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Fig. 1. The direction and magnitude of the initial velocity of the yellow bunny is optimized to push, a�er contact, the blue bunny into the white circle marker.

Top row is the initial configuration, and bo�om row is our optimized result. This scene involves a elastodynamic simulation with a non-linear material model

with contact and friction forces.
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We introduce a general di�erentiable solver for time-dependent deforma-

tion problems with contact and friction. Our approach uses a �nite element

discretization with a high-order time integrator coupled with the recently

proposed incremental potential contact method for handling contact and

friction forces to solve ODE- and PDE-constrained optimization problems

on scenes with complex geometry. It supports static and dynamic problems

and di�erentiation with respect to all physical parameters involved in the

physical problem description, which include shape, material parameters,

friction parameters, and initial conditions. Our analytically derived adjoint

formulation is e�cient, with a small overhead (typically less than 10% for

nonlinear problems) over the forward simulation, and shares many similari-

ties with the forward problem, allowing the reuse of large parts of existing

forward simulator code.

We implement our approach on top of the open-source PolyFEM library and

demonstrate the applicability of our solver to shape design, initial condition
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optimization, and material estimation on both simulated results and physical

validations.

Additional KeyWords and Phrases: Di�erentiable Simulation, Finite Element

Method, Elastodynamics, Frictional Contact

ACM Reference Format:

Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo

Schneider, Daniele Panozzo, and Denis Zorin. 2024. Di�erentiable solver for

time-dependent deformation problems with contact. ACM Trans. Graph. 1, 1

(March 2024), 31 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

ODE- and PDE-constrained optimization problems, i.e. the mini-

mization of a functional depending on the state of a physical system

modeled using a set of (partial) di�erential equations, appear in

many application areas: optimized design in engineering and archi-

tecture, metamaterial design in material science, inverse problems

in biomedical applications, controllable physically-based modeling

in computer graphics, control policy optimization, and physical

parameter estimation in robotics.

A common family of PDE-constrained optimization problems in

graphics, robotics, and engineering involves static or time-dependent

elastic deforming objects interacting with each other via contact

and friction forces. A signi�cant number of approaches have been

proposed to tackle PDE-constrained optimization problems of this

type (Section 2).

However, these approaches often make application-speci�c assump-

tions aimed at simplifying the di�erentiable simulator, often sacri�c-

ing generality (e.g., handling contact only with simple rigid obstacles

or di�erentiating with respect to material parameters only), robust-

ness (e.g., using a contact model that requires per-scene parameter

tuning to prevent failure), accuracy (e.g., using approximate spatial

discretizations, or non-physical material and friction models), or

scalability (e.g., restricting the number of system parameters with

respect to which it can be optimized).

Building on and integrating a broad range of previous work on PDE-

constrained optimization, including shape optimization, material

property estimation, and trajectory control, we develop a di�eren-

tiable solver that eliminates or reduces these shortcomings. Our

solver has the following characteristics:

(1) Maximally general di�erentiability: we support di�erentiation

with respect to all physical parameters (Section 8) involved in

the physical problem description: shape, material parameters,

friction parameters, and initial conditions. The user can pick an

arbitrary subset of these parameters to use in objective functions

(Section 9.1), di�erently from previous works which limit this

selection (Table 1).

(2) Our contact/friction formulation builds upon the recently pro-

posed Incremental Potential Contact (Section 8.2) approach [Li

et al. 2020]. Our di�erentiable simulator supports complex ge-

ometry, is automatic and robust (with only two main parameters

controlling the accuracy of the spatial and temporal discretiza-

tions), and guarantees physically valid con�gurations at all

timesteps, without intersections nor inverted elements. Many

previous works instead use a restricted set of contact scenarios

(Table 1).

(3) We use discretizations of arbitrary order (Section 10), both in

space and time with general non-linear elasticity material mod-

els, ensuring accuracy. Many competing works instead rely on

linear time and spatial discretization and often use simpli�ed

material models, leading to lower accuracy solutions (Section

2).

(4) Our formulation supports both static and dynamic problems in

a uni�ed framework (Section 4).

(5) Our di�erentiation approach is low cost. The computation of the

derivatives for one PDE-constrained optimization step is at most

as expensive as a forward evaluation of the underlying forward

simulation of the physical systems (Section 4.3, Table 4), and, for

nonlinear problems, we observe that the di�erentiability adds

at most 10% to the cost.

While individually most of these features appeared in previous

works in some form, they have never been combined in a uni�ed

formulation and algorithm for accurately solving inverse problems

in elastodynamics with contact. The foundation of our approach is

the adjoint method, which we systematically apply to obtain deriva-

tives with respect to all parameters in a uni�ed and general way,

while achieving high e�ciency. We discuss our design choices and

compare to alternatives in Section 2.1.

We demonstrate the e�ectiveness of our approach on a set of ex-

amples involving multiple objectives and optimizing for the shape,

material parameters, friction parameters, and initial conditions.

2 RELATED WORK

We summarize the most relevant simulation frameworks, primarily

focusing on those supporting di�erentiable simulations of elastic

deformable objects.

For the works closer to our targeted applications, we provide an

explicit breakdown of which subset of the characteristics of our

solver they support (Table 1). We also highlight the generality of

our solver by explicitly identifying which solvers cannot reproduce

the examples in our paper (Table 2). While implementing additional

derivatives with respect to parameters already present in one of

these codes is easy in some cases, other features are harder to add,

e.g., contact between soft bodies or self-collisions. The reasons why

speci�c solvers cannot handle certain problems are included in the

caption of Table 2. We note that prior works in Tables 1, 2 can

solve problems that our method cannot handle, e.g. the application

in visuomotor control tasks in [Jatavallabhula et al. 2021] is not

included in this work.

Di�erentiable deformable object simulators. Numerous di�er-

entiable elastic body simulators have been developed for applica-

tions in optimal design of shapes [Ly et al. 2018; Panetta et al. 2017,

2015; Tozoni et al. 2020], actuators [Chen et al. 2020; Maloisel et al.
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Table 1. The table columns correspond to five comparison characteristics: (1) High-order space and time discretization, (2) supported optimization parameters

(3) support for complex contacts between arbitrary surfaces, including self-collision, (4) support for static and dynamic simulations, and (5) method for the

derivatives computation. No existing di�erentiable solver supports all features of our solver simultaneously; in particular, most do not support di�erentiating

with respect to the shape of the domain.

Method (1) HO (2) Parameters (3) Collisions (4) Static and Dynamic (5) Di�erentiation
Elastic Texture [Panetta et al. 2015] Yes Shape No support Static-Only Adjoint
CB-Assemblies [Tozoni et al. 2021] Yes Shape Static and Prescribed Static-Only Adjoint
ADD [Geilinger et al. 2020] No Material, Initial Only planes or SDF, no self-collisions Dynamic-Only Adjoint
GradSim [Jatavallabhula et al. 2021] No Material, Initial Only planes, no self-collisions Dynamic-Only Code transformation
DiSECt [Heiden et al. 2021] No Material Only planes or SDF, no friction Dynamic-Only Code transformation/autodi�
NeuralSim [Heiden et al. 2020] No Material, Initial Only rigid-bodies Dynamic-Only Code transformation/autodi�
Di�PD [Du et al. 2021] No Material, Initial Only planes or SDF Dynamic-Only Adjoint
Ours Yes Shape, Material, Initial No restrictions Static and Dynamic Adjoint

Table 2. To clarify the di�erences between our approach and other di�erentiable simulators, we show which simulators support the features needed for

each experiment in our paper. The figure captions provide more details for each experiment; most significantly, almost no other simulators support shape

optimization (Fig 5–13), and the ones that do lack support for dynamic. From le� to right: Fig 1 and 22 require contact handling between so� bodies; Fig 5–13

require shape optimization; Fig 16–17 require material distribution optimization; and Fig 19 and 21 require self-collision handling.

Method Fig1 Fig5–10 Fig11–13 Fig14 Fig16–17 Fig18 Fig19 Fig20 Fig21 Fig22 Fig23

Elastic Texture [Panetta et al. 2015] Y

CB-Assemblies [Tozoni et al. 2021] Y

ADD [Geilinger et al. 2020] Y Y Y Y

GradSim [Jatavallabhula et al. 2021] Y Y Y Y

DiSECt [Heiden et al. 2021] Y Y Y

NeuralSim [Heiden et al. 2020]

Di�PD [Du et al. 2021] Y Y Y Y Y

Ours Y Y Y Y Y Y Y Y Y Y Y

2021; Skouras et al. 2013], sensors [Tapia et al. 2020], material char-

acterization [Hahn et al. 2019; Schumacher et al. 2020], and robotic

control [Bern et al. 2019; Hoshyari et al. 2019]. Di�erentiable sim-

ulators are also developed for �uid simulations in [Li et al. 2023b;

McNamara et al. 2004; Schenck and Fox 2018]. These simulators

broadly �t into three categories: (i) those employing analytic deriva-

tives computed using sensitivity analysis; (ii) those using automatic

di�erentiation libraries [Heiden et al. 2020; Hu et al. 2019a] based

on overloading, or algorithmic di�erentiation (iii) neural surrogate

models replacing the entire simulation with a di�erentiable neural

network [Baque et al. 2018; Bern et al. 2020; Chang et al. 2016; Zhang

et al. 2016].

Our method belongs to the �rst category: analytic sensitivity anal-

ysis generally requires manual di�erentiation of the physics equa-

tions, but allows one to reuse existing solvers most easily; direct

di�erentiation is feasible only if the number of parameters is very

small; a large number of parameters requires construction of the

adjoint equations for speci�c functionals [Bern et al. 2019; Du et al.

2021; Li et al. 2022; Liang et al. 2019; Ly et al. 2018; Qiao et al. 2020;

Rojas et al. 2021], and is more e�cient than all other approaches.

One exception is Dolphin-Adjoint [Mitusch et al. 2019], which auto-

matically and robustly derives adjoint models for models written

in the �nite element software FEniCS [Alnaes et al. 2015]. Auto-

matic di�erentiation methods are most general but require existing

simulators to be rewritten using data structures required for gra-

dients and Hessians, and typically incur a signi�cant performance

penalty. Surrogate models, though enabling dramatic speedups in

some cases, require huge training sets and long training times for

even simple design spaces [Gavriil et al. 2020], and currently are

unsuitable for high-precision applications [Bächer et al. 2021]. Code

transformation and auto-di�erentiation, e.g. in simulators such as

[Jatavallabhula et al. 2021] and [Heiden et al. 2021], based on tech-

nology developed in NVIDIAWarp [Xu et al. 2022], while potentially

allowing one to reuse existing codes, typically places a few limita-

tions on what the code may contain. To the best of our knowledge,

none of the existing simulators support robust handling of contact

and friction for complex geometries, and they only support a subset

of the design parameters compared to the more general formulation

of this paper.

We provide direct comparisons of our solver, [Du et al. 2021], and

[Jatavallabhula et al. 2021] in Section 10.5.

Di�erentiable Simulations with Contact. Di�erentiable sim-

ulators incorporating various contact models have recently been

developed for rigid [Heiden et al. 2020] and soft bodies [Geilinger

et al. 2020; Heiden et al. 2021; Jatavallabhula et al. 2021; Liang et al.

2019; Qiao et al. 2020]. These contact models often require per-scene

parameter tuning if complex contact scenarios are present, which

makes these methods hard to use in optimization, especially shape

optimization.

Our approach uses the recently proposed Incremental Potential

Contact (IPC) formulation [Li et al. 2020], replacing the traditional

zero-gap assumption [Belytschko et al. 2000; Bridson et al. 2002;

Brogliato 1999; Daviet et al. 2011; Harmon et al. 2009, 2008; Kikuchi
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and Oden 1988; Otaduy et al. 2009; Stewart 2001; Verschoor and Jalba

2019; Wriggers 1995] with a smooth version ensuring a (small) non-

zero separation between objects at every frame of the simulation.

This approach was designed with the explicit goal of guaranteeing

robustness and its smooth formulations of contact and friction avoids

the need for handling non-smooth constraints.

Stupkiewicz et al. [2010] is one of the few papers that demonstrate

sensitivity analysis of elastic problems with contact with respect

to a range of parameters, including shape and material properties.

This method, tested on a limited set of regular-grid problems, uses

direct di�erentiation requiring a solve per parameter, and does not

use a robust contact model.

We compare our solver, [Du et al. 2021], and [Jatavallabhula et al.

2021] in Section 10.5 in scenes involving both contact and self-

contact.

Shape and topology optimization with contact. Historically

shape optimization was primarily considered separately, e.g., for

physical parameter or initial condition estimation, primarily in static

settings, often with additional assumptions on bodies involved in

contact.

Some previous works in this area have considered the speci�c case

of optimization in the presence of contact between a soft body with

�xed rigid surfaces [Beremlijski et al. 2014; Haslinger et al. 1986;

Herskovits et al. 2000]. Other works, like ours, have studied the

interaction of two or more deformable bodies in contact [Desmorat

2007; Maury et al. 2017; Stupkiewicz et al. 2010; Tozoni et al. 2021].

Most papers do not consider friction or use a simpli�ed model

(compared to the standard Coulomb formulation) as discussed by

Maury et al. [2017].

Most closely related to our approach, Maury et al. [2017] presented

a level set discretization technique where contact and friction were

modeled with penalty terms, using smooth approximations to the

problem. Using a similar contact and friction model, Tozoni et al.

[2021] designed a shape optimization technique that focused on

reducing stress of static assemblies that are held together by contact

and friction. Both these works followed the mathematical model of

contact presented by Eck et al. [2005], which allows for interpene-

tration and assumed that contact zones are �xed.

For the speci�c use case of avoiding sag due to gravity forces, Hsu

et al. [2022] proposes a global/local approach to optimize the rest

shape and initial displacement of input geometries to avoid the

deformation introduced by gravity forces. This work uses the IPC

contact model in some simulation examples, but does not use IPC

in their optimization procedure.

Our approach supports dynamic simulation, allows contact zones to

change with both optimization parameter changes and in the course

of the simulation, and supports contact and self-contact between

arbitrary deformable objects.

Meshfree methods. A number of di�erentiable simulation meth-

ods use meshfree discretizations. Especially for shape optimiza-

tion, methods like XFEM [Hafner et al. 2019; Schumacher et al.

2018] and MPM [Hu et al. 2019b] that do not maintain conform-

ing meshes are often considered to circumvent remeshing-induced

discontinuities [Bächer et al. 2021]. However, these methods sac-

ri�ce accuracy [de Vaucorbeil et al. 2019], particularly for stress

minimization problems [Sharma and Maute 2018]. Our approach

computes accurate displacement and stressed by using a �nite ele-

ment method framework using high-order elements, coupled with

dynamic remeshing to compensate for the distortion introduced by

large deformations.

2.1 Choice of approach to computing gradients

A broad variety of approaches to di�erentiable simulation exist

in the literature on optimal control, shape optimization, and in-

verse problems (see, e.g., [van Keulen et al. 2005] for a systematic

overview); in this section, we brie�y discuss the motivation for the

design choices in our algorithm. Our choice is signi�cantly in�u-

enced by the features of our problem setting:

• High dimension: e.g., shape and variable material property opti-

mization may require thousands of parameters.

• Complex linear solvers: we aim to accurately solve highly nonlin-

ear, time-dependent or static, sti� problems, requiring complex

linear solvers for large sparse linear systems in the inner loop

of nonlinear solvers.

• Contact: resolving contacts requires additional complex algo-

rithms for continuous collision detection, in the nonlinear solver

line searches.

• Large shape changes and deformations: shape di�erentiation of-

ten leads to large shape changes, which may require remeshing.

Choice of the overall approach. The twomost general approaches

are, in a sense, opposite extremes, but neither is a good �t for our

setting.

Finite di�erence methods can be used with any black-box solver,

but require an extra solve for each parameter, so it is not suitable

for high-dimensional problems or even problems of moderate di-

mension (Table 6 compares the e�ciency of our method and �nite

di�erences).

Code di�erentiation [Bischof and Bücker 2000; Griewank andWalther

2008; Margossian 2019; Naumann 2012] through overloading opera-

tors, or using a specialized language, has two fundamental problems,

making it unsuitable for complex nonlinear codes with contact: it

requires rewriting all of the simulation code, including supporting

numerical libraries, e.g., sparse linear solvers and contact handling,

and even more signi�cantly is likely to produce unnecessarily in-

e�cient code (fully di�erentiable sparse linear matrix inversion is

going to be slow, and di�erentiating through a nonlinear solve is

unnecessary, as we see below). While automatic code transforma-

tion in principle may eliminate the need to rewrite the code, and

there is promising work [Jakob 2010; Moses et al. 2022] in this direc-

tion, we are unaware of fully automated tools capable of handling

large software systems, and the concerns about the e�ciency of the

resulting code remain.
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Existing di�erentiable solvers following this route use explicit time

integration and/or a few iterations of an iterative linear solver. Both

these options are unsuitable for applications requiring robustness

and accuracy, limiting their applicability. For more details, we refer

to Appendix E.3 of [Hu et al. 2019a], where the authors discuss

that it is not realistic to di�erentiate stably a complex linear solver

(the paper refers to a multigrid solver, but it is even more true for a

sparse direct solver), so they use 10 Jacobi iterations to approximate

the linear solve in the smoke simulation.

We opt for the approach based on adjoint equations, well established

in scienti�c computing and optimal control, as described in Section 3.

It is widely considered the most e�cient approach to computing

sensitivities, with the cost of a single additional linear solve per time

step, and reusing important parts of the forward solver, at the ex-

pense of requiring derivations speci�c to a particular time-stepping

algorithm. It allows us to implement e�cient di�erentiability for

solvers with all the features listed above.

Fixed vs. changing discretization. The adjoint method is particu-

larly simple to apply to a purely algebraic problem, in which both

the objective and PDE are discretized once, and then the problem is

treated as a purely algebraic �nite-dimensional optimization prob-

lem with PDE acting as a constraint. However, in our context, as

shape optimization may change the domain, we cannot view the

optimization problem as purely algebraic, as the discretization may

change at every optimization step: both the forward and adjoint

systems are rebuilt starting from a new discretization.

Discretize-then-optimize vs optimize-then-discretize. In the

context of adjointmethods, we need to choose between the "discretize-

then-optimize" approach and "optimize-then-discretize" [van Keulen

et al. 2005]. In the �rst approach, the original PDE and objectives

are converted to a discrete form which is then di�erentiated with

respect to discrete optimization parameters. In the second approach,

a PDE for the sensitivities is derived, and this PDE is discretized. The

di�erence between these approaches is relatively small for di�eren-

tiation with respect to material parameters, but more signi�cant for

shape derivatives. In this context, "optimize-then-discretize" is the

most common approach: its convergence theory is better established,

and directly follows from the discretization convergence. On a more

practical side, it leads to a simpler form of adjoint equations for

the shape derivatives formulated in the physical domain, enabling

better reuse of the forward solver code.We refer to Section 2.3 in [Al-

laire et al. 2021] for additional discussion and to Appendix G for an

example illustrating the di�erences for the Poisson problem. We em-

phasize that both approaches, for a suitable choice of discretization,

lead to the same discrete solution; however, discretize-then-optimize

in the context of shape optimization obscures the essential fact that

the system matrix need not be recomputed. We use a speci�c dis-

cretization that ensures that the computed gradients are consistent

with di�erentiating the discretized objective, as this simpli�es the

implementation of optimization algorithms.

[Dokken et al. 2020] uses the "discretize-then-optimize" approach to

support shape derivatives in FEniCS, which has its own DSL. This

approach allows one to support a broad range of PDEs but at the

expense of higher complexity and signi�cant additional performance

overhead.

Constructing adjoint equation components: AD vs analytic

approach. The adjoint method requires partial derivatives of the ob-

jective for the right-hand side of the adjoint system, and the sti�ness

and mass matrices for the adjoint PDE itself, which are similar to or

coincide with those for the forward PDE. These can be computed

using an AD method (note that the code to be di�erentiated is a

straightforward algebraic computation, not a complex algorithm

like a linear solver) or in closed form.

This can be done by transforming the code of assembling force

vectors and computing objectives to an AD framework or applying

code transformation to these parts of the code. However, AD leads to

less reuse compared with the analytic case and higher computational

complexity. We brie�y compare these options in Section 10. We opt

for doing extra analytical work to derive all derivatives explicitly,

but the approaches can be combined - one can add additional forces

or objectives using AD.

3 OVERVIEW

In Sections 4-9, we provide a self-contained description of our

method. While this contains a mix of known and new material,

we aim to present all components of the method in a uni�ed and

systematic notation to ensure reproducibility.

Typographical conventions. We use lower-case italic for func-

tions 0(I) and variables I, with both I and 0 in R� , where � = 2, 3.

Boldface lower-case letters (a) are used for vectors of coe�cients

of a FEM (or any other) discretization of a function. For a vector

or matrix quantity, superscripts are used to index whole vectors or

matrices: e.g., p8 may denote p at time step 8 . Subscripts are used

for the indices of components of a vector, e.g., 0(I) =
∑=
ℓ=1 0ℓq

ℓ (I)

means that the function 0(I) : R→ R� is a linear combination of

basis functions qℓ , with coe�cients 0ℓ which are components of

a. If 0(I) has values in R� , its coe�cients in a scalar basis qℓ are

�-dimensional, Then a is a vector of length� ·=, with� coordinates

of each component of 0ℓ in sequential entries.

General problem form.We solve static and dynamic optimization

problems of the form

min
@
� (D, G, @), such that,H(D, G, @) = 0 (1)

and

min
@
� (u, q) = min

@

∫ )

C=0
� (u, C, q)

such that d ¥D = H(D, G, C, @) on Ωq̄, D (0) = 6
D (@), ¤D (0) = 6E (@),

(2)

where � is an objective, possibly including constraints in penalty

form, D (G, C) is the displacement of a material point G satisfying a

static or dynamic physics equation, and 6D and 6E are the initial

conditions for the displacements and velocities. In this work, we

consider nonlinear elastic deformation, contact, friction, and damp-

ing forces. We assume the density d to be constant in time. The

optimization parameter functions @ = (q̄, q1, . . . , q<) include all

parameters of the system: material properties (elastic, friction, and

damping), object shape, and initial and boundary conditions. The
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Table 3. Notation.

Domains and bases

�3 Domain dimension, 2 or 3.

�B Solution dimension, 1, 2 or 3.

Ωref Reference domain Ωref ⊂ R
�3 consists of copies

of identical reference elements  ̂9 , 9 = 1 . . . = 
identi�ed along edges.

Ĝℓ and Îℓ Nodes are points in Ωref used to de�ne bases, ℓ =

1 . . . =G
#
, and 1 . . . =I

#
respectively. The set of nodes

Îℓ does not include nodes with Dirichlet boundary

conditions; the set of nodes G8 does include these

nodes.

q̂ℓ and b̂ℓ FE basis functions are scalar basis functions de-

�ned on Ωref ; b̂
ℓ correspond to nodes Ĝ8 , and is

used for geometric maps (we use p.w. linear basis);

q̂ℓ correspond to Îℓ and used for all other quanti-

ties (arbitrary order Lagrangian).

@̄, @̄ 9 (~ 9 ), q̄,

Gℓ

Geometric map @̄ embedding a reference element

in space, is de�ned on each  ̂9 in Ωref with local

coordinates ~ 9 as @̄ 9 (~ 9 ) =
∑
ℓ Gℓ b̂

ℓ (~ 9 ), where

Gℓ ∈ R
�3 are the positions of the nodes of the

element 9 forming the vector q̄. Concatenation

of these maps yields the global geometric map

@̄ : Ωref → R
�3 .

Ωq̄ Physical domain is the domain onwhich the PDE

is solved, parametrized by q̄, Ωq̄ = @̄(Ωref ). The

global coordinate on Ωq̄ is G = G q̄ ∈ R�3 .

qℓ (G),bℓ (G) FE bases on Ωq̄. The bases q̂ℓ and b̂ℓ can be

pushed forward to the domain Ωq̄ via q (G) =

q̂ ◦ @̄−1 (G) and b (G) = b̂ ◦ @̄−1 (G).

Ωq̄+)C Perturbed domain obtained using a perturbation

direction ) in q̄. Perturbation \ (G) ∈ R�3 is: \ =

\ (G) =
∑
ℓ \ℓ b̂

ℓ ◦ (@̄ 9 )−1 (G) =
∑
ℓ \ℓ b

ℓ (G).

Functions on physical domain Ωq̄

Dq̄ (G),u PDE solution de�ned on Ωq̄ with values in R�B .

We denote the vector of coe�cients of D in the FE

basis q by u.D (G) =
∑
ℓ Dℓ q̂

ℓ ◦@̄−1 (G) =
∑
ℓ Dℓq

ℓ (G) .

F (G),

k (G),w,7

Test functions (scalar) de�ned similarly to D (G) in

the same basis and vectors of their coe�cients are

w and 7.

? (G),p Adjoint solution is the solution of the adjoint equa-

tion and the vector of its coe�cients, with values in

R
�B .

@< (G),

q<
<-th optimization parameter @< (G) =∑=<@
ℓ=1 @

<
ℓ Z

ℓ (G) with a basis Z ℓ with values in

R
�<@ parameters can be material properties, bound-

ary conditions etc, de�ned on all or parts of Ω@̄ .

For the geometry map @̄, b on Dom(@̄) = Ωref , and

Z ℓ = bℓ .

PDE and derivatives

h(u, q) =

0

Discretized form of the PDE, i.e., a system of =D
algebraic equations with components of u as un-

knowns.

� (u, q) Discretized form of the objective.

mq0(u, q) Derivative of a (possibly) vector quantity 0 with

respect to a vector of optimization parameters,

not including dependence through D. The vector is

the vector of coe�cients of one of @< or @̄. If the

dimension of 0 is =0 , then mqa is a matrix of size

=0 × �
<
@ =

<
@ .

mu0(u, q) Derivative of a quantity 0 with respect to the

the PDE solution D; it is a vector of length �B=D .

3q0(u, q) Full derivative of 0 with respect to q, including

through the dependence on D.

∇0(E),

∇80(E,F)

Derivatives of0with respect to arguments E,F ∈

R
� .

�rst of these, @̄ plays a special role: it determines the shape of the do-

main Ωq̄ on which the PDE is de�ned; it is a function on a reference

domain Ωref de�ning its deformation. Parameters @8 may be global

constants, or dependent on the points of the reference domain, or

pairs of points (as it is the case for the friction coe�cient).

This problem statement is similar to [Geilinger et al. 2020] and

other works on di�erentiable simulators; however, our goal is to

support full di�erentiability, including shape, in a systematic way

(see Table 1 for details) which a�ects the adjoint formulation and

requires deriving expressions for a number of gradients of forces

and functionals.

Discrete problem.We postpone the exact description of the dis-

crete problem to Section 6. The discretized static problem obtained

using FEM discretization has the general form:

min
q
� (u, q), s.t., h(u, q) = 0, (3)

where u is the vector of FE basis coe�cients of D and q is the

concatenation of the vectors of coe�cients of q̄, q1, . . . , q< .

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.
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The dynamic discretized problemwith BDF of order< discretization

in time has the general form:

min
q
� (u, q) = min

q

#∑
8=0

F8 �8 (u
8 , q)

u8 +

min(8,<)∑
9=1

U89u
8− 9

= V8ΔC v
8

"

(
v8 +

min(8,<)∑
9=1

U89v
8− 9

)
= V8ΔC h

8 (u8 , u8−1, q) = ĥ8 ,

(4)

where" is the mass matrix. The higher-order BDF schemes need

to be initialized with lower-order steps; more speci�cally, U89 is 9-th

coe�cient of BDF8 , for 1 ⩽ 8 < <, and 9-th coe�cient of BDF<

otherwise. In the formulation above, h(u, q) does not depend on

velocities v. If the dependence on velocities is needed, as for damping

forces, we discretize in time, and handle it as dependence on u at

di�erent time steps.

Overview of the method.We aim to present a complete, largely

self-contained formulation, to ensure reproducibility as well as sup-

port easy addition of new types of forces. This requires restating

brie�y some of the known facts and formulas using our notation;

we identify parts that are not present in previous work.

We �rst assume the discretized form of the problem (3) and (4), and

derive consistent adjoint equations for the static and dynamic cases.

Each force and objective can be added to this general framework

by deriving a set of matrices and vectors needed to compute partial

force and objective derivatives.

We then proceed by computing these quantities analytically for

the set of forces involved in our formulation, and a broad selection

of functionals, including most used in the previous work both on

di�erentiable dynamic simulation and shape optimization. We com-

pute these in a form that allows for easy remeshing of Ωref and

Ωq̄, which is necessary for the large changes in physical domain

introduced by shape optimization.

4 ADJOINT-BASED OBJECTIVE DERIVATIVES

The derivatives of the objective � with respect to optimization

parameters can be computed e�ciently using the classic adjoint

method. While the basic principles of derivation are well-known,

we show how these are applied in the context of our problem. The

general form of our equations is similar to [Geilinger et al. 2020],

which in turn is based on [Hahn et al. 2019] for the speci�c case

of BDF2 time-stepping and material parameter di�erentiation. We

derive the abstract form of the adjoint system for a general form of

BDF time-stepping, and importantly we ensure that the dynamic

adjoint solution is consistent, i.e., yields identical, rather than ap-

proximately identical, results to direct di�erentiation, as well as

consider variable mass matrix needed for shape derivatives.

4.1 Static case

With the adjoint method, the gradient with respect to any number

of parameters can be obtained by solving a single additional linear

PDE (the adjoint PDE), and then evaluating an expression depending

on this unknown. The adjoint PDE is obtained by considering the

Lagrangian

L = � (u, q) {objective term} (5)

+ p) h(u, q) {physical constraint term} (6)

and di�erentiating it with respect to the parameters q:

3qL = mq � + mu � 3qu + p
) mqh + p

) muh3qu. (7)

3qL is expensive to compute if the dimension of q is large; a direct

computation involves computing 3@<u (how solution changes ac-

cording to parameter @<) for every optimized parameter @< in q,

which means solving |@ | di�erent linear PDEs. Isolating all terms

multiplying 3qu:

3qL = mq � + p
) mqh +

(
mu � + p

) muh
)
3qu. (8)

We can then eliminate the last term by choosing the adjoint variable

p such that it solves the adjoint problem:

p) muh = −mu � . (9)

Then, by plugging the solution p of the adjoint PDE into the La-

grangian, we obtain the �nal shape derivative:

3q � = 3qL(p) = mq � + p
) mqh. (10)

Combining contributions from di�erent forces and objectives

together. Our discretized equation has the form

h(u, q) =
∑
:

h: (u, q) = 0,

where h: is a contribution from each type of force (elasticity forces,

contact forces, etc). Similarly, the objective � is a sum of contribu-

tions from several objective components or constraints in penalty

form:

� (u, q) =
∑
ℓ

� ℓ (u, q).

Thus, the adjoint system and the full parametric derivative have the

following form, respectively:

p)

(∑
:

muh
:

)
= −

∑
ℓ

mu �
ℓ ,

3q � =
∑
ℓ

mq �
ℓ +

∑
:

p) mqh
: .

(11)

Thus, for each force, we need muh
: and mqh

: and each objective

component, mu �
: and mq �

ℓ .
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4.2 Dynamic case

Discrete time-dependent Lagrangian.Wewrite the time-dependent

Lagrangian L for the functional � viewing the equations for ¤v and

¤u as constraints with Lagrange multipliers p and -.

Similar to the static case, we expand the derivative 3qL, and isolate

the terms containing 3qu and 3qv. By setting the sum of each of

these two sets of terms to zero, we obtain two adjoint equations.

Our Lagrangian consists of three parts, corresponding to the objec-

tive (� ), physics constraints (L2 ), and initial condition constraints

(L8=):

L(u, v, p, -, q) = � (u, q) + L2 (u, v, p, -, q) + L8= (u
0, v0, p0, -0, q),

where

L8= = p)0 (v
0 − gE) + -)0 (u

0 − gD ),

and

L2 =

#∑
8=1

p)8 "

(
v8+

min(8,<)∑
9=1

U89v
8− 9−ĥ8

)
+-)8

(
u8+

min(8,<)∑
9=1

U89u
8− 9−V8ΔC v

8

)
.

Adjoint equations. As shown in the Appendix, this leads to the

following adjoint equations:

(
p8 +

min(<,#−8 )∑
9=1

U
8+9
9 p8+9

)
= V8ΔC .8

")
©­«
.8 +

min(<,#−8 )∑
9=1

U
8+9
9 .8+9

ª®¬
=

(mu8 ĥ
8 )) p8 + (mu8 ĥ

8+1)) p8+1 − (mu �̂
8 )) ,

(12)

where we introduce a new variable . satisfying - = "). .

Note that this system is very similar to the forward time-stepping,

with the following di�erences: it proceeds backward, from .8+1 to

.8 ; there is a single linear solve per time step, rather than a nonlinear

solve as for the forward system; for higher-order time stepping the

�rst few steps in the forward system are lower-order BDF steps;

however, this is not the case for the adjoint system: to maintain

consistency, we derive the initial low-order steps from the forward

system. If BDF2 is used for the forward time-stepping, the resulting

scheme is di�erent from the standard BDF2 scheme used in [Hahn

et al. 2019] for the adjoint system. If the system were discretized

inconsistently as in [Hahn et al. 2019], a su�ciently small time step

is needed to maintain accuracy of the gradient that would ensure

that the discrete energy decreases along the gradient direction.

By introducing p#+1, .#+1, the initial condition can be simpli�ed

as
p#+1 = 0,

.#+1 = 0.
(13)

The �rst (last in the adjoint solve) values need to be treated sepa-

rately, as shown in Appendix A.2:

-0 = −(mu �̂
0)) −

<∑
9=1

U
9
9 - 9 + p

)
1 mu0 ĥ

1, p0 = −

<∑
9=1

U
9
9"

) p9 . (14)

Computing the derivative of � from the forward and adjoint

solutions. From the adjoint variables, we can compute 3q � = 3qL:

3q � = −p
)
0 mqg

E − -)0 mqg
D

+

#∑
8=0

mq �̂
8

+

#∑
8=1

−p)8 mqĥ
8 + V8ΔC .

)
8 3q"v8

+

<∑
9=1

U
9
9 p
)
9 3q"v0 .

(15)

Partial derivatives mqĥ, muĥ and mq �̂8 , mu �̂8 are exactly the same as

used in the construction of the system for static adjoint and computa-

tion of the functional. The di�erences, speci�c to time discretization,

are:

• Mass matrix derivative 3q" . See Appendix (section A.3).

• Partial derivatives of the initial conditions with respect to pa-

rameters mqg
E and mqg

D , for positions and velocities. See Section

A.4 in the Appendix. Typically, a 3D position and velocity for

the whole object (or angular velocity for the object rotating

as a rigid body) are used as parameters, so these are trivial to

compute.

4.3 Summary of the parametric gradient computation

Computing the derivative 3q � requires the following components

• Derivatives mu �8 , muh8 , mq �8 and mqh8 for each time step 8 . See

Sections 8 to 9.2 for corresponding formulas.

• For the dynamic problems, mqg
D and mqg

E , derivatives of the

initial conditions. See Section A.4 in the Appendix.

To compute the parametric derivative of � , the steps are as follows:

1. Solve the forward system (3) or (4), and store the resulting

solutions u for the static problem; for the dynamic problem, we

store u8 , v8 , 8 = 0 . . . # at every step.

2. Initialize adjoint variables p#+1,.#+1 as shown in (13).

3. For the static problem, solve the adjoint system (9). For the

dynamic problem, perform backward time stepping using (12).

4. At every step of the dynamic solve, evaluate derivative of the

mass matrix 3q" , if applicable, and use formulas (15) to update

3q � .

5 OPTIMIZATION ALGORITHM

We provide a high-level summary of our method in Algorithm 1, its

major components are:

• ForwardSolve solves the nonlinear elasticity system, retaining

all solution steps for time-dependent problems;

• Objective computes the objective function given the solution

and parameters;
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• AdjointSolve solves the adjoint system (12) stepping backward

in time and using the solutions of the forward problem;

• DiscreteDerivative computes gradients given displacements

and adjoint variables;

• LineSearch is the standard Wolfe-Armijo line search, with

additional prevention of element inversion and contact [Li et al.

2020];

• Remesh performs remeshing of Ωref and Ωq to improve the

mesh quality before restarting optimization;

• Converged is the outer iteration stopping criterion.

We omit the pseudo-code for the forward solve as it closely follows

that of [Li et al. 2020] with only a few notable changes: (1) we use

an area weighting inside the barrier potential for convergence (see

Section 8.2), (2) we use a �xed barrier sti�ness ^ as changing it

adaptively throughout the simulation would require computing its

gradient through the update, and (3) to speed up convergence, we

only project the Hessian to positive semi-de�nite in the Newton

update if the unprojected direction is not a descent direction.

The inner loop works on a �xed mesh for Ωref , and is close to the

standard L-BFGS algorithm with two additional features, essential

for handling shape derivatives and large deformations: (1) we check

for any inversions of tetrahedra and contacts resulting from changes

to the shape of the domain Ωq̄ as a result of changing shape pa-

rameters and (2) after each update of the boundary vertices, we

call the SLIM smoothing algorithm [Rabinovich et al. 2017], with

boundary vertices ? �xed, to move the interior vertices to improve

mesh quality.

Unlike previous work we support remeshing. If the mesh quality &

is smaller than a tolerance Xremesh, the domain is remeshed. If the

gradient w.r.t. q is smaller than a tolerance Xgrad or the step size is

smaller than a tolerance XG , the optimization is stopped.

6 PHYSICAL MODEL AND DISCRETIZATION

In this section, we summarize the physical model we use. The model

is similar to the one used in [Li et al. 2020], with some minor modi-

�cations to the friction and contact formulation (Section 8.2), most

signi�cantly, addition of damping.

To discretized themodel we use arbitrary-order Lagrangian elements

and arbitrary-order BDF time stepping (our experiments are with

schemes of order 1 and 2).

The forces, which contribute to the PDE and need to be included in

the adjoint equations and corresponding parametric gradient terms

are:

• geometrically non-linear elasticity (with linear andNeo-Hookean

constitutive laws as options);

• contact forces in smoothed IPC formulation;

• friction forces also in smoothed IPC formulation;

• strain-rate proportional viscous damping for elastic objects;

Algorithm 1 Optimization algorithm overview

function Gradient(q)

u← ForwardSolve(q)

p← AdjointSolve(Objective, u, q)

g← DiscreteDerivative(Objective, u, p, q)

return g

end function

function ParameterOptimization

q← initial parameter values

>8 ← 0 ⊲ Optimization iteration count

repeat

g← Gradient(q)

d← LBFGSDirection(g, q)

B ← LineSearch(d)

q← q + Bd

if & < Xremesh then

q← Remesh(Ωq)

end if

>8 ← >8 + 1

until >8 = >8max or ∥g∥ < Xgrad or ∥Bd∥ < XG
end function

• external forces such as gravity or surface loads.

The right-hand side of the system of equations we solve on 8-th time

step of (12) can be written as

h4 (u8 ; _(G), ` (G)) + h2 (u8 ) + h5 (u8 , u8−1; ` (G,~))

+ h3 (u8 , u8−1;U (G), V (G)),

where h4 is the discrete elastic PDE term, h2 and h5 de�ne contact

and friction forces, and h3 de�nes damping. In greater detail, all

these forces are de�ned in the next section, along with muh and mqh

for each one of them.

The physical parameters q of the model with respect to which it can

be di�erentiated include:

• (possibly spatially variant) Lame coe�cients for elasticity _(G), ` (G);

• friction coe�cient between pairs of points W (G,~) (we consider

it �xed for each pair of objects, to reduce the number of variables

involved);

• damping coe�cients U (G), V (G).

Domains. A critical aspect of the formulation at the foundation

of our solver is the distinction between reference domain Ωref , and

(undeformed) physical domain Ωq̄, where q̄ denotes parameters

de�ning the shape (Figure 2). The physics equationsH(D, G, C, @) and

the solution D (G, C) is de�ned on Ωq̄ most naturally, but this domain

may be changed by optimization. The optimization parameters @

are de�ned on Ωref . This distinction is present in previous work on

shape optimization (e.g., [Tozoni et al. 2021]) but not in the more

general setting of dynamic di�erentiable simulation.
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Fig. 2. Notation for domains and maps we use, see Table 3.

Fig. 3. Domain perturbation \ , see Table 3.

7 EXAMPLE: POISSON EQUATION

To explain the principles of how individual derivatives for forces

and target functionals are computed, we use a simple example. For

more complex forces in our problem formulation, we state the �nal

result in this paper, and we refer to the Appendix for the derivation.

Consider a variable-coe�cient Poisson equation ∇ · (2 (G)∇D) = 5

and zero Neumann boundary conditions on a domain Ω@̄ that can be

changed by the optimization. We take as the optimization objective

the squared gradient of the solution on the domain. Then

• the optimization parameters are @ = [@̄, 2];

• The PDE in weak form is

H(D, @,F) = H(D, @̄, 2,F) =

∫
Ω@̄

2∇D∇F − 5 F 3G .

• The objective is

� (D, @̄) =

∫
Ω@̄

∥∇D∥23G .

Discretizing in FE basis, with basis functions q̂ℓ (e.g., quadratic)

used for D =
∑
ℓ Dℓ q̂

ℓ and 2 =
∑
ℓ 2ℓ q̂

ℓ , and basis b̂ℓ used for the

geometric map q̄ =
∑
ℓ Gℓ b̂

ℓ , we obtain the following. (Note that

both our basis b̂ and q̂ are de�ned on the �xed triangulated domain

Ωref .)

• q = [q̄, c] = [G1 . . . G=# , 21 . . . 2=# ], where Gℓ ∈ R
2 are vertices

of the physical domain Ωq̄, which we optimize, and 2ℓ are the

coe�cients of 2 in FE basis.

• The PDE discretization is performed on the physical domain

Ωq̄, and has the form h(u, q) = ( (q)u−" (q)f. The entry (<, ℓ)

of the matrix ( (q) are obtained by substituting u = q< ◦ 6−1

and F = qℓ ◦ 6−1, and the discrete expression for 2 into the

expression below; entries of" (q) are obtained in a similar way

( (D,F) =

∫
Ωq̄

2 (q̄−1 (G))∇D · ∇F 3G ; " (E,F) =

∫
Ωq̄

EF 3G. (16)

• The discrete objective is � (u, q) = u)) (q)u, with entries of) (q)

also obtained by substituting pairs of basis functions into the

bilinar form

) (D,F) =

∫
Ωq̄

∇D · ∇F 3G. (17)

Computing derivatives of ( , m2:( (D,F), with respect to 2 is straight-

forward, as the dependence on the coe�cients of 2 is linear. Com-

putation of shape derivatives is more complex, as the integration

domain and the gradient operator ∇with respect to physical domain

variables are a�ected by the change of shape parameters.

Direct approach. The direct approach is to perform a change of

variables in (16) and (17) and to the domain Ωref , and di�erentiate

with respect to Gℓ ; e.g.,(16) becomes

( (D,F) =

∫
Ωref

2 (~) ∇~D̂
) (∇~@̄)

−1 (∇~@̄)
−)∇~F̂ det∇@̄ 3~,

where D̂ and F̂ denote compositions D ◦ @̄−1. These expressions

are highly nonlinear in Gℓ and the �nal expressions for mGℓ ( (D,F)

needed for mq̄h are unwieldy, especially for more complex forces

like nonlinear elasticity and friction.

Shape derivative approach. Instead, we use shape derivative calcu-

lus commonly used in shape optimization to obtain the derivatives

with respect to the shape parameters directly on the physical domain

Ωq̄ (for the parameters not a�ecting domain shape the approaches

using Ωref and Ωq̄ are identical).

To compute mqℎ, or mq � , we consider the perturbed domain Ωq̄+)n ,

where ) is a vector �eld, and compute the full derivative as limit of

1

n

(
ℎ(Dq̄+)n , q̄ + )n) − ℎ(Dq̄, q̄)

)
,

as n → 0. In the resulting expression, the terms not containing the

change XD (G) correspond to mq �) , and the terms containing deriva-

tives of D (G) are transformed to mu �7 by substitutingk instead of

XD (G).

8 PARAMETRIC DERIVATIVES OF FORCES

In this section, we derive expressions for muh and mqh for speci�c

forces needed for the adjoint equations and the �nal derivative

formula respectively.

For each force, we obtain expressions of the forms � and � be-

low, from which the matrices for corresponding derivatives can be

obtained using:

�: (?, \ ) = p) mqh
: ) , �: (?,k ) = p) muh

:7, (18)

with \ going over basis vectors for this parameter type, ? going

over adjoint variable components, andk over the test function basis

vectors for the adjoint; i.e., two matrices of size �B=
I
#
× �B=

I
#
.

While nonlinear elasticity derivatives with respect to material pa-

rameters and initial conditions were used in [Geilinger et al. 2020]
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and [Hahn et al. 2019], and static-problem shape derivatives for

a di�erent (static, allowing interpenetration) contact and friction

model were obtained in [Tozoni et al. 2021], we present expressions

for all force-related derivatives with respect to all parameters (ma-

terial, shape, initial conditions) in a uni�ed way, simplifying adding

additional forces, building whenever possible on a general form

described in Section 8.1.

8.1 Volume forces

Many forces in continuum mechanics have the general weak form

H E (D,F, @) =

∫
Ωq̄

5 E (∇D, @) : ∇F 3G, (19)

where D is the displacement vector, with the components of the

vector hE (u) obtained asH E (D, qℓ , @), for all basis functions qℓ , and

the column denotes tensor contraction. In our case, elastic forces,

irrespective of the constitutive law used, belongs to this category.

In these expressions 5 E (∇D, @) is a tensor of dimension �3 × �B ;

e.g., for elasticity, �3 = �B , and this expression is the stress tensor,

as a function of ∇D.

If the force is associated with a volume energy density, E (∇D, @), as-

sociated forces have the form above, speci�cally, 5 E (∇D, @) = ∇1,
E .

(Here, ∇1 means the gradient with respect to the �rst parameter,

which in this case is ∇D). For a surface energy density, B (D, @), the

formulas are similar, but the integrals are over the surface.

We also formulate damping forces in a similar way, as explained

in more detail below, except at each timestep, E depends on dis-

placements D8 and D8− 9 , 9 = 1 . . .< at the current and< previous

steps, where< is the order of approximation of velocity used in

damping (we use< = 1). The formulas for �E and �E in this case

are obtained in exactly the same way as for the dependence on D8

only, separately for D8 and D8−1, corresponding to mu8h
8 and mu8−1h

8

respectively.

To obtain matrices �E and �E corresponding to muh
E and mqh

E (18),

we split mqh
5 into mq̄h

5 and mq1h
5 , the shape and non-shape param-

eter derivatives, assuming 5 depends on a single volume vector of

parameters @ = q1 (e.g., Lame constants). We treat these two types

of parameters separately, as q̄ a�ects the domain of integration but

not the integrand, and conversely, @ a�ects the integrand but not

the domain.

Shape derivatives. For the shape derivative contribution, we obtain

the following forms (the derivation and explicit form of matrix

entries can be found in supplementary material).

�E (\, ?) =

∫
Ωq̄

−5 (∇D)∇\) : ∇?

− (∇1 5 (∇D) : (∇D∇\ )) : ∇? + (5 (∇D) : ∇? )∇ · \ 3G,

(20)

�E (\, ?) is linear in \ and ? , and we convert it to a matrix form by

substituting basis functions for \ and ? .

The contribution to the left-hand side of the adjoint equation is

�E (k, ?) =

∫
Ωq̄

(∇1 5 (∇D) : ∇k ) : ∇? 3G. (21)

Observe that the matrix is identical to the matrix used in the forward

solve.

Non-shape volumetric parameter derivatives.We assume that

the force depends on @ = @(G), a function of the point in Ωq̄, de�ned

by its values q at the same nodes as the solution, and interpolated

using the same basis q .

In this case, the form � is:

�E (\, ?) =

∫
Ω

(m@ 5 · \ ) : ∇? 3G .

The contribution to the left-hand side of the adjoint equation is

identical to the shape derivative case.

In our implementation we consider two versions of elastic forces,

both de�ned by Lame parameters speci�ed as functions on Ωref :

@(G) = [_(G), ` (G)]. The only quantities we need are derivatives of

5 (∇D) with respect to ∇D, and material parameters.

Linear elasticity. For linear elasticity, we replace 5 E with

5 4 (∇D, q) = f (∇D, q) = � (q) : Y (∇D) =
1

2
� (q) : (∇D) + ∇D),

with �8 9:; (_, `) = _X8 9X:; + ` (X8:X 9; + X8;X 9: ).

For computing �4 and �4 we use partial derivatives of 5 4 with

respect to material parameters:

∇1 5
4 (∇D,,, -) = �,

m_ 5
4 (∇D,,, -)8 9 = X8 9X:;Y:; ,

m` 5
4 (∇D,,, -)8 9 = (X8:X 9; + X8;X 9: )Y:; .

Neo-Hookean elasticity. For Neo-Hookean elasticity, the follow-

ing formula is used for computing stress from the deformation

gradient:

5 4 (∇D, q) = ` (� (∇D) −& (∇D)) + _ log(det(� (∇D)))& (∇D),

where � (∇D) = ∇D + � and & (∇D) = � (∇D)−) .

We can then compute derivatives of 5 (∇D):

∇1 5
4 (∇D, q)8 9:; = ` (X8:X 9; +&8;&: 9 )

+ _(&8 9&:; − log(det(� ))&8;&: 9 ),

m_ 5
4 (∇D, q) = � (∇D) −& (∇D),

m` 5
4 (∇D, q) = log(det(� (∇D)))& (∇D).

Damping. For damping, we have material parameters controlling

shear and bulk damping U, V . We use the strain-rate proportional

damping described in [Brown et al. 2018]. Given deformation gradi-

ent � = ∇D + � , the Green strain tensor � =
1
2 (�

) � − � ) is rotation-

invariant. The viscous Piola-Kirchho� stress is of the form

% (∇D,∇¤D) = � (2U ¤� + V Tr( ¤�)� ),
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where ¤� denotes the time derivative, and the weak form of the

corresponding force

H3 (D, ¤D,F) =

∫
Ωq̄

% (∇D,∇¤D)∇F3G.

In our case, to �t this force into our di�erentiable formulation,

we discretize ¤� using as ¤� 8 =
1
ΔC (�

8 − � 8−1); this yields a force

expression of the form

H3 (D8 , D8−1,F) =

∫
Ωq̄

% (∇D8 ,∇D8−1)∇F3G,

which is identical to (19), except it depends on both ∇D8 and ∇D8−1.

As a consequence, expressions for �3 (k, ?) and �3 (\, ?) are ob-

tained in the same way as in (21) and (20), except two pairs of

matrices are obtained, one for ∇D8 the other for ∇D8−1, using ∇1%

and ∇2% as ∇1 5 respectively.

8.2 Contact and Friction

For the contact forces, we use a slightly modi�ed version of the

formulation of [Li et al. 2020]. While the original formulation is in-

troduced in a discrete form, it can be derived with minimal changes

as a linear �nite-element discretization of a continuum formula-

tion [Li et al. 2023a]. The contact incremental potential uses log

barrier function 1 (~), where 1 is a truncated log barrier function,

approaching in�nity, if ~ → 0, and vanishing for ~ ⩾ 3̂ for some

small distance 3̂ .

For any pair : of primitives (vertices, edges, and faces) of the surface

mesh mΩx3 , de�ned by the vertex positions x3 = "∗q̄ + u, 3: (x
d)

denotes the distance between them; � is the set of primitive pairs

in contact, i.e., pairs of primitives with 3: < 3̂ .

Recall that the geometric map @̄ always uses piecewise-linear ele-

ments bℓ , while the basis for the deformations D can be of any order.

The matrix"∗ is an upsampling matrix to bring dimension of q̄ to

the same as discrete solution u. The upsampling is performed by

linear interpolation from Ĝℓ to nodes Îℓ .

The contact forces are derived from the following potential:

� (u, q̄) = ^
∑
:∈�

1 (3: (x
3 ))�: =

∑
:∈�

,: (u, q̄)�: ,

where ^ > 0 is a parameter controlling the barrier sti�ness and

�: corresponds to the sum of surface areas associated with each

primitive in : (i.e., 13 of the sum of areas of incident triangles for

vertices and edges, and the area for triangles). See Section D in the

Appendix.

We de�ne �2
:
(u, q̄) = mu,: (u, q̄) = ^1

′ (3: (x
3 ))mxd3: .

The contact force is given by

h2 =
∑
:∈�

�2
:
(u, q̄)�: .

The terms �2 and �2 have the form

�2 (?, \ ) =
∑
:

(
mq̄�

2
:
\ · ? + �2

:
· ? mq̄�:

)
�: ,

�2 (?,k ) =
∑
:

mu�
2
:
k · ? �: ,

where

mu�
2
:
= ^ (1′′ (mxd3: ) (mxd3: )

) + 1′mxd (mxd3: )),

mq̄�
2
:
= mu�

2
:
"∗

and mq̄�: corresponds to the gradient of the area term, which varies

depending on the type of primitive pairs corresponding to : . See

Section D in the Appendix.

Friction. In general, the friction coe�cient W (G1, G2) is a function

of pairs of surface material points in mΩq̄. As a simpli�cation, in our

implementation, we assume that each pair of objects (<,=), in the

simulation has a single coe�cient W<,= , which can vary through

the optimization. To simplify notation, we use W:1,:2 for a pair of

primitives :1 and :2 to indicate the friction coe�cient between

objects these primitives belong to.

We follow the IPC de�nition of friction [Li et al. 2020]. Its key

feature is that it is a di�erentiable function of displacements, which

determine the contact forces, and relative velocities, which, for

dynamic problems, we discretize using �rst-order approximation

D8 − D8−1, where 8 is the time step.

The friction force for each active pair of primitives : is

�
5

:
(u8−1, u8 ) = −W:1,:2#:): 5[ (∥g: ∥)

g:
∥g: ∥

, (22)

where #: is the contact force magnitude, ): is a tangential frame

matrix, constructed as described in [Li et al. 2020], and g: and 5[
are de�ned as

g: = ): (x
3,8−1)) (u8 − u8−1),

5[ (~) =

{
−
~2

[2
+

2~
[ ~ ∈ [0, [)

1 ~ ⩾ [
.

The total friction force has the form

h5 =

∑
:∈�

�
5

:
(u8 , u8−1, q̄)�: ,

with the form � for shape derivatives given by

� 5 (?, \ ) =
∑
:

mq̄�
5

:
\ · ? �: + �

5

:
· ? mq̄�: �: .

Additional details on the computation of mq̄�
5

:
are in the Appendix

(Section E). The derivative with respect to friction coe�cient values

is easily obtained as the force is linear in friction coe�cients. If q is

a vector of friction coe�cients,

m@ℓ �
5

:
=

{
−#:): 5[ (∥g: ∥)

g:
∥g: ∥

if @ℓ corresponds to W:1,:2

0 otherwise.
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Two forms �5 , for mu8 and mu8−1 are needed for the adjoint equation.

Both have the general form

�5 (k, ?) =
∑
:

mu�:k · ? �: ,

which reduces to computing the derivative of each �: term with

respect to D8 and D8−1, which can be be found in Appendix E.

9 OBJECTIVE DERIVATIVES

In this section, we de�ne the mq � and mu � terms needed for the gra-

dient computation (10): For each objective-optimization parameter

pair, mq �
ℓ ) and mu �

ℓ7, i.e., two vectors of size �B=
I
#
.

Similar to Section 8, we present all objective derivatives with respect

to all types of optimization parameters, including shape in a uni�ed

way. We consider a comprehensive set of objectives used in many

previous works, that can be easily extended with additional ones.

In Section 9.1 we present general forms that all objectives can be

reduced to.

9.1 General forms of objectives

Typically, objectives do not depend directly on the optimization

parameters other than shape, so we focus primarily on derivatives

of objectives with respect to shape parameters q̄ and solution u.

We consider objectives of the form

� (u, q̄) = � (�1 (u, q̄), . . . �= � (u, q̄)), (23)

where � is a di�erentiable function, and �8 , 8 = 1 . . . = � are objective

terms each of which typically has one of the integral forms described

below. � can be as simple � (�1) = �1, or can depend on several terms,

as e.g., the center of mass optimization. The derivatives of objective

are reduced to the the derivatives of the objective terms by a direct

application of a chain rule, so we focus on these.

We �rst consider two general forms of objective terms which will be

used for a number of speci�c objectives in Section 9.2. This includes

inequality constraints in penalty form.

For each objective term �> , we obtain vectors '> (k ) and (> (\ )

corresponding to the partial derivatives mu �
> and mq �

> , which are

necessary to compute the adjoint solution and the full shape deriva-

tive. As for the derivatives of the objective vectors mu �
> and mq �

>

are obtained by plugging in the basis functions qℓ int '
> and (> .

Objectives depending on gradient of solution and shape.

Consider an objective term that depends on both the solution of the

PDE and the domain:

�> (∇D, @̄) =

∫
Ωq̄

9 (∇D, G)3G. (24)

In this case, as derived in the supplementary document,

(> (\ ) =

∫
Ωq̄

−∇1 9 : ∇D ∇\ + ∇2 9 · \ + 9∇ · \ 3G (25)

and

'> (k ) =

∫
Ωq̄

∇1 9 : ∇k 3G. (26)

Objective terms depending on solution and shape.We also use

objective terms depending on both the solution of the PDE and the

domain:

�> (D, @̄) =

∫
Ωq̄

9 (D, G)3G . (27)

In this case,

(> (\ ) =

∫
Ωq̄

∇2 9 · \ + 9∇ · \ 3G (28)

and

'> (k ) =

∫
Ωq̄

∇1 9 ·k 3G. (29)

9.2 Specific objectives

!? norm of stress. For ? = 2 this objective measures the over-

all average stress, and for high ? , !? -norm of stress approximates

maximal stress:

�f =

(∫
Ωq̄

∥f (∇D)∥
?
�
3G

)1/?
, (30)

where f (∇D) = 5 (∇D) represents stress, which depends on ∇D.

Following the chain rule, this objective is a function of a single

objective term �f = (�f1 )
? which is of the form (24). with 9 =

∥f (∇D)∥
?
�
for which ∇2 9 = 0, and

∇1 9 = ? ∥f ∥
?−2 f : ∇5 (∇D).

Weighted di�erence from target deformations.

� CA 9 (G,D) =

∫
Ωq̄

F (@̄−1 (G)) ∥G3 − GCA6 (@̄−1 (G))∥2 3G (31)

where G3 = G + D, the deformed state of the object, weightF deter-

mines relative importance of points, and GCA6 is the target con�gu-

ration, de�ned as function on Ωref .

The formulas for the general objective (27), apply, with

∇1 9 = ∇2 9 = 2F (@̄−1 (G)) (G3 − GCA6 (@̄−1 (G)).

If we de�ne only the shape on the boundary as the target, then we

have:

�1CA 9 =

∫
mΩq̄

F (@̄−1 (G)) ∥G3 − GCA6 (@̄−1 (G))∥2 3G

. Formulas for the derivatives are similar:

(1CA 9 =

∫
mΩq̄

∇2 9 · \ + 9 (D, G) ∇B · \ 3G,

'1CA 9 =

∫
mΩq̄

∇1 9 ·k 3G,

where ∇B denotes the surface derivative.
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Target center of mass trajectory. A related objective is the devia-

tion of the center of mass of the object from a target trajectory.

�2CA (�% , �� ) =





 �%�� − G2CA





2

=






∫
Ωq̄
d (G) G3 3G∫

Ωq̄
d (G) 3G

− G2CA





2

=

�3∑
8

(
�%8

��
− G2CA8

)2
.

(32)

Using the chain rule, we can reach a formulation where (2CA and

'2CA depend on respective derivatives from each �%8 and �� :

(2CA =
∑
8

(m1 �
2CA )8(

%
8 + m2 �

2CA(� ,

'2CA =
∑
8

(m1 �
2CA )8'

%
8 + m2 �

2CA'� .

We then need to compute shape derivative and adjoint terms for

both of our scalar integrals �%8 and �� , following general formulas

for 27. For each �%8 , we have:

∇1 9 = ∇2 9 = d (G)48 ,

where 48 ∈ R
�3 is a vector with 0s everywhere except at index 8 ,

where the value is 1.

Finally, assuming that densities are constant per point, for �� ,

∇1 9 = ∇2 9 = 0.

Height. This functional aims to maximize the height of the center

of mass:

�Imax = −

∫
Ωq̄
d (G)G3I 3G∫

Ωq̄
d (G)3G

, (33)

whereDI is the z (vertical) component of the solution (displacement)

D, GI is the z component of the original position x. We can rewrite

this formula using �%I and �� from previous subsection:

�Imax (�%I , �
� ) = −

�%I

��
. (34)

This way, similar to �2CA , we have:

(Imax = m1 �
Imax(%I + m2 �

Imax(� ,

'Imax = m1 �
Imax'%I + m2 �

Imax'� .

Then, as for previous case, we can compute (%I , '
%
I , (

� and '�

through general formula 27, using ∇1 9 = ∇2 9 = d (G)4I for �
%
I and

∇1 9 = ∇2 9 = 0 for �� .

Upper bound for volume. A constraint on the volume of the

optimized object in penalty form is

�+ = i (+ (Ωq̄) −+C ), (35)

where+ corresponds to (
∫
Ωq̄

3G ), the volume of shape Ωq̄,+C to the

target volume, and i (I) is a quadratic penalty function equal to I2

for positive I and zero for negative I. This functional reduces to the

general objective (27), with ∇1 9 = ∇2 9 = 0, since 9 (D, G) = 1.

Upper bound for stress. Similarly, we can impose an approximate

upper bound on stress via a penalty:

�fC =

∫
Ωq̄

i (∥f ∥ − BC )3G, (36)

where BC is the stress magnitude target. As for !? stress energy, our

integrand i (∥f ∥ − BC ) depends only on ∇D and (24) applies with

∇1 9 = i
′ 5 (∇D)

∥f ∥
: ∇5 (∇D),

∇2 9 = 0.

9.3 Regularization terms

In addition to the physical objectives described in the previous

sections, we use two discrete regularization terms essential for nu-

merical stability for a number of problems.

Scale-invariant smoothing.

� smooth
=

∑
8∈�

∥B8 ∥
? , B8 =

∑
9∈# (8 )∩� (E8 − E 9 )∑
9∈# (8 )∩� ∥E8 − E 9 ∥

, (37)

where � contains the indices of all boundary vertices, # (8) contains

the indices of all neighbor vertices of vertex 8 , and E8 is the position of

vertex 8 . The value of ? can be adjusted to obtain smoother surfaces

at the cost of less optimal shapes, normally we use ? = 2. This

term is scale-invariant and pushes the triangles/tetrahedra of the

mesh toward equilateral. The derivative of this smoothing term

with respect to optimization parameters E8 can be seen in the �rst

paragraph of Appendix F.

Material parameter spatial smoothing.

�_,` smooth
=

∑
C ∈)

∑
C ′∈�3 9 (C )

(
1 −

_C ′

_C

)2
+

(
1 −

`C ′

`C

)2
, (38)

where ) is the set of all triangles/tetrahedra, �3 9 (C) is the set of

triangles/tetrahedra adjacent to C . _, ` are the material parameters

de�ned per triangle. The derivative of this term can be seen in the

last part of Section F (Appendix).

10 RESULTS

We partition our results into three groups depending on the type

of the dofs used in the objective function: shape (Section 10.2),

initial conditions (Section 10.3), or material (Section 10.4). For each

group, we provide a set of examples of static and dynamic scenes

of increasing complexity. In Section 10.5, we compare our solver,

[Du et al. 2021], and [Jatavallabhula et al. 2021] to evaluate the

e�ect of di�erent material and contact models. We also compare

against a baseline implementation using �nite di�erences. We run

our experiments on a workstation with a Threadripper Pro 3995WX

with 64 cores and 512 Gb of memory. For a selection of problems, we

validate our results with physical experiments using items fabricated

in silicon rubber (we use 1:1 SMOOTH-ON OOMOO 30 poured into

a 3D printed PVA mold) or 3D printed PLA plastic.
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We additionally provide a video showing the intermediate optimiza-

tion step for all the results in the paper as part of our additional

material.

Statistics. We provide statistics for our experiments in Table 4,

including the size of the meshes, material model, running time, and

memory used.

We observe that the time to compute the gradients of the objective

function is negligible compared to the forward solve time (usually

less than 10%). This implies that as long as a physical system can be

simulated in PolyFEM, our approach enables optimizing functionals

depending on it with a comparable running time per optimization

iteration.

We recall that the gradient computation requires solving one linear

system for each time step of the forward simulation. For linear

problems, the system to solve has the same sti�ness matrix and we

can thus reuse the factorization. For non-linear problems requiring

Newton iterations, the forward step requires multiple Netwon steps,

while the solve for the gradient is always a single linear system

solve.

An additional acceleration strategy that we employ is noting that the

optimization algorithm needs to solve many, often similar, forward

simulations. We thus initialize, for non-linear problems, the forward

solver with the solution at the previous step, which is often a good

initialization.

Color Legend.We use green arrows to indicate Neumann boundary

conditions, and black squares to indicate nodes that have a Dirichlet

boundary condition. To reduce clutter, we use a uniform gray to

indicate objects with a uniform Dirichlet boundary condition on all

nodes.

To avoid singularities in the optimization we add, to the objective

function, a boundary smoothing term (37) in all our shape optimiza-

tion experiments, and a material regularization term (38) to all our

material optimization experiments.

10.1 Implementation

FE Solver.We implemented our solver in C++ using the PolyFEM li-

brary [Schneider et al. 2019] for the forward solve, the IPCToolkit [Fer-

guson et al. 2020] for computing contact and friction potentials, and

Pardiso [Alappat et al. 2020; Bollhöfer et al. 2019, 2020] for solving

linear systems.

Optimization. Our optimization algorithm (Algorithm 1) uses the

L-BFGS implementation in [Wieschollek 2016], with backtracking

line search.

Remeshing. Shape optimization might negatively a�ect the ele-

ment shape, and for large deformation introduce close to singular

elements that force the optimization to take tiny steps. After every

optimization iteration, we evaluate the element quality using the

scaled Jacobian quality measure [Knupp 2001], and optimize the

mesh if it is below a threshold experimentally set to 10−3.

For 2D examples, we keep the mesh boundary �xed and we re-

generate the interior using GMSH [Geuzaine and Remacle 2009]

Before remeshing.

A�er remeshing.

Fig. 4. An example of remeshing in the shape optimization. The quality is

shown for each triangle. Triangles with bad quality have higher values.

Problem setup. Initial shape. Optimized shape.

Fig. 5. Static: Bridge With Fabricated Solution. The result of the shape

optimization (blue surface) matches the target shape (wire-frame).

(Figure 4). For 3D examples, we similarly �x the boundary and then

use the mesh optimization procedure of fTetWild [Hu et al. 2020]

to improve the quality of the interior until its quality is above the

threshold.

The reason why we can remesh without damaging the optimization

convergence is that our optimization objectives have little depen-

dence on interior node positions. The objectives are in the form of

an integral over the domain or boundary, so remeshing only leads

to small errors due to projections between the meshes.

The reason for �xing the boundary in the remeshing is that our

optimization objectives (Section 9.1) often depend on quantities on

the boundary vertices: if the boundary is remeshed, we will need

a bijective map between the two boundaries. Meshing methods

providing this map exist [Jiang et al. 2020], but their integration in

our framework, while trivial from a formulation point of view, is an

engineering challenge that we leave as future work.

Reproducibility. The reference implementation of our solver and

applications will be released as an open-source project.

10.2 Shape Optimization

We start our analysis with shape optimization problems both with-

out and with contact or friction forces.
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Table 4. Columns from le� to right are: example names, number of vertices, degree of freedom of the simulation, physical formulation, objective functional of

the optimization, total running time (sec), peak memory (Mb), number of iterations of the optimization, average running time of the simulation (sec), average

running time of computing gradients (sec), total number of Newton iterations (linear solves) in the simulation, number of Newton solves in the simulation.

Example Vertices Dofs Model Objective Total time Memory Iter Solve time Grad time Newton Iter. Newton Solve

Bridge (Figure 5) 4641 9282 Linear Target 16.1 162.3 55 0.0343 0.0296 0 0

Bridge (Figure 6) 18598 143378 Linear Stress 1665.8 1690.8 402 1.3859 0.1861 0 0

3D Beam (Figure 7) 9939 209409 NeoHookean Stress 95738.6 101786.3 171 192.1587 37.2651 1083 361

Interlocking (Figure 8) 1290 9946 IPC Stress 303.3 188.5 101 0.8394 0.0590 4900 335

2D Hook (Figure 9) 1760 13348 IPC Stress 220.5 726.5 60 1.7224 0.0802 2548 126

3D Hanger (Figure 10) 4190 80412 IPC Stress 14129.4 6554.0 29 204.2374 3.2117 4708 64

Bouncing Ball (Figure 11) 73 146 IPC Target 961.7 29.2 202 1.1061 0.0898 211611 41200

Sliding Ball (Figure 12) 526 6849 IPC Stress 1610.1 2184.6 29 24.3086 1.2580 0 0

Shock Protection (Figure 13) 53879 107758 IPC Stress 33301 10100 9 1264.395 129.96 35553 4800

Puzzle Piece (Figure 14) 370 740 IPC Trajectory 47.4 107.6 19 1.5877 0.2129 2917 630

Throw Bunny (Figure 1) 2174 6522 IPC Target 602.0 3344.1 9 209.2998 4.3731 15324 1000

Colliding Tentacles (Figure 15) 6896 20688 IPC Trajectory 13070 8325 5 2043 41.25 14447 720

Sine (Figure 16) 651 1302 Linear Target 0.3 34.4 12 0.0042 0.0022 0 0

Bridge (Figure 17) 18598 37196 Linear Target 32.7 655.2 39 0.1416 0.0398 0 0

Cube (Figure 18) 4631 103383 NeoHookean Target 455.8 6316.6 8 37.9947 2.6101 33 11

Micro-Structure (Figure 19) 3268 9804 IPC Target 602.3 33502.3 11 42.0954 0.0746 249 14

Kangaroo (Figure 20) 231 462 IPC Trajectory 21.6 224.6 6 1.6704 0.1624 2987 660

Sliding Bunny (Figure 21) 5682 17046 IPC Target 11734.0 2304.3 8 547.3644 1.6478 61517 880

Bouncing Ball (Figure 22) 720 1440 IPC Height 612.3 86.4 79 3.3482 0.2003 33609 5160

Bouncing Ball (Figure 23) 646 1938 NeoHookean Trajectory 206.3 152.8 24 3.0548 0.7396 3264 1632

Bouncing Ball (Figure 23) 1251 3753 IPC Trajectory 10546.6 1547.0 49 113.4214 8.8056 105401 20160

Initial stress distribution.

Optimized stress distribution.

Fig. 6. Static: Bridge. Result of shape optimization to minimize the average

stress.

Static: Bridge With Fabricated Solution. We fabricate a 2D solu-

tion to verify the correctness of our formulation and implementation.

Starting from the shape of a bridge (Figure 5) we run a forward lin-

ear elasticity simulation with the two sides �xed and gravity forces.

We now perturb the geometry of the rest pose and solve a shape op-

timization problem to recover the original rest pose, i.e. we remove

the perturbation we introduced by minimizing the objective in (31).

Static: Bridge.We use the same model for a more challenging prob-

lem (Figure 6): we use the same Dirichlet conditions and material

model, replace the gravity forces by 3 Neumann conditions on the

lower beams, and minimize the !8 norm of stress (30). To avoid

trivial solutions we add a constant volume constraint (Section 9.2).

The maximum stress is reduced from 68.789 to 22.232.

Static: 3D Beam. Moving to 3D (Figure 7), we perform static opti-

mization of the !8 norm of stress using Neo-Hookean materials on a

beam standing on a �xed support at the center (nodes on the bottom

surface of the beam have zero Dirichlet boundary conditions), and

with two side loads applied as Neumann boundary conditions. We

use (35) to bound the volume of the beam during optimization in

order to avoid trivial solutions. The maximum stress is reduced

from 3, 377 to 920. Note that this scene is not using contact, the

lower region of the central part of the beam is �xed with Dirichlet

boundary conditions.

Static: Interlocking. Our framework supports contact and tran-

sient friction forces between objects without requiring explicit def-

inition of contact pairs. We borrow the experimental setup used

in [Tozoni et al. 2021]: we optimize the shape of two interlocking

2D parts (Figure 8) to minimize the !8 norm of the stress (30). The

bottom part is �xed and a force pointing down-right is applied to the

top. Figure 8 shows how the shape changes to reduce the maximum

stress from 3.2 Pa to 0.29 Pa.
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Initial stress distribution.

Optimized stress distribution.

Fig. 7. Static: 3D Beam. Result of stress minimization on a beam standing

on a platform, with two loads on its sides.

Initial stress distribution.
Optimized stress
distribution.

[Tozoni et al.
2021].

Fig. 8. Static: Interlocking. Result of shape optimization to minimize the

!8 norm of stress.

Note that unlike [Tozoni et al. 2021], our contact model does not

support overlapping boundary nodes, which are used in [Tozoni

et al. 2021] to keep the contact over the optimization. To mimic

this behaviour in our setting, we create small displacements on the

overlapped boundary nodes along the normal directions as the initial

guess for the forward simulation, so that each object is shrinked by

a tiny amount and there is no overlap in the initial guess.

We note that our result is expected to be di�erent from [Tozoni

et al. 2021], as the contact models are di�erent and the solutions of

these problems are in general not unique. Despite their di�erences,

we observe in both cases a reduction in maximal stress of similar

magnitude (around 10 times reduction).

Static: 2D Hook. To physically validate our shape optimization

results we reproduce the experiment in [Tozoni et al. 2021, Figure

21], where a hook is optimized to minimize the maximum stress (30)

when a load is applied to one of its ends (Figure 9). The grey block

is �xed with zero Dirichlet conditions on all nodes. We physically

validate that the optimized shape is able to withstand a load of over

3× the unoptimized shape before breaking (Figure 9). The hook

Initial stress distribution.

Optimized stress
distribution.

Optimization result from
[Tozoni et al. 2021]

Fig. 9. Static: 2D Hook. Shape optimization of a hook to reduce stress

concentration (le�). Fabricated results with maximum load before failure

(right).

has been fabricated using an Ultimaker 3 3D printer, using black

PLA plastic. Despite the di�erent contact model, the result is quite

similar to the one presented in [Tozoni et al. 2021]: our approach has

the advantage of not requiring manual speci�cation of the contact

surfaces.

Static: 3D Hanger.We also reproduce the experiment [Tozoni et al.

2021, Figure 29]: a coat hanger is composed of two cylinders and a

hanger keeping the together. The shape of the hanger is optimized

to minimize the maximum internal stress (30) when two loads are

applied on its arms (Figure 10). The maximal stress is reduced from

89.93 Pa to 25.74 Pa. When comparing with [Tozoni et al. 2021], we

observe a similar optimized shape and an equivalent stress reduction

rate (around 3 times).

Transient: Bouncing ball. As a demonstration of shape optimiza-

tion in a transient setting, we run a forward non-linear simulation of

a ball bouncing on a plane and use its trajectory as the optimization

goal (32). We then deform the initial shape into an ellipse and try to

recover the original shape (Figure 11).

Transient: Shock Protection.We optimize the shape of a shock-

protecting microstructure from [Shan et al. 2015] so that the stress
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Initial con�guration. Optimized con�guration. [Tozoni et al. 2021]

Fig. 10. Static: 3D Hanger. Result of shape optimization of a hanger to

reduce stress concentration.

Initial shape. Optimized shape.

Iteration 20. Iteration 50. Iteration 70.

Fig. 11. Transient: Bouncing ball. The result of the shape optimization

(blue surface) matches the desired trajectory (wire-frame).

Problem setup. Initial stress distribution
at the frame of contact.

Optimized stress
distribution at the frame

of contact.

Fig. 12. Transient: Sliding Ball. Result of shape optimization to reduce

stress.

(30) of the load being dropped onto the microstructure is minimized.

To accelerate convergence, we adopt a low-parametric shape repre-

sentation from [Panetta et al. 2015]. In Figure 13, the maximal stress

is reduced from 32 kPa to 12 kPa. This example involves complex

self-contact inside the microstructure. Unlike penalty-based contact,

our method is intersection-free regardless of the contact parameters,

so able to produce plausible results with the same con�guration even

Step 0 Step 33 Step 66

Fig. 13. Transient: Shock Protection. Shape optimization of the shock-

protecting microstructure to reduce the stress on the falling load. The stress

distribution at di�erent time steps is shown for the initial shape (top) and

optimized shape (bo�om).

though the thickness of beams inside the microstructure changes

drastically in the optimization.

Transient: Sliding Ball. We optimize the shape of a ball sliding

down a ramp to minimize the internal stress (30). To avoid trivial

solutions, we add a volume constraint to not allow its volume to

decrease. Perhaps unsurprisingly, the ball gets �attened on the side

it contacts with the ramp as this leads to a major reduction of max

stress, from 38 kPa to 14 kPa.

10.3 Initial Conditions

Our formulation supports the optimization of objectives depending

on the initial conditions. We show three examples: the �rst involves

an object sliding on a ramp with a complex geometry, the second

simulates a game of pool, using bunnies instead of spheres, and the

third demonstrates complex contact between tentacles.

Transient: Puzzle Piece.We synthesise a trajectory using a for-

ward simulation, and we then perturb the initial conditions and try

to reconstruct them minimizing (31), with an additional integra-

tion over time (Figure 14). The puzzle piece uses a Neo-Hookean

material.

Transient: Throw Bunny.We use our solver to optimize the throw

(initial velocity) of a bunny to hit and displace a second bunny

into the prescribed circle (Figure 1), minimizing (32). This example

involves complex contact between the bunnies and the pool table,

and also friction forces slowing down the sliding after contact.

Transient: Colliding Tentacles.We optimize the initial velocity of

the green object in the scene of two colliding half spheres with ten-

tacles (Figure 15), minimizing the di�erence of the mass trajectory

with respect to a trajectory obtained from a reference simulation

(32). Our method manages to resolve the complex contact between

the soft tentacles.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.



Di�erentiable solver for time-dependent deformation problems with contact • 19

Initial trajectory. Iteration 3.

Iteration 5 . Optimized result

Fig. 14. Transient: Puzzle Piece.Optimizing the initial velocity of a bounc-

ing puzzle. Target is shown as a black outline while the trajectory being

optimized is blue.

Step 0 Step 20

Step 40 Step 60

Fig. 15. Transient: Colliding Tentacles.We optimize the initial velocity

so that the mass trajectory matches the reference simulation. The faded

view represents the initial configuration. The optimized simulation matches

exactly with the reference simulation.

10.4 Material Optimization

Next, we look at material optimization problems, where our di�er-

entiable simulator is used to estimate the material properties of an

object from observations of its displacement.

Static: Sine. We optimize the material of a bar to match the shape

of a sine function (wire-frame) when Dirichlet boundary conditions

are applied at its ends (31). The rest shape of this bar is a rectangle

[−4, 4] × [−0.3, 0.3], the left and right surfaces are �xed by Dirichlet

boundary condition of D~ = 0.7 sin(G + DG ) and DG = −B86=(G),

Initial displacement. Optimized displacement.

Optimized � pattern. Optimized a pattern.

Fig. 16. Static: Sine. Optimized material parameters to obtain a displace-

ment (blue surface) in ~-direction similar to a sine function for a linear

material model (wire-frame).

Problem setup. Initial displacement. Optimized displacement.

Optimized � pattern. Optimized a pattern.

Fig. 17. Static: Bridge. Optimization of the materials of a bridge (blue

surface) to match a forward simulation (wire-frame).

Physical Experiment Setup. Initial shape. Optimized.

Fig. 18. Static: Cube.Material optimization (blue) to match real data (or-

ange).

and no body force is applied. Figure 16 shows that deformed bar is

aligned with a sine function.

Static: Bridge. We assign material parameters _ = 160, ` = 80 to a

bridge shape and run a linear forward simulation to obtain the target

displacement D★ (Figure 17 in gray), using the same set of boundary

conditions as Figure 5. We initialize the optimization using uniform

material _ = 100, ` = 50 and minimize (31), successfully recovering

_, ` from D★.

Static: Cube.We set up a physical experiment with a silicon rubber

cube compressed by a vise. The deformation is acquired using an HP

3D scanner, and a set of marker points is manually extracted from

the scan. We minimize (31) to �nd the material parameters which
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Initial. Optimized. Physical Experiment Setup.

Fig. 19. Static: Micro-StructureMaterial optimization of a complex mi-

crostructure in a deformed state with contact (blue) to match real data

(orange).

Initial displacement. Optimized displacement.

Fig. 20. Transient: Kangaroo. Non-linear transient simulation of a kanga-

roo (blue surface) bouncing on a plane to match a target shape (wire-frame).

Initial guess. Optimized result.

Fig. 21. Transient: Sliding Bunny. Optimize the friction coe�icient so

that the bunny can reach the white line at C = 2.

produce the observed displacements. We found that the material

parameter that leads to the smallest error is a = 0.4817 (Young’s

modulus does not a�ect its deformation in this setting) and the L2

error in markers position is 3.85 × 10−3m.

Static: Micro-Structure.We repeat the same experiments with the

complex geometry of a micro-structure tile from [Panetta et al. 2017].

This is a challenging example, as the micro-structure beams come in

contact after compression, and physical models without self-contact

handling may lead to penetration. The optimization is initialized

with � = 106 Pa and a = 0.3 and converges to � = 2.27 × 105 Pa and

a = 0.348. Our solver can �nd material properties � = 2.27 × 105 Pa

and a = 0.348 with a L2 error on the markers of 8.8 × 10−3m.

Transient: Kangaroo. As an example of reconstruction of material

parameters from a transient simulation, we run a forward simula-

tion to obtain a transient non-linear target displacement. Then we

minimize (31) to reconstruct the material parameters (Figure 20).

The initial material parameters are � = 3 × 106 Pa and a = 0.5, and

the target material parameters are � = 107 Pa and a = 0.3.

Initial �. Optimized �.

� = 2.9e3 1e4 1e5 1e6 1e7 1e8 1e9 1e10 3e10

Initial a . Optimized a .

a = 1e-5 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.53

Fig. 22. Transient: Bouncing Ball.Material optimization to increase the

bouncing height.

Transient: Sliding Bunny. We use our solver to optimize the

friction coe�cient to ensure that the bunny is on the white line

at time C = 2. The initial friction coe�cient is W = 0.5, and the

optimized friction coe�cient is W = 0.0974 (Figure 21). This example

involves complex self-contact and friction of the bunny with the

�oor.

Transient: Bouncing Ball.We show that the height of the bounce

of a ball can be optimized by changing the material parameters

(Figure 22). Initial material parameters for the ball and plank were

� = 105 Pa, a = 0.48 and � = 109 Pa, a = 0.48, respectively and

the elasticity model used was NeoHookean. Note that we added a

smoothing term to the optimization to increase smoothness in the

material parameters.

Transient: Physical Experiment Bouncing Ball.We show that

we can optimize for the initial velocity, material parameters, fric-

tion coe�cient, and damping parameters of a silicone rubber ball

bouncing on an incline, using trajectory data from a physical ex-

periment. The real-world dynamics of the ball are captured using a

high-speed camera and used to formulate a functional based on (32),

which penalizes di�erences between the observed and simulated

barycenter of the ball. The material model used is NeoHookean

and we match initial conditions by optimizing for them using the

observed barycenters of the ball before it hits the ground.

10.5 Comparisons

Finally, we compare our method with existing methods in terms of

solution quality, contact handling, and e�ciency. Due to stability

issues, di�erent time step sizes are chosen for di�erent methods

so that no visible artifacts appear in the forward simulations. See

Table 5 for statistics. We also compare our method with �nite dif-

ference and automatic di�erentiation on PolyFEM [Schneider et al.

2019] in terms of e�ciency.

Transient: Armadillo.We simulate dropping the Armadillo (using

the same material parameters) onto a �xed plane (Figure 24) and

compute the material derivatives with our method, Di�PD [Du et al.
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Physical experiment.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
X

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Y

optimized trajectory
optimized initial velocity trajectory
initial trajectory
experiment trajectory

G~ coordinates of the barycenter of the
ball over time.

0 10 20 30 40
10 8

10 7

10 6

10 5

10 4

10 3
Energy
Gradient norm

Energy and gradient over the
optimization iterations.

Initial guess (green), initial velocity optimization (yellow), material
optimization (blue), and experimental data (orange).

Fig. 23. Transient: Physical Experiment Bouncing Ball. Optimize the

material and initial velocity of the ball to match the observed physical result.

Table 5. Comparisons. Columns from le� to right are examples, methods,

degree of freedom of the simulation, time step size, peak memory (MB),

running time of the simulation (s), and running time of computing gradients

(s).

Example Method Dofs dt Memory Solve time Grad time

Armadillo

Di�PD 36699 3 × 10−3 1246 37.9 131.2

GradSim 36699 1.5 × 10−5 17164 167.2 N/A

Ours 36699 6 × 10−3 2068 220.6 14.1

Hilbert Cube

Di�PD 4050 5 × 10−2 240 1.555 2.12

GradSim 4050 5 × 10−4 1323 11.1 27.7

Ours 4050 5 × 10−2 1599 73.2 1.73

Billiards
Di�PD 978 2.5 × 10−3 226 11.3 10.5

Ours 978 2.5 × 10−3 190 66.2 3.1

2021] and GradSim [Jatavallabhula et al. 2021]. The results of Grad-

Sim and our method are similar, which is expected as both methods

are based on a �nite element formulation with a similar material

model. However, the backward solve of GradSim encounters NAN

and fails to compute the gradient, likely due to the instability from

its semi-implicit time integration or the non-di�erentiable contact

model (Its contact force is only �0). Di�PD creates a result that is

di�erent from the two, likely due to the use of a di�erent elastic

model.

Initial Di�PDOursGradSim

Fig. 24. Transient: Armadillo. Simulation of dropping an Armadillo onto

the floor.

Initial Di�PDOursGradSim

Fig. 25. Transient: Hilbert Cube. Simulation of dropping a Hilbert cube

onto the floor.

t=0 t=0.1 t=0.2

t=0.3 t=0.4 t=0.5

Fig. 26. Transient: Billiards. The ball on the le� with initial velocity

(cos( 15180c ), sin(
15
180c ) ) hits the ball on the right, simulated with our

method (orange) and Di�PD (blue).

Transient: Hilbert Cube. In this example, we simulate the drop

of a Hilbert cube (Figure 25), compute the material derivatives, and

compare our method with GradSim and Di�PD. Although GradSim

and Di�PD can resolve the planar contact, they do not support

self-collision, resulting in visible and physically implausible self-

intersections. In contrast, the solution computed by our method has

no self-intersections or inverted elements.

Static: Tensile Test.We perform the tensile testing on a bar of size

0.16m × 0.08m × 0.08m, with Poisson’s ratio a = 0.3 and Young’s

modulus � = 103Pa, using both our method and Di�PD. We re�ne

the meshes used in both methods until the results become stable and

show the converged results. Since there is no contact, our method is

equivalent to the standard FEM with Neo-Hookean material. Since

the material model used in Di�PD is an approximation of the hyper-

elastic model designed for high e�ciency, there is a noticeable

di�erence between Di�PD and the standard model when the de-

formation is large (Figure 27). We favor using the Neo-Hookean
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Di�PDOurs

100% 100%

94%90%

84% 91%

91%81%

Fig. 27. Static: Tensile Test. Stretch a 3D bar up to 300% strain with our

method (orange) and Di�PD (blue). The thickness of the deformed bar is

shown as a percentage with respect to the initial thickness.

material model, as we are interested in accurately capturing large

physical deformations.

Transient: Billiards. In this example we reproduce the billiards

example in [Du et al. 2021] (Figure 26), and compute the material

derivatives. Since GradSim does not support collisions between

spheres (or between meshes), we restrict the comparison to Di�PD.

Although the same mesh is used in both methods, there is a signif-

icant di�erence in the contact handling: Our method detects the

collision between the discrete meshes, while Di�PD uses the av-

eraged sphere center and radius to detect the collision between

spheres. While more e�cient, the Di�PD solution is customized for

this example, while our approach works on arbitrary geometries.

Due to the di�erence in both the elastic model (Figure 27) and con-

tact handling, the results are di�erent. Our forward simulation is 6

times slower than Di�PD.

Finite Di�erence. To evaluate the correctness and e�ciency of

our method, we compute the gradient using �nite di�erences and

compare it with our method. We use the central di�erence scheme,

which requires solving the forward problem for 2= times if the

parameter dimension is =. As a result, the �nite di�erence is approx-

imately twice as expensive as the forward solve, while the time of

our method is negligible (Table 6).

Table 6. Finite Di�erence. Columns from le� to right are examples, dimen-

sion of the design parameters, running time of the simulation (s), running

time of the adjoint method (s), and running time of the finite di�erence

(s). The accuracy is the relative error between the finite di�erence and the

adjoint method.

Example Dim Solve time Grad time FD time Accuracy

Shock Protection (Figure 13) 24 1273 131.8 63502 1.12 × 10−2

Micro-Structure (Figure 19) 2 42.1 0.089 172.1 2.25 × 10−6

Sliding Bunny (Figure 21) 1 544.6 1.74 1092 6.35 × 10−10

Automatic Di�erentiation (AD).While it is impossible to trans-

form the linear solver to AD form for large problems (see Section 2.1),

we could use AD to compute the terms needed in the adjoint method.

To evaluate the di�erence in performance between AD and ana-

lytic derivation, we focus our investigation on the local assembly

of the elastic force vector into AD form [Jakob 2010] to compute

the p) mqh
: in Equation (11). We solve the static NeoHookean PDE

on a tetrahedral mesh with 4670 vertices and using linear FE bases.

Our method of computing p) mqh
: takes 0.0174 seconds, while AD

takes 0.247 seconds. The forward nonlinear solve takes 2.85 seconds,

and the backward adjoint solve takes 0.0212 seconds. Given this

experiment, we opted to spend the additional e�ort in analytically

deriving the adjoint terms to avoid this unnecessary additional com-

putational cost. In our setting with expensive implicit solves, the

cost of computing the adjoint terms is a small overhead on the whole

optimization, and computing the derivatives with AD makes the

implementation simpler and makes it easier to switch the material

models. However, we found that for more complex contact models,

not included in this paper, the cost of AD can still be signi�cant,

and in settings in which forward solves can be done explicitly or

semi-implicitly, the computational costs are distributed di�erently.

11 CONCLUDING REMARKS

We introduced a generic, robust, and accurate framework for PDE-

constrained optimization problems involving elastic deformations

of multiple objects with contact and friction forces. Our frame-

work supports customizable objective functions and allows for the

optimization of functionals involving the geometry of the objects in-

volved, material parameters, contact/friction parameters, and bound-

ary/initial conditions.

There are several limitations in our work. First, our derivation is

limited to hyper-elastic and visco-elastic materials.We don’t support

simulating shells (cloth), plastic materials, �uid, etc. Second, rigid

and articulated objects, which are widely used in robotics, are not

supported. Although it can be approximated by very large sti�ness

in our framework, the simulation is much slower than rigid body

simulations. Third, our forward simulation, though robust, is less

e�cient than previous works like [Du et al. 2021; Jatavallabhula

et al. 2021] in simple scenes (Section 10.5).

We believe the bene�ts of our analytic derivation of the adjoint sys-

tem (e�ciency, generality, guarantee of convergence under re�ne-

ment) outweigh its downsides (complexity of derivation, di�culty in

implementation, and requirement of an explicit FE mesh). We plan

to extend our approach to a wider set of PDE-constrained problems

and to further optimize it for common use cases in material design

and robotics. In particular, we would like to explore the following

directions:

(1) Add support for periodic boundary conditions, which are re-

quired for the design of micro-structure families [Tozoni et al.

2020].

(2) Add support for rigid and articulated objects (i.e. allow the

material sti�ness to be in�nite). We plan to incorporate the IPC
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formulation introduced in [Ferguson et al. 2021] to improve

performance in design problems involving rigid objects.

(3) Many robotics problems involve the manipulation of plastic

objects or interaction with �uids: adding support for additional

physical models will widen the applicability of our simulator.

(4) We designed our system to provide accurate modeling of elastic,

contact, and friction forces, as the majority of PDE-constrained

applications require accurate simulations faithfully reproducing

the behavior observable in the real works. However, there are

applications where this is not necessary, and in these cases,

it would be possible to either use simpler elastic models or

reduce the accuracy of the collision/friction forces by using

proxy geometry. This is commonly done in graphics settings,

and it would be interesting to add this option to our system to

accelerate its performance.
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form, only assuming that the force terms depend on solution and

optimization parameters but not explicitly on time.

Problem setup.We assume all quantities involved in the adjoint

equations and shape derivatives for the static case known from the

main text. In this appendix, we derive how to update these to obtain

the adjoint equation for the time-dependent PDE.

We consider the following time-dependent system, discretized in

space.

¤u = v; " (q) ¤v = h(u, q); u(0) = gD (q); v(0) = gE (q)

where" (q) is the mass matrix, which may also depend on parame-

ters ? .

We assume that the discretization in time uses a BDF scheme of

order<:

¤u ≈
1

VΔC
(u8 +

min(8,<)∑
9=1

U89u
8− 9 ).

In general, U89 does not depend on 8 , except at the �rst< − 1 steps,

when a higher-order scheme needs to be initialized with lower-order

steps; more speci�cally, U89 is 9-th coe�cient of BDFi, for 1 ⩽ 8 < <,

and 9-th coe�cient of BDFm otherwise.

We assume that h(u, q) does not directly depend on the velocities v;

if a dependence on velocities is needed, as we see below, it can be

expressed directly in terms of D.

The discrete system has the form

u8 +

min(8,<)∑
9=1

U89u
8− 9

= V8ΔC v
8 ,

"

(
v8 +

min(8,<)∑
9=1

U89v
8− 9

)
= V8ΔC h

8 (u8 , u8−1, q) = ĥ8 .

(39)

where" is the mass matrix. This is the form in which the system is

solved in [Li et al. 2020].

For time-dependent problems, we consider functionals of the form

� (u, q) =

∫ )

C=0
� (u, C, q)3C,

where � (u, C, q) is a spatial functional, e.g., integral over the solid

Ω(C) or its surface, of some pointwise quantity depending on the

solution and/or its derivatives pointwise. In discretized form, this

functional is

� (u, q) =

#∑
8=0

F8 �8 (u
8 , q) =

#∑
8=0

�̂ 8 ,

whereF8 are quadrature weights (e.g., all ΔC in the simplest case),

and N is the number of time steps.

Remark on notation. We omit most of the explicit arguments

in functions ℎ and � used in the expressions, to make the for-

mulas more readable. The following is implied: h(u8 , u8−1, q, C8 ) =

h8 (u
8 , u8−1, q) = h8 and similarly for �8 .

Summary. Computing the derivative 3q � requires the following

components

• Derivatives mu �8 , muh8 , mq �8 and mqh8 . See Sections 7 to 9 in main

text for corresponding formulas.

• Derivatives mqg
D and mqg

E , derivatives of the initial conditions.

See Section 5.4 in main text.

To compute the parametric derivative of � , the steps are as follows:

• Solve the forward system (39), and store the resulting solutions

u8 , v8 , 8 = 0 . . . # at every step.

• Initialize adjoint variables p# ,.# from (43) (general BDF: (13)).

• Perform backward time stepping using (41) (general BDF: (12)).

• At every step, evaluate derivative of the mass matrix 3q" , if

applicable, and use formula (44) (general BDF: (15)) to update

3q � .

A.1 Implicit Euler

Discrete Lagrangian. We use the Lagrangian-based approach

(Céa’s method) to derive the adjoint equation. The overall idea

is to write the Lagrangian L for the functional � viewing the equa-

tions for ¤v and ¤u as constraints with Lagrange multipliers p and

-. For the solution (u, v) for any optimization parameter values,

the constraints are satis�ed, 3q � = 3qL, as the constraint terms

identically vanish. The goal of introducing the adjoint variables is

to eliminate the direct dependence of 3q � on the displacement and

velocity derivatives: 3qu
8 or 3qv

8 .

To achieve our objective, we expand the derivative 3qL, and iso-

late the terms multiplying 3qu and 3qv. By setting the sum of each

of these two sets of terms to zero (which corresponds to our ad-

joint equations), we can �nd p and - so that the derivative of the

functional 3q � does not directly depend on 3qu
8 or 3qv

8 .

The time-stepping for implicit Euler/BDF1 has the following simple

form:

u8 − u8−1 = ΔC v8 ,

" (v8 − v8−1) = ΔC h8 = ĥ8 .
(40)

We introduce adjoint variables ?8 and `8 (we use subscripts for

the adjoint variables to indicate the time step, as these are often

transposed in the formulas to make the formulas more readable).

In the derivation below, we drop most dependencies on variables,

assuming �̂ 8 = �̂ 8 (u8 , q), gD = gD (q), gE = gE (q), ĥ8 = ĥ(u8 , u8−1, q)

and" = " (q).

The Lagrangian L has the form

L =

#∑
8=0

�̂ 8 {objective terms}

+ p)0 (v
0 − gE ) + -)0 (u

0 − gD ) {initial condition terms}

+

#∑
8=1

p)8 (" (v
8 − v8−1 ) − ĥ8 ) + -)8 (u

8 − u8−1 − ΔC v8 ) . {PDE terms}
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Rearranging terms, and shifting summation index for u8−1,

L = p)0 (v
0 − gE ) + -)0 (u

0 − gD ) + �̂ 0

+

#∑
8=1

�̂ 8 + p)8 (" (v
8 − v8−1 ) − ĥ8 ) + -)8 (u

8 − u8−1 − ΔC v8 )

= p)0 (v
0 − gE ) + -)0 (u

0 − gD ) + �̂ 0

+

#∑
8=1

�̂ 8 + p)8 ("v8 − ĥ8 ) + -)8 (u
8 − ΔC v8 ) −

# −1∑
8=0

p)8+1"v8 + -)8+1u
8 .

Combining two sums back together and separating # -th term from

the �rst, we get

L = p)0 (v
0 − gE ) + -)0 (u

0 − gD ) + �̂ 0 − p)1 "v0 − -)1 u
0

+

# −1∑
8=1

�̂ 8 + p)8 ("v8 − ĥ8 ) + -)8 (u
8 − ΔC v8 ) − p)8+1"v8 − -)8+1u

8

+ �̂ # + p)# ("v# − ĥ# ) + -)# (u
# − ΔC v# ) .

Collecting u8 and v8 terms:

L = �̂ 0 − p)0 g
E − -)0 g

D + (p)0 − p)1 " )v
0 + (-)0 − -)1 )u

0

+

# −1∑
8=1

�̂ 8 − p)8 ĥ
8 + (-)8 − -)8+1 )u

8 + ( (p)8 − p)8+1 )" − -)8 ΔC )v
8

+ �̂ # − p)# ĥ# + -)# u# + (p)#" − -)# ΔC )v# .

Di�erentiating with respect to q:

3qL = mq �̂
0 − p)0 mqg

E − -)0 mqg
D − p)1 mq"v0 + (p)0 − p)1 " )3qv

0+

+ (m
u8
�̂ 0 + -)0 − -)1 )3qu

0+

+

# −1∑
8=1

mq �̂
8 − p)8 mqĥ

8 + (p)8 − p)8+1 )mq"v8+

+

# −1∑
8=1

(-)8 − -)8+1 + mu8 �̂
8 − p)8 mu8 ĥ

8 )3qu
8 − p)8 mu8−1 ĥ

8 3qu
8−1+

+ ( (p)8 − p)8+1 )" − -)8 ΔC )3qv
8+

+ mq �̂
# − p)# mqĥ

# + (m
u8
�̂# − p)# mu# ĥ# + -)# )3qu

# +

− p)# mu# −1 ĥ
# 3qu

# −1 + (p)#" − -)# ΔC )3qv
# + p)# mq"v# .

Reorganizing to have all terms for each 3qu
8 together:

3qL = mq �̂
0 − p)0 mqg

E − -)0 mqg
D − p)1 mq"v0 + (p)0 − p)1 " )3qv

0+

+ (m
u8
�̂ 0 + -)0 − -)1 − p)1 mu0 ĥ

1 )3qu
0

+

# −1∑
8=1

mq �̂
8 − p)8 mqĥ

8 + (p)8 − p)8+1 )mq"v8

+

# −1∑
8=1

(-)8 − -)8+1 + mu8 �̂
8 − p)8 mu8 ĥ

8 − p)8+1mu8 ĥ
8+1 )3qu

8+

+ ( (p)8 − p)8+1 )" − -)8 ΔC )3qv
8

+ mq �̂
# − p)# mqĥ

# + (m
u8
�̂# − p)# mu# ĥ# + -)# )3qu

# +

+ (p)#" − -)# ΔC )3qv
# + p)# mq"v# .

Introducing - = "). , we obtain the following adjoint equations

from the terms multiplying 3qv
8 and 3qu

8 in the summation:

p8 − p8+1 = ΔC .8 ,

") (.8 − .8+1) = (mu8 ĥ
8 )) p8 + (mu8 ĥ

8+1)) p8+1 − (mu8 �̂
8 )) .

(41)

For the initial conditions we get from the terms multiplying 3qv
#

and 3qu
# :

p# = ΔC .# ,

").# = (mu8 ĥ
# )) p# − (mu8 �̂

# )) .
(42)

By introducing p#+1 and .#+1, the initial conditions can be simpli-

�ed as
p#+1 = 0,

.#+1 = 0.
(43)

For p0,.0 we have"
).0 = −(mu0 �̂

0)) +").1 + p
)
1 mu0 ĥ

1 and p0 =

") p1.

Finally, the expression for3q � is obtained by dropping all terms with

3qv
8 and 3qu

8 , as these are set to zero by our choice of equations

for the adjoint, and retaining the rest:

3q � = mq �̂
0 − p)0 mqg

E − -)0 mqg
D − p)1 mq"v0,

+

#∑
8=1

mq �̂
8 − p)8 mqĥ

8 + ΔC .)8 mq"v8 .
(44)

A.2 General BDF time integration

Discrete Lagrangian. For the general case, we split the Lagrangian

L(u, v, p, -, q) into three parts: � (u, q) itself, the part L2 containing

the Lagrange multipliers for the time steps 8 = 1 . . . # , and the part

for initial conditions L8=

L(u, v, p, -, q) = � (u, q) + L2 (u, v, p, -, q) + L8= (u
0, v0, p0, -0, q),

where

L8= = p)0 (v
0 − gE) + -)0 (u

0 − gD ) .

We start with L2 . Remember that L2 depends on ℎ8 , which has

inputs G , D8 and D8−1 (due to friction):

L2 =

#∑
8=1

p)8 "

(
v8+

min(8,<)∑
9=1

U89v
8− 9−ĥ8

)
+-)8

(
u8+

min(8,<)∑
9=1

U89u
8− 9−V8ΔC v

8

)
.

We rearrange the double summations in this expression, so that

each term depends only on u8 and v8 , as the adjoint equations will

be obtained by setting coe�cients of 3qu
8 and 3qv

8 to zero after

di�erentiation.

If we have a sum of the form

#∑
8=1

min(8,<)∑
9=1

U892
)
8 I8− 9 ,

we can change the summation order: let A = 8 − 9 ,

#∑
8=1

8−1∑
A=max(0,8−<)

U88−A 2
)
8 IA =

# −1∑
A=0

min(A+<,# )∑
8=A+1

U88−A 2
)
8 IA =

# −1∑
A=0

min(<,# −A )∑
9=1

U
9+A
9

2)A+9 IA ,
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where we introduced back 9 = 8 − A in the last equation. Finally,

renaming A to 8 , we obtain the form for which each term contains

I8 only:
# −1∑
8=0

( min(<,# −8 )∑
9=1

U
8+9
9 2)8+9

)
I8 . (45)

Returning to the Lagrangian, we regroup the terms in L as:

L2 =

#∑
8=1

(
p)8

(
"v8 − ĥ8

)
+ -)8

(
u8 − V8ΔC v

8
))
+

#∑
8=1

min(8,<)∑
9=1

(
p)8 "U

8
9 v
8− 9 + -)8 U

8
9 u
8− 9

)
.

Using (45), we get

L2 =

#∑
8=1

(
p)8

(
"v8 − ĥ8

)
+ -)8

(
u8 − V8ΔC v

8
))
+

# −1∑
8=0

min(<,# −8 )∑
9=1

(
p)8+9"U

8+9
9

v8 + -)8+9 U
8+9
9

u8
)
.

Collecting the terms for u8 and v8 :

L2 =

# −1∑
8=1

−p)8 ĥ
8 +

©­
«
©­
«
p)8 +

min(<,# −8 )∑
9=1

U
8+9
9 p)8+9

ª®¬
" − V8ΔC -

)
8
ª®¬
v8+

+
©­«
-)8 +

min(<,# −8 )∑
9=1

U
8+9
9 -)8+9

ª®¬
u8+

<∑
9=1

p)9 "U
9
9 v

0 + -)9 U
9
9 u

0+

− p)# ĥ# + (p)#" − V# ΔC -)# )v
# + -)# u# .

We split this expression again, into L<832 +L0
2 +L

#
2 , corresponding

to three lines of the equation; these terms contribute to the time-

dependent adjoint equations and boundary conditions. In this form,

it is straightforward to di�erentiate with respect to @:

3qL
<83
2 =

# −1∑
8=1

−p)8 mqĥ
8 +

©­
«
p)8 +

min(<,# −8 )∑
9=1

U
8+9
9 p)8+9

ª®
¬
3q"v8+

# −1∑
8=1

©­
«
(
p)8 +

min(<,# −8 )∑
9=1

U
8+9
9 p)8+9

)
" − V8ΔC -

)
8
ª®
¬
3qv

8+

+
©­«
-)8 +

min(<,# −8 )∑
9=1

U
8+9
9 -)8+9 − p)8 mu8 ĥ

8 − p)8+1 mu8 ĥ
8+1ª®¬

3qu
8+

− p)1 mu0 ĥ
1 3qu

0

3qL
0
2 =

<∑
9=1

U
9
9

(
p)9 3q"v0 + p)9 "3qv

0 + -)9 3qu
0
)

3qL
#
2 = −p)# mqĥ

# − p)# mu# ĥ# 3qu
# + p)# 3q"v# +

+ (p)#" − V# ΔC -)# )3qv
# + -)# 3qu

# .

Similarly, we split

3q � =

# −1∑
8=1

mq �̂
8+

# −1∑
8=1

mu �̂
83qu

8+
(
mq �̂

0+mu �̂
03qu

0 )+(mq �̂ # +mu �̂ # 3qu# )
= 3q �

<83 +3q �
0+3q �

# .

Adjoint equations. Equating the coe�cients of 3qu
8 and 3qv

8 ,

8 = 1 . . . # − 1 to zero in 3qL
<83
2 + 3q �

<83 , we obtain the adjoint

equations:

")
(
p8 +

min(<,# −8 )∑
9=1

U
8+9
9 p8+9

)
= V8ΔC -8 ,

-8 +

min(<,# −8 )∑
9=1

U
8+9
9 -8+9 = (mu8 ĥ

8 )) p8 + (mu8 ĥ
8+1 )) p8+1 − (mu �̂

8 )) ,

(46)

for 8 = 1 . . . # − 1.

Making a substitution - = ") .̂ , we obtain (12).

We obtain the adjoint equation in time in the form very similar to

the forward equations (39). The most important di�erence is that

the integration is "back in time", i.e., the �nite di�erence formula for

time derivative is applied to 8, . . . 8 +<. This means that the system

is integrated backwards, starting with (p# , -# ). Second, there is a

slight di�erence in the coe�cients of the scheme used. Speci�cally,

the starting iterations do not use the lower-order BDF formulas,

rather truncations of the same order BDF formula. At the same time,

the end iterations, for small 8 , will use lower order coe�cients, even

though this is not needed. The reason for preferring this (although

this seemingly damages the accuracy of the integration of the ad-

joint) is consistency with the functional discretization: as this fact is

a consequence of deriving the adjoint from the time discretization,

if we compute the functional using the same discretization, �nite

di�erences for the functional will be closer to the adjoint.

Initial conditions for adjoint. The initial conditions follow from

setting coe�cients of 3qu
# and 3qv

# to zero in 3qL
#
2 3q �

# , i.e.

(mu �̂
# )) − muĥ

# p# + -# = 0; ") p# − V#ΔC -# = 0.

Substituting - = "). , we get

(mu �̂
# )) − mu# ĥ

# p# +"
).# = 0; p# − V#ΔC .# = 0,

and a linear system for for .# :

(mu �̂
# )) + (") − V#ΔC mu# ĥ

# ).# = 0.

Solving these

(") − V#ΔC mu# ĥ
# ).# = −(mu �̂

# )) , p# = V#ΔC .# . (47)

By introducing p#+1, .#+1, the initial condition can be simpli�ed

as (13).

Finally, the adjoint equations (12) only allow to solve down to to

8 = 1; the equations for p0, -0 are derived from 3q �
0 +3qL8= +3qL

0
2 ;

adding terms containing 3qu
0 and 3qv

0, we get:

©­«
mu �̂

0 + -)0 +

<∑
9=1

U
9
9 -
)
9 − p

)
1 mu0 ĥ

1ª®¬
3qu

0 +
©­«
p)0 +

<∑
9=1

U
9
9 p
)
9 "

ª®¬
3qv

0,

which yields direct expressions (14) for p0 and -0, based on p8 , -8
for 8 = 1 . . .<.

Computing the derivative of � from the forward and adjoint

solutions. Finally, once the adjoint variables are obtained, we can

compute (15), by collecting all terms not containing 3qu
8 and 3qv

8 .

Partial derivatives mqĥ, muĥ and mq �̂8 , mu �̂8 are exactly the same as

used in the construction of the system for static adjoint and computa-

tion of the functional. The di�erences, speci�c to time discretization,

are:

• Mass matrix derivative 3q" . See Section A.3.

• Partial derivatives of the initial conditions with respect to pa-

rameters mqg
E and mqg

D , for positions and velocities (See Ap-

pendix A.4). Typically, a 3D position and velocity for the whole

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.



28 • Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin

object (or angular velocity for the object rotating as a rigid body)

are used as parameters, so these are trivial to compute.

A.3 Mass matrix derivative

Consider our Mass Matrix as follows:

"�B+8,�C+8 =
∑

4∈� (B )∩� (C )

∫
@̄4 ( ̂4 )

d (q) q loc4 (B ) (G) q loc4 (C ) (G) 3G,

where 8 ∈ {1, .., �} and � equals 2 or 3 (representing dimension).

This means mass matrix" has � · = rows and columns. Here, we

use notation to de�ne the local index of a node loc4 (ℓ) with respect

to elements 4 containing it.

Then, we can obtain the shape derivative with respect to perturba-
tion \ (Gn = G + n\ (G)) by computing the Gateaux Derivative below
for each element:

m@"�B+8,�C+8 =
3

3n

���
n=0

∑
4∈� (B )∩� (C )

∫
@̄4 ( ̂4 )n

d (q) q loc4 (B ) (Gn ) q loc4 (C ) (Gn ) 3Gn

=

∑
4∈� (B )∩� (C )

∫
@̄4 ( ̂4 )

mqd (q) q
loc4 (B ) (G ) q loc4 (C ) (G )+

+ d (q) q loc4 (B ) (G ) q loc4 (C ) (G ) ∇ · \ (G ) 3G

=

∑
4∈� (B )∩� (C )

∑
; ∈Loc4

∫
@̄4 ( ̂4 )

mqd (q) q
loc4 (B ) (G ) q loc4 (C ) (G ) +

+ d (q) q loc4 (B ) q loc4 (C ) ∇b; 3G · \; .

A.4 Initial condition derivatives

We need to compute partial derivatives of the initial conditions with

respect to optimization parameters q, mqg
E and mqg

D , for positions

and velocities. Notice that both mqg
E and mqg

D are discrete vector

�elds on domain Ωq̄. Consider we have one vector value q
< per

node of the domain.

If (gE)B = q< , where (gE)B is initial condition at node B , the deriva-

tive with respect to @< is simply the identity matrix (mq< (g
E)B = � ).

At the same time, it is the zero matrix w.r.t. any other @<
∗
, with

<∗ ≠<. Same thing goes for gD .

B PARAMETRIC DERIVATIVES OF FORCES

In this section, we derive general expressions for gradient-dependent

volume forces.

In a general form, the contribution to the PDE can be written as

H E (D,F,&) =

∫
Ω@̄

5 E ((∇D (G), @(G)) : ∇F 3G.

B.1 Gradient-dependent volume forces

Shape derivatives. we omit the dependence on q, and use ∇5 to

denote m∇D 5 .

De�ne Ωn = Ωq̄+)n , Ω = Ωq̄ and G
n
= G + n\ . Let Dn be the solution

on domain Ωn . Then computing the Gâteaux derivative ofH E we

get:

3

3n

���
n=0
H 5 =

3

3n

���
n=0

∫
Ωn

5 (∇GnD
n ) : ∇GnF

n 3Gn

=
3

3n

���
n=0

∫
Ω

5 ( (∇D )� −1n ) : (∇F )�
−1
n det �n 3G

=

∫
Ω

3

3n

���
n=0

(
5 ( (∇D )� −1n )�

−)
n : ∇F det �n

)
3G

=

∫
Ω

−5 (∇D )∇\) : ∇F + (∇5 (∇D ) : ∇XD ) : ∇F +

−(∇5 (∇D ) : (∇D∇\ ) ) : ∇F + (5 (∇D ) : ∇F )∇ · \ 3G.

(48)

Thus we have for the shape derivative contribution:

�5 (\, ? ) =

∫
Ω

−5 (∇D )∇\) : ∇? − (∇5 (∇D ) : (∇D∇\ ) ) : ∇? + (5 (∇D ) : ∇? )∇ · \ 3G.

� 5 (\, ?) is linear in \ and ? , and we convert it to a matrix form by
substituting basis functions for \ and ?:

[�5 ]�0+8,�1+9 =
∑

4∈� (0)∩� (1)

∑
:,; ∈1..�

X8,9

∫
@̄4 ( ̂4 )

− [∇b loc4 (1) ]: 5:; [∇q
loc4 (0) ]; 3G +

+
∑

4∈� (0)∩� (1)

∑
:,;,<∈1..�

∫
@̄4 ( ̂4 )

−∇5 (∇D)8:;< [∇b
loc4 (1) ]; [∇D ] 9< [∇i

loc4 (0) ]: 3G +

+
∑

4∈� (0)∩� (1)

∑
:∈1..�

∫
@̄4 ( ̂4 )

5 (∇D)8: [∇q
loc4 (0) ]: [∇b

loc4 (1) ] 9 3G .

the sum is over elements 4 containing both 0 and 1. Again, we use

notation loc4 (ℓ) to de�ne the local index of a node with respect to

the elements 4 containing it.

The contribution to the left-hand side of the adjoint equation is

�5 (k, ?) =

∫
Ω

(∇5 (∇D) : ∇k ) : ∇? 3G,

which is the boxed term from (48), corresponding toF) muℎ XD, with
replacementsF := ? and XD := k . Discretizing according to our FE
basis:

[�5 ]�0+8,�1+9 =
∑

4∈� (0)∩� (1)

∑
:,; ∈1..�

∫
@̄4 ( ̂4 )

(∇5 )8: 9; [∇q
loc4 (1) ]; [∇q

loc4 (0) ]: 3G,

where we sum over all elements Ω4 = @̄( ̂), with  ̂ being the

reference element.

Non-shape volumetric parameter derivatives.We assume that

the force depends on @ = @(G), a function of the point in Ω@̄ , de�ned

by its values q at the same nodes as the solution, and interpolated

using the same basis q .

The perturbed parameter function @ is de�ned as

@n (G) = @(G) + n\ (G),

where \ (G) represents the perturabtion, assumed to be given in the

same basis as @ and solution.

3

3n

���
n=0
H E

=
3

3C

���
n=0

∫
Ωn

5 (∇Dn , @n ) : ∇Fn 3Gn

=

∫
Ω

(∇1 5 : ∇XD) : ∇F + (∇2 5 ·
3

3n
@n ) : ∇F 3G

=

∫
Ω

(∇1 5 : ∇XD) : ∇F + (∇2 5 · \ ) : ∇F 3G.

(49)
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Thus, the shape derivative contribution is:

� 5 (\, ?) =

∫
Ω

(∇2 5 · \ ) : ∇? 3G .

Discretizing:

[�5 ]�B0+8,�B1+9 =
∑

4∈� (0)∩� (1)

∑
:∈1..�3

∫
@̄4 ( ̂4 )

[∇2 5 ]8: 9 b
loc4 (1) [∇q loc4 (0) ]: 3G.

The contribution to the left-hand side of the adjoint equation is

�5 (k, ?) =

∫
Ω

(∇1 5 : ∇k ) : ∇? 3G,

which is the boxed term from (49), depending on XD with replace-

mentsF := ? and XD := k .

Discretizing according to our FE basis

[�5 ]�B0+8,�B1+9
=

∑
4∈� (0)∩� (1)

∑
:,; ∈1..�3

∫
@̄4 ( ̂4 )

(∇1 5 )8: 9; [∇q
loc4 (1) ]; [∇q

loc4 (0) ]: 3G.

C GENERAL FORM OF OBJECTIVE DERIVATIVES

For each objective � , the derivations below include vectors '> and

(> , corresponding to mD � and m@ � , which are necessary to compute

the adjoint solution and the �nal shape derivative.

C.1 Objectives depending on gradient of solution and

shape

Consider an objective that depends on both the solution of the PDE

and the domain :

� (∇D,Ω) =

∫
Ω

9 (∇D, G)3G . (50)

Computing the Gateaux derivative, while considering perturbation
of the domain Gn := G + n\ :

3

3n

���
C=0
� =

3

3n

���
n=0

∫
Ωn

9 (∇Dn , Gn ) 3Gn

=
3

3n

���
n=0

∫
Ω

9 ( (∇D )� −1n , G + n\ ) det(�n ) 3G

=

∫
Ω

3

3n

���
n=0

(
9 ( (∇D )� −1n , G + n\ ) det(�n )

)
3G

=

∫
Ω

∇1 9 : ∇XD − ∇1 9 : ∇D∇\ + ∇2 9 · \ + 9 (∇D, G )∇ · \ 3G.

We can select the parts not depending on XD to be part of ( :

(> (\ ) =

∫
Ω

−∇1 9 : ∇D∇\ + ∇2 9 · \ + 9 (∇D, G)∇ · \ 3G . (51)

Discretizing according to our FE basis:

[(> ]�0+8 =
∑

4∈� (0)

∫
@̄4 ( ̂4 )

−(∇D) )8 9 (∇1 9 ) 9: [∇b
loc4 (0) ]:+

+
m9

mG8
b loc4 (0) + 9 (D, G ) [∇b loc4 (0) ]8 3G.

And,

'> (k ) =

∫
Ω

∇1 9 : ∇k 3G, (52)

which can be discretized as follows:

['> ]�0+8 =
∑

4∈� (0)

∫
@̄4 ( ̂4 )

(∇1 9)8 9 [∇q
loc4 (0) ] 9 3G .

C.2 Objectives depending on solution and shape

Consider an objective that depends on both the solution of the PDE

and the domain:

� (D,Ω) =

∫
Ω

9 (D, G)3G. (53)

Computing the Gateaux derivative, while considering perturbation

of the domain Gn := G + n\ :

3

3n

���
n=0

� =
3

3n

���
n=0

∫
Ωn

9 (Dn , Gn ) 3Gn

=

∫
Ω

∇1 9 · XD + ∇2 9 · \ + 9∇ · \ 3G .

We can select the parts depending on XD, which will be the rhs of

our adjoint PDE (represented by vector '), while the remaining

part is a term that should be added directly to the shape derivative

(vector ().

So,

(> (\ ) =

∫
Ω

∇2 9 · \ + 9 (D, G)∇ · \ 3G . (54)

Discretizing according to our FE basis:

[(]�0+8 =
∑

4∈� (0)

∫
@̄4 ( ̂4 )

m 9

mG8
b loc4 (0) + 9 (D, G) [∇b loc4 (0) ]8 3G .

And,

'> (k ) =

∫
Ω

∇1 9 ·k 3G, (55)

which can be discretized as follows:

[']�0+8 =
∑

4∈� (0)

∫
@̄4 ( ̂4 )

m 9

mD8
q loc4 (0) 3G .

D CONTACT AND FRICTION AREA TERM

In our contact and friction formulas, we use �: as a weight for

our forces, which measures the area of our contact pair : . In the

formulation, it corresponds to the sum of surface areas associated

with each primitive. In 3D, it is 1/3 of the sum of areas of incident

triangles for vertices and edges, and the area of triangles. For a

triangle ) = (C0, C1, C2), where C8 corresponds to the position of each

triangle’s vertex, the corresponding triangle area will be:

�Δ () ) = �Δ (C0, C1, C2) =
1
2 ∥(C1 − C0) × (C2 − C0)∥ .

If : corresponds to a point-triangle contact pair between point ?

and triangle) , and Incid(p) has the incident triangles of ? , we have:

�: =

∑
) ∈Incid(? )

1
3�Δ () ) .
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In this context, mq̄�: corresponds to the gradient of the area term,

which can be computed as a sum of the mq̄�Δ terms:

mq̄�Δ () ) =
(C1 − C0) × (C2 − C0)

2∥(C1 − C0) × (C2 − C0)∥
mq̄ ((C1 − C0) × (C2 − C0)).

E FRICTION DERIVATIVE TERMS

For friction, we have:

� 5 (?, \ ) =
∑
:

mq̄�
5

:
B\ · ? �: + �

5

:
· ? mq̄�: �: ,

and

�5 (k, ?) =
∑
:

mu�:k · ? �: ,

which reduces to computing the derivative of each �
5

:
term with

respect to G , D8 and D8−1.

mGℓ �
5

:
= −W:1,:2 ): 5[ ( ∥g: ∥ )

g:
∥g: ∥

×

(
^

#:
∥#: ∥

· (1′′ (m
xd
3: ) (mxd

3: )
) + 1′m

xd
(m

xd
3: ) ) "

∗

)
ℓ

+

− W:1,:2 #:
(
mxp): "

∗ )
ℓ 5[ ( ∥g: ∥ )

g:
∥g: ∥

+

− W:1,:2 #:):
g:
∥g: ∥

(
5 ′[

g:
∥g: ∥

· ( (mxp): "
∗ ))ℓ (u

8 − u8−1 ) )

)
+

− W:1,:2 #:): 5[ ( ∥g: ∥ )

((
�2

∥g: ∥
−
g:g

)
:

∥g: ∥
3

)
(mxp): "

∗ ))ℓ (u
8 − u8−1 )

)
.

(56)

m
D8
ℓ
�
5

:
= −W:1,:2 #:):

g:
∥g: ∥

(
5 ′[

g:
∥g: ∥

·
(
)):

)
ℓ

)
+

− W:1,:2 #:): 5[ ( ∥g: ∥ )

((
�2

∥g: ∥
−
g:g

)
:

∥g: ∥
3

) (
)):

)
ℓ

)
.

(57)

m
D8−1
ℓ

�
5

:
= −W:1,:2 ): 5[ ( ∥g: ∥ )

g:
∥g: ∥

×

(
^

#:
∥#: ∥

· (1′′∇3:∇3
)
: + 1

′∇23: )

)
ℓ

+

− W:1,:2 #:
(
mxp):

)
ℓ 5[ ( ∥g: ∥ )

g:
∥g: ∥

+

− W:1,:2 #:):
g:
∥g: ∥

(
5 ′[

g:
∥g: ∥

·
(
mxp):

))
ℓ (u

8 − u8−1 ) )

)
+

− W:1,:2 #:): 5[ ( ∥g: ∥ )

((
�2

∥g: ∥
−
g:g

)
:

∥g: ∥
3

) (
mxp):

))
ℓ (u

8 − u8−1 )

)
.

(58)

F REGULARIZATION DERIVATIVES

Scale-invariant smoothing. The regularization in (37) is used for

shape optimization, when the optimization parameter is @< = E8 , a

vertex of the shape. That said, the derivative with respect to each

vertex E8 is:

mE8 �
smooth

= ? ∥B8 ∥
?−2B)8 (mE8 B8 ) +

∑
9∈# (8 )∩�

? ∥B 9 ∥
?−2B)9 (mE8 B 9 ) .

And we have that

mE8 B8 =
|# (8 ) ∩ � |�∑

9 ∈# (8 )∩� ∥E8 − E9 ∥
−

(∑
9 ∈# (8 )∩�

E8 −E9
∥E8 −E9 ∥

) (∑
9 ∈# (8 )∩� (E8 − E9 )

))
(∑
9 ∈# (8 )∩� ∥E8 − E9 ∥

)2 .

And, for mE8 B 9 , where E8 is one of the neighbors of E 9 :

mE8 B 9 = −
�∑

:∈# ( 9 )∩� ∥E9 − E: ∥
+

(
E9 −E8
∥E9 −E8 ∥

) (∑
:∈# ( 9 )∩� (E9 − E: )

))
(∑
:∈# ( 9 )∩� ∥E9 − E: ∥

)2 .

Material parameter spatial smoothing. For derivatives of (38)

with respect to material parameters _8 , `8 we have

m_8 �
_,` smooth

= 2
∑

C ′∈�3 9 (C8 )

(
_C8
_C ′
− 1

)
+

(
1 −

_C ′

_C8

)
_C ′

_2C8

,

and

m`8 �
_,` smooth

= 2
∑

C ′∈�3 9 (C8 )

(
`C8
`C ′
− 1

)
+

(
1 −

`C ′

`C8

)
`C ′

`2C8

.

G DIFFERENCE BETWEEN

"OPTIMIZE-THEN-DISCRETIZE" AND

"DISCRETIZE-THEN-OPTIMIZE"

There is a well-established theory showing that the equations de-

rived through the Optimize-then-Discretize are the correct equa-

tions for optimality. This is, in general, not guaranteed for the

"Discretize-then-Optimize" approach; the easiest approach is to en-

sure that for a choice of discretization methods, the results of both

approaches are identical (which is what we do, although further

analysis is needed to make any rigorous claims).

Speci�cally for shape optimization, "Optimize-then-Discretize"makes

it possible to derive the gradients in the physical domain: “shape

derivative calculus” [Allaire et al. 2021] allows one to compute shape

derivatives with respect to changes in the shape of the domain on

which PDE is solved using physical domain variables in which the

PDEs have the standard form, e.g. for Poisson or elasticity, are ex-

pressed in terms of constant di�erentiation operators, e.g., the 2D

Poisson equation in the weak form:∫
Ω (@)

0(G,~)∇I · ∇F3G3~ =

∫
Ω (@)

5 (G,~)F3G3~ (59)

with (G,~) coordinates on the physical domain Ω(@), where I (G,~)

is the unknown function, 0(G,~) is a material parameter, 5 (G,~) is

the source term, @ is the optimization shape parameters.

In a typical FEM discretization, the "Discretize-then-Optimize ap-

proach" requires converting the equations to a �xed reference do-

main and then need to substitute into the equation, leading to a

variable coe�cient equation with an explicit dependence on shape

parameters. In this case, the unknown is de�ned on the reference do-

main ΩA4 5 with coordinates (D, E), mapped to the physical domain

Ω(@) via the geometry map G = G (D, E), ~ = ~ (D, E). If we denote

the inverse of this map D = D (G,~), E = E (G,~), then the left-hand

side of Equation (59) on the reference domain becomes
∫
ΩA45

0(G,~) (∥∇D∥2IG + ∇D · ∇EI~)FG + (∥∇E ∥
2I~ + ∇D · ∇EIG )F~ | det � (G,~) |3D3E

with ∇ denoting derivatives w.r.t. G,~, and � (G,~) denoting the

geometric map Jacobian matrix
m (G,~)
m (D,E)

. Here we spell out the ex-

pressions more explicitly instead of more concise matrix notation,
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to elucidate the increase in complexity. Please refer to Equation (48)

for the complete derivation of shape derivatives following this way.

As typically the geometry map G (D, E), ~ (D, E), rather than its in-

verse, is given explicitly in terms of shape parameters @ (as a linear

function of @, if it is e.g., represented in a FEM basis), derivatives

of D, E w.r.t. G,~ need to be expressed in terms of derivatives of G,~

w.r.t. D, E , i.e., ∇D, ∇E are the rows of the inverse of � (G,~). In other

words, a simple constant coe�cient equation on a variable domain

becomes a complex variable coe�cient equation on a �xed domain,

with coe�cients depending on the geometric map in a complex non-

linear way. As a next step, these equations need to be discretized by

substituting FEM expressions for G (D, E ;@),~ (D, E ;@),I (D, E), 5 (D, E)

in FEM basis, with the standard Galerkin procedure yielding sti�-

ness matrix and right-hand side coe�cients. Finally, the derivatives

of the resulting coe�cients with respect to @ need to be computed.

Note that the derivatives with respect to material parameters (e.g.,

coe�cients of 0(G,~) in a FEM basis) unlike shape derivatives have

similar complexity in either form. This is also true for elasticity

equations: shape derivatives in the Discretize-then-Optimize setting

are even more elaborate, but material parameter derivatives are

relatively simple.

While, in the end, most equations required for shape derivative

adjoints are very close to the forward equations (as shown in Equa-

tion (12) in the paper, the coe�cient matrices are the same as in

the forward solves), and can be computed relatively concisely, it is

nontrivial to see this from di�erentiating the coe�cients obtained

from the equations above with respect to @. We are not aware of any

tool that can automatically do this conversion, nor of any manual

attempt ever done to compute shape derivatives in this way.
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