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1 DERIVATION OF GRADIENT AND HESSIAN
OF 𝐸𝑝

The volume can be expressed as a surface integral over the boundary
of Ω𝐶 (𝑥 + 𝑢) via the divergence theorem

𝐸𝑝 (𝑥,𝑢) = 𝑃

∮
𝜕Ω𝐶 (𝑥+𝑢 )

𝑠 · �̂�(𝑠) 𝑑𝑠 (1)

where �̂�(𝑠) is the solution-dependent normal of the deformed
surface. We can make change of variables modification to express
this as an integral over the rest surface.

𝐸𝑝 (𝑥,𝑢) = 𝑃

∮
𝜕Ω𝐶 (𝑥 )

𝑠 · 𝑔3 (𝑠 + 𝑢 (𝑠)) 𝑑𝑠 (2)

where 𝑔3 = 𝑔1 ×𝑔2, with 𝑔1 = 𝜕𝑥
𝜕𝜉

, 𝑔2 = 𝜕𝑥
𝜕𝜂 and 𝜉, 𝜂 parametrize the

reference surface element.
It then stands that

�̂� =
𝑔3
| |𝑔3 | |

=
𝑔1 × 𝑔2

| |𝑔1 × 𝑔2 | |
(3)

The gradient of the energy is then

∇𝐸𝑝 (𝑥,𝑢) [𝜙𝑖 ] = 𝑃

∮
𝜕Ω𝐶 (𝑥 )

𝜙𝑖 · 𝑔3 (𝑥 + 𝑢) 𝑑𝑥 (4)

and the hessian
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Δ𝐸𝑝 (𝑥) [𝜙𝑖 , 𝜙 𝑗 ] = 𝑃
∑︁
𝛼=1,2

∮
𝜕Ω𝐶 (𝑥 )

(𝑔3 ∧ 𝑔𝛼 )𝑇𝜙 𝑗 ·
𝜕𝜙𝑖

𝜕𝑥
+(

(𝑔3 ∧ 𝑔𝛼 )
𝜕𝜙 𝑗

𝜕𝑥

)
· 𝜙𝑖 𝑑𝑥

(5)

where 𝑔𝛼 are dual vectors to 𝑔𝛼 .

2 MATERIAL CHARACTERIZATION
In order to effectively optimize the design of an object under in-
flation, we need to have an accurate material model that fits a ma-
terial’s behavior under various settings. We take inspiration from
the material characterization work of [Schumacher et al. 2020] and
decide to use a 3 parameter Mooney Rivlin model, which is given
by

Ψ𝑀𝑅 = 𝐶10 (𝐼1 − 3) +𝐶01 (𝐼2 − 3) +𝐶11 (𝐼1 − 3) (𝐼2 − 3)
+𝐷1 (𝐽 − 1)2 (6)

Since we’re anticipating large deformations of pneumatic actua-
tors, we make a modification to the volume preservation term of
the material model, replacing (𝐽 − 1)2 by (ln 𝐽 )2. This should pre-
vent elements from inverting in the large strain cases. The energy
density function then becomes

Ψ𝑀𝑅 = 𝐶10 (𝐼1 − 3) +𝐶01 (𝐼2 − 3) +𝐶11 (𝐼1 − 3) (𝐼2 − 3)
+𝐷1 (ln 𝐽 )2 (7)

We also draw inspiration from the parameter fitting model out-
lined in the aforementioned work. Instead of fitting material pa-
rameters on a multitude of uniaxial compression, extension and
shear tests, we instead perform uniaxial compression and extension
of specimens bonded (and thereby fixed) on both ends. This pro-
duces a multitude of strain values throughout the specimen, densely
sampling the material behavior along the stress-strain curve for
purposes of material parameter fitting.

We use this technique to come up with material parameters
matching uniaxial compression and extension tests. The material
we use is Smooth-On Mold Max 14NV, for which the inferred pa-
rameters are 𝐶10 = 55000, 𝐶01 = 5000, 𝐶11 = 1700, 𝐷1 = 1000000.

For new material physics, such as Mooney Rivlin model, we
need to compute a few terms to support differentiability. Firstly,
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𝜕𝐺
𝜕𝑢 needs to be computed for the adjoint solve in Eq. 5 of Sec. 3 in
the main text. However, this quantity is also needed for the hessian
matrix of the forward simulation so no extra derivations are needed.
What we do need to compute is 𝜕𝐺

𝜕𝑞 , or the sensitivity of the material
model with respect to the differentiation parameters, e.g. shape in
this case.

3 CLOSED CHAMBER COMPRESSION TEST
We design an experiment to validate 𝐸𝑝 (𝑥,𝑢) on a closed chamber
with a fixed amount of air by designing a closed cavity, compressing
it with a column testing machine, and observing the deformation.
We also measure the force exerted by the object for varying com-
pression levels and compare this with simulation. For a closed cavity
in silicone, we model the compression as an adiabatic process. The
pressure value during the compression is given by

𝑃 = 𝑃0
𝑉
𝛾

0
𝑉𝛾

, (8)

which we can substitute into the expression for 𝐸𝑝 (𝑥,𝑢) from Eq. 6
in Section 4.1 of the main text

𝑊 =

∫ 𝑉 (𝑥+𝑢 )

𝑉0
𝑃0

𝑉
𝛾

0
𝑉 (𝑥,𝑢)𝛾 𝑑𝑉 , (9)

which can be integrated analytically to produce an expression for
𝐸𝑝 (𝑥,𝑢) in the adiabatic case

𝐸𝑝 (𝑥,𝑢) =
𝑃0𝑉

𝛾

0
1 − 𝛾

(∮
𝜕Ω𝐶 (𝑥+𝑢 )

𝑠 · �̂�(𝑠) 𝑑𝑠
)1−𝛾

. (10)

The gradient of the energy remains the same as Eq. 4, except
the pressure is computed according to Eq. 8 as a function of the
chamber volume:

∇𝐸𝑝 (𝑥,𝑢) [𝜙𝑖 ] =
𝑃0𝑉

𝛾

0
𝑉 (𝑥,𝑢)𝛾

∮
𝜕Ω𝐶 (𝑥 )

𝜙𝑖 · 𝑔3 (𝑥 + 𝑢) 𝑑𝑥. (11)

Since the pressure is now shape-dependent, we need a modifica-
tion to the hessian to account for this, which becomes:

Δ𝐸𝑝 (𝑥) [𝜙𝑖 , 𝜙 𝑗 ] =
𝑃0𝑉

𝛾

0
𝑉 (𝑥,𝑢)𝛾

∑︁
𝛼=1,2

∮
𝜕Ω𝐶 (𝑥 )

(𝑔3 ∧ 𝑔𝛼 )𝑇𝜙 𝑗 ·
𝜕𝜙𝑖

𝜕𝑥

+
(
(𝑔3 ∧ 𝑔𝛼 )

𝜕𝜙 𝑗

𝜕𝑥

)
· 𝜙𝑖 𝑑𝑥

−
𝛾𝑃0𝑉

𝛾

0
𝑉 (𝑥,𝑢)𝛾−1

(∮
𝜕Ω𝐶 (𝑥 )

𝜙𝑖 · 𝑔3 (𝑥 + 𝑢) 𝑑𝑥
)

·
(∮

𝜕Ω𝐶 (𝑥 )
𝜙 𝑗 · 𝑔3 (𝑥 + 𝑢) 𝑑𝑥

)
,

(12)

where the last term accounts for the dependence of pressure on
the solution 𝑢. This is noteworthy because as opposed to the iso-
baric (constant pressure) case above, adiabatic processes lead to
block-dense hessians as the displacement of any vertex 𝑖 on the
chamber surface will lead to a change in force, ∇𝐸𝑝 (𝑥,𝑢) [𝜙 𝑗 ], at
any other node 𝑗 on the closed surface. Niewiarowski et al. [2020]
outlines a method for reducing the resulting dense linear solve
in the Newton optimization into a sparse linear solve with extra
algebraic operations using the Sherman–Morrison formula.

Whereas the qualitative comparison is given in the main text,
we plot the force-displacement graphs from the column testing
machine and the simulation in Fig 1. We observe that the general
characteristics of the predicted and experimental data plots are
similar, albeit with a roughly 20% difference in magnitude. We
believe this disparity is due to the epoxy glue used to join the
two silicone halves of the chambers, which changed the geometry
slightly and has material properties different from the silicone.

4 PHYSICAL EXPERIMENTS
For completeness, we show the rest and inflated states of the physi-
cal experiments in Figs. 2-4 below
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Figure 1: Quantitative comparison of open and closed cavity compression.
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(a) Rest pose

(b) Inflated pose

Figure 2: Inflation of a frog.
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(a) Rest pose

(b) Inflated pose

Figure 3: Inflation of a finger.
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(a) Rest pose

(b) Inflated pose

Figure 4: Inflation of a gripper.
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