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Barrier potentials gained popularity as a means for robust contact handling

in physical modeling and for modeling self-avoiding shapes. The key to ‘%M -
the success of these approaches is adherence to geometric constraints, i.e.,
avoiding intersections, which are the cause of most robustness problems in
complex deformation simulation with contact. However, existing barrier-
potential methods may lead to spurious forces and imperfect satisfaction
of the geometric constraints. They may have strong resolution dependence, Visualize
requiring careful adaptation of the potential parameters to the object dis- ot F°'°e/
cretizations.

We present a systematic derivation of a continuum potential de ned
for smooth and piecewise smooth surfaces, starting from identifying a set
of natural requirements for contact potentials, including the barrier prop-
erty, locality, di erentiable dependence on shape, and absence of forces in
rest con gurations. Our potential is formulated independently of surface
discretization and addresses the shortcomings of existing potential-based
methods while retaining their advantages.

We present a discretization of our potential that is a drop-in replacement
for the potential used in the incremental potential contact formulation
[Li et al. 2020], and compare its behavior to other potential formulations,
demonstrating that it has the expected behavior. The presented formulation Fig. 1. We introduce a novel geometric barrier potential satisfying a set of
connects existing barrier approaches, as all recent existing methods can be natural properties. None of the other potentials in the literature satisfy all
viewed as a variation of the presented potential, and lays a foundation for these properties simultaneously, leading to inaccurate results, penetrations,
developing alternative (e.g., higher-order) versions. or other undesired artifacts. In this example, we show that the contact
potential introduced in [Li et al 2020] is not zero at the rest pose when the
potential extent is larger than the length of an edge, introducing spurious
Additional Key Words and Phrases: Finite element method, Elastodynamics, forces (top) and deformation (bo om le ). Our potential is zero in the rest
Contact dynamics pose by construction (bo om right), as this is one of the natural properties
of a geometric contact potential.
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problem as an equivalent unconstrained optimization [Kane et al
1999]:
mDin i, 11>

wherel11l* is an ideal barrier, equal t@ for con gurations with
interpenetration, and for contact-free.

If we take11Dr to be a potential that increases smoothly to in-
nity as Dapproaches a contact con guration, then the problem is
converted to a smooth problem that can be solved with contact-free
iterates, e.g., using a nonlinear solver with line search, equipped
with continuous collision detection (CCD), as it is done in [Li et al.

2020].
All existing contact barrier potentials are de ned based on aggre-
gating repulsion terms between pairs of points or, in the discrete

case, between pairs of elements (e.g., a face and a point). The key

question then becomes how to choose the strength of repulsion
between two points so that it is high when these points are close to
contact, vanishes when these points are far, and has a number of
other desirable properties (e.g., depends smoothly on the deforma-
tion, has controlled locality), as discussed in Section 4.

One important di culty is distin-
guishing true contact, arising from dif-
ferent objects or parts of the surface of
the same object moving toward each
other, and points that remain close be-
cause they are close on the undeformed
rest shape (Figure 2). Answering this
question for a general class of surfaces
requires careful geometric considera-
tion. In Section 2, we review how it is
addressed for existing potential types
and problems associated with these ap-
proaches (possibility of geometric con-
straint violations, spurious forces, and
strongly discretization-dependent behavior).

We undertake a systematic derivation ofcantinuum barrier po-
tential de ned as a surface integral, and its discretization, which
retains key features of previously proposed approaches, IPC in par-
ticular, but satis es several additional, natural requirements, elabo-
rated in Section 5:

Fig. 2. Contact poten-
tials must distinguish
points nearing contact
(A and B) from nearby
non-contacting points
(A and C).

Resolution independengée potential de nition is indepen-
dent of discretization.

FinitenessThe total barrier potential over the surface is de-
ned and nite for any collection of piecewise-smooth sur-
faces not in contact. (The use of piecewise-smooth, rather
than smooth, surfaces is critical for many applications, as
detailed in Section 5.2).

Barrier. The potential grows to in nity as the objects in the
simulation approach (self-)contact, with respect to a suitably
de ned distance-to-contact

Localization The potential has a localization paramet@,r

which may vary over the object surface. The potential van-
ishes if the objects are further away thafifrom contact, with
respect to the same measure of contact.

No spurious forcek the undeformed con guration, the po-
tential is zero.
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Di erentiability : The potential depends smoothly on the sur-
face con guration (e.g., for piecewise-linear surfaces, on mesh
vertex positions).

The foundation of our approach is @aew geometric de nition of
the distance-to-contatiiat allows us to de ne contact potentials
for arbitrary piecewise-smooth surfaces without assuming a dis-
cretization, and in a way that all requirements are satis ed, leading
to artifact-free simulation with a exible choice of potential locality.
The key features of our approach include:

A systematic way of de ning points close to contact for
smooth and piecewise-smooth surfaces, basethteraction
sets

An approach for de ning a contact potential for piecewise-
smooth surfaces that meets the requirements enumerated
above.

A discrete version of this potential for piecewise-linear sur-
faces that satis es the requirements enumerated above and
has similar e ciency to standard IPC.

We demonstrate that the new formulation eliminates spurious
forces inherent in other formulations, converges to a limit under
re nement, and decouples the barrier extent from the discretization
choice, o ering needed exibility for applications such as shape
optimization.

2 BARRIER POTENTIALS

To motivate the proposed approach, we consider several representa-
tive versions of contact potentials proposed in the past. We focus
on four problems that each construction addresses di erently:

Finitenessdow the potentials ensure that true contact points
are distinguished from close material points; without this
distinction, they would always be in nite.

Spurious repulsioRelatedly, how spurious forces for close
material points are eliminated or reduced; if applied to the
wrong pairs of points, these forces have a large impact.
Mesh dependen¢ow these potentials behave under remesh-
ing or re nement; mesh adaptation, re nement, or remeshing
are common, especially for large/complex deformations.
Discretization propertie$a potential is de ned in continuous
form, even if it prevents contact exactly, its discretization may
do so only approximately.

2.1 The IPC barrier potential [Li et al. 2020]

This potential is de ned in a purely discrete way, based on vertex-

face and edge-edge repulsion. To ensure itnige , interactions

of a face with its vertices and between edges sharing one vertex
are excluded. Note that as the surface is re ned, the strength of
interaction increases, as the excluded part gets smaller.

Spurious forcesre partly avoided by de ning a potential that does
not extend beyond the shortest mesh edge length in the undeformed
state. However, during deformation, the edge length can change
arbitrarily, and spurious forces may easily appear under compres-
sion (Section 6.1). The IPC potential is strongtgsh dependerg.g.,
simply re ning locally forces the maximum extent of the potential
to be decreased by a large factor, resulting in a change in the results
of simulation/deformation.



’ \
i d \
| Refine < ond
\ ‘ =7
\ ,I
\ ’
\\\ //
1) - 2
4
/ d \ % d \
! \ Compress ! \
B \\ A , C -~ A B A C ; Spurious force
\
\ A \ /

~

- ~

- ~

_ -

(©)

Fig. 3. IPC potential. The extent of the potential is shown in blue. (1) IPC
potential is finite, as interactions between edges sharing vertices, and faces
with their vertices are dropped. (2) Refinement forces the maximal potential
extentd'to decrease. (3) Spurious forces (red arrows) arise if the surface is
compressed horizontally and nearby vertices are closer than the potential
extentd.

A modi ed formulation of this potential is introduced in Li et al
[2023], with a convergent discretization which, however, requires
re nement in both spatial discretization and the potential extent
3 we provide further discussion and comparisons in Section 6 and
Table 1.

2.2 Surface/volume double-integral potentials [Kamensky
et al. 2018; Sauer and De Lorenzis 2013]

Barrier potentials de ned in continuum setting in [Sauer and De Loren-
zis 2013] are adapted to self-contact in [Alaydin et2021; Kamen-
sky et al 2018]. To include self-contachitenessis achieved by
excluding a xed-size area or sphere in the undeformed state from
the integral. However, this exclusion eliminates the guarantee that
under all deformations there is no penetration (Figure 4(1)).

To avoidspurious repulsigithe potential is localized to a distance
less than that of the self-contact exclusion distance. In this way, in
the undeformed state, there is no repulsion. However, if compression
is high enough, spurious forces will appear (Figure 4(2)).

As these potentials are de ned as integrals on smooth surfaces
and then discretized, there is a high degreenoésh independence
especially for ner meshes, but may lead to self-intersection for

extreme deformations, as described above. Furthermore, as pointed

out in [Kamensky et al2018], the discretization based on pairwise
potentials between quadrature points for extreme deformation may
also result in failure to satisfy contact constraints (Figure 4(3)).

2.3 Repulsive shells [Sassen et al. 20244a]

Building on, e.g., [Strzelecki and von der Mosel 2013], [Sassen et al
2024a] introduced a repulsive potential, whose minimization can be
used to de ne self-avoiding surfaces. An important feature of this
potential in our context is that it handles the problem of near-point
interactions gracefully for smooth surfaces, as the potential depends
not only on positions but also on the normals. It vanishes in the
limit of points approaching a common position on a smooth surface,
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Fig. 4. Surface barrier of [Kamensky et 2018] (1) The potential has a
self-contact exclusion zone (green), outside the potential extent (blue). For
extreme deformations (folding), this allows self-intersections. (2) Extreme
compression may push points into the potential zone, leading to spurious
forces (red arrows) (3) In quadrature point-to-point discretization, the sur-
face may not remain contact-free, a point may "push through" between
other [Kamensky et al. 2018].

ensuring nitenessfor smooth surfaces, but not for surfaces with
sharp features, as the normal alignment of close points is needed.
As these potentials are designed to ensure that surfaces minimizing
these are 1 (j.e., precisely to eliminate any possible sharp features),
they use high inverse powers of distance, resulting in divergence
for piecewise smooth surfaces.

As the interaction potential for any curved surface does not van-
ish, spurious repulsiois present for an undeformed surface (in the
context of the target application of [Sassen et 2024a], de ning
surfaces as extrema of the repulsive potentials, this repulsion is
not spurious). As the discretization used in [Sassen eR@R4a] is
based on sampling at quadrature point pairs similar to [Sauer and
De Lorenzis 2013], it also does not guarantee in general that the
contact constraints are satis ed exactly for the discretization, which
is particularly important for coarse discretizations.

We further note that all these potentials depend smoothly on the
surface deformation; IPC and [Kamensky et2018] are local, and
[Sassen et al. 20244a] is global, although it decays rapidly.

2.4 Barriers based on the gap functions [Wriggers and
Laursen 2006]

We brie y mention the possibility of constructing barriers based on
gap functions, which can be viewed as solving a standard inequality-
constrained contact problem formulation using an interior point
method (e.g., [Kloosterman et.&1001], although this work shifts
the barrier towards the interior of an object).

Most contact papers use one of three gap functions: distance
along the normal direction (DND) [Belgacem et &B98; Benson and
Hallquist 1990; Christensen et.d1998; Hieber and WohIimuth 2006;
Kloosterman et al2001; Laursen and Love 2002; Popp e2@12;
Taylor and Papadopoulos 1993; Vola etl#198; Wang et aR024],
closest point (CP) [Alart and Curnier 1991; Armero and Pet®cz 1998;
Carpenter et al1991; Pietrzak and Curnier 1999; Simo and Laursen
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Fig. 5. (1) The DND gap function is discontinuous when the deformation

progresses from the black to the blue curve. (2) The DND gap function can be
arbitrarily small for p.w. smooth surfaces &3 approaches the sharp corner

in a continuous se ing. (3) The CP gap function changes non-smoothly, as
the closest point switches discontinuously (from black to blue).

1992; Taylor and Wriggers 1999; Temizer et28114, 2012; Wriggers
1995], and contact-pair closest distance (CPCD) [Chen.&(#14;
Daviet 2020; Huang et a82024a; Kim and Eberle 2022; Li et2020,
2023; Macklin et a020, 2019; Otaduy et 2009; Razon et &023;
Sassen et aR024b; Shen et a2024; Verschoor and Jalba 2019],
the latter de ned directly on the discrete surface (e.g., vertex-face

testing of representative implementations of a number of techniques
on acommon benchmark, providing empirical evidence of the higher
robustness of the barrier-based approach.

3.1 Barrier/interior-point methods

We group barrier and interior-point methods together, as these
are closely related. These methods, while known for a long time
(cf. [Wriggers and Laursen 2006]), only recently became popular
in the context of complex deformable contact. In an early work,
[Christensen et al1998], a direct application of an interior-point
method with a non-localized logarithmic potential is compared to a
non-smooth Newton method, primarily from the performance per-
spective. A modi ed barrier method, with the barrier domain shifted
towards the surface interior, and thus not preventing inadmissible
con gurations, is described in [Kloosterman et al. 2001].

[Sauer and De Lorenzis 2013] introduced a systematic description
of contact methods as surface potentials of several types, including
potentials based on repulsion depending on the distance between
points, which was extended in [Kamensky et 2018] and [Alaydin
et al 2021] to handle self-contact (see Section 2). [Temizer .et al

and edge-edge distances for PL surfaces). Most importantly, the CP 2014] uses an interior point method to solve the contact problem,

gap function does not allow for self-contact without explicit exclu-
sion of nearby points, and, while continuous, is not di erentiable
with respect to surface deformations (Figure 5(3)). [Konyukhov and

Schweizerhof 2013] provides a generalized procedure for closest
point projection that addresses the issue of uniqueness; however,

they don't handle self-contact or complex geometries. The distance
along the normal direction resolves the self-interaction problem,
but is discontinuous, hindering the application of e cient numeri-
cal methods (Figure 5(1)). While the closest point distance is well-
de ned for distinct objects if they are not smooth, the distance along
the normal direction requires a well-de ned surface normal to ex-
clude contact precisely, making it non-trivial to apply for piecewise
smooth surfaces.

A potential obtained by applying a logarithmic or inverse power
function to these gap functions inherits the properties of these
functions.

Our construction addresses these problems by design, without
the need for parameter tuning per simulation: for su ciently close
points, the potential vanishes exactly; no amount of compression
leads to potential activation, unless surface points get close to con-
tact; it is de ned in a continuum form, so its behavior for di erent
meshes is consistent; its strength is chosen so that it is su ciently
strong for smooth surfaces and does not blow up for piecewise
smooth. Finally, we choose the discretization in a way that guaran-
tees that the discretized surfaces are contact-free.

3 RELATED WORK

but in the presented weak formulation, exact enforcement of the
contact is avoided. In [Wang et a2024], the Ipopt interior point
software is used to solve the mortar contact formulation.

The barrier method introduced in Li et a]2020], to which the
discrete version our method is closest, has been used and extended
by numerous follow-up works to include support for codimensional
elements [Li et al2021], rigid/a ne body dynamics [Ferguson et al
2021; Lan et aR022], medial elastics [Lan et. &021], solid- uid
interactions [Xie et al 2023], higher-order nite element analy-
sis [Ferguson et aR023], etc. Most recently, Huang et §20244a];
Shen et al[2024] proposed accelerated preconditioned solvers that
are amenable to GPU data parallelism to accelerate [Li.2G20].
These methods sacri ce the exact guarantees of the original IPC to
improve performance.

Du et al [2024], observes that Node-to-Segment methods in-
cluding IPC [Li et al 2020]) produce spurious tangential contact
forces (cf. [Puso and Laursen 2004]). To address this, Du [2G24]
proposes to use a fully 1-continuous surface representation in com-
bination with piecewise-linear meshes, computing distances used in
the contact potential between the discretization nodes and smooth
surface, extending the method of Larionov et g1021]. Similar to
[Kamensky et al2018], Du et al[2024] supports self-collision by
ignoring the collision of a vertex with its geodesic neighborhood.
The method does not guarantee contact-free iterations, a feature
critical for IPC's robustness [Li et a2020]. Our work is complemen-
tary; we do not address this type of artifact in our discretization, a
higher-order discretization of our continuum formulation is needed

We present a detailed analysis of most of the references discussedfor this.

here in the supplementary material, summarizing the features of
the algorithms and their performance. We brie y summarize the
key aspects here.

There are many textbooks and reviews on contact mechanics;
we focus on the aspects of algorithms most directly related to ro-
bustness. [Li et al2020] supplementary material presents in-depth
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Another possible continuum barrier approach to avoiding inter-
sections is to uséangent-point energigBuck and Orlo 1995; Strz-
elecki and von der Mosel 2013] designed to produce self-avoiding
smooth surfaces as minimizers. These potentials are global and need
to be localized for e ciency and to avoid arti cial long-range forces
in a physical simulation context. These methods were used in a



shape modeling context in [Sassen et2024b; Yu et aR021] with
limitations discussed in Section 2.

In addition to the barrier methods mentioned above, most notably,
Harmon et al[2009] and Vouga et aJ2011] utilize a set of layered
discrete penalty barriers that grow unbounded as the con guration
approaches contact. However, this incremental construction makes
it unsuitable for optimization-based implicit time integration and
therefore requires small time steps for stability. Other notable works
include Kaldor et al[2008], which simulates knitted cloth at the yarn
level where yarn-yarn collisions are handled through a continuous
potential integrating a barrier function over two disjoint spline
segments. This approach, similar to surface potentials described
above, ignores self-collisions within a single segment and between
neighboring segments. Similarly, this work uses quadrature points
xed in the parameter space to compute interactions.

3.2 Other approaches

The simplest contact responsepgnalty-basefArmero and Pet®cz
1998; Benson and Hallquist 1990; Chen eR@P4; Kim and Eberle
2022; Laursen and Love 2002; Meier eR8ll7; Temizer et aP012;
Wriggers 1995]. Similarly to the barrier methods, the problem is
converted to an unconstrained optimization problem with an extra
term, but in contrast to barrier methods, a penalty potential is added
only if penetration occurs, and no forces are introduced otherwise;
by design, penalty methods allow constraint violation, leading to
di cult-to-untangle con gurations for complex contact.

Augmented Lagrangian methodsdely used in engineering [Alart
and Curnier 1991; Daviet 2020; Fernandez 2@20; Hiermeier et al
2018; Konyukhov and Schweizerhof 2013; Pietrzak and Curnier 1999;
Puso et al2008; Puso and Laursen 2004; Puso.€2G24; Simo and
Laursen 1992; Wriggers 1995], considerably improve convergence
and numerical stability compared to the penalty methods, but also
have to go through infeasible con gurations before a solution is ob-
tained. Accuratemortar method§Belgacem et al1998; Hiieber and
Wohlmuth 2006; Puso and Laursen 2004] are typically formulated
in the augmented Lagrangian form, and do not enforce geometric
constraints exactly.

"Active set" methodgvhich we de ne broadly as methods that
rely in an essential way on identifying a contact set for which the
geometric constraints may become equalities, and imposing equality
constraints for these v.s. more speci ¢ class of active-set optimiza-
tion methods) include [Belytschko and Neal 1991; Carpenter et al
1991; Hieber and Wohlmuth 2006; Popp et2412; Taylor and
Papadopoulos 1993; Vola et 4998]. As these methods seek so-
lutions exactly at the boundary of the admissible solution space,
having intermediate infeasible solutions is hard to avoid. Many also
approximate the exact geometric constraints in the discretization.

Methods based on reducing the problemgequential quadratic
programming (SQR) linear complementarity problems (LCP/MLCP)
are widely used [Deu hard et al2008; Kaufman et a2008; Otaduy
et al. 2009; Verschoor and Jalba 2019; Youett.€2Gl9]. In these
approaches the non-linear constrained problem is typically con-
verted to a problem with linear constraints. As a consequence, these
algorithms go through inadmissible con gurations as a part of the
solution process, which a ects robustness. Several works aim to

Geometric Contact Potential © 5

have contact-free states at the end of each time step in a dynamic
simulation by resolving interpenetration, but there is no guarantee
that this can be achieved [Kaufman et al. 2008; Otaduy et al. 2009].

4 CONTACT POTENTIAL REQUIREMENTS
We consider a collection of deformable objects de ned on a material

domainint! ©, whose boundary is . We assume that normals on
are chosen to point outwarddnt! ©° may have multiple connected
components (Figure 6).

An admissible deformatiorb : Intt © 7! R, = = 23 is non-
injective on the boundary only, i.e§ is injective in the interior of
the domain, but may haveontact point& < ~ on the boundary

, for which 51@ = 51~°, We assume there is an initial contact-
free map5y corresponding to the undeformed shape of the object
(typically an identity map ifint? © R7).

YN
R

f&x) =f(y)

C

Fig. 6. A collection of objects is transformed using a deformat®(ie ),
which can cause the objects to intersect at a contact point (right).

1

bl
N
Int(Q)

Fig. 7. The distance fror@to real contact point~ may be arbitrarily close,
depending on the deformatiors.

We say that an admissibl8 is in contactif it has contact points,
otherwise, we call itontact-freeWe assume that for a poir62
we have a metric32!Ge 5, of how far it is from being a contact
point. De ning this metric is a key aspect of our construction, and
is necessary to formulate our contact requirements.

While for rigid objects the distance to the closest point another
object is adequate to use 85'Ge 5, as points on the same object
cannot move into contact, this is not the case for deformable objects.
Due to the possibility of self-contact, we cannot exclude points
on the same object and, in this case, there are always points on
arbitrarily close toGin Euclidean distance that need to be considered
far from being in contact withG At the same time, an arbitrarily
small, if measured by Euclidean distance, perturbation of a surface
may create an actual contact, so the distance frGo a real contact
point ~ along the surface can be arbitrarily small (Figure 7).

For smooth surfaces, the solution is to take the normals at the
points into account. For points in contact, the normals are pointing
in opposite directions. So if we include the distance betweé@
and the normals at other points in the de nition 08,1Ge 5, we

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Table 1. The table columns correspond to six comparison characteristics: (1) Support self-contact, (2) guarantee intersection-free with conservative CCD, (3) is
defined in the continuous se ing and discretized a er, or directly in the discrete se ing, (4) may have spurious rest forces, (5) support types of geometry
discretization. We refer to Section 3 and Section 6 for detailed discussions. A more complete comparison with other methods can be found in the supplementary

material.

Self-contact| Intersection-free  Discrete/Continuoyis  Localization  Spurious rest forces  Surface types
Sauer and De Lorenzis [2013]  Not desc No C Yes Yes PL
Christensen et al. [1998] No No D Yes No PL
Temizer et al. [2014] No No C Yes No smooth
Kamensky et al. [2018] Yes No C Yes Yes smooth
Li et al. [2020] Yes Yes D Yes Yes PL
Alaydin et al. [2021] Yes No C Yes Yes smooth
Li et al. [2023] Yes Yes C Yes Yes PL
Wang et al. [2024] Not descr. No C Yes No PL
Sassen et al. [2024b] Yes No C No Yes PL
Huang et al. [20243] Yes Yes D Yes Yes PL
Shen et al. [2024] Yes No D Yes Yes PL
Du et al. [2024] Yes No D Yes Yes PL + Implicit
Ours Yes Yes C Yes No p.w. smooth

can eliminate the nearby points unless the curvature is high, and

Importantly, the formulation of most of these properties, except

folds over onto itself, as discussed more precisely in Section 5.1. For for the rst one, can be applied to either the continuum potential

piecewise smooth surfaces, the situation is more complex.
Before describing our approach to the distance to contact, we
make the properties we stated in the introduction more precise.

Requirement 1 (Finiten%s)s A total contact potential integral

150 := kntGe+5° dCd~

is nite, i.e., the pointwise potentiakn1G++5° is integrable on

for piecewise-smooth surfacesfor any 5 not in contactk,1Ge+5°

is repulsive, meaning it must be monotonically non-increasing with
321G+ Bfor any 5.

Requirement 2 (Barrien. For atime-varyingg, %P increases
toin nity for C! @ if the distance to contacB;1G+& goes to zero
for any G Combined with incremental potential time-stepping and
continuous collision detectionqGCD), this can be used to guarantee
that all con gurations remain contact-free.

Requirement 3 (No spurious forcesSupposey is the initial con-
guration of the simulation. For any transformatiorb di ering
from 5 by a rigid transformation, both 15° andr 15° are zero.
This requirement is necessary to ensure that the potential does not
create arti cial forces that would cause motion/deformations if no
external forces are acting on the object.

Requirement 4 (Localizatiof. kn1Ge++5° has a locality parameter
Nrg i O (é\in the notation of Li et al [2020]), with no restrictions
on its magnitude, on which it depends at least continuously, and
the potential vanishes i821G+5 | nyg. If we solve a sequence
of problems with decreasingyg, we approach a solution of the
standard inequality-constrained formulation of contact problems.

Requirement5 (Di erentiability). If 5is de ned by a nite number

or its discretization. The robustness advantages of using a barrier
disappear if these are enforced only approximately in the discrete
case. For this reason, we add an additional requirement:

Requirement 6 (Discretization The discretization of the contact
potential satis es requirement&initenes$o Di erentiability (rather
than just in the limit of re nement).

In particular, this requires constructing a special type of quadra-
ture that ensures the barrier property.

Remark. The Finitenessequires the integral to be well-de ned.
Even in the absence of contact, the potential may not be bounded
(see Section 4.2 in the supplemental document). In the discrete case,
the integral inFinitenesss replaced by a nite sum.

5 FORMULATION

Our approach to de ning contact potentials is conveniently formu-
lated in terms ofinteraction sets *Ge 8. This set is a subset of
away from@G for which the barrier potential atGdoes not vanish.

If we de ne the pointwise contact potential as

KntGe+5° := WG+ 2?10 1k51~° 51Pk° 1)

where Wis a factor vanishing outside of 1Ge 8, ?: vanishes
at a distancen'®. Note thatWand ?,,. have di erent supports,
the intersection of which forms the support &f,. If 21 tends
to in nity su ciently quickly as the argument tends to zero, and
n'@ is chosen so that the potential vanishes for the rest shape,
then such interaction sets satisfy Requirements 2 to 4. In addition,
Requirement 5 may be satis ed by choosing appropriately smooth
?nIGO andwW

The de nition involves four main components: the interaction set,

of parameters (in the simplest case, vertex positions of a mesh) the adaptive locality parameter», the barrier potential:1co G2,

then 15°depends di erentiably, and piecewise twice di erentiably,
on the parameters 0b. Then the potential leads to a force with

and the factoMWGe+ <, supported on 1Ge 8. As it will be clear from
the discussion in the next sectioWfGe2 can be viewed as direc-

piecewise continuous Jacobian, allowing for second-order methods tion localization factqrsupplementing the distance localization, to

for implicit time-stepping.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

address the problems described in Section 2.



Fig. 8. Barriers. Le : plot of the cubic spline I ° and barrier function
2,10 = ,11°%|= lforn = 1. We also include a plot of the log barrier
?H’Cll ° of Li et al. [2020] for comparison. Right: our barrier improves ap-
proximation to the discontinuous function as goes to 0.

Fig. 9. Contact points as a local minimum of distance on the surface.

We start with contact handling for smooth deformable surfaces,

Geometric Contact Potential = 7

Additionally, we require that the vectob!~° 5@ points to-
wards the exterior of the surface &'@ and towards the interior
at 51~°, which is critical for handling thin objects. Next, we derive
expressions based on this to de netG+ 8 and the factoMWIGe2.

5.1.1 Interaction setBor smooth surfaces, the local minima of the
distance function from51@ to 51~° for a contact-freeb satisfy the
condition
S1Ge2:= Ki51~0  5I@O  =1-0k=(e 2
where! © denotes normalization to a unit vector. The inequality
<1Ge2 U, identi es the set of points close to satisfying this
condition. We refer to this ashe local minimum constraint
To exclude points for which the vectot51~° 51@° points

towards object exterior at de ne

41Ge0:= =1.0 1510 GLPO 3)

Then 5@ is on the side of the outward pointing normal fror~°,

if 41Ge2; 0. We refer to this agshe exterior direction constraint
This leads to the following de nition of an interaction set for a

smooth surface:

De nition 1. The interaction set for a smooth deformatidst@
with normals=1@ is de ned as

then generalize to piecewise smooth surfaces, in each case explain-

ing how these three potential components are de ned.

5.1 Deformable smooth surfaces
We rst consider the case where both and 5! °© are smooth

surfaces, to describe the main ideas without considering the many

cases needed for piecewise smooth surfaces.

Two points of an admissible smooth surfabere in contact, if
(a) they coincide in spac&!@ = 51~°, and (b) the normals of the
point have the opposite orientatio!@® = =1~°. We de ne the

interaction sets to include points close to contact, i.e., points for

which 51@ and=1Q are both close t®b1~° and =!~°, respectively,

and exclude points for which at least one of these requirements is
not satis ed. Taking the normals into account addresses the problem
of distinguishing between close material points and points close to

contact.

Rather than measuring the distances between normals, we use a

di erent approach that generalizes naturally to non-smooth points

<1Ge2 s H1Ge2 e

1Ge8:= 1@ Us 4@ U

~2 4)
where the local minimum constraint < and exterior direction
constraint 4 are given by(2)and (3), whereUsatis esOY U Y 1.

We show the impact of < and 4 in Figure 10.

The choice oUis discussed in Section 6; the method works for any
choice ofU Y 1, the only impact is on performance, as larger values
include more points into the contact set. If we de ne thistance to
contact3>1Ge 8 of a pointGunder deformation5 as the minimum
(Euclidean) distance to the interaction set@fwhich is positive for
contact-free surfaces,'Ge+ 5 has the following properties:

If 5isin contact, *Ge 5 contains all contact points o

If 5is notin contact321Ge+ Bis positive;

31G+*& tends to zero, a€! @ when a contact-free, time-
dependentg approaches contact #.

of piecewise smooth surfaces but behaves similarly in the smooth pjease see the supplementary for details.

case.

In Figure 9, observe that for a xed poird2 1, if we consider
3cl~*® = kb1~° 51@k with ~ varying over »2,3gl~*® has a
local minimum at~ , the closest point on the surface.

If we also consider points 2 1, i.e., include self-contacBz1~°
has a local minimum a@ but not at any point in a neighborhood
of G This leads to the following idea, which is the key to our gener-

alization to piecewise smooth surfaces, as it does not use normals

or surface smoothness:

De ne the interaction set'!Ge 8 as points that are close
to being local minima of the distance functBai~
distinct fromG

Remark. In the case of smooth surfacés<°2 = 1 1 402 gq

if 4iscloseto 1j <jis close to zero, i.e., the condition of

can be ensured by the choice of in Equation (4). However, the
relationship is more complex for piecewise smooth surfaces since
both normal and tangent are not unique at joints of multiple faces,
so we will treat these separately.

The complete potential for smooth surfaces is given by
o

150 = W1Ge 22,15 1k51@ 51~0kodG" (5)

lG..DZ 2

whereW G2 andn@ are de ned based on the interaction sets.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



8 ~

Zizhou Huang

Contact force

100100

Fig. 10. Contact forces (arrows) and potential distribution on the 2D object
surface with respect to the red dot. From le to right are: (A) The potential

in Li et al. [2020] distributes spherically around the red dot regardless of the
surface shape. (B) With local minimum constraints, only surfaces that are
close to the local minima or maxima of distance from the red dot have high
values. (C) With both local minimum and exterior direction constraints,

only surfaces on the closer side of the volumetric object have high values.

5.1.2 Barrier functionVe use?,1° := o ? (Figure 8), where
the choice of the paramete? is discussed in the supplementary
document, we us€ == 1, where= = 2 3is the dimension of the
scene. De ne pll° = % 319 en°, a cubic 2 spline basis function
with supportjlj n (Appendix C). Then p vanishes if3;1G+ 8
exceeds), and as a consequenég,'G++5° is zero. By construction,

15° becomes in nite if31G+ 8! 0, i.e., this potential satis es
Requirements 2, 4, and 5, as long as the potential grows fast enough.

5.1.3 Factd . Restricting the potential to the interior of 1G« 3
while keeping it di erentiable, requires molli cation. To construct
a suitableWf 1G+ 2, we use a cubic spline basis function fof , and
the smoothed Heaviside step functionV11© := 1je(P 2 21RO
(Figure 11, Appendix C) for?,
Then we de ne the directional factov{ as
1[0 = Z 312_|o.
Xijo = Ty
6(1Ge2 = X1 <1Ge00 U1 413,00,

WiGe2 = 6( 1Ge25( 1~e 3

(6)

which ensures that the potential is supported within the contact set

1Ge B, Note the similarity between 1 © andX/11 °: one provides
localization in distance w.r.t. position &', the other in direction
with respect to=!Q for the interaction set points.

5.1.4 Adaptive barrier localizatiofo satisfy Requirement 3No
spurious forcgswe choos@&'@ for each pointGto be equal to

M@ = Mint31Ge 2 g

wherenyg is the global parameter determining the maximal distance
at which the potential may be nonzero arfg is the rest deformation.
Note thatn'@ is not necessarily smooth or even continuous as a
function of G This may a ect the convergence of the outer integral
(under mesh re nement) in computing ; however, it does not a ect
the requirements, in particular, RequirementBi(erentiability ) of
the total potential's dependence on the shape parameters isf
still satis ed.

Proposition 1. The potentia(5) satis es Requirements 1 to Sif
is a curvature-continuous surface, withG« 8 given by De nition 1,
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distance-to-contact de ned3g'G+ 5 := min-, ig.g k51~° 51k,
andWGe2 given by Equatioi6).

The details can be found in the
supplementary document.

5.1.5 Relation to other potentials.
Our potential eliminates many
shortcomings of the previously pro-
posed potentials described in Sec-
tion 2.

This potential remains nite for
admissible smooth surfaces, for our
choice of* 1 (see the supple-
mentary), without excluding a self-interaction radius as in Kamen-
sky et al [2018], at the same time retaining the barrier property
exactly, thus preventing the possibility of con gurations of the type
shown in Figure 4.

Spurious repulsion under compression (Figure 3 and 4) is elim-
inated, as these points cannot be in the interaction set, as their
normals are parallel or close to parallel. Similarly, the adaptive
choice ofn eliminates spurious forces in the rest state.

Unlike the IPC potential, the extent of the barrier(as well as all
other properties) is independent of discretization.

Compared to a barrier constructed from common gap functions
as described in Section 2, our potential depends smoothly on the
deformation5, unlike potentials based on the discontinuous DND or
non-smooth CP gap functions. Thus, our potential supports e cient
numerical methods.

Our smooth-surface potential is closest to the tangent energies
of [Strzelecki and von der Mosel 2013; Yu et2021]. Note that the
factor < can be interpreted as the magnitude of the projection
of 51~° 51 to the tangent plane of the surface, i.e., exactly the
denominator of the energy [Yu et a2021, Section 2.1]. As a con-
sequence, it can be viewed as a form of our potential without the
molli cation in the factor Wi.e., withWsetto < and the part related
to 4 dropped, and localization in space. As a consequence, there
are repulsive forces for arbitrarily close points on curved surfaces,
vanishing only in the limit, since the tangent-point distance is nite
for Gand~ with non-parallel normals. There is also interaction
between two sides of, e.g., a very thin object.

Another important di erence is the choice of the power of the
potential ?. In the setting of [Yu et al2021], the poweP is set high
to ensure that the surfaces determined by the energy atewhile
in our case, these are not determined by the energy minimization,
and their smoothness is ensured by other forces (e.g., elasticity).
Moreover, niteness for p.w. smooth surfaces imposes an upper
bound on?.

However, we emphasize that in the case of piecewise smooth
surfaces (as a more general case of piecewise linear meshes, which
are widely used in physics simulations), normals are not uniquely
de ned, and signi cant adjustments are needed to the repulsive
potentials to apply in this case. Moreover, for all desired properties
to carry over to the discrete case, the discretization needs to be
constructed in a particular way (Section 5.3).

-0.5

Fig. 11. Yuewith U= 3.



5.2 Piecewise smooth contact
We now extend the potential to piecewise smooth surfaces. There

are two reasons for this extension: (1) piecewise smooth surfaces

are ubiquitous in graphics and scienti c computing as they can

represent shapes with sharp features, and (2) smooth surfaces are

often approximated by piecewise linear surfaces for which e cient
and robust continuous collision detection is available.

We consider surfaces consisting of patcheg which form a
possibly curved manifold mesh satisfying the standard de nition

[Do Carmo 2016]. We assume that each patch has continuously

varying normals de ned everywhere, including boundary (i.e., no

Geometric Contact Potential = 9

0

Q)]

(B)

©

Fig. 12. Notation for tangents in Definition 2 in 3D.g is a face (not neces-
sarily triangle) in 3D colored with light purpleG and G are the two tangent
vectors at51~°, G is the angle bisector of the angle betweéhandG. The
face is viewed from the normal direction.

cones are allowed), the edge curves meeting at a vertex, and faces

meeting at an edge have distinct tangents and tangent planes in

the undeformed shape. We refer to the curves separating patches as

edge curvesr simply edges, and points shared by more than two
patches as vertices.

In this case, there are six possibilities for a contact point, corre-
sponding to the possible pairs of contacts between any two element

types: Face-Face, Face-Edge, Face-Vertex, Edge-Edge, Edge-Vertex,

Vertex-Vertex. We handle all these cases together in a uniform way.

5.2.1 Interaction sets for piecewise smooth surfdesise the
same general de nition for interaction sets!Ge 8 for piecewise
smooth surfaces. Speci cally,2Ge 8is the set of pointsclose in the
sense de ned below to local minima of the distance funk&ib
51k, and with the vectob~° 5@ pointing to the exterior of the
surface aGand to the interior at.

However, more complex machinery is needed to convert this to
a mathematical de nition compared to< and # functions for
smooth surfaces. Most of the e ort required is to express the simple
de nition above as smooth functions .

Local minimum constraint. Consider the distanc&5'~° 5!Qk

as a function of-. If the closest point is in the interior of some patch
8, i.e., the contact point is a face point, then for the gradient w.r.t.

~, We obtain

r -51~07 1510 51®° =(Q )

at the closest point, where the gradient. is computed with respect
to a parametrization of g. The columns of the matrix -5 are two
tangents at-, i.e., this condition is equivalent to the condition that
=1~0 js parallel to5~° 5@ in the de nition of 1Ge 8.

To generalize the minimum condition to edge and vertex contact
points on piecewise smooth surfaces, consider the set of patches
containing a point~ (one patch for face points, two for edge points,
and any number for vertex points). For eaclgand each parametric
direction? 2 RZ at~, there is a well-de ned unit tangent direction
C:= m51~°of g The directional derivativen is one-sided if- is
on the boundary of g.

The condition for a local minimum is that for any g, the distance
does not decrease along any tangéht.e.,

C 1510 51@° 0 (8)

It turns out to be su cient to enforce this condition alonghree
directions for each patch incident at a point, as shown in Figure 12,
and explained in more detail in Appendix D.

UP]

[ €1

3D setup 2D setup

Fig. 13. Problem setup of determining if a vectb(red) is pointing inside

of the piecewise linear surface. PoiBt~° and its 1-ring neighbors on the
piecewise linear surface (gray) intersect with a small sphere (green) centered
at 51~9, their intersection is shown in blue. The intersection in 3D is not
necessarily convex (middle).

Exterior direction constraint. The analog of 41G+2 | Orequires

a criterion for determining that a unit vectoE := 151~° 513°

at a point51~° of a closed piecewise smooth surface points inside.
For piecewise linear surfaces, as in Figure 13, the p6in® and

its 1-ring neighbors form a cone. Consider a small sphere centered
at 51~°, its surface is partitioned into two parts by the cone, and
Eintersects the sphere surface at one point. The problem is iden-
tifying the part of the sphere containing the point. For high-order
surfaces, determining Epoints inside only requires checking the
cone formed by the tangent planes &t~°, which is equivalent to
considering the same problem for piecewise linear surfaces.

We are going to de ne a function 4G+ <2 that is positive if and
only if Epoints inwards at5!~°. Consider the problem in 2D (Fig-
ure 13). The two incident edges &t~° are4s+ 4%, with correspond-
ing normals=1* . We assume all vectors have unit length since
we only care about the directions. Suppoge =1 i 0 (otherwise
swap4; and4y), to determine ifEpoints outside the surface we only
need to check iflye E+ gare in counter-clockwise order, so we can
de ne

YGeR = 1E 4° 1E 4° ©)

Note that 41Ge+2=0Qif and only if Es 4» 4 are on the same line,
i.e.Eoverlaps with4, or 4.

In 3D, we rstdiscuss 41Ge<2for edges in Edge-Vertex and Edge-
Edge contact. As shown in Figure 14, to determine if a ve&points
inwards, we can project everything onto the plane perpendicular to
edgedg and apply Equation (9) on the projected vectors. For vertices,
however, de ning 41G+2 becomes more complicated. A detailed
description of how to de ne 41Ge<2in a robust fashion for vertices
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SH—I

Fig. 14. 3D (le ) and 2D (right) views of the closest point on an edge. The
2D view is the projection of the 3D view onto the plane perpendicular to the
edgedy. E4+4; are the projections oE«4 1249 1 respectively= is the
projected normal of the face bounded By 1+ 49. Deciding ifEpoints inside
the cone in 3D is equivalent to deciding Eis inside the sector bounded by
47 and4 in 2D.

f(y)
n1 f(y)

°f(x) . f (€ of (x)
(A) ©)

\/ f)

f()

)

Fig. 15. 2D (top) and 3D (bo om) normal directions for contact points.
51~0 51 is shown in yellow=g!~° are shown in red if Equation (16) is
satisfied, otherwise green. Tangent directions are shown in blue in 3D. In

simple contact cases, e.g. (A) and (D), the normals all satisfy Equation (16),

but in other cases, not all normals satisfy the inequality.

is included in Appendix B. This leads to the following de nition of
an interaction set:

De nition 2 (Interaction sets for p.w. smooth surfacesjor each
point~of ,let be the set of indices of patches containing~,
and for each patch, de n@;-3 10 : =Je2e3as above. ThenlG+58
consists of points- satisfying

<_ 1GeQ = % 10> 151~0 B1Po Us
Z 4 . (10)
51— Us 41Gen Ve 41-e@® Ve

for82 ,: =123, 0YU 1,and0Y V 1lis a separate

parameter that controls the smoothness of. We useV = 0"1; the
speci ¢ choice ofV has little impact on the method's behavior and
numerical stability.

Remark.The size of the index setdepends on the type of primitive
being considered: In 2D, edge curves have §ige 1; vertices have

j j = 2, including the two edges joined at this vertex. In 3D, faces
havej j = 1, edge curves havej = 2, and vertices havgj 2

Using molli cation, we de ne factors6*1Ge«2 and6< 1Ge <2 from
4and §; as described in Appendix D.
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5.2.2 Contact potential for piecewise smooth surfatssg the
new de nition of interaction sets 1@ and combining the local
minimum and exterior direction constraints, we get, similar to the
smooth case,

67°(Ge2 = 641G+ 96~ 1Ge 2

WoiGe 2 = g% (1Ge 6% (1-e (11)

However, one cannot simply replad 1G+2 with We(Ge 2 in
Equation (5) to obtain the potential for the piecewise smooth case.
Recall that contact may happen to measure-zero sets on the piece-
wise smooth surface, e.g., vertex-vertex and edge-edge contact. Con-
sequently, the contact set in these con gurations has zero measure
(edge curves and vertices in 3D), and direct surface integration of
k 1@ will lead to a zero potential.

For this reason, we treat low-dimensional elements separately.
Informally, we can think about the interaction of lower-dimensional
elements, as expanding them into areas: e.g., an area of width
along curves, and an area of siz& assigned to vertices, with the
potential constant along the direction in the area orthogonal to the
curve, or on the whole area assigned to a vertex. More precisely,
this corresponds to adding line integrals for edge curves weighted
by !, and point sums for vertices, weighted by. The potentials
we integrate for a pair of elements and , possibly of di erent
dimensions, e.g., with being a vertex and a face, can be written
in the form

%WGe+e O°=WPUGexe 09, 1GeR
whereWt(Ge+« s the factor de ned in Equation (11fpr G

considered as a point on elemenin other words, if is a face,
andGhappens to be an edge or vertex point, the factlt(G.2is
computed using formulas for face poin@G
Then the total potential can be written as
O O - ‘ 1 1
150 = !4 dim6 dim %WGesr @ & dc-
16e 0 82 5o P 8 9
g\ g=0e
12)
where6e are one of the element typed~aceEdge Vertexg, with
the rst sum is over 9 unordered pairsg and are sets of indices
of elements of type$ and , and and element indices. The
integrals are area, line, or 0O-dimensional, i.e. simple evaluations for
vertices.

Proposition 2. The potentia(12)satis es Requirements 1 to 5 if

5 is piecewise-curvature-continuous surface as de ned in this sec-
tion, with 1Ge 8 given by De nition 2, distance-to-contact de ned as
301G 8 :=min.y 1g.g k51~° 51k, andWGe=2 given by Equa-

tion (11)

Please see the supplementary document for details.

5.2.3 Parameters of the potentidhether the potential satis es
contact potential requirements does not depend on the choice of
i Onyg i 0,and0Y UY 1, as long as these are positive. There
is no strong impact on robustness, as long as the values are not too
close to the bounds, but it may a ect performance.



U determines the size of the interaction sets, and as a conse-
guence, how smoothly the potential depends bnThe closer
Uis to zero, the less smooth the dependence is, but the more
localized it is.

ncagletermines the upper bound on how far the potential
extends ’\é\in IPC), but especially at concave cornemsa@s
well as5, a ect this.

! determines the strength of potential for low-dimensional
contact. In our examples, for vertices, we set it to the average
edge length around the vertex; for edges, we set it to the
length of the edge; for faces,is not needed.

5.3 Discretization

For a barrier method to guarantee that the geometric constraints
are not violated, and maintains the attractive features of the po-
tential, we must ensure that the discrete version satis es the same
conditions, most importantly:

requirement 2 (the exact barrier property with respect to the
discretized geometry);
requirement 5 (di erentiability).

It turns out that these requirements are, to an extent, con icting,
and additional e ortis needed to satisfy both. We consider the lowest
order discretization for piecewise-linear surfaces, leaving extensions
to higher orders as future work. Designing a discretization that, on
the one hand, converges to the underlying continuum potential and,
on the other hand, satis es all requirements is nontrivial already in
this case.

5.3.1 Ensuring the barrier propetfywe use standard quadrature
points as it is done in [Kamensky et £2018; Yu et aR021], the inte-
gral approximations in Equatiofil2)may have optimal accuracy, but
the barrier property is satis ed approximately, and interpenetration
is possible, as discussed in [Kamensky et al. 2018] and Section 3.

To address this problemye choose the closest points on element

pairs as our quadrature poingossibly reducing integration preci-
sion, but still satisfying the requirements.

In this case, the lowest-order discretization of the potential inte-
gral is

0 1

o 0

150 = | 4 dim6 dim %Q.__g' @ 90 1 d
1Ge © 1849
13)
where 1Ge~¢° is a pair of closest points on elementg and o,
respectively, and g ¢° are pairs of non-adjacent elements, and
1 gand ' ¢ are measures of elements (area for faces, length
for edges and 1 for vertices).

Di erent from Equation (12), the sum above ovége ° only in-

cludes four types: Vertex-Face, Edge-Edge, Vertex-Edge, Vertex

Geometric Contact Potential = 11

As the closest distances between points are used, the terms in
Equation(13)approximating corresponding terms in Equatigt2)
bound them strictly from above, ensuring the exact barrier property.
One exception is the terms for adjacent elements, for which the
closest distance is zero, and the bound would be in nity.

From the perspective of convergence of the potential to the limit
under re nement, this is not an issue, as the fraction of adjacent
pairs among all pairs converges to zero under re nement. Excluding
interactions between these elements does not a ect the barrier
requirement either: for piecewise linear meshes, if adjacent elements
are in contact, other, nonadjacent elements will be in contact (see
Appendix E for a more detailed discussion), i.e., Requirement 2 still
holds.

However, in the piecewise linear case, the contact between these
elements is possible only if a non-adjacent pair is in contact, so
these can be safely omitted.

However, using the closest points as quadrature points creates a
new complication: 3D positions of quadrature points with a xed
position in the material space naturally depend smoothly on the
deformation5, but this is not the case for the positions of closest
points.

5.3.2 Ensuring di erentiabilityror the discrete potential to de-
pend di erentiably on the shape parameters (vertex positions in
the piecewise linear case), we need an additional modi cation. First,
observe that the distance between two elements is alrealiyith

the only exception being the distance between two parallel edges,
which can be molli ed as explained in [Li et a2020], so the term
?nie In %does not require modi cations. However, the directional
factorwo( Equation (11) depends on the direction between closest
points, which may be only © continuous with respect to the de-
formation 5, when the closest point is on the boundary of the face
or edge (Figure 39). We introduce a molli cation1Ge< for the
closest point pair direction, as an extra multiplicative factor fa#(:

WeGGe2 = 670G 267 (1~e @" 1Go o (14)

Importantly, introducing this factor does not a ect other require-
ments for the potential. The details of the construction of this factor
can be found in Appendix A.

5.3.3 Directional factor: local minimum terrmsthe case of only
the closest points being used as quadrature points, we can simplify
the local minimum terms discussed in Section 5.2. If a face point
~ 2 gisthe closest point on gto a xed point G then~ is a
local minimum of the distance functioBg!~° = k51~° 5@k, i.e.
Equation (7) is satis ed, so no local minimum constraint is needed.
Similarly, if~ is on an edge, ther is a local minimum of3g!~° on

the edge, so the local minimum term along the edge can be ignored

N ) Y (Figure 16).
Vertex, since in the case of piecewise linear surfaces, other types are (Fig )

reduced to these types when only the closest points are considered. 5.3.4 Adaptive local factor We introduce adaptive for our for-
[Li et al. 2020] only considers Vertex-Face and Edge-Edge, since it mulation. We rst specify a xedncador the simulation and collect
is su cient to satisfy Requirement 2 in their case. In our work, due  contact pairs in the rest con guration withimc ag@nd with nonzero

to the molli cation discussed below, we include Vertex-Edge and
Vertex-Vertex. In practice, we do not have more contact pairs than
[Li et al. 2020] (Table 2), since our contact set is more narrow due
to our local minimum and exterior direction constraints.

potential values. We pick for every primitive (vertex/edge/face) so
that none of the contact pairs are active in the rest con guration.
Then then for every edge (face) is chosen to be the minimum among
its neighboring vertices (edges). Bene ting from local minimum and
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) Edge Face

Vertex

Fig. 16. Local minimum constraints for closest points in contegt~°

51@ is shown in yellow, tangent directions included in< are in red,
otherwise green. By the property of the closest point, the distance function
3c1~° has zero derivatives along the green tangents, so Equation (10) is
always satisfied.

exterior direction constraints, the adaptivein our method can be
much larger than in [Li et al. 2020] (Figure 18).

5.3.5 Satisfying requiremenisist as the smooth and piecewise
smooth potentials, the discretized potential 13 satis es our require-
ments:

Proposition 3. The discrete potential 13, with the interaction sets

and directional factors computed as described above, satis es the Re-

quirements 2 to 5.

We note that there is no need for Requirement 1 for a discrete
potential, as it is a nite sumany potential that grows to in nity
for kK51~° 5@k ! 0can be used, as this is a nite sum, and,
unlike integrals, it is unbounded when any term is unbounded. As
we use the closest points on elements as quadrature points, the
barrier property is guaranteed in the discrete case.

However, if the growth rate of the potential is too low for the
smooth or piecewise-smooth integral potentials, this means that
under re nement, the potential will become progressively weaker
(Figure 38).

The remaining properties are veri ed in a similar way to the
continuum case (see the supplementary document).

5.3.6 Convergence under refinemAbbve, the piecewise smooth
formulation is used directly to discretize the potentials on piece-
wise linear meshes. A natural question is whether the potential
for piecewise linear meshes sampled from a smooth (or piecewise
smooth) surface will converge to the potential directly de ned for
this surface. Mathematical analysis of convergence is beyond the
scope of this paper, but we expect that the piecewise linear mesh po-
tentials converge to the potential de ned on the smooth mesh if the
parameter is adjusted in the same way as the mesh edge lengths,
i.e., decreased by a factor of two if the mesh is re ned uniformly.
Intuitively, the discretization corresponds to sampling the integrand
at a set of points on faces, edges, and vertices and weighting by
areas associated with therh ¢ontrols the size of areas assigned to
edges and vertices), which suggests this scaling.of

The situation is more complicated for the re nement of piecewise
smooth surfaces. In this case, the limit surface integral contains
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feature curves and vertices embedded in a piecewise linear mesh.
this case, for convergence to the correct limit potential, the factors
for edges and vertices on these feature curves showithe adjusted,
unlike factors for edges and vertices inserted on faces.

5.4 Friction

The friction formulation in [Li et al 2020] can be reused in our
setting with minor modi cations, which we report here for com-
pleteness. In IPC [Li et a020], the friction force for a contact pair
is D

kD k

where" is the friction coe cient, ). 1@ is the local tangential basis,
_. is the contact force magnitud® is the local relative sliding
displacement at contact,

@=L 5tkD ke

2 2~
TEi

1e neg
where is the time step sizepg is a velocity magnitude bound
that controls how accurately the friction is approximated. Then the
dependency of. 1@ on). and_. is made explicit (or lagged), to
obtain the friction potential
1@ ="_"kD k”
Where_:z is the contact force magnitude from a prior nonlinear solve
(or previous time stepy. Since the dependency of 1@ on ___= is
explicit,___= can be directly replaced by the contact force magnitude
in our method.
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Fig. 17.Spurious stresses: nonuniform squircle mesh. Our method
properly handles nonuniform meshes. In this case, we consider a 2D rounded
block (of sizel mx 1 m) with maximal edge length0"21 min its straight
sections and minimal edge lengt®01 mat its corners. Top row: wittg' =

0"L m, IPC introduces spurious contact forces in the refined corners, resulting

the low-dimensional terms (Edge-Edge, Vertex-Face, etc.). Theseln a deformation. Bo om row: our method avoids this by filtering based on

are computed on sharp feature curves and at vertices embedded in
the surface, and in discretization corresponding to piecewise linear
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6 EVALUATION

We implement our algorithm by extending the IPC Toolkit [Ferguson
et al. 2020] (details provided in the supplemental document) . We
use Eigen [Guennebaud et &010] for linear-algebra operations,
Pardiso [Alappat et al2020; Bollhéfer et aR019, 2020] for solving
linear systems, and PolyFEM [Schneider et28119] as the nite
element simulation framework. All experiments are run on a system
with an AMD Ryzen Threadripper PRO 3995WX 64-Cores (limited
to 16 threads) andl40GiB of memory. For comparisons against
IPC [Li et al 2020] and Convergent IPC [Li et a2023], we use the
open-source implementations provided in the IPC Toolkit (together
with PolyFEM). Please see our supplemental video for animations.
All simulation parameters and statistics are summarized in Table 3.
Our reference implementation, used to generate all results, will be
released as an open-source project.

6.1 Resolving Spurious Forces

In this section, we consider a variety of unit tests where the original
IPC formulation introduces spurious forces.

6.1.1 Using largesg . Suppose the input mesh is relatively ne,
either globally (a dense mesh) or locally (adaptively re ned e.g.
to resolve ne features). Having a largerg allows one to solve
the implicit time-stepping problem faster because the barrier is
less numerically sti, andCCD needs to do less work in the line
search if the objects are kept further apart by the potential. We
provide an example of this scenario in Figure 17, where it is natural
to have small edges around the rounded corners of a square and
long edges along the sides. However, doing so restricts the range
of usabled (IPC's notation forrnyg) for the IPC barrier. Using a

value G\: 0"1 min this case) larger than the minimum edge length

( min = 001 ) results in spurious forces along the corners and
artifacts upon simulation. In contrast, our utilization of an adaptive
nallows us to choose a startingrq that results in zero initial contact
force. These rest forces can be avoided while still using a larfm

the non-re ned regions (Figure 18). Further, in Figure 19, we run a
simulation on the same armadillo model with IPC and our method.
We choosé&'= 0001 mfor our method andyrg = 0°0004 mior IPC

so that there is no contact force at rest shape. Both methods produce
similar results, our method takes 512 iterations and 55 minutes (2/3
less than IPC), while IPC takes 1555 iterations and 161 minutes.

6.1.2 Large Deformatiom the presence of large deformations,
elements may shrink a lot, and in this scenario, the original IPC
barrier formulation adds spurious forces which make the material
locally sti er (Figure 21). Our formulation does not su er from this
issue.

6.1.3 Spurious stress in the rest configuratitwen if3 v min 1S
satis ed, the IPC formulation may still have spurious stress in the
rest con guration. We show two such scenarios in Figure 20.

In the rst case (Figure 20 Top), two blocks in the initial con g-
uration sit on the plane with the initial distance between blocks
less thar®. With IPC, they incorrectly start sliding apart without
external force applied where the blocks should stay still at all times.

13

Geometric Contact Potential ~

IPC [Li et al. 2020]

Fig. 18.n distribution. We implement an adaptive locality parameter with
IPC and comparen a er adaptation to avoid spurious rest forces with
Nrg = 0'02m IPC (le ) requires small3' all over the surface due to the
requirement that3'be smaller than the shortest adjacent edge. Due to local
minimum and exterior direction constraints, our method (middle and right)
is able to concentrate refinement on the fingers and toes of the figure.

'\
[Li et al. 2020]

Ours

Rest Shape

Fig. 19.Armadillo-Bar. An armadillo interacts with an elastic bar. The
two ends of the bar are forced to move towards the back of the armadillo,
and both the hands and feet of the armadillo are fixed. Both the armadillo
and bar are elastic. We show the full scene on the top row, and only the
armadillos on the bo om row.

In the second case (Figure 20 Bottom), IPC causes the slit to expand
at the top without external forces and stress appears at the bottom.

Our approach avoids spurious forces between close objects by us-
ing an adaptivayg. For the contact between primitives on the same
object, due to our local minimum and exterior direction constraints,
we can useyg larger than the edge lengths without activating
contact at rest con guration (with a wide range dff).

6.1.4 Spurious stress under deformatibren for a well-chosef'
parameter and a benign rest con guration, the IPC barrier can still
add spurious forces upon deformation.

In Figure 21, we compress a cube mesh to 33% of its original
height. We assign a Poisson ratio of 0 to the cube to show an example
where no bulging and/or folding of the surface occurs. The value
for 'is initially chosen such that no points are in contact, but
upon compression distances shrink and IPC introduces spurious
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Initial Config. Ours‘
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Contact Force Magnitude

—,3& 2XlI

&RQWDFW 3UH)

7LPH V

Fig. 22.Spurious stresses: expansion. Upper le : an initially deflated
balloon with rest thickness 00’1 mis expanded by an outward force of
5kN. Center: withd' = 0°02 m the balloon eventually becomes thin enough
that spurious contact forces (represented as red arrows) between its inner
and outer layers appear. Lower le : a cross-section showing spurious forces
on both the inner and outer layer of the balloon. Right: our method can
inflate the balloon until it is arbitrarily thin without introducing artificial
contact forces. Bo om: artificial contact pressure is introduced by IPC.

Fig. 20.Spurious stresses: rest configuration 3D. Top row: two cubes
initially separated by less thas' = 0°025 m IPC artificially repels the two
blocks while ours does not. Bo om row: a block with a slit of width less
than nyg = 00125 mOur method does not introduce spurious forces across
the slit.

Initial Config. IPC Ours

Fig. 23.Spurious stresses: donut expansion. Le : a donut with rest
thickness 0f0"02 mis inflated around a thin stick by a pressure boundary
condition of 0"AICMPa with simulation time Cup to 06 s Middle: with

$'= 001 m the balloon eventually becomes thin enough that IPC introduces
spurious contact forces between its inner and outer layers. Right: our method
can inflate the balloon until itis arbitrarily thin without introducing artificial
contact forces while still capturing contact forces between the rod and
balloon.

Contact Force Magnitude

—,3& 2XlI

&RQWDFW 3UH"

between the direction to the point and surface normal to build our

interaction sets.

) ) ] o ) ) In Figure 22, we in ate a spherical balloon modeled as a volumet-

F|g.|21.Spur|ou§ stresses: compressmn.,;kn |n|::ally v_alld choice _for?f\ ric membrane of thicknes8”L m, hanging on a rigid stick As the

can e_ad to spurious contact (a"ows, and color) when using IPC. L? : C“‘_’e & palloon in ates, its walls get thinner and eventually they become

rest with a minimum edge length 0003 m Center: upon compression with thi than the initially ch = 002 ni' At thi int IPC treat

$'= 00125 mIPC introduces spurious contacts. Right: our method avoids Inner antheini 'a_y ¢ OSFT‘ - . IS Pom ! reats
the inner and outer sides as in contact, introducing forces between

this by considering the tangent directions when finding interactionsets. . . ; . -
Bo om: IPC introduces artificial contact pressure. the two sides. Our interaction set for one side does not include the

7LPH V

IWhile one could model the balloon using co-dimensional shell elements to avoid this

. . . issue, modeling the thickness may be important for analysis or design. For example,
contact forces on the sides of the cube (despite them being at). Our with constant outward pressure, the balloon oscillates in thickness, which a shell model

formulation does not have spurious forces because we use the angle would not capture.
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other as it accounts for the angle of contact, avoiding this issue. As a
more complex example (Figure 23), we in ate a donut-shape balloon
around a thin stick. Our method only has contact forces around the
center, while IPC has spurious contact forces everywhere. Although
one can lter the interaction set by the surface connected compo-
nent for IPC in these two simple examples (since the inner surface of
the shell does not have contact with the outer surface), in more com-
plex scenes (Figure 29) it does not work anymore, while our method
avoids these issues by relying on our de nition of interaction sets.

In Figure 24, we extrude the extendg¢dshaped structure from
[Joodaky 2020] to 3D and simulate its compression. When the shape
buckles it formscuspcontacts at the corners. Since the barrier po-
tentials in di erent methods have very di erent scales, for a fair
comparison, we pick for each method so that the minimum dis-
tance in the simulation is roughly the same & 10* for Convergent
IPC and our method} = 1 for IPC). We show that both Conver-
gent IPC [Li et al2023] and IPC [Li et aR020] exhibit large contact
forces in these regions, while our method has much less contact
forces than both methods. Our method reduces the contact forces
around thecuspbecause of the local minimum and exterior direction
constraints only when edges are close enough to parallel, i.e. the
angle of thecuspbecomes small enough, the contact is activated.
Without this constraint, spurious stresses appear in both IPC and
Convergent IPC.

Fig. 24.Cusp compression. Compression of g -shaped structure. We
visualize the contact force distribution on the top row and the front view
on the bo om row. Our method significantly reduces the contact forces
around the cusp compared with IPC and convergent IPC.

6.2 3D Examples

We reproduce challenging 3D simulation examples of [Li e28120].
First, we validate our method on the 3D unit tests proposed by
[Erleben 2018] in Figure 25. We see similar results to those shown
in [Li et al. 2020], but we highlight one improved result in Figure 26
where we see reduced spurious tangential movement compared to
[Li et al. 2020] and [Li et al. 2023].

Second, we reproduce the dolphin funnel (Figure 27), trash com-

Geometric Contact Potential = 15

intersections and inversions at every step. We note that in [Li et al
2020] the xed corotational model, which allows element inversion,
was used instead of NeoHookean, so the number of iterations and
timing reported in [Li et al 2020] is signi cantly lower. To make
fair comparisons, we also run [Li et a2020] with NeoHookean
and report the statistics in Table 3. We refer to [Smith et2018]

for the artifacts in the xed corotational model and comparisons
with NeoHookean. For the dolphin funnel, we report the breakdown
timing of our method: The Hessian assembly takes 34%, linear solve
28%, narrow phase CCD 19%, broad phase CCD 4%, and line search
(excluding CCD) 14%.

In Figure 31, as a stress test for our local minimum and exterior
direction constraints, we generate an adaptive mesh for an n-legged
monkey saddle, for which the normal oscillates around the center.
For IPC, we use the maximu#ithat does not activate contact forces
at the rest con guration, which is5 10 5 m. Since our method
allowsnyg larger than the edge length without activating contact,
we make use of this advantage and sgfy = 2 10 4 m. Both
methods produce similar results, our method takes 4255 iterations
and 3.7 hours (1/3 less than IPC), while IPC takes 6710 iterations
and 5.7 hours.

Finally, to validate our friction model, we simulate the bunny
sliding on a slope with various friction coe cients, and with our
method, Convergent IPC [Li et a2023], and IPC [Li et aR020]
(Figure 30). All three methods produce similar results.

Fig. 25.Erleben tests. We reproduce the test-cases of Erleben [2018]. Top:
initial conditions involving challenging exact point-point, point-edge, and
edge-edge collisions. Bo om: as in [Li et.&020], our approach robustly
passes all the tests.

Fig. 26.Erleben test: cli edge. We reproduce the cli edge test-case
of Erleben [2018] withnyg = 001 m IPC[Li et al 2020] and Convergent
IPC[Li et al 2023] pass the test but introduce spurious horizontal forces,
causing the top block to rotate or slide. Our method significantly reduces
extra sliding due to the restriction in contact forces.

6.3 Inverse Design

pactor (Figure 28), and mat twist (Figure 29) examples. Each of these We perform a shape optimization example to show one advantage
examples features large deformations and complex contacts. Just asof using a Iarge’a‘\in the simulations. In Figure 32, we optimize

in [Li et al. 2020], we robustly handle these scenarios and prevent

the shape of a plier so that it can grasp the torus under gravity
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Fig. 27.Dolphin in a funnel. We reproduce the funnel test from [Li
et al. 2020] using our method. Top: an elastic dolphin is pulled through
a small tube. Middle: this causes extreme deformations. Bo om: the dolphin
sgueezes through without artifact and recovers its original shape.

Fig. 28.Trash-Compactor. We reproduce the trash-compactor example
from [Li et al. 2020] using our method. Le : three objects are placed in
a compactor. Middle: the objects are compressed. Right: the compactor
releases and the shapes return to their original shape without intersections.

Fig. 29.Mat-Twist. We reproduce the mat-twist example from [Li et al
2020], demonstrating, overall, our method is similarly robust to the original
Incremental Potential ContactIPC). Le : our simulation at 10sa er 2
rounds of twisting at both ends. Right: &40 sa er 8 rounds of twisting.

when its handles are pulled outwards. We de ne the objective to
be the contact force magnitude in the simulation and maximize
the objective with L-BFGS. To reduce the dimension of the shape
design space, we use the shape representation in [Gjoka. 20214]
and sample 15 control points on the plier surface. We compute
shape derivatives of the objective following [Huang et 2024b].
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Fig. 30.Friction: Sliding bunny. A bunny is thrown from the top of the
slope. We simulate with friction coe icients 0.05 and 0.2, and with our
methodU = 0’5 (blue), Convergent IPC [Li et aR023] (yellow), and IPC [Li
et al. 2020] (green). The results asare shown.

Fig. 31.Monkey saddle. We force the top surface of the object on top to

rotate in the counter-clockwise direction and fix the bo om surface of the

object at the bo om. Our method is able to handle this scene with complex
normal directions.

For e ciency, we simulate only half of the plier and set symmetric
boundary conditions.

As a baseline, we rst run the shape optimization with [Li et.al
2020] (Figure 32 A). Due to the restriction thdishould be smaller
than the minimum edge length of the mesh (to avoid spurious con-
tact forces in Section 6.1), there is no contact force on the initial
shape since the distance between the torus and the plier is larger
than 3. Therefore, the shape derivatives of the objective are zero
and the shape optimization cannot proceed. With our method (Fig-
ure 32 B), however, thd'can be larger than the edge length without
creating spurious forces between adjacent mesh vertices, so we can
pick a large enougﬁ\so that there is nonzero contact force between
the plier and the torus, and the shape optimization can proceed. The
optimized plier manages to create enough contact forces to grasp
the torus (Figure 32 D).

6.4 Comparison to Repulsive Surfaces

Tangent-point energy (TPE) of Yu et #021], discussed in Section 2,
has global support, which makes it expensive in simulations, even
with acceleration. To adapt it to our purposes, we multiply the
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Fig. 32. Shape optimization of a plier for grasping a torus. The handles (orange nodes) are pulled outwards (specified as the Dirichlet boundary conditions) in
the simulations. Rest shapes and deformed shapes are visualized as green contours and grey surfaces respectively. (A) Shape optimization wi0R0kt al
cannot proceed, since there is no contact force between the torus and plier due to the restrictiortishbuld be small to avoid spurious forces. (B) The
contact force is maximized in the shape optimization with our method. (C) The initial shape fails to grasp the torus under gravity. (D) The optimized shape
manages to grasp the torus under gravity.

integrand with a cubic spline, to localize it:
k%1@151@ 5100k’

pronounced in scenes with cusps; for simpler scenes, the di erence
in iteration count is less noticeable (Figure 35).
To study how muchU helps to remove unnecessary contact pairs,
w2 K5I@ 5-°kZ we compute the number of contact pairs for varyitgandnyg on
and compare with our method in Figure 33. the xed scene in Figure 29, at the frame obtained after running the

We observe that the TPE-based potential Equation (15) has a Simulation for40 sof simulation time, and compare against IPC [Li
non-zero gradient everywhere on the surfacenify is larger than etal 2020] and Convergent IPC [Li et.&023] (Table 2). Convergent
the edge length. On a single sphere (Figure 33), the gradient of IPC has more contact pairs than IPC due to the extra contact pairs
Equation (15) is small but nonzero everywhere, while ours is exactly With negative weights introduced. Although our method has more
zero. E.g., in the twist-mat example, both formulations have large types of contact pairs than IPC, even if the local minimum constraint
forces at places in contact. However, the gradient of our potential IS inactive U = 1), it has fewer pairs than IPC due to the exterior
vanishes at places that do not need the contact barrier, while the direction constraint. The number of contact pairs drops signi cantly
gradient of Equation (15) does not vanish anywhere. asU decreases, one can use reasonably lasder fast convergence

Furthermore, the TPE potentials are designed to optimize surfaces While reducing the artifacts.
for smoothness: nonsmooth surfaces have in nite TPE [Yu et al
2021]. In our case, our goal is to be able to preserve sharp features Table 2. Number of contact pairs. We compute the number of contact
of the original shape. pairs in the fixed scene in Figure 29 40 swith varying nyg, using IPC [Li

We perform a convergence test for both formulations on a cube et a!. 2020], Convergent IPC [Li et 82023], and our method with di erent
corner. Our potential is exactly zero for all 3 resolutions. For Equa- hoices ou.
tion (15), forces concentrate around (both convex and concave)

n1k5I®  51~9k0dGsd~ge (15)

sharp corners and increase under mesh re nement. As expected __"rg IPC__ Convergent 1 o8 05 01
(and desired for smooth surface optimization) Equation (15) con- 888% g%g:ﬁ igg:ﬁ g%gt ggi igg:ﬁ ggt
verges to in nity under mesh re nement for sharp features), while 0005 | 1690k 1772k 830k 433k 273k 78K

our potential converges to a nite number when there is a (convex
or concave) corner (Figure 36) and no contact.
We plot in Figure 35 the e ect ofyg on the number of itera-

6.5 Parameter Dependence and Convergence

To study the e ects of our parameters we vatyandrirg.

Lower values otJ (Figure 34) make the solution more accurate,
as interaction sets are further from points, and spurious forces do
not appear even for extreme deformations, but the potential is less
smooth and the solver requires more iterations. This e ect is more

tions. As the support of the contact potential increases the problem
becomes softer and the number of iterations decreases accordingly.

We also perform a convergence study for three di erent scenarios
shown in Figure 36. We see convergence under mesh re nement in
all of these scenes. Importantly, we use a xagy (unlike Conver-

gent IPC [Li et al. 2023] which requires co-re nementé)
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Fig. 33. Potential gradient distributions with our formulation and the re-
pulsive formulation for three examples: (A) Single sphere with radlus
andngg = 0"1m, with magnitude range»10 10,10y (B) Twist-mat with
Nrg = 0°01 m with magnitude range»1(P+ 10424 (C) Cube corner withnyg
visualized as a white sphere on the bo om le , with magnitude range
»10 L10PY,

We note that when our discretization is applied to the piecewise
linear surface, treating it as a piecewise smooth surface, the inte-
grals for edge potentials and summations for vertex potentials are
introduced, with the relative scale of potentials determined by the
constant! . As the surface is re ned, the scale of the constant also
needs to be adjusted, for the re ned mesh potential to approximate
the smooth surface potential. We leave a rigorous study of conver-
gence of the discrete potential to the potential of the limit smooth
surface as future work.

6.6 Infinite Potential

Consider a corner hitting a plane, and suppose they are both re ned
(Figure 38 Right). In this case, the integral of the Convergent IPC [Li
et al 2023] potential over the plane will be nite, even if the apex
of the corner is directly on the plane (violation of Requirement 2).
Although each discretization will be in nite, the implication is that
the total potential will decrease as we re ne so that the actual
distance will decrease to zero.

Figure 37 shows the con guration: for a gap 8fand a distance
from the closest point on the planeG points along the square will
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Iterations: 867 625 497

Fig. 34.Parameter-study: U. Simulation of Figure 24 with di erentU
including the total number of solver iterations. Ad increases, the nonlinear
problem becomes so er, hence fewer iterations. However, latatroduces

artifacts and spurious stresses in some cases.

Fig. 35.Parameter-study: nyg . Simulation of two bunnies colliding with
varyingU andnyg. We show the plot (le ) of the number of iterations over
Nirg, With a di erent U for each curve, as well as the initial frame (middle)
and the colliding frame (right) of the simulation. For simple scenes, for a
large range olJ, the number of iterations is similar; asyg increases, it
takes fewer iterations to converge.

%1073

26

16-3

22—

10-°

107¢

Fig. 36. Convergence of potential under mesh refinement in fixed scenes
with fixed nyg. We pick 2 configurations in 2D and 1 in 3D, start with the
coarse mesh, and compute the potential under mesh refinement. The plots
of contact barrier potential over edge length are shown.

Fig. 37. Setup for corner hi ing a plane discussed in Section 6.6.

be at a distance of G, A Assume the potenti&lfor points on the

2The extra quadratic term does not a ect the conclusions.



Fig. 38.Finite Potential for Zero Distance.
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A square impacts a plane at the corner of the square with a velocity8# ms. We refine both meshes (only at

the corner of the square for e iciency). Here we plot the height of the squares tip over time. Le : for Convergent IPC [Li.€2G23], we see that the minimum
distance shrinks with every refinement of the mesh. This is a consequence of the continuous model having a finite potential. Middle: due to our choice of
barrier function, our method exhibits the same trajectory (all plots overlap) under refinement.

-G A then integrating oveiGwe get

corner is justlog 3

1
! log G, A
0 3

Al

3 3

3

3G="1A, !°log log

and forA! 0 (i.e. approaching zero distance), it has a nite limit of
|
log 7 b,

The force (i.e., the potential derivative) At= Ois  log'!4 though
(i.e. isin nite), so for a nite force the static equilibrium problem
will always have a valid solution. This is not the case however
for a dynamic problem: if the kinetic energy exceeds the nite
potential, then the barrier cannot prevent contact. We show this

case in Figure 38. One can see the Convergent IPC model results in

ever decreasing distances as the mesh is re ned (without re ning
3‘). Our method in comparison exhibits the same trajectory for all
levels of re nement. This is because we use a barrier function whose
integral over the surface is not nite as the distance goes to zero
and because the potential converges under mesh re nement.

Given that the minimum distance does not depend on the mesh
resolution, one can pickyrg, independent of the edge lengths, based
on the desired accuracy of the contact handling.

7 CONCLUSION

Barrier potentials have enabled a qualitative improvement in the ro-
bustness of accurate simulation of deformable objects with complex
contact. In this paper, we revisit barrier-based contact formulations
and relate them to a family of potentials de ned for a broad class of
surfaces that satisfy a set of natural requirements. We demonstrate
that applying these principles leads to a new formulation that allevi-
ates some of the shortcomings of existing methods for barrier-based
contact simulation.

7.1 Future work

Our derivation assumes closed surfaces without boundaries at sev-
eral steps, which needs modi cations for codimensional objects; a
possible direction for future work is handling surfaces with bound-
aries, and codimensional surfaces. Besides, as Du[@0@4] pointed
out, IPC [Li et al 2020] produces spurious tangential contact forces
on a at plane with non-uniform discretization, thus, it cannot sim-
ulate well the free-sliding of a cube on a plane without friction. Our
method does not resolve this artifact. A potential solution is to use
a high-order quadrature to better integrate the continuous formu-
lation (in addition to including the closest-point quadrature), so
that the potential is less a ected by the non-uniform discretization.
Another direction is deriving a higher-order discretization of our
continuum formulation to increase accuracy.
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Table 3.Simulation statistics. For each simulation we report geometry, (minimum, average, and maximum edge lengttime step G material (Young's
modulus , Poisson ratica, and densityd), nyg, maximum memory used, as well as average timing and number of Newton iterations. A value of 0 for iterations
indicates the optimization did not run because the initial configuration was at a force equilibrium (i.e., no spurious forces at rest). Timings and iterations of [Li
et al. 2020] are shown in parentheses.

i i i timing (s),

: h (m) : : kPg,a, ; ' memory - !
Example # nodes, # cells : - C(9 V3 Pgg (M) 0 U iterations

(min, avg, max) | | dkgem) ’ i - VB (per timestep)
Slit block (2D) (Supp. Video) 199, 325 | 0.04,0.18,0.34 0,0047 4,0.2{100 T 01: o1 | 19 0.07,0
Slit block (3D) (Fig 20) 1058, 3871 0.01,0.04,0.18 047 0.1,02,10 {00125 01 | 93 0.14,0
Fillet block (2D) (Fig 17) 445,672 | 0.01,0.04,0.21 47 4,0.2,1100 f01 ¢ 01 | 26 0.09,0
Fillet block (3D) (Fig 1) 1003, 3824 0.02,0.19, 0.42 047 0.1,0.2,10 10070 01 | 92 0.14,0
Compressed block (2D) (Supp. Videp) 356, 630 0.09,0.12,0.22 0.0047 10,0,100 | 0.04 01 63 0.17,2.3
Compressed block (3D) (Fig 21) 2169, 9799 0.03,0.10, 0.18 0.0047 10, 0, 100 100125 01 644 0.78,2.5
Armadillo bar (Figure 19) 91777, 446158  0.00076, 0.0090,:0.084 | 0.02 10,0.49,1 | 0.001 0.5 | 9675 22.2,3.4(64.4,10.4)
Two blocks (2D) (Supp. Video) 708, 1260 0.09,0.12,0.22 0.0047 4,0.2, 100 L0101 i 24 0.08,0
Two blocks (3D) (Fig 20) 580, 2079 0.04,0.21,0.55 00047 10, 0,:100 100258 01 | 61 0.14,0
Spherical balloon (3D) (Fig 22) 421,701 0.04,0.11,0.18 0.0047 4000,0,100 | 0.02 01 | 722 0.67,1
Donut balloon (3D) (Fig 23) 17122, 52601 0.013, 0.3, 0.086 0.01 1000, 0.48,1000 | 0.01 01 i 2205 28.9,17.1
Cusp compression (Fig 24) 3761, 12777 0.024,0.047,0.089 | 0.01 1000,0.3,100 | 0.0i5  0.05! 501 5.02,15.8
Dolphin funnel (Fig 27) 4074,10511} 0.0017,0.020,0.081 0.025 10,0.4,1000 | 0.001 1 | 1403 15.4,58.1
Trash compactor (Fig 28) 6611, 21696 0.00033,0.049,0.36 | 0.01 10,0.4,1000 | 0.001 0.8 | 2833 228.9, 155 (196, 205)
Mat twist (Fig 29) 45000, 133206  0.0067, 0.0088, 0,0126  :0.04 20,0.4,1000 i 0.002 0.8 | 17683  697.7,61.8 (610.3, 116)
Monkey saddle (Figure 31) 67320,198282  0.00032, 0.0080; 0.058 | 0.005  1e5,0.48,1000! 0.0002 0.8 5376 66.6, 21.3 (102.6, 33.6)
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Fig. 39. Non-smoothness of the closest point position. From le to right,
the closest poini& of a point %outside of an edge/face moves from the
interior of the edge/face to its boundary. The coordinate &fdoes not
depend smoothly or®bas%crosses the boundary.

However, the closest points may not smoothly depend on the vertex
positions. For example, in 2D (top row in Figure 39), the closest point
ontheunitedge toapoint%=1C4°1Cj O°is& = tmintC4%(P°,
which is only 0 continuous atC= 1. Below we introduce new
types of molli cation di erent from [Li et al. 2020] to resolve this
problem. First, we de n&! « ° as the shortest distance between two
primitives (vertex, edge, or face), e33%- ° denotes the distance
between two point$and ,31%e © denotes the distance of point
%to edge . We reuse the 1 continuous molli er function from

[Li et al. 2020]:

110 =

112 1° 0 Y1
B=1
1 11 2 2
we use2 = 0'01in our examples. In the de nition of' 1G+<2, we

denote%= 5!@ and& = 51~° as the pair of closest points.
For Edge-Vertex contact (either in 2D or 3D), suppésis on an

edge , we de ne the molli cation as
" 1Gen = L3t L 3
31%. o 31%. 0

which vanishes as the closest poiit approaches either or
(Figure 39). For Face-Vertex contact, let the vertices of the triangle

face bes ¢, and the vertex outside b¥(Figure 39). Similarly, the
molli cation is
" 1G.-Q = 31%. ° [0} 31%. ° o] 31%. ° 0,
31%. o 31%. o 31%. o

which vanishes a& on the triangle
of the triangle.

approaches the boundary

A o B A QB A 0B

Fig. 40. Non-smoothness of the Edge-Edge contact. P&iand %are the
closest point pair between edge and |, the orange line is the closest
direction between vertex and edge .Asedge moves fromle to
right, & is only 0 continuous when it reaches . At the same time, %
starts to overlap with& %

Fig. 41. (A) The closest poifif on face% is in the interior of %. (B) The
closest pointE? is on the boundary of4. (C) The closest poir® overlaps
with 51~°. (D) The closest points on all faces overlap wBfi~°. In this
case, instead of deciding Epoints inside, we flipEand decide if Epoints
outside.

where31%&e*+° is the distance between two edgés&and*+ .
The molli cation is 1 smooth and vanishes whe& overlaps with

or . Note that the parallel edge-edge molli cation in [Li et.al
2020], which was introduced to avoid non-smooth distance with
almost parallel edges, is hot needed anymore, since our molli cation
also vanishes when the edges are in parallel.

All the distance functions used in the molli cations above aré
smooth as long as there is no intersection or degenerate element,
and »is 1smooth, sothe molli cations are 1 smooth (same as
[Li et al. 2020)).

Remark.The proposed molli cations make the contact potential
vanish in more cases than in [Li et £2020], however, it still guaran-
tees intersection-free, i.e. the RequiremenB2ffier) is still satis ed:
When an Edge-Vertex contact vanishes due to molli cation, the clos-
est point on the edge is at one of the endpoints and the Vertex-Vertex
contact becomes active; when a Face-Vertex (or Edge-Edge) contact
vanishes, some Edge-Vertex or Vertex-Vertex contact is active.

B DETERMINING ORIENTATION IN PIECEWISE LINEAR
CASE

In this appendix, we detail our method for determining i :=

151~0  51@° ata point~ of an oriented piecewise linear surface

points inside. For high-order surfaces, one only needs to consider

For Edge-Edge contact, the smoothness is more complicated since0cal tangent planes at, so the problem reduces to the piecewise

%is not smooth anymore. In Figure 40, we observe that the closest
points % &are non-smooth only when the Edge-Edge distance

linear case.
As shown in Figure 15, when contact happens (i.e588 ap-

reduces to Vertex-Edge or Vertex-Vertex distance. E.g. in Figure 40, Proachess'~°), if the cone around'~° is convex, one may conclude

line % overlaps with&%when& is only © continuous. Inspired
by this, we de ne our molli cation as

1 o
1 3% 50

31e ©
2731, .

" 1GeR = 2133 M °o 13" ° 50 2'31 5

0231. 0o
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that=g!~° E Ofor all 8 However, in generakg!~° E Oonly
holds for some§ andming=g!~° EY 0may be extremely close to
zero. As a consequence, even though one can simply drop contact
pairs based on normals for [Li et 22020] in some simple scenes



(Figure 22), in general, the ltering on normal directions has to be
constructed to be both numerically robust and di erentiable.

We rstdiscuss the robust and exact algorithm (not di erentiable).
For convenience, 1e51~° be the origin of the coordinate system.
let4g18= 1+"""+" be the vector pointing from vertex!~° to its
8th neighboring vertex% be the face formed by poins~° and
vectorsdgand4g 1 (letdp = 4+ ). Denote=g as the normal of4g, the
f4ggfollow the ordering so thatidg 1 48° =g 0. We assume that
the length ofdgis much larger tharEsince we only care about the
direction of E In the trivial case, where everigis perpendicular to
E i.e. all9%g share the same plane, we can de ne

41G.-Q = E =e

where=is the normal shared by allg. Below we assume that there
exists%g that is not perpendicular tde

We rst nd the closest point to Eon the cone surface. In Fig-
ure 41, we nd the closest point t&Eon each facég, and denote the
projected vector a%. Suppose

9= argmingkE Egko
which meanﬂ is the closest point t&E over the whole surface of
the cone formed by61~° and its 1-ring. As a consequence, the line
segment connectinﬁg andEdoesn't intersect with any other faces
of the cone, i.e. the segment lies completely inside or outside of the
cone.
If Eg is on the interior of face&, we can de ne

41G--Q = E =

where=gis the normal of%.

If Eg is shared by two faces, i.e. it lies on an edge, the prob-
lem reduces to 2D (Figure 14): we project the space onto the
plane perpendicular to the edghk, and the problem becomes
checking if 2D vectolEis inside the sector bounded 4.
Sincedy =1 0(by construction of face normalskpoints
inside if and only if

4H! 4! E

is counter-clockwise. |E#+4 are all unit-length, then it's
equivalent to

4Geo = 1IE 4° 1E 40 ('
If Eg = 51~° j.e. the closest point t&is the center of the
cone. In this case, the closest point t&on the cone surface
must not be51~°, otherwise all face8g are perpendicular to
Eand it becomes the trivial case we discussed above. Thus we

can perform the above algorithm onEinstead: Deciding iE
points inside is equivalent to deciding ifE points outside.

Remark.If the closest poim_js)to Eon some facégis not at 51~°,
then kE %k Y kE 51~°k, becausé&~° is on all faces and the
distance (which is a strictly convex function) reaches the minimum
atEJ on face%.

The #1Ge2de ned above satis es that 42G+2 0if and only
if Epoints inside the cone, and*1Ge+2 = 0if and only if Elies on
the surface of the cone.

We summarize the algorithm in Algorithm 1 and describe the
purpose of each function below.

Geometric Contact Potential = 23

Determinelnside3DE€4ggrf=gg°returns a ag indicating
if Epoints inside the cone bounded by raydgsg. =g is the
normal of face bounded by rayi 1°4.

ClosestPoint 1E€4gg nds the closest point toEon the cone
surface.

FaceClosestPoint tE« 0+4returns the closest point t&on
the angle sector spanned Iy 1, and a ag indicating whether
the closest point is on the boundary or in the interior of the
sector.

Project 10+ ° projects vectoi0 onto the plane perpendicular
to vectorl, and normalize the projected vector.
EdgeClosestDistance 1E« 4 returns the distance oEto the
ray 4.

Algorithm 1 Determine if a vectoiEis inside a cone bounded by a
set of raysf4gg.

function Determinelnside3D(E€4ggrf=gQ)

sEetyper 94  ClosestPoint 1E €4gg°
if E9==0then « The closest point i$1~°
if f=ggare close to the same vecttren
return E =i O
else
return Determinelnside3D( E€4ggef=gg) == False
end if
end if
if type==Interiorthen « The closest point is inside a face
return E =gj O
else  The closest point is on an edge

for 8= 1to" do
3s EdgeClosestDistantEe 4
end for
9= argming3g
4 Project 49 1°4&°
4  Project 49 10 4°
E Project lIE«4°
return ‘E 4° 'E 4° 4Y0
end if
end function
function ClosestPoint (E€4gQ)
for 8=1to" do
Retypega
end for
9 argmirgk?s Ek
return >s?getypege Vs
end function
function EdgeClosestDistance (E«%
F maxflE 4°kdk?0g
return kE F4k
end function
function Project (0+J)
00 0 10 1ekik®1
return 0%k0%
end function

FaceClosestPoint 1E« 4 1+ 4°
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We note that if one uses the algorithm above to lIter the con-
tact pairs directly, the resulting contact potential is not continuous:
In Figure 13, if the vectoE lies on the intersection of the two
sub-domains, under small perturbations, the contact pair may be
dropped or kept in the Itering. Thus, the potential requires compli-
cated molli cation to guarantee 1 smoothness with this algorithm.
Instead, we use a simpli ed smooth formulation as in Equation (17),
which is not exact but conservative.

C FORMULAS FOR SMOOTHING FUNCTIONS
82 2, 45 jgv1

p= 112 )% 1 jgV2
-0 2jg
0 1Y 3
%%13,@ 3 1Y 2
yo= 113 9 92 2% 2 1Y 1
1, 318 1 1Y0
21 o I

D DETAILS OF THE PW. SMOOTH FORMULATION

D.1 Details of the local minimum constraint

If ~is on more than one patch, i.e. on the shared boundary of
patches, on each patchg, there are two tangent vector§1~°
and§1~°, along two edge curves ofg meeliing at- (Figure 12). If
G~ 151 5i@°  QthenforanyC= 2,040 0y C,

we have

&
@ 1510 B1FO0 = 0£1~o> 151-0 Bio 0
o=1

which means Equation (8) holds for aign the convex cone spanned
by §1~° and(§1~° (Figure 12 A). However, the tangent directions of
g at~ may not always lie in the cone. For example, wheis on
an edge of a linear triangle asg, G1~°, G1~° = 0, then the convex
cone degenerates to a line, while the tangent directions form a half-
plane (Figure 12 B); whenis at a concave corner of a high order
patch g, then the convex cone is the complement of (Figure 12
Q).
To treat all cases uniformly, we add a halfway vec@r, cor-
responding to the angle bisector of the angle betw%rand(.gz
in g (Figure 12). Then every tangent vectGof gat~ can be
represented as a convex combinationf@gg:l, and consequently,
Equation (8) along these three directions ensures that the point is a
local minimum of the distance.

D.2 Local minimum term
The molli cation of local minimum constraints g: 1Ge2 U882
is straightforward and similar to the smooth surface case:
[o)Ne:
6% 1Ge2 =
82 =1
reaches maximum of 1 wheng: 1Ge2
there exists82 such that 3: er

Ui g:le.no

0» 882 , and vanishes if
U.
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Since g_ is a dot product between unit vectoracts as a thresh-
old of contact potential on the cosine value of the angle between
contact pairs. One can picld based on the desired angle thresh-
old, we use0'05 U 078in the examples. Although extremely

smallUleads to numerical issues in the simulation, Requirement 2 is

satis ed as long adJ; 0, i.e., the simulation is always contact-free.

D.3 Exterior direction term

For edge points in Edge-Edge and Edge-Vertex contact, based on
Equation (9), we can de ne

6%1Ge2 =
where Vs a parameter that controls the smoothness of exterior
direction constraints6*1Ge 2 reaches maximum when41Gs2 0
and vanishes if 41Ge2 V.

For vertices in Face-Vertex, Edge-Vertex, and Vertex-Vertex con-
tact, we rstde ne

glG.n = =81~o> 1510 51@)0’ »
However, unlike the case of the smooth surfaces, there are multiple
normal directions at one vertex (Figure 15). To eliminate the contact

between opposite sides of the object (Figure 10), the following should
hold for some82

Vi 41,00,

f1Gee @ (16)
To make the constraint smooth, we relax this to a simpler, weaker

condition. We de ne |

6hGee:= 1 1 V. iGee .

17

5

57}
which reaches a maximum of 1 when there exi8&sich that glG- 2
0-and vanishes if for alg §:Ge2 Vv~

E EXCLUSION OF ADJACENT ELEMENTS

Adjacent elements such that one does not contain another can be
vertex-adjacent face and edge, and vertex- and face-adjacent faces.
Suppose an edge and a face are in contact, i.e., an edge is contained
in the plane of the face, and they share a vertex and other points.
Then the other edge endpoint is either inside the face, or the edge
intersects the boundary of the face, crossing an edge which it does
not share a vertex with. In the rst case, we have vertex-face contact,

in the second case, we have non-adjacent edge-edge contact. Thus,
even if we do not apply the potential to the adjacent edge-face pair,
when they are close to contact, it will be activated for a non-adjacent
element pair. If it is a face-face contact, the argument reduces to the
rst, if applied to one of the face edges that is not a common edge
with the other face.
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