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Fig. 1. Our shock-protecting microstructures are designed to provide a reaction force as close as possible to constant for a wide range of displacements.

We introduce a computational pipeline to design a microstructure family, and we validate its e�ectiveness in simulations and in physical experiments. Our

microstructures are able to protect irregular objects (le�) and be used for package wrapping (right), simulated in 2D.

Mechanical shock is a common occurrence in various settings, there are

two di�erent scenarios for shock protection: catastrophic protection (e.g. car

collisions and falls) and routine protection (e.g. shoe soles and mattresses).

The former protects against one-time events, the latter against periodic

shocks and loads. Common shock absorbers based on plasticity and frac-

turing materials are suitable for the former, while our focus is on the latter,

where elastic structures are useful. Further, we optimize the e�ective elastic

material properties which control the critical shock parameter, maximal

stress, with energy dissipation by viscous forces assumed adequate. Im-

proved elastic materials protecting against shock can be used in applications

such as automotive suspension, furniture like sofas and mattresses, landing

gear systems, etc. Materials o�ering optimal protection against shock have

a highly non-linear elastic response: their reaction force needs to be as close

as possible to constant with respect to deformation.

In this paper, we use shape optimization and topology search to design

2D families of microstructures approximating the ideal behavior across a

range of deformations, leading to superior shock protection. We present an

algorithmic pipeline for the optimal design of such families combining dif-

ferentiable nonlinear homogenization with self-contact and an optimization

algorithm. We validate the e�ectiveness of our advanced 2D designs by ex-

truding and fabricating them with 3D printing technologies and performing

material and drop testing.
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1 INTRODUCTION

Mechanical shock is an abrupt and large increase in the surface

force acting on an object, typically due to contact with an obstacle

or another object. The need for protection from periodic mechanical

shocks is common. For example, coil springs and leaf springs are ex-

tensively used in vehicle suspensions to provide a smoother ride and

absorb vibrations from the road, springs are used in robotics to act

as shock absorbers, allowing robots to move more smoothly while

reducing wear and tear on mechanical components, and in medical

devices like prosthetics and orthotics to absorb shocks during move-

ment. In our body, cartilage is a natural shock absorber essential

for our movement. In these cases, the shock happens periodically,

and the acting forces have a known limited set of directions and

magnitudes: the material must withstand multiple shocks, and it is

thus common to use materials in their elastic deformation regime

for these purposes. A plastic material would be unsuitable for these

purposes, as it will have to be replaced after every shock.

A simple model problem, representative of most practical settings,

is dropping a load with a layer of protective material on a rigid

surface. The protective material layer performs two functions: �rst,

it makes the deceleration of the object more uniform, reducing the

maximal force acting on the load, and second, it converts the kinetic

energy into elastic energy, partially dissipating it in the process. The

latter most commonly happens due to the damping/visco-elastic

properties of the protective material. The former function is critical,
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as it eliminates the shock; the latter is desirable, as it eliminates

oscillations and prevents bounces after the initial contact.

Minimization of maximal force/acceleration acting on the load

requires materials with unusual properties: the optimal behavior is

for the reaction force to remain constant as the protective material

deforms (Section 3.1), which is very di�erent from most common

materials where the reaction force increases with deformation, for

example in a spring. Materials with complex geometric structures

such as foams or corrugated cardboard are commonly used as pro-

tective materials because their behavior is essentially nonlinear1 and

closer to the ideal behavior of having a constant decceleration.

In this paper, we describe how shape optimization for periodic mi-

crostructures consisting of 2D repeating cells can produce families of

cell geometries with elastic response close to ideal over a large range

of deformations, using a single base material. With our approach, we

discover and present a family of optimized structures with ideal be-

havior up to 75% compression, leading to shock-absorbing materials

signi�cantly closer to the perfect �xed-force deceleration.

Our solution builds upon shape optimization algorithms for peri-

odic metamaterials (e.g. methods producing families of cell struc-

tures spanning a particular range of e�ectivematerial properties), ex-

tending them to support the distinctive features of shock-absorbing

materials:

• The target constitutive law is essentially nonlinear and is not

approximated well by a standard model, the homogenization

must be performed in the nonlinear regime, sampling the

whole stress-strain curve, rather than using a low-parametric

model (e.g., captured by an elasticity tensor);

• Self-contact signi�cantly impacts the structure behavior. The

deformations are large, and contact must thus be considered

in the shape optimization process;

• Large deformations require a non-linear elasticity model, and

an accurate constitutive law for the base material must be

used.

• Tile symmetry, which is a common feature of existing meta-

material families, is detrimental to shock absorption as it

leads to unstable branching during the deformation.

The paper shows a complete algorithmic pipeline to construct

nonlinear microstructure families parametrized by the target con-

stant stress and how to use them to realize shock-absorbing materi-

als. The contributions of our paper include the following:

• A novel family of single material shock-absorbing microstruc-

tures providing �at response curves to up to 75% compression

(the previous known structure [Joodaky 2020] has a �at re-

sponse up to 57%). The family is of independent interest from

our algorithmic contribution and can be used directly to de-

sign and 3D print shock absorbers.

• We formulate the equations for computing e�ective elastic

stress-strain dependence (homogenization) of nonlinear pe-

riodic structures with cells for large displacements in the

presence of contact and non-linear base material constitutive

law.

1This term is commonly used in the materials literature to indicate that a non-linear
material model is essential to capture the material’s qualitative behavior.

• We use a combinatorial enumeration of 2D structures to

identify the best choices of structure topology for di�erent

regimes and obtain several families of cell structures with the

best performance for di�erent loads.

• We develop a gradient-based algorithm for shape optimiza-

tion to minimize the deviation of the e�ective stress-strain

dependence from the ideal constant-force behavior.

• We study the e�ect of tile symmetry and demonstrate that it

must be avoided in the presence of large deformation.

• We validate the desired behavior of the resulting lattices by

extensive experimental testing of fabricated lattice samples.

2 RELATED WORK

Microstructure design and optimization. There is an extensive

literature on microstructure design, see, e.g., the survey [Kadic et al.

2019] for extensive references.

A lot of work on the optimization of geometry in individual cells

is based on general shape and topology optimization methods [Al-

laire 2002; Bendsøe 1989; Bendsøe and Sigmund 2003]. Most of these

works are based on small-displacement and linear material assump-

tions that are fundamentally not applicable in our setting. There is an

increasing number of works considering nonlinear homogenization,

which we review below.

In computer graphics, families of microstructures of various types

were developed starting with [Panetta et al. 2015a; Schumacher et al.

2015; Zhu et al. 2017] with many more in studies in material science

and engineering. We use the approach of [Panetta et al. 2015a] for

our topology enumeration. Our nonlinear homogenization approach

is similar to [Chen et al. 2021], based on [Nakshatrala et al. 2013].

Recently, [Li et al. 2022] used topology optimization to design

microstructures to �t desired nonlinear stress-strain responses. They

were also able to optimize microstructures to have a �at response.

However, due to the limitation in topology optimization (Figure 23)

and absence of contact, they only consider moderate compression

of no more than 40% and a limited range of homogenized force (10N

to 30N).

[Zhang et al. 2023] introduces a shape-optimization method to

design microstructures modeled with a nearly isotropic response at

�nite strains. Collision avoidance is added to the objective function

leading to structures that do not intersect up to a compression of 10%.

The penalty does not handle contact, which unavoidably happens

for higher compression rates, making it unsuitable for designing

shock-absorbing materials.

A related and concurrent work [Li et al. 2023a] uses a neural

network to map structure parameters to di�erentiable strain energy

density, which is then used for inverse design. The model is trained

on simulations that use a nonlinear material model and accurate

contact modeling using the incremental potential contact model [Li

et al. 2020]. The approach relies on sampling densely the parameter

space and it is thus limited to a small number of parameters to

model the geometry (2 for most of their microstructure families,

with the larger family using 4). Instead of relying on a neural sur-

rogate, we use a di�erentiable simulator to optimize the shape of

the microstructures using parameterizations with up to 80 parame-

ters. In addition to periodic simulations as in [Li et al. 2023a], we
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perform full-simulation validation (in some cases, global e�ects are

signi�cant) as well as physical validation.

Shock-absorbing metamaterials. While the shock-absorbing prop-

erties of foams and structured materials were known for a long

time, the desirable properties of certain types of lattices became

known relatively recently. [Bunyan and Taw�ck 2019] describes the

j-shaped cells, which have �attened regions in their stress-strain

curves. This type of structure was further explored in [Joodaky

2020], which we consider as a baseline. [Chen et al. 2020] describes

a shell-lattice metamaterial that can absorb very large energies while

retaining a low density but does not attempt to optimize it.

Early work on designing shock-absorbing structured materials

[Kellas and Jackson 2010] investigated designs of deployable hon-

eycomb structures for crash energy management in light aircraft,

showing these are superior to airbags. [Leelavanichkul et al. 2010]

considered properties of a structure consisting of a helicoidal shell

enveloping a cylinder, motivated by hydraulic shock absorbers.

[Chen et al. 2018] describes a new hierarchical cellular structure cre-

ated by replacing cell walls in regular honeycombs with triangular

lattice con�gurations to improve energy absorption under uniax-

ial compression and shape integrity at high strains. [Matlack et al.

2016] described elastic metastructures with wide, low-frequency

band gaps while reducing global mass, with applications in con-

trolling structural vibrations, noise, and shock mitigation. These

structures, however, are not close to the ideal shock-protecting

structures we describe below.

[Mueller et al. 2019] analyzed the energy absorption properties of

various periodic metamaterials, comparing them to foam-like ran-

dom structures; while random structures exhibit better uniformity

of stress for varying strain, periodic lattice geometries outperform

their stochastic equivalents in terms of energy absorption in some

cases. We show that periodic structures can be optimized to have

high-stress uniformity. More recently, [Acanfora et al. 2022] explores

maximizing energy absorption in shock absorbers while minimizing

thickness or mass to improve transportation safety. Their analysis

is restricted to six a priori chosen structures.

[Gongora et al. 2022] used a data-driven approach to infer the

acceleration in the impact test from the stress-strain curve. The

expensive transient simulation can be avoided with their approach

while sacri�cing some accuracy. However, they do not perform

shape optimizations to �nd the optimal structures for impact pro-

tection.

[Huang et al. 2024] presents a general-purpose di�erentiable elas-

todynamics solver, but does not speci�cally address the problem of

nonlinear inverse homogenization. This work demonstrates in Fig-

ure 13 an example of optimizing a structure composed of elements

similar to Figure 31 using the shape representation from [Panetta

et al. 2015a]. However, unlike other methods, they perform shape

optimization in transient drop test simulations directly to minimize

the !4-norm of the stress on the load, directly on the complete

structure without homogenization. Although this idea is straight-

forward, it su�ers from several issues: (1) The stress distribution in

transient simulations is very unstable and noisy both in space and

in time (Figure 19), leading to less meaningful shape gradients and

nonsmooth energy landscapes. (2) Transient full simulations are

much more expensive than periodic simulations, due to their large

number of degrees of freedom and small time step size, especially

when contact is considered. As a reference, compression of the 6× 6
full microstructure in Figure 29 takes 75minwhile the periodic 2×2
tile simulation takes 3min. (3) The e�ectiveness of the optimized

structure is restricted to that speci�c scene. It is hard to generalize to

di�erent load magnitudes as in our coverage (Figure 12) or di�erent

base materials without losing e�ciency (Figure 30).

While some works do one or two parameter sweeps to identify

best-performing structures, we are not aware of any works that per-

formed structure optimization for shock absorption systematically.

We also brie�y mention several papers that use bistable structures

for shock absorption. In this case, the transition from one stable

mode to a second stable mode allows the structure to store energy

and yet be reversible, assuming no plastic deformation, as pointed

out in [Frenzel et al. 2016; Shan et al. 2015]. This type of structure

is suitable for protection against one-time shock (e.g., a fall), but

cannot protect from repeated shocks, as encountered in shipping

and transportation. Some examples of works of this type include [Ha

et al. 2018; Izard et al. 2017], which describe tetra-beam-plate cells

with snap-through behavior for large de�ections. [Cao et al. 2021]

surveys a variety of bistable structures with a focus on applications

to actuators, MEMS, and shock absorption. Most recently, [Jeon

et al. 2022] describes a realization of a common tilted-beam bistable

structure with liquid crystal elastomers (LCE), with viscoelastic

behavior improving energy absorption, and [Fancher et al. 2023]

proposes a biomimetic shock-absorbing mechanism inspired by the

bi-stable elongation behavior of a protein.

Nonlinear homogenization. Nonlinear homogenization of peri-

odic structures for large displacements/strains is a far more complex

problem than linear homogenization. In this case, the e�ective de-

pendence between stress and strain requires multiple simulations.

Even more fundamentally, for given boundary conditions for a peri-

odic cell, the solution may be non-unique, and the material behavior

may not even be fully captured by a local constitutive law. Nev-

ertheless, suitable approximations of e�ective stress-strain depen-

dencies were obtained under certain assumptions (e.g., [DeBotton

et al. 2006]). We consider a version of the problem, with the stress-

strain response for only one direction being of interest, which is

considerably simpler than the general problem. As we have men-

tioned above, our nonlinear homogenization approach is similar to

[Chen et al. 2021], based on [Nakshatrala et al. 2013], and used for

microstructure design using topology optimization in [Wang et al.

2014].

We note that more general techniques for nonlinear homoge-

nization were developed, but remain quite expensive. E.g, [Yvonnet

and He 2007] and [Schröder 2014] use reduced-order models for

homogenization obtained using proper orthogonal decomposition

(POD) to increase e�ciency. These methods are further extended

in [Fritzen and Kunc 2018], [Kunc and Fritzen 2019] and [Kunc

and Fritzen 2020], with a typical approach of �rst constructing a

reduced-order model, then sampling deformation space using this

model, and �nally interpolating the samples using various types of

interpolation.
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Fig. 2. Deformation and stress-strain curve of the microstructure proposed

in [Joodaky 2020]. Contact may happen in the region where stress does not

increase.

Several works use nonlinear, �nite strain homogenization in the

topology optimization context to obtain periodic metamaterials with

desired properties, starting with [Wang et al. 2014], which uses nu-

merical tests of response to a deformation, which can be considered

partial homogenization, in the context of truss-based and contin-

uum topology optimization. A more general case of homogenization

is [Behrou et al. 2021]. [Wallin and Tortorelli 2020a] describes how

non-linear homogenization based on the multiscale virtual power

method can be used in the context of topology optimization, with

sensitivities transferred from microscale to macroscale. While our

method is somewhat related to topology optimization methods as

we use an implicit shape representation described in [Panetta et al.

2017], unlike these techniques, it supports accurate di�erentiable

contact.

[Xue and Mao 2022a] uses a formulation for cellular metamate-

rial optimization for large deformations based on the shape map,

mapping a �xed reference con�guration to an optimized one. Our

method, while using an implicit shape representation, uses a similar

discretization at each step to compute the shape derivatives.

In computer graphics literature, bistable auxetic structures are de-

scribed in [Chen et al. 2021] and used for deployable surfaces; [Sperl

et al. 2020] simulates yarn-level cloth e�ects using nonlinear ho-

mogenization; [Schumacher et al. 2018] proposes a comprehensive

approach to characterizing the mechanical properties of structured

sheet materials with nonlinear homogenization and uses inverse

design to explore structures with desired properties.

[Zhang et al. 2023] proposes a collision penalty term to avoid

intersections in the deformed microstructures. Although it avoids

the expensive contact-aware simulation, it prevents any contact

throughout the simulation. As in Figure 2, contact may happen

in some optimal microstructures for shock protection, even in the

strain range where the stress does not increase.

3 METHOD

3.1 Background and problem formulation

We start with reviewing the problem setup (Figure 3) for measuring

the shock-protective properties of a material.

A (meta)material is typically characterized by the stress-strain

curve f (n). Since a response to a one-dimensional load is of primary

interest to us, in the model setup we only consider one diagonal

component of the stress corresponding to vertical compression and

its dependence on the applied strain along the same direction. I.e.,

we consider curve f = f (n), where f is a scalar stress, and n is the

scalar strain.

Ideal shock-protective material. Suppose the kinetic energy of an

object is<E2/2 right before impact, where< is the object mass, E is

its velocity. Let� be the area of contact with the protective material.

Ignoring gravity, the force acting on the object as the protective

material is compressed to strain n is � = �f (n). The assumption

that the object stops for some n < 1, can be expressed as

�ℎ

∫ 1

0
f (n)3n ⩾ <E2/2,

where ℎ is the protective layer thickness; i.e., that the work of the

elastic force over this thickness is larger than the kinetic energy

before contact. Here, we approximate the strain by modeling it as

constant over the thickness of the layer. While in reality there may

be considerable variation, this assumption is needed to obtain a

problem formulation independent of the protective layer thickness/-

geometry.

This leads to the following optimization problem for the "ideal"

stress-strain curve:

min
f

max
n

f (n), subject to
∫ 1

0
f (n)3n ⩾ f5 ,

where f5 =<E2/(2�ℎ). It is easy to see that the optimal solution

is f (n) = f5 , as if f ⩽ f5 everywhere on [0, 1], the constraint can
only be satis�ed if the equality holds, and if f > f5 anywhere, this

choice of f (n) is suboptimal, because the constant f is valid and

has a lower maximum.

Seemingly the ideal shock-protective material can only absorb

2× energy compared to a perfect linear elastic material with a linear

stress response f (n) = �n . However, it’s actually hard to �nd ma-

terials with perfect linear response at �nite strains, especially for

large compression: The recent work [Zhang et al. 2023] manages to

optimize microstructures to stay close to linear response up to 15%

strain, while we consider compression up to 75%.

Optimization problem. Such a �at response is not physically pos-

sible: when n = 1 the reactive forces have to increase to in�nity;

similarly, close to n = 0, the reactive forces have to be close to zero.

So for any real (meta)-material, there is a ramp-up part of the curve,

a �at part, and a �nal part, corresponding to extreme compression.

This leads to the following optimization problem:

For a base material and a target value of stress f5 , optimize the

geometry of a unit cell so that the stress-strain curve for a metamaterial

obtained by periodically repeating it is as close as possible tof (n) = f5 .

Solving this problem yields a family of cell geometries parametrized

by the e�ective stress f5 . For each value of f5 , we obtain a di�erent
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Fig. 3. Model problem setup.

geometry and, thus, a di�erent stress-strain curve with a large �at

region. We note that the size of the �at region is not uniform within

the family: our objective is to make it as large as possible for each

e�ective stress value.

To the best of our knowledge, such a family of materials has

never been studied before. As discussed in Section 2, examples of

geometries for speci�c f5 have been reported, but not a complete

family covering a large range of stress values.

To illustrate how such a family of materials can be used, we

consider the following standard problem: given maximal allowed

deceleration � , and expected drop height � , choose the optimal

material in the family and required thickness. Conservatively, as-

suming that all deceleration happens at the �at part of the response

curve and approximating the strain by constant, we obtain f5 from

the force balance<� = �f5 ; note that this does not depend on the

thickness of the protective layer, and allows us to pick a material

already. For a speci�c material in the family corresponding to f5 ,

we require that the work done by elastic forces on the �at part of

the stress-strain curve is su�cient to absorb the kinetic energy, i.e.

(approximately) U (f5 )f5 =

<6�
ℎ

from which thickness ℎ can be

estimated.

3.2 Approach overview

We obtain the families of protective metamaterials using a com-

bination of combinatorial enumeration of topologies and shape

optimization. The main components of our algorithm include:

• Topology enumeration and geometric parametrization

(Section 3.3). The topology of our cells is de�ned by a graph

within the cell, with geometric parameters given by radii

at graph nodes and blend parameters, as shown in Figure 4.

The outer loop of the overall algorithm enumerates di�erent

possible topologies.

• Nonlinear di�erentiable homogenization (Section 3.4).

The objective of our optimization is the deviation of the stress-

strain curve f (n) from a constant f5 . To obtain the e�ective

stress f (n), we use periodic nonlinear homogenization with

contact, obtaining e�ective stresses for a set of background

deformations n . Contact is of particular importance in our

setting as the material is designed speci�cally for very large

deformations. Along with computing e�ective stresses, we

compute their gradients with respect to shape parameters,

which are essential for e�cient optimization.

• Objective and optimization (Section 3.5). For every topol-

ogy and a target �at stress value f5 , we optimize the shape

 Inflator

Fig. 4. A cell topology) is annotated with geometric parameters A (a radius

and a 2D position for each vertex). The inflator Ψ converts the graph repre-

sentation into an implicit function, which is then triangulated to obtain a

mesh representation @̄ of the cell domain Ω.

to minimize the deviation of e�ective stress from f5 , com-

puted via homogenization, for strains sampled at a �xed set

of strains n8 .

Nonlinear di�erentiable homogenization is the core part of the al-

gorithm; we discuss it in detail after brie�y reviewing topology

enumeration, starting with the forward simulation and then ex-

plaining how the derivatives can be computed.

3.3 Topology enumeration and geometric parametrization

We use the graph representation introduced in [Panetta et al. 2015a]

to represent our periodic cells and the implicit surface de�nition

proposed in [Panetta et al. 2017], which we brie�y review here.

Cell parametrization and graph in�ator. Each microstructure is

parametrized by a graph ) , annotated with a radius and a position

for every graph node (stacked in a single vector of parameters A ),

embedded in a rectangle of size 0×1. [Panetta et al. 2017] de�nes an
implicit surface that "in�ates" the graph based on the radii assigned

to its vertices; a periodic triangular mesh of the domain Ω is then

obtained from the implicit function using marching squares. The

map from the parameters A and cell dimensions 0, 1 to the vector of

periodic vertex positions q̄ is denoted

q̄ = Ψ) (A, 0, 1).
The derivatives of the vertex positions in this mesh with respect

to shape parameters (i.e. the shape velocities) are computed using

implicit function di�erentiation ([Panetta et al. 2017]).

Design space. The design space of the shape consists of three

parts: combinatorial choice of the graph ) , microstructure shape

parameters A , and the size of unit cell 0, 1. We �x 1 = 1 since uni-

form scaling of the cell uniformly does not a�ect the homogenized

properties. However, the ratio between the width and length of the

cell a�ects the stress-strain curve as in Figure 5 (even for linear

elasticity).

For the choice of topology, we consider 105 patterns in 2D fol-

lowing [Panetta et al. 2015b], generated by enumeration of patterns

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2024.
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Fig. 5. Ratio between the width and length of the unit cell a�ects the stress-

strain curve. Di�erent curves are not simply the same up to a constant

scaling factor due to nonlinearity.

with bounded number over vertices in the cell and number of edges

meeting at a vertex. In the optimization, we �rst generate the mesh

in the unit square based on the graph and its parameters. Then,

we scale the shape by the scale parameters to get the unit cell in a

rectangle.

3.4 Nonlinear homogenization

A periodic metamaterial consists of repeating cells with identical

geometry q̄ = Ψ(A, 0, 1), parametrized by the shape parameters A

and cell dimensions. The e�ective (homogenized) properties of the

material are obtained in the limit of cells repeated in�nitely, and

deformations are considered at a scale much larger than the cell

size; in this case, we can assume that the metamaterial behaves as

a homogeneous solid material, with an e�ective constitutive law,

relating stress to strain at each point. This stress-strain dependence

can be obtained from the constitutive law of the base material and

cell geometry by homogenization.

While for our problem the dynamic behavior of the material may

be important we consider static deformations only in our optimiza-

tion, which captures the most signi�cant aspects of the behavior of

highly absorbing materials. We do not include dissipation in our sim-

ulation as it does not a�ect the e�ectiveness of protection (Figure 17).

We also assume negligible plasticity which is a valid assumption

for materials chosen to provide protection from repeated shock.

The deformation of the metamaterial can be decomposed into a

slow-changing deformation, that can be computed from the (a priori

unknown) macroscopic constitutive law, and a cell-scale �uctua-

tion. At a level of a single cell, macroscopic stress and strain can be

viewed as constant, i.e., corresponding to a linear deformation of the

cell, with a periodic cell �uctuation D̃ added on top. Homogenization

assumes that there is a constant macroscopic strain, equivalently,

a linear deformation �G where G is the spatial coordinate (test de-

formation), solves for the periodic �uctuation D̃ and computes the

resulting e�ective stress.

For small displacements, a linear e�ective constitutive law f = �n

can be assumed, fully determined by components of an e�ective

elasticity tensor, which considerably simpli�es the problem: the

elasticity tensor can be fully inferred from a small number of test

deformations. However, the materials we aim to construct are in-

herently nonlinear (Figure 29). In this case, to approximate the

e�ective stress-strain dependence, we must compute the e�ective

stress resulting from a larger set of �nite deformations. The need for

sampling for our problem is considerably reduced by considering

only stress-strain dependence for a single direction.

Notation. We use G to denote the coordinate on the periodic cell

Ω ⊂ + , where+ is a rectangular tiling with tiles of size 0×1. We use

D (G) = D̃ (G) +�G to denote the solution of the elasticity equations

with contact, where D̃ is the periodic �uctuation part and �G is the

macroscopic linear deformation part, with � ∈ R2×2. We restrict

matrices� to be symmetric to eliminate rotational components of

the deformation, which do not a�ect elastic behavior. The domain

Ω is discretized into a periodic triangular mesh.

The vector of coe�cients of D̃ (G) in a FE basis q8 is denoted ũ

(we use quadratic elements); this vector includes degrees of freedom

only, i.e., the periodicity conditions on u are used to exclude values

on the right and upper boundaries of + .

We denote the vertices of this mesh G8 , with the vector of vertices

of size # denoted x. These are determined by the shape parameters

A as described above. We use piecewise-linear basis b8 to represent

changes in the mesh as the shape parameters are varied. For the

discrete solution u, the following equation holds:

u = ũ + x�) , (1)

where ũ is the discretization of the �uctuation. As explained below,

the variables in the elasticity equations we solve to compute the ho-

mogenized stress-strain dependence are u and components�00,�01

of the deformation matrix � . We denote the vector of all of these

variables v = [ũ;�00,�01].

Sampling e�ective stress. As our focus is on response to loads in a

single direction, we sample a single diagonal component of the stress

tensor corresponding to vertical deformation, and how it relates to

the component of the macroscopic deformation � in the vertical

direction. This yields a sampled approximation of a stress-strain

curve. In other words, the result of our homogenization procedure

is a set of samples f (n8 ) approximating the dependence f (n).
For each sample value of�11

= n , we set up a nonlinear elasticity

problem to determine corresponding stress. We assume that the ma-

terial is free to deform in other directions; for this reason, we include

the components �00 and �01 as variables in our optimization:

min
ũ, �

, (ũ,�) such that �11
= n, (2)

where, :=,4 +,2 is the sum of elastic (Equation 4) and contact

barrier energy (Equation 5 in [Li et al. 2023b]). The e�ective stress

tensor corresponding to n can be computed as

f̄ (n) := 1

|+ |

∫

Ω

f (∇GD̃ +�)3G, (3)

where |+ | is the area of + in 2D.

Elasticity. The elastic energy has the form

,4 :=

∫

Ω

F4 (∇GD̃ +�)3G, (4)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2024.



Optimized shock-protecting microstructures • 7

Fig. 6. A deformed periodic cell collides with its tiled boundary mesh during

homogenization. Accounting for collision is crucial to designing a shock-

protecting microstructure family (Figure 24).

whereF4 : R2×2 → R is the Neo-Hookean energy density function

F4 (� − � ) :=
`

2
(Tr[��) ] − 2 − 2 log(det � )) + _

2
log2 (det � ),

where � is the deformation gradient, _ and ` are the Lamé parame-

ters. To solve (2) the Jacobian and Hessian of the elastic energy are

needed to solve the elasticity equation. The gradient and Hessian of

the elastic energy with respect to � are:

f := ∇F4 ∈ R2×2, � := ∇2F4 ∈ R2×2×2×2 .

Then we have the following expressions for the components of the

gradient and Hessian:

mu8,4 =

∫

Ω

f (∇D) : ∇q83G mu8 ,u9,4 =

∫

Ω

∇q8 : � (∇D) : ∇q 93G,

where 8, 9 = 1, . . . , # . The �rst and second derivatives of,4 with

respect to E are obtained by applying the chain rule of Equation 1.

Periodic contact. To adapt IPC [Li et al. 2020] to the periodic

homogenization, we need to consider contact inside the periodic

cell and between geometry from adjacent cells. We assume that we

do not need to consider contact between geometry in cells that are

not adjacent: although this may theoretically happen, we have not

observed this even for extreme deformations. To handle contact,

we use a 2 × 2 tiling of the deformed periodic cell in the collision

detection and barrier energy computation. We observe that due to

periodicity, it is su�cient to consider neighbors only below and to

the left of a given cell, not above and to the right.

Figure 6 shows how the tiled boundary mesh of a deformed peri-

odic cell is used to detect collisions between cells.

De�ne uC as the vector of displacements on the 2 × 2 tile. In the

two-by-two tiling of copies of the periodic domain+ , the coordinates

of vertices of three tiles are given by x8 +0e1, x8 +1e2, x8 +0e1 +1e2,
where e3 (3 = 1, 2) is the unit vector along 3-th axis. We concatenate

these along with the original domain degrees of freedom into a

vector xC of size" . The index mapping � , maps vertex 9 on the tiled

mesh to the corresponding vertex � ( 9) on the original mesh. The

displacement on the tiled mesh uC ∈ R"×2 can be represented as

uC9 = ũ� ( 9 ) +�xC9 , (5)

where GC9 is the position of vertex 9 on the tiled mesh. The Jacobian

and Hessian of the barrier energy with respect to DC are identical to

Vertical load Rotated load

(A) (B) (C)(A) (B)

Fig. 7. Homogenizations with both vertical and rotated loads. The rest shape

(A) and its compression (B) under vertical load are shown on the le�. For

rotated loads on the right, instead of changing the force direction as in (A),

we rotate the rest shape instead in (B). The compressed shape is shown in

(C).

the ones used in [Li et al. 2020]. We apply the chain rule based on

(5) to obtain the Jacobian and Hessian with respect to v:

3v,2 = (3uC,2 ) (3vuC )
32v,2 = (3vuC )) (32uC,2 )3vuC ,

where,2 is the contact barrier potential, 3vu
C is the gradient of the

linear mapping in Equation 5. Entries of 3vu
C can be computed by

mũ83 u
C
9:

= X3:X� ( 9 ),8 8 = 1, . . . , # ; 9 = 1, . . . , " ; 3, : = 1, 2

m�3?
uC
9:

= X3:x
C
9? 9 = 1, . . . , " ; 3, ?, : = 1, 2

(6)

where X8 9 is the Kronecker delta.

Non-uniaxial Load. We also consider non-uniaxial loads in the

nonlinear homogenization to protect shocks in di�erent directions.

Similar to the problem (2), instead of �xing �11, one can �x the

compression strain in the load direction, which becomes a linear

equality constraint. To avoid enforcing such constraints, we rotate

the shape instead so that the resulting load is still in the Y direction

(Figure 7). In this way, we do not need to change the formulation

of the homogenization but only need to consider the in�uence of

the rotation in the shape derivatives. In our experiments, we study

perturbations around the Y direction between −15◦ to 15◦.

Tile Symmetry. We note that we do not enforce rotation and

re�ectional symmetry on the cell geometry during optimization.

This is in contrast with most two-scale microstructure design works

(such as [Li et al. 2022; Zhang et al. 2023]), which use symmetry as

a natural way to reduce the parameter space.

As we show in Figure 28, symmetric tiles are problematic for large

strains (over 10 % compression), as they can buckle symmetrically,

leading to di�erent deformed geometries in each tile, which can

lead to large di�erences between the homogenized result and the

full-scale simulation of a tiling.

We experimentally discovered that removing the symmetry con-

straints is su�cient to obtain asymmetric deformations consistent

with the homogenized results, which do not su�er from this issue.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2024.



8 • Zizhou Huang, Daniele Panozzo, and Denis Zorin

Initial Optimized
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Compression (%)
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Fig. 8. Each microstructure topology is initialized with a default set of

positions and radii for each vertex. Before optimization (le�) the stress (Pa)

- strain curve is far from flat; a�er optimization (right) the curve is flat over

a large range of deformation.

3.5 Objective and optimization algorithm

Objective. Given a target scalar stress f5 > 0, the goal of the

optimization is to minimize the deviation of the e�ective stress

from f5 on the compression strain range of [10%, n], where n < 1

is the max compression strain we consider. We initialize n = 25%

in the �rst optimization and gradually increase it in the following

optimizations until it cannot be reached.

In every optimization, the forward simulation is solved on a series

of scalar compression strains n8 (8 = 0, 1, . . . ) uniformly sampled in

the interval [10%, n] (with stride 5%), the corresponding homoge-

nized stress and macro strain are f̄8 and �8 , the objective is

� (q) :=
∑

8

( f̄8 (1, 1)
f∗

− 1)2 +F ( |�01
8 |

2 + |�00
8 |

2), (7)

where f∗ is the target homogenized stress, and q = (A, 0, 1) are the
shape parameters and the size of the cell. The second term penalizes

shear and horizontal deformation under compression (essentially

forcing the Poisson’s ratio to be nearly 0), we pick F = 50 in the

optimizations. We refer to Section 4.8 for a discussion on why shear

or horizontal deformations are highly undesirable in our setting.

Figure 8 shows an example of how the stress-strain curve changes

after the optimization and how the geometry of the microstructure

tile changes.

Algorithm. We provide the pseudocode of our complete optimiza-

tion and simulation algorithms in Appendix B, and we will release

a reference open-source implementation of our algorithm.

In rare cases, Newton’s method converges to a saddle point in-

stead of a local minimum. Saddle points of the elastic energy are

normally physically undesired since they are unstable in reality

and may switch to a local minimum under small perturbations. In

this case, we drop the saddle point solution and rerun the simu-

lation with a small initial perturbation. Note that as discussed in

Appendix B, it rarely falls into a saddle point with our proposed

method.

Incremental load. We use the incremental load method [Ogden

1992] for forward simulations. However, enforcing high compres-

sion strain on an arbitrary structure may result in high contact

forces, causing convergence issues in IPC, so we optimize every

structure incrementally: We �rst optimize the shape so that its ho-

mogenized stress reaches the target in the strain range [10%, 25%],

then increase the max strain by 5% at a time and use the previously

optimized shape as the initial guess.

As shown in Figure 9, the deformation of some microstructures

cannot be fully captured by simulations on a single periodic cell

since the deformation in the microstructure is not periodic in terms

of every single cell. This behavior also happens in other microstruc-

tures as studied in [Bertoldi et al. 2010; Xue and Mao 2022b]. To

avoid the inconsistency caused by this behavior, we perform opti-

mizations using the homogenization on 2 × 2 tiles.

Rest

Deformed

Fig. 9. Homogenization on a single cell fails to capture the behavior in full

simulations. From le� to right: homogenization on a single cell, homoge-

nization on a 2 × 2 tile, full simulation without periodicity.

Figure 10 shows three examples of how the objective and its

gradient reduce in the shape optimization. Since our goal is to reduce

the objective until the homogenized stress is close enough to the

target, for better e�ciency, we stop the optimization when the point-

wise error is smaller than the threshold (5%), even if the gradient is

not small enough. Still, the gradient norm reduces by over 3 orders

of magnitude in the optimization, which is plenty considering the

di�cult contact simulations.

Warm start. When optimizing the shapes of the same topology

for di�erent homogenized stresses (Figure 12), one can use the

optimized shape with homogenized stress f1 to generate the initial

guess shape for the optimization towards homogenized stress f2.

However, notice that in Figure 5, the aspect ratio of the unit cell

changes the scale of the stress curve and does not change the overall

behavior much. Inspired by this, once the optimized shape at f1
is obtained, we �rst minimize Equation 7 by only optimizing the

aspect ratio 1/0, then perform the full shape optimization to further

minimize the objective. Note that the dependence of f̄ on 1/0 is not

linear, e.g. in Figure 5 the curve of 1/0 = 2 is around 2× of 1/0 = 1

and 6× of 1/0 = 0.5.

3.6 Shape derivatives

We optimize Objective (7) of Section 3.5 (Objective(q, ũ,�) in the

pseudocode) with respect to the microstructure cell parameters

q = (A, 0, 1). We will overload the notation (whenever the derivation
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Fig. 10. The objective and gradient plots for the shape optimizations (bot-

tom). On the top from le� to right: Initial rest shape, initial deformed shape,

optimized rest shape, optimized deformed shape.

is generic) and use q to refer to the independent vertex positions

q̄ = Ψ(A ) de�ning domain Ω (we eliminate a subset of boundary

vertices due to periodicity) or to the cell dimensions q̃ = (0, 1).
As the cell scale is typically determined by fabrication constraints

we can use box constraints to keep one of the scale dimensions close

to the desired size. Shape parameters (graph vertex positions and

radii) determine vertex positions, as described in Section 3.3.

The derivatives of the objective � with respect to the shape pa-

rameters are computed using the adjoint method, with which the

shape derivatives can be obtained by solving a single additional

linear equation, and then evaluating an expression depending on

this unknown. See Appendix A for the derivation of the adjoint

method. Due to the periodic boundary condition, extra variable� in

the simulations, and the periodic contact, [Huang et al. 2024] cannot

be applied trivially to our case. We summarize the extra adjoint

terms below.

Shape derivative of elastic force mqmv,4 . Since the elastic energy

is in the form of an integral over the domain:

,4 =

∫

Ω

F4 (∇D̃ +�)3G,

we can �rst compute the shape derivatives with respect to all vertices

in x, then apply the chain rule of q→ x,

mxmv,4 = mx (mu,4 mvu)
= (mxmu,4 )mvu + mu,4 (mxmvu),

where mxmvu can be obtained by di�erentiating Equation 1, and for

mxmu,4 we follow the derivation in [Huang et al. 2024], here we

only write down the �nal formula. Recall that b8 is the linear basis

used to represent the change of the rest mesh, then

mx8 mD 9,4 = mx8

∫

Ω

f : ∇q 93G

=

∫

Ω

−f∇b)8 : ∇q 9 − ∇q 9 : � : ∇D∇b8 + (f : ∇q 9 )∇ · b8 .

Shape derivative of contact force mqmv,2 . The periodic contact

force can be considered as a function of vertices of the tiled mesh,

we follow [Huang et al. 2024] to compute the derivatives of the

contact force with respect to vertex positions on the tiled mesh,

then apply the chain rule to the map q → xC , which we discuss

below.

For every vertex 9 on the tiled mesh, its position can be written

as

xC9 = q̄� ( 9 ) + q̃)
(

U 9 0

0 V 9

)

for some U 9 , V 9 ∈ {0, 1}, (8)

where (U 9 , V 9 ) are indices of the tile to which the vertex belongs,

i.e., shifts by 0 or 1 the components of the scale part of q. To recall,

� ( 9) maps the index of vertices on the tiled mesh back to the index

of vertices on the single-cell mesh. Then

mq̄8 mv,2 = mq̄8 (muC,2 mvu
C )

= muC,2 mq̄8 mvu
C + mq̄8 muC,2 mvu

C

= muC,2 mq̄8 mvu
C + (

∑

� ( 9 )=8
mGC9

muC,2 )mvuC

mq̃mv,2 = mq̃ (muC,2 mvu
C )

= muC,2 mq̃mvu
C + mq̃muC,2 mvu

C

= muC,2 mq̃mvu
C + (

∑

9

(

U 9 0

0 V 9

)

mxC9
mv,2 )mvuC .

The gradient with respect to q can then be obtained by applying

the chain rule to the map q → [q̄, q̃]. In the above equations, the

terms we have not discussed yet are mq̄8 mvu
C and mq̃mvu

C , which can

be computed by combining Equations (6) and (8).

Derivatives of e�ective stress mq � , mv � . To compute derivatives of

Equation 7 with respect to q and v, the only di�culty is in

f̄11 =
1

|+ |

∫

Ω

f11 (∇D̃ +�)3G .

Similar to the elastic force, it is also in the form of an integral of the

stress tensor over the unit cell domain, except that the gradient of the

basis function is replaced by identity, so one can derive derivatives

following the derivation for elastic forces.

4 EVALUATION

We implemented our algorithm in C++ and used Eigen [Guennebaud

et al. 2010] for the linear algebra routines, a modi�ed version of

PolyFEM [Schneider et al. 2019] for �nite element simulation, tri-

angle [Shewchuk 2005] for meshing, and Pardiso [Alappat et al.

2020; Bollhöfer et al. 2019, 2020] for solving linear systems. All our

experiments are run on cluster nodes with an Intel Cascade Lake

Platinum 8268 processor limited to 16 threads.

We �rst show the coverage of our microstructure family in the

space of (strain, stress) pairs: a point (f5 , n) is considered covered if
for strain n the actual response of the microstructure in the family
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Fig. 11. Statistics of optimizations: Number of shape parameters (top le�),

total time of the optimizations for each pa�ern and each target stress (top

right), number of iterations for each pa�ern and each target stress (bo�om

le�), and number of elements in the simulation (bo�om right).

corresponding to f5 does not deviate from f5 by more than 10%. We

show representative examples of shock-protecting lattices, which

are fabricated using a Prusa Mk3s printer in TPU (sample size 10cm

tall, 2.6cm thick) and physically tested under compression using an

INSTRON 5966 Mechanical universal testing machine (Section 4.1).

We limit the physical validation to a subset of our microstructure

topology due to the time required for each test (~24 hours printing

time per sample). We also provide a comparison against the closest

known shock-absorbing microstructure (Section 4.5), and conclude

the evaluation with ablations (Section 4.8) for the use of a non-

linear material model, of a contact model, and for restricting the

homogenization to a single axis.

4.1 Microstructure family

To �nd the material coverage of a microstructure topology, we select

19 homogenized stress targets (from 75 to 75k Pa) and run our in-

cremental optimization to �nd parameters for a �at response curve

for 11 di�erent compressive deformations (from 25% to 75%). We

simulate on a base material with Young’s modulus 106 Pa and Pois-

son’s ratio 0.3, but the behavior of our optimized microstructures

is not a�ected much by the choice of base material (Figure 30). We

ran this procedure for 106 topologies, which took 1 week with 200

CPUs (on average 25 min for each optimization) and a maximum

memory of 30GB (Figure 11). Then we �ltered the curve to �nd a

subset of 5 providing a good coverage (Figure 12). We show the

initial guesses, periodic deformations, and physical validations of

our optimized microstructures in Appendix E. Once the coverage is

obtained, one can adapt to di�erent material models or other vari-

ants easily by running optimizations with our optimized structures

as initial guesses.

Compression tests. We validate our microstructure family by cre-

ating a rectangular object tiled with a grid of cells and performing

(B)(A) (C) (D) (E)

A

B

C

D
E

Strain (%)
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Fig. 12. For each target stress value, we plot the maximal possible strain for

which the structures’ homogenized stress equals the target. The 5 shown

topologies (and their coverage) are selected from a total of 106 topologies

to maximize their coverage while providing a compact representation.

a compression test. We perform the compression test virtually (cre-

ating a single triangular mesh of the entire object, and simulating it

using PolyFEM, using a Neo-Hookean material model, backward

Euler time integration, and with contact) and physically, using a

universal testing machine. The grid size is the largest possible sat-

isfying the minimal wall thickness of our 3D printer, which is 15

cm. We show the optimized structures and their compression ex-

periments in Figure 37. Figure 1 shows a representative example of

three families in our coverage: the virtual compression tests show a

good agreement with our homogenized target, and the physical ex-

periments con�rm that our physical models are correctly modeling

the real-world deformation of an isotropic base material (we used

thermoplastic polyurethane for this experiment).

We note that the �at region of force-displacement curves in the

compression tests is not as wide as in the periodic homogenization,

because in most examples the top and bottom rows are restricted

by the planks, so not able to deform as the periodic cells. The �at

region can be widened by stacking more rows, but our fabrication

is limited by the wall size of our 3D printer.

Although the simulation results match the experimental results,

the force curves are not a perfect match. The thin beams in most

of the microstructures consist of 1 to 2 layers of material, and the

printing accuracy is the likely cause of the mismatch.

The geometric variations within a single family are subtle (Figure

13), but lead to very di�erent response curves. Physical validation

results are in line with our computational predictions, with a close

match on the response curve, despite pushing the resolution of our

3D printer to the limit (many features in our printed sample use

only one or two lines of plastic due to resolution limitations of FDM

printing).
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Fig. 13. The unit cell proposed in [Joodaky 2020], parametrized by our shape

parameters and then optimized for di�erent e�ective stresses. We show the

rest shapes, compressed shapes, and the force - strain curves of experimental

data (blue) and periodic simulation scaled by the dimension of the printed

model (orange).

4.2 Stability

The ideal microstructure with a �at stress response may be com-

pressed to di�erent strains under the same amount of force (Fig-

ure 37) since the cells are designed to exhibit the same amount of

homogenized stress for a wide range of strains. However, this does

not a�ect the overall force of the microstructure or the e�ectiveness

of shock protection, since the rows exhibit the same amounts of force

as long as the strains are on the plateau of the stress-strain curve

(which starts as small as 5% for most of our optimized structures).

To study the reason why di�erent rows collapse at di�erent

speeds, we simulate the compression of a unit-size block with square

�nite elements and a hypothetical constitutive model that exhibits

linearly increasing stress at small strains and almost constant stress

(with small oscillations) at larger strains (Figure 15). The compres-

sion force in the simulation matches with the analytic stress at

small strains (<10%) when the stress is monotonically increasing,

and matches closely overall but does not capture the exact oscil-

lations in the analytic stress. In fact, although di�erent rows are

(A) Vertical (C) Rotated(B) Solid

)s( emiT )%( niartS
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Fig. 14. Drop tests with protecting materials stitched to the bo�om of

the object. (A) Drop vertically with the optimized microstructure a�ached.

(B) Drop with a solid material of the same dimension as (A), with smaller

Young’s modulus so that it compresses by the same distance. (C) Drop at

an angle with the same load and microstructure, with more columns on

the le� to reduce tilting. In the acceleration - time plot (bo�om le�), the

maximal acceleration of (A) is around half of (B); the stress-strain curves of

this optimized pa�ern under loads in di�erent angles in homogenizations

are shown (bo�om right).

at di�erent strains, their compression forces have to be almost the

same, as explained in Appendix C, so the overall force does not

exhibit the oscillations but is closer to a constant response. In our

case, although the periodic stress-strain curves do not have periodic

oscillations, other errors in microstructure geometry and fabrication

may have a similar in�uence.

This does not mean that either the periodic or transient full simu-

lations are unstable. Suppose stress-driven homogenization is used,

then the compression at di�erent strains with the same homoge-

nized stress are all solutions to the simulation, leading to singular

systems in the forward simulation where Newton’s method may

fail to converge quadratically and the adjoint method may fail to

compute the shape derivatives (the assumption that the Hessian is

invertible no longer holds). For this reason, we perform strain-driven

homogenization (Equation 3) instead, so that the only solution is

the deformation at the �xed strain. In this case, in the forward

simulation, the Hessian at the minima is positive de�nite and not

ill-conditioned: As shown in Figure 16, the condition number at the

deformed state does not increase signi�cantly in the course of the

shape optimization, showing that the simulation of the periodic cell

with an ideal response remains stable. The condition number at 10%

2̃5% strain is not signi�cantly larger than at 0% strain (rest shape),
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Fig. 15. Compression simulation with a hypothetical constitutive model.

Top: Simulation results of compressing a unit-size block, the color shows

jacobian of deformed square cells. Bo�om: Force-strain plot of the analytic

stress (orange) and simulation data (blue).

Iterations

Condition Number
109

108

107
100

10%

5%

0%

25%

20%

15%

Fig. 16. Plot of the condition number of the Hessian matrix during the

shape optimization of the topology (E) in Figure 12. Each curve shows how

the condition number at a fixed strain changes in the course of the shape

optimization.

showing that the deformation at the �at response region is not ill-

conditioned. As a consequence, the Newton’s method converges

quadratically and the adjoint method works. The reason why tran-

sient simulations are stable is more obvious – the inertia guarantees

that the energy is locally strictly convex as long as the time step is

reasonably small.

Further, in the strain-driven homogenizations, even if the stress-

strain curve goes below zero, i.e. the microstructure is bistable

around that point, the energy is still strictly convex around the

minima and Newton’s method can converge as expected, allowing

us to optimize for bistability of microstructures (Figure 31).

4.3 Drop tests

Baseline Comparison. To evaluate the use of our approach to

design protective gears or packaging protection, we run simulated

drop test experiments, where the microstructure is attached to the

falling object (Figure 14). We observe that the �at response of our

structure leads to slower deceleration of the load. In contrast to

shock protectors relying on plastic material [Acanfora et al. 2022],

our structure returns to its rest state after impact, making it reusable.

Rotated Load. To evaluate the e�ectiveness of the optimized struc-

tures under shocks in perturbed directions, we pick one topology,

perturb the load direction by 15◦, and optimize the stress-strain

(A) No damping (B) Low damping (C) High damping

No damping

Low damping

High damping

Acceleration (m/s2)

Time (s)
0.0 0.2 0.6 0.8 1.0

0

20

-20

Fig. 17. Drop tests with damping and same setup as in Figure 14 (A). (A)

k = q = 0, (B)k = q = 0.5, (C)k = q = 5

curves to be constant in both the vertical direction and the per-

turbed direction. We then simulate the drop test (Figure 14) with a

vertical load and a load rotated by 15◦, with the same density (Figure

14). The experiment shows that our structures can be optimized

for multiple load directions: The stress-strain plot shows that the

rotated drop has only a slightly higher acceleration than the vertical

one.

Visco-elasticity. To analyze the in�uence due to visco-elasticity,

we add the strain-rate proportional damping from [Brown et al.

2018] into our transient simulations. We observe that its e�ect is

negligible: the maximal acceleration with and without damping is

similar (Figure 17). The oscillations of the curves are reduced as

expected, which is a positive side e�ect but not our goal. We thus

opted not to include the dynamics e�ects, and as a consequence,

visco-elasticity in the optimization, as it has a negligible e�ect on

maximal acceleration and a high computational cost [Huang et al.

2024].

4.4 Package protection

A natural application of our microstructures is package protection.

We pick the optimized shape in Figure 14, which can protect from

shocks in multiple directions. We then generate a quadrilateral mesh

covering the object and map the unit cell to every quadrilateral to

form a protective shell (Figures 1 and 18). As shown in Figure 19,

from the initial geometry to the optimized microstructure, the maxi-

mum stress on the object is reduced from 1.2× 105 Pa to 3.4× 104 Pa.
To make a fair comparison, the density of the microstructure is

much lower than the duck so that the total load is not a�ected by

the microstructure in�ll volume ratio.

4.5 Baseline comparisons

We compare with the state-of-the-art structure proposed in [Joodaky

2020]. This extended j-shaped structure has been discovered by
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Fig. 18. A duck falls down the slope with un-optimized microstructures as

protecting material. The Von Mises stress distribution is shown, same color

scale applies to Figure 1.

Time Time
(b) Initial Microstructure(a) Optimized Microstructure

Stress (x102 kPa)

1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Fig. 19. Max VonMises stress plots of Figures 1 and 18. The maximum stress

is reduced by 72% by optimizing the protecting microstructures.

manual design of its topology. In Figure 20, we show that our opti-

mization approach canmodify its e�ective stress value by optimizing

geometric parameters and obtaining a wider range of strain with a

constant e�ective stress value. Additionally, our extensive search

of 105 topologies led to connectivities that can achieve higher com-

pression with a �at response, extending the 55% of the baseline up

to 70% (Figure 20 and 12).

4.6 Comparison with transient shape optimizations

Figure 13 in [Huang et al. 2024] runs shape optimization on the

transient drop test simulation directly by minimizing the !4 norm

of stress on the load on top. To make a fair comparison, we pick

the same topology and same shape parametrization (i.e. exactly the

same shape design space), and optimize in the homogenization to

obtain the ideal shock-protecting structure with desired e�ective

stress. In Figure 21, our optimized structure has a much wider �at

range (55%) in the stress-strain plot, so the e�ective stress can be

smaller while absorbing the same amount of energy. We then run

exactly the same transient drop simulation with our method, and

it shows that our method further reduces the !4-norm of stress

on the load and the maximum de-acceleration of the load, while

providing 47% more total impulse during the shock. This shows that

homogenization helps obtaining an even better result (with much

less time and memory as in Table 1) than optimizing a complete

structure consisting of many cells directly.

(A) (B) (C)

A

B
C

Stress (kPa)
4.0

2.0

0.0
0 20 40 60 80

Compression (%)

Fig. 20. The flat response of the topology and geometry proposed in

[Joodaky 2020] (A), can be considerably extended by optimizing its geomet-

ric parameters using our approach (B). Our microstructure family has a

di�erent connectivity (C), which provides an even wider flat response. We

show on the top the geometry of the corresponding cells in rest pose (top

row) and compressed at 50% (bo�om row).

Table 1. Comparison with [Huang et al. 2024]. We report the statistics

of the shape optimization in Figure 21. Columns from le� to right: peak

memory (Gb), number of iterations in the shape optimization, total time of

the optimization (min), and average time of each simulation (min).

Memory Iterations Total time Simulation avg.

[Huang et al. 2024] 9.9 9 561 18

Ours 5.2 33 239 4

4.7 Drop experiment

To further validate the shock-protecting e�ect of our microstruc-

ture family, we perform a drop experiment on one of our optimized

microstructures (Figure 22). We fabricate the microstructure in Fig-

ure 13 of size 7 × 7 × 7 cm with resin (RESIONE F80 printed on a

Phrozen 8k Mighty printer) and drop a glass Christmas ball �lled

with 200 g of small metal balls onto it. The microstructure protects

the ball, reaching 50% compression at the peak, preventing it from

breaking. With a solid cube at the bottom, the ball shatters when it

hits the ground.

4.8 Ablation study

We provide a series of ablation experiments to motivate our choice

of shape representation, including contact forces in homogeniza-

tion, using a non-linear material model, and using 2 × 2 tile in

homogenizations.

Shape representation. Topology optimization is widely used in

shape design for microstructures [Li et al. 2022;Wallin and Tortorelli

2020b; Zhang and Khandelwal 2019]. To compare to our choice of

shape representation (Figure 4) in the optimization, we perform
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Strain (%) Time (sec) Time (sec)

E�ective Stress (kPa) Stress Norm (x1000 N) Acceleration (m/s2)

1 kPa 4 kPa

[Huang et al. 2024] Ours

Von Mises Stress

0 10 20 30 40 50
0

5

10

15

0

1

2

3

0

5

10

-5

-10
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

Fig. 21. Top: Rest configuration and largest compression frame of [Huang

et al. 2024] and our optimized shape (with Von Mises stress distribution

shown). Bo�om: Stress-strain curves (le�) in homogenization, !4 norm

of stress (middle) and acceleration (right) over time in the transient drop

simulation. The optimized microstructure in [Huang et al. 2024] (blue) is

flat up to 35%, while ours (orange) has an almost flat response up to 55%,

resulting in lower de-acceleration and stress in the drop simulation. The

total impulse of our microstructure during the first shock, i.e. area below

the first bump of the curve in the right plot, is 47% more than [Huang et al.

2024].

Fig. 22. Drop experiment with a glass Christmas ball with infill. The pictures

before (le�) and a�er the shock with a solid cube (middle) and optimized

microstructure (right) at the bo�om are shown.

the nonlinear homogenization on the optimized extended j-shaped

structure using topology optimization. We rasterize the shape and

assign Young’s modulus � = 106 Pa to solid cells and � = 10−2 Pa
to void cells. In Figure 23, the shape of void cells is close to singular

when solid cells approach contact, resulting in convergence issues

and poor accuracy in homogenization.

Although there are recent works [Bluhm et al. 2021] able to re-

solve contact in topology optimization in some cases, robust and

accurate handling of contact with topology optimization is largely

an open problem as contact behavior can be signi�cantly altered

e.g. by artifacts of surface extraction.

Contact. We optimized a pattern without contact forces and com-

pared the stress-strain plots with and without contact forces (Figure

24). While the optimization succeeds, the contact-aware homoge-

nized stress is much higher than expected. Ignoring contact during

optimization leads to considerably worse performance, as taking

Rest shape Deformed shape

Fig. 23. Homogenization simulated with topology optimization representa-

tion. Void cells between beams in contact are highly distorted.

(A) Rest shape (B) With contact (C) Without contact

Compression Strain (%)

Stress (kPa)

0 20 40 60

2

1

0

Without contact

With contact

Fig. 24. The microstructure pa�ern (A) is optimized without contact, we

then simulate the shape with (B) and without (C) contact and plot the

stress-strain curves.

contact into account is essential for correctly handling large defor-

mations. The contact forces unavoidably introduced in the test lead

to a non-�at response for the material optimized without contact,

while they are �at for the specimen optimized with contact.

Shear and expansion. To study how much shear and expansion

a�ect the shock-protecting performance, we run the optimization

on a couple of examples without shear and expansion penalty. Fig-

ure 25 shows the homogenization of an optimized pattern with shear

under compression. We then simulate the compression of the full

microstructure and experiment on the fabricated result (Figure 26).

It is undesirable in common applications where the protecting ma-

terial is packed into a �xed volume, so we favor patterns that nearly

have no shear under compression. For the same reason, we penal-

ize expansion in the horizontal direction as the microstructure is

compressed.

Microstructures with negative Poisson’s ratio, which shrink in the

horizontal direction as they are compressed as in Figure 9, can still

�t into a �xed volume. However, the top and bottom planks force the

adjacent cells to not shrink, resulting in an hourglass-like shape (in

which the top and bottom are wide, while the middle is thin). In this

case, the shock-protecting e�ciency decreases, and the compression

force on the full microstructure increases much faster than the
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Rest Deformed

0

5

10

0 20 40

Shear (%)

Compression (%)

Fig. 25. Optimized pa�ern with shear under compression. The rest shape

and deformation at 50% compression are shown on the le�; the shear -

compression curve is shown on the right.

Rest Shape

Experiment

Simulation

Fig. 26. Full simulation and physical experiment on the optimized pa�ern

in Figure 25. The experiment result matches closely with the simulation.

Stress (kPa)

1

0

Compression (%)
0 20 40 60

single cell

2x2 tile

full simulation

Fig. 27. Stress - compression plot for Figure 9. Homogenization on a single

cell (green), homogenization on a 2×2 tile (orange), and full simulation

without periodicity (blue). The stress of periodic simulations is scaled to

match the dimension of the full simulation.

homogenization stress under compression (Figure 27). Although

one way to get around this is to remove the planks and let the top

and bottom rows slide freely (by reducing friction coe�cients), it’s

hard in practice to make the surface smooth enough, so we choose

to optimize for zero Poisson’s ratio.

Symmetry. Symmetric tiles can buckle toward at least two con-

�gurations which are energetically equivalent: small imperfections

in fabrication or in the load direction will randomly select one. This

has a negative e�ect on large tilings, potentially a�ecting the overall

compression behaviour (Figure 28). Non-symmetric structures are

less prone to this issue and we thus do not use symmetric constraints

in our microstructure geometry.

Symmetric full simulation Asymmetric full simulation

Symmetric periodic simulation

Asymmetric periodic simulation

Fig. 28. Periodic and full simulations on symmetric and asymmetric cells.

The periodic deformation of asymmetric cells is consistent between small

and large tiles (bo�om), and matches with the full simulation; while for

symmetric cells the deformation on large tiles may consist of di�erent

deformation pa�erns (top), which is inconsistent with the full simulation.

Material model. We advocate for using a non-linear constitutive

law for the base material to more accurately capture large defor-

mations. In Figure 29 we reproduce the physical testing of one of

our samples with the linear elastic model and the nonlinear Neo-

Hookean model, using the same material parameters. The linear

model diverges from the nonlinear model at large strains (> 5%)

while the nonlinear model matches closely to the physical testing,

con�rming that a non-linear material model is essential for shock-

protecting materials. We performed the same physical testing 10

times, and recorded the �rst and last curves in Figure 29, to show

that the microstructure is capable of protecting against periodic

shocks.

Base material. Our optimized patterns are not sensitive to the

choice of base material. In Figure 30, we run full-scale compression

simulations on the microstructure tiling (C) in Figure 13 with dif-

ferent base materials. The curves are nearly overlapping for a wide

range of material choices.

4.9 Bistable shock-protecting structure

Our method can also optimize microstructures with a non-�at stress-

strain curve. To demonstrate this we set up an experiment to repro-

duce the bi-stable microstructure introduced in [Shan et al. 2015].

We reproduce the topology of their microstructure in our shape

representation, but not the geometry. The initial shape (Figure 31,

C) is not bistable and we optimize the stress-strain curve so that it

interpolates some prescribed points to become bistable (Figure 31,

D). To con�rm the bi-stable behavior, we fabricate the optimized
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Neo-Hookean Linear Elasticity

Experiment
Force (N)

Strain (%)
0 20 40 60

0

100

200 Periodic

Linear

Neo-Hookean

Experiment 1

Experiment 2

Fig. 29. Compression and corresponding force - strain curves of the opti-

mized microstructure in simulations and experiments. The "Periodic" curve

in the plot is scaled by the dimension of the 3D model.

x0.0001

10

5

0

Strain (%)
0 20 40 60

Fig. 30. Full-scale simulations on the microstructure tiling (C) in Figure 13

with di�erent basematerials. The Y axis is the ratio between the compression

force and Young’s modulus.

bistable microstructure and measured the stress-strain curve (Fig-

ure 31). The compressed microstructure stays compressed after the

compressive force is removed. In our experiment, only the middle

layer stays compressed due to the boundary e�ect on the left and

right sides (as shown in the video).

5 CONCLUSIONS

We presented a method for shape optimization of homogenized mi-

crostructure materials accounting for large deformation and contact.

We used our approach to discover the �rst family of shock-absorbing

microstructures a close to �at strain-stress curve up to 75% compres-

sion with varying e�ective stresses. Finally, we validated it both in

simulation and physical experiments.

Our work opens the door to optimizing metamaterial families

with non-linear materials and contact forces, and there are many

exciting directions for future works: (1) extension to shapes with

complex geometrical boundaries, for example using rhombic cells

[Tozoni et al. 2021], (2) add a plasticity model, and (3) extend the

construction to 3D microstructures.

There are a couple of limitations to our method. First, since the

homogenization problem is nonconvex and highly nonlinear, the

(A) Periodic Plot

(B) Initial Shape (C) Optimized Shape

(D) Experiment

Compression (%)

Stress (kPa)

2

4

0

0 20 40

Initial Optimized

Fig. 31. Optimized bistable microstructure. (A) The initial blue curve is

optimized to the orange curve to interpolate the red points, with negative

stress from 30% to 40% strain. (D) The compressed microstructure stays

stable a�er the compression force is released.

solution to the forward problem may jump from one local minima

to another under small shape perturbation, so the objective can

sometimes be non-deterministic and discontinuous and cause line

search failure. Second, the internal deformation of microstructures

may be large, requiring the base material to have high elongation

at break and elasticity.

To foster reproducibility and adoption of this technique, we will

release both our microstructure family and a reference implementa-

tion of our optimization pipeline.
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A ADJOINT METHOD

We summarize the adjoint method applied to di�erentiating � below.

Adjoint Method. At the minima of, , in Equation 2, we have

mv, = 0. Di�erentiating both sides of the equation with respect to

the shape parameters q we obtain

3qmv, + m2v,3qv = 0,

i.e.

3qv = −(m2v, )−1mqmv,,

where m2v, is the Hessian of the total energy in the forward simula-

tion.

The gradient of � with respect to q then can be written as

3q � = mq � + mv �3qv
= mq � − mv � (m2v, )−1mqmv, .

(9)

Suppose ? is the solution of the following linear equation

?) m2v, = −mv � ,

then it directly follows from (9), 3q � can be simpli�ed to

3q � = mq � + ?) mqmv, .

Thus, to compute the shape derivative we need to compute mv � , mq � ,

mqmv, and solve a linear equation with the same coe�cient matrix

as the linear system in the forward newton solve.

B ALGORITHM

The main function is Optimization(q0, n), where q0 are the initial
shape parameters, and n is the list of values of vertical strain for

which we evaluate the stress-strain curve. After every optimization

�nishes, we plot the stress-strain curve with dense samples (every

1%) to verify the optimized result: if the homogenized stress at every

sample point in the range is within 10% of the target stress, we accept

the optimized result; otherwise, we reject it and stop optimizing for

larger strain range.

Function (>;E4 solves a sequence of problems for increasing defor-

mations �11, using the previous result as initialization, and calling

IncrementalSolve, which imposes a constraint on�11 as a penalty

with increasing weight, as this leads to a more reliable optimiza-

tion behavior. NewtonSolve is a standard Newton method, with

line search ensuring no self-intersections or element inversion [Li

et al. 2020]. It uses the ForceSPD function to ensure that the Hes-

sian approximation used in the solve for the descent direction is

always positive-de�nite. ConstrainedNewtonSolve is similar to

NewtonSolve, but with �11 �xed to the input scalar strain n .

The algorithm uses a few auxiliary functions for which we do not

provide explicit pseudocode as they are either standard or described

in other papers:

• Inflate is the mapping from shape parameters to the dis-

cretized domain (Section 6 of [Panetta et al. 2017]);

• LBFGSB returns the descent direction using the L-BFGS solver

[Wieschollek 2016] with box constraints;

• LineSearch is the standard back-tracking line search.

function Optimization(q0, n)

q← q0
� ← 0 ⊲ Number of iterations

Ω ← Inflate(q) ⊲ Section 3.3

ũ,� ← Solve(Ω, n) ⊲ Section 3.4

� ← Objective(q, ũ,�) ⊲ Section 3.5

g← ∇Objective(q, ũ,�) ⊲ Section 3.6

repeat

p← LBFGSB(� , g) ⊲ Descent Direction
U ← LineSearch(q, p)
q← q + Up
Ω ← Inflate(q) ⊲ Section 3.3

ũ,� ← Solve(Ω, n) ⊲ Section 3.4

� ← Objective(q, ũ,�) ⊲ Section 3.5

g← ∇Objective(q, ũ,�) ⊲ Section 3.6

� ← � + 1
until ∥g∥ < Y0 or ∥ � ∥ < Y1 or � > �C4A"0G

return @

end function
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function Solve(Ω, n)

ũ[0] ← 0

� [0] ← 0

for : ← 1 to ;4=6Cℎ(n) do
ũ[:],� [:] = IncrementalSolve(ũ[:−1],� [:−1], n [:])

end for

return ũ,� ⊲ List of solutions

end function

function IncrementalSolve(ũ0, �0, nTarget)

ũ← ũ0
� ← �0

F ← F0 ⊲ Initial weight, initially 104

40 ← |�11 − nTarget |
4 ← 40
repeat

ũ,� ← NewtonSolve(nTarget,F, ũ,�)
4 ← |�11 − nTarget |
F ← 2F

if 4 > 40 then ⊲ Worse than initial solution

F0 ← F

[ũ,�] ← [ũ0,�0]
end if

until 4 < n2
�11 ← nTarget
ũ,� ← ConstrainedNewtonSolve(nTarget, ũ,�) ⊲ Fix�11 in

the solve

return ũ,�

end function

function NewtonSolve(n, F, ũ, �)

,̃ ←, (ũ,�) +F |�11 − n |2 ⊲ Energy to be minimized

repeat

� ← ForceSPD(∇2,̃ (ũ,�))
p← −�−1∇,̃ (ũ,�) ⊲ Descent Direction
U ← ConstrainedLineSearch(ũ,�, p)
[ũ,�] ← [ũ,�] + Up

until ∥∇, (ũ,�)∥ < Y1
return ũ,�

end function

function ForceSPD(� )

V ← 10−8

�̃ ← �

while �̃ is not SPD do

�̃ ← � + V�
V ← 10V

end while

return �̃

end function

Fig. 32. Geometry of a pure-bending, constant-curvature j-structure.

C ANALYTIC APPROXIMATION TO THE j-STRUCTURE.

To elucidate the physical mechanism making the �at stress response

possible, we consider a j-structure, shown in Figure 32, assembled

from ideal beams in length-preserving beams in the pure bending

state. This is a good approximation of thin beams, as the bending

energy for small beam cross-section is lower than the extension/-

compression energy. We approximate the deformation of each beam

under compression by a constant-curvature deformation, i.e., a circu-

lar arc. The structure has a single geometric parameter, the angle V .

We also introduce the length of the beams !, but the choice of length

does not have an impact on the result. Suppose we impose vertical

strain n and zero horizontal strain. With constant-curvature assump-

tion, we can compute the elastic energy, of the deformed state

explicitly, from which we can infer the stress-strain dependence,

with stress f = 3, /3n .
For a beam of constant curvature ^ = 1/' and length !, the Euler

elastica bending energy is, up to a material-dependent constant,

!/'2 (e.g., [Matsutani 2012]), i.e., it is su�cient to estimate ' from

n and !. From the geometry of the deformation, we obtain:

(! − Δ!)2 = (1 − n)2!2 sin2 V + !2 cos2 V
Δ! = ! − 2' sinU

(10)

where U = !/(2') = !
2^

Up to higher order terms, from the �rst equation, we obtain Δ! =

!n sin V2, and from the second equation, sinU/0;?ℎ0 = 1 − Δ!/! =

1 − n sin V2. As sinU/U ≈ 1 − U2/6, we obtain U ≈
√
6n sin V , and

, (n) = ^2! = 4U2/! ≈ 24n sin2 V/!.
From this expression, we conclude that for small deformations,

the stress 3, /3n ≈ sin2 V/! does not change with stress. In fact, as

Figure 33 shows, even for high n the behavior of U2 and therefore

, is close to linear, so the stress-strain response remains close to

�at. The key observation is that by converting compression of the

lattice cells into beam bending, instead of the energy depending on

the strain quadratically, leading to the common linear stress-strain

curve, the energy depends on the strain linearly.

D STRAIN VARIATION UNDER COMPRESSION

A multilayer structure consisting of cells optimized for a �at stress-

strain curve can exhibit complex internal behavior depending on

small �uctuations of the e�ective stress-strain without changing

the overall response.

Consider a homogeneous block ofmaterial of height! compressed

in one direction ~ with (overall) stress-strain response f = 5 (n),
compressed to a vertical (overall) strain n0 :=

1
!

∫ !

0
n3~. We consider

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2024.
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Fig. 33. Precise energy - strain curve, for the pure-bending, constant-

curvature j-structure (blue) is close to linear (red).

Fig. 34. Notation for analysis of non-monotonic stress-strain curves.
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Fig. 35. Maximum and minimum stress over all cells in Figure 15. The

relative di�erence between the maximum and minimum at each strain is

within 10−6.

the distributions of strain and stress over the material block below.

Assume that the Poisson ratio is zero for simplicity so that both

strain and stress are one-dimensional. Assume for force equilib-

rium over the material block, then from the 1D Cauchy equation,

mf/m~ = 0, i.e. the stress (denoted as f0) is constant over the whole

block. If 5 (n) is strictly monotonic over n , this also implies constant

strain over the block, as for the constant stress f0, corresponding

constant pointwise strain n0 is determined uniquely. Figure 36 ver-

i�es that when the stress-strain curve is strictly monotonic, the

compression of the microstructure is uniform, unlike Figure 13

where rows collapse in random order. For non-strictly monotonic

5 (n) the situation may be di�erent: there may be vertical ranges of

the block with the same stress but di�erent strains n8 , with equal

values of 5 (n8 ) = f . Observe, however, that the total elastic energy

is
∫ !

0
n 5 (n)3~ = f0

∫ !

0
n3~ = !n0f,

which is deterministic and simply proportional to f0, irrespective

of the indeterministic distribution of strains.

Fig. 36. Compression of the microstructure with strictly monotonic stress-

strain curve is uniform, despite the slightly higher sti�ness on top and

bo�om rows due to the fixed beam.

For the target average strain n0, consider f< = minn⩾n0 5 (n),
and let n2 be the strain for which f< is attained (Figure 34). If

5 (n) > 5 (n0) for any n > n0 (i.e. n2 = n0), then constant-strain state

with stress f has lowest energy: if the strain were non-constant, at

some locations, the strain would be n > n0, where f (n) > f< , as

the stress is constant, it is above f< everywhere, i.e., the energy is

higher. If however, n2 > n0 so that 5 (n2) < 5 (n0), and we assume

that 5 (0) = 0, by continuity, there is also another n1 < n0, for

which 5 (n1) = f< . Pick, e.g., the minimal one with this property.

Then by choosing !2 =
n0−n1
n2−n1 and !1 = ! − !2, for any strain

distribution the set with strain n8 with measure !8 , we get energy

!n0f< , which is the lowest possible. This holds because for any

non-uniform strain distribution, we need to have strains above n0
and this is the lowest possible stress value in this case, and for a

uniform distribution the energy is n0!5 (n0) > n0!f< . Only the

measures of two sets matter, not whether these are contiguous or

where the two di�erent stress domains are located, i.e., there are

many possible states with the same energy, and the chosen one

depends on the deformation history. This is a continuum version of

bistability. Figure 35 con�rms that in the case where the periodic

stress-strain curve oscillates, even though the strains of di�erent

rows are di�erent in the microstructure, the stresses of di�erent

rows are close to the same.

We conclude that for a range of average strains n0, the material

will form two phases, with two di�erent strains.

The discussion above suggests that the static simulation of an

ideal shock-protecting material is possibly non-deterministic, how-

ever, transient simulations are still deterministic thanks to the iner-

tia.

E PATTERNS

We perform the compression test virtually and physically, using a

universal testing machine. We show the optimized structures and

their compression experiments in Figure 37.

The optimization cannot always �nd a geometry with a �at stress-

strain curve for a given cell topology, i.e. the objective (7) may not

be close to zero when the optimization converges, in which case we

give up on this topology. We show a collection of topologies that

fail to reach a �at response in Figure 38.
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ExperimentsRest shape Deformed shape tolp niarts - ecroFepahs laitinI

Fig. 37. A collection of optimized pa�erns validated in physical experiments. From le� to right: Initial shapes, optimized rest shapes, deformation of optimized

shapes, compression experiments, force (N) - strain (%) plots of the experiments (blue), and periodic simulations (orange).

Rest

Deformed

Rest
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Fig. 38. A collection of topologies that could not be further optimized to fit

a constant stress-strain curve up to 25% strain under our constraints.
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