Avatars
	4.2 Comparison with Roblox Studio
	4.3 Human Avatars
	4.4 Multiple Layers of Garments
	4.5 Stress test
	4.6 Ablations

	5 Conclusions
	Acknowledgments
	References

