
In-Timestep Remeshing for Contacting Elastodynamics
ZACHARY FERGUSON, New York University & Adobe, USA
TESEO SCHNEIDER, University of Victoria, Canada
DANNY M. KAUFMAN∗, Adobe, USA
DANIELE PANOZZO∗, New York University, USA

Fig. 1. Ball on spikes. In-Timestep Remeshing (ITR) enables physics-aware adaptive refinement and coarsening to robustly capture detailed contact-driven
deformations in simulated trajectories. Here we drop a soft (neo-Hookean material, 𝐸 = 10

5
Pa) ball at large timesteps (ℎ = 0.01 s) onto very stiff (𝐸 = 10

8
Pa)

sharp spikes. Starting with coarse, unstructured finite-element meshes for all geometries (see Figure 2a) we show here two later steps in the trajectory as the
ball initially collides with and then comes to rest on the spikes (top and bottom left respectively). Views from below (middle and middle inset) for each of
these steps highlight how our physics-aware remeshing automatically and locally adapts the tetrahedral mesh in time to capture the changing detailed
deformations within the material and at contact regions. In a cutaway view (right), we remove the tetrahedral interior elements from the ball, leaving just
its bottom surface mesh faces to highlight how ITR tightly conforms, per timestep, without intersection, to the sharp and challenging contacts without
over-refining (please compare to the sizing field method in Figure 2b). Correspondingly we cut the ball geometry from the view altogether (right inset) and
zoom in on the tightly wound spike geometries that form the severe indentation on the ball, evidencing the accurate solution of the challenging timestep
problem resolving forces between highly disparate material stiffnesses.

We propose In-Timestep Remeshing, a fully coupled, adaptive meshing

algorithm for contacting elastodynamics where remeshing steps are tightly

integrated, implicitly, within the timestep solve. Our algorithm refines and

coarsens the domain automatically by measuring physical energy changes

∗
Co-corresponding authors D.K and D.P. jointly conceptualized the study and algorith-

mic solution.

Authors’ addresses: Zachary Ferguson, New York University & Adobe, USA, zfergus@

nyu.edu; Teseo Schneider, University of Victoria, Canada, teseo@uvic.ca; Danny M.

Kaufman, Adobe, USA, dannykaufman@gmail.com; Daniele Panozzo, New York Uni-

versity, USA, panozzo@nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2023/8-ART1 $15.00

https://doi.org/10.1145/3592428

within each ongoing timestep solve. This provides consistent, degree-of-

freedom-efficient, productive remeshing that, by construction, is physics-

aware and so avoids the errors, over-refinements, artifacts, per-example

hand-tuning, and instabilities commonly encountered when remeshing with

timestepping methods. Our in-timestep computation then ensures that each

simulation step’s output is both a converged stable solution on the updated

mesh and a temporally consistent trajectory with respect to the model and

solution of the last timestep. At the same time, the output is guaranteed

safe (intersection- and inversion-free) across all operations. We demonstrate

applications across a wide range of extreme stress tests with challenging

contacts, sharp geometries, extreme compressions, large timesteps, and

wide material stiffness ranges – all scenarios well-appreciated to challenge

existing remeshing methods.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: Adaptive Meshing, Elastodynamics,

Variational Contact, Friction

ACM Reference Format:
Zachary Ferguson, Teseo Schneider, DannyM. Kaufman, andDaniele Panozzo.

2023. In-Timestep Remeshing for Contacting Elastodynamics. ACM Trans.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://doi.org/10.1145/3592428

1:2 • Zachary Ferguson, Teseo Schneider, Danny M. Kaufman, and Daniele Panozzo

Graph. 42, 4, Article 1 (August 2023), 15 pages. https://doi.org/10.1145/

3592428

1 INTRODUCTION
We propose, In-Timestep Remeshing (ITR), a new algorithm for

simulating frictionally contacting elastodynamics where remesh-

ing criteria, remeshing operations, and variable mappings are all

tightly coupled implicitly, within the timestep solve. Our algorithm

automatically adapts meshing in-timestep to account for time-local

conditions of both the internal forces and frictional contacts of a tra-

jectory. At the same time, by careful construction, non-intersection

and non-inversion are respected as invariants over each operation

within the remeshing, and so across each timestep. This provides

consistent improvement across extreme variations in materials, se-

vere boundary conditions, fine surface contact details, large friction,

and even under the extreme compressions and tensions regularly

imposed by contacting and impacting domains.

Large-deformation elastodynamic simulations often require ex-

ceedingly dense spatial discretizations to capture critical and often

transient features like shockwaves and indentations. At the same

time, meshes dense enough to capture these behaviors can be prohib-

itively expensive in both runtime and memory for practical applica-

tions with real-world examples – especially in 3D. These challenges

motivate the application of adaptive meshing (AM) methods that

seek to locally introduce and remove simulation degrees of free-

dom (DOF) on the fly, in order to concentrate them where they are

most needed.

Generally, AM for simulating dynamics is currently applied in-

between simulation timesteps. This often fits well within optimized

physics pipelines in graphics but keeps mesh changes, and the re-

sultant necessary remapping of physical quantities, decoupled from

the actual timestep simulation solves. In turn, this decoupling intro-

duces a number of fundamental challenges that we address in this

work.

Meshing Criteria. First, the measures evaluated on-mesh that de-

cide where and how to change discretization, can not directly evalu-

ate how remeshing options will impact the solution of the physical

problem when decoupled in this way. Applied post-solve, these

criteria instead provide approximations, based on the current gen-

erated state, at the current, fixed discretization. Indirect proxies are

then generally applied, using geometric criteria and/or snapshots of

physical quantities to guide the refinement and coarsening, which,

in turn, then need to be re-tuned as the specific physical system

simulated (e.g., materials, speeds, boundary conditions) change.

Invariants. Second, necessary invariants for accurate, large-de-

formation contact simulation are often broken in remeshing pipelines,

with element inversions and intersections regularly generated. A

range of fail safes and stabilizations have been applied to fix these

issues post hoc [Narain et al. 2013; Spillmann and Teschner 2008].

However, these fixes all have trade-offs: they generally introduce

errors, can inject energy (potentially creating instabilities) [Narain

et al. 2013], and require per-example tuning even as they work to

remove intersections and/or fix elements.

Mapping. Third, physical quantities, e.g., displacements, veloc-

ities, and accelerations, must be mapped to new discretizations.

Inherently, all such mappings, aside from happy nesting cases, in-

troduce errors. However, the process of alternating timestep solves,

meshing, and mapping, additionally introduces inconsistencies be-

tween the physical state and the mesh discretization, while mapping

operations themselves can also generate intersections and inver-

sions. As we cover in the next sections, this leads to unacceptable

artifacts, additional instabilities, and even simulation failures. Prior

work in simulating dynamics with adaptive-meshing, in dealing

with these issues, often seeks to minimize refinement operations to

reduce error [Wicke et al. 2010]. However, this often opposes the

original goal of adapting where needed.

Contact. Contact-driven dynamics particularly pose both signifi-

cant challenges to, and high demand for AM, where large and highly

singular contact forces generate significant and localized deforma-

tions in simulation meshes. In such cases, the above-covered issues

are especially critical to consider as the separation of meshing steps

and solves breaks temporal coherence, introduces infeasible states

and unnecessarily perturbs system energies (with attendant nu-

merical artifacts and jittering), and so often undoes much of the

immediate benefit of improved accuracy and quality targeted by AM

operations in the first place. Likewise, existing contact-aware AM

methods, applying solely geometric criteria significantly over-refine

boundaries (see Figure 5), in many cases again directly opposing

the original intent of AM.

In-Timestep AM. We address the above challenges with, to our

knowledge, a first fully coupled AM method for contacting elasto-

dynamics with meshing criteria, operations, and mappings, tightly

coupled within each timestep solve. To do so we apply the recently

proposed, Incremental Potential Contact (IPC) model [Li et al. 2020]

which provides a convergent [Li et al. 2023] and smooth model

for frictionally contacting solids Applying the IPC model, we con-

struct In-Timestep Remeshing where meshing criteria have access

to the current, ongoing, nonlinear timestep solve’s merit function.

With this framework, we can apply efficient “micro” simulations per

mesh operation, and so make physics-informed and invariant-safe

decisions on how to update the discretization.

Contributions. ITR thus refines and coarsens by measuring the

change in improvement within each ongoing timestep solve and

so avoids recourse to geometric meshing criteria that are physics-

oblivious and require per-example tuning.

To build ITR our technical contributions include:

• a “safe” constrained 𝐿2
-projection method for variable map-

ping that minimizes mapping error while preserving invari-

ants by ensuring a globally injective mapping;

• a consistent, smooth remeshing criteria function for friction-

ally contacting elastodynamics built upon the IPC model;

and

• a refinement and coarsening algorithm with provably safe

operations, operation filtering heuristics for limiting per-step

cost while ensuring solution improvement, and local nonlin-

ear analysis leading to a final, convergent timestep solution

on each step’s new mesh.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://doi.org/10.1145/3592428
https://doi.org/10.1145/3592428

In-Timestep Remeshing for Contacting Elastodynamics • 1:3

Runtime Efficiency. When compared to uniform mesh refinement,

ITR judiciously adds and removes DOF, reducing linear solve times

in the inner loop of the nonlinear timestepping algorithm with a

DOF improvement ranging from 2.6 to 185× less DOF per example

with corresponding 2.7 to 1,444× linear solve speedups. However,
additional computation is applied to select where and when the

spatial discretization is modified. The interplay between resultant

time-savings in linear solves and this overhead varies significantly

depending on the scene (and how suitable a naive refinement is).

Scenes requiring localized refinement (e.g., Figure 1) are up to 3.3×
faster with our implementation of ITR, while others (e.g., Figure 6)

can be up to 9.6× slower. We provide a detailed analysis of this

trade-off and discuss its long-term implications for this technology

in Section 4.3.

We demonstrate the effectiveness of our approach across a wide

range of challenging 3D (and 2D) examples, where we highlight the

benefits of physics-aware AM. While simple methods are desirable,

remeshing necessarily comes with the cost of complex implemen-

tation: we release a modular, open-source implementation of our

methods at polyfem.github.io to enable replicability and future ap-

plication.

2 RELATED WORK
Meshes are ubiquitous in graphics and there are a wide range of

algorithms and applications that create and/or modify them. We

focus here specifically on related work on unstructured meshes and

the application of mesh modifications for elastodynamic simulation,

both with and without frictional contact. For a broad overview of

adaptive methods in graphics covering a wide range of physical

problems, models, and structured discretizations, please refer to

Manteaux et al. [2017]. Hu et al. [2018] similarly review dedicated

meshing algorithms, and Mitchell and McClain [2014] cover meth-

ods combining mesh modifications with basis refinement (p and

hp-refinement), which we do not consider in this work.

Adaptive remeshing also plays a critical role in modeling fracture

and cutting [Chentanez et al. 2009; Hahn and Wojtan 2015; Koschier

et al. 2015; Manteaux et al. 2015; O’Brien et al. 2002; O’Brien and

Hodgins 1999; Pfaff et al. 2014] as well as in surface tracking meth-

ods which employ complex and robust remeshing operations to

explicitly track the movement of colliding and merging bound-

aries [Brochu and Bridson 2009; Da et al. 2014; Jiang et al. 2017;

Klingner et al. 2006; Menon et al. 2015; Misztal et al. 2014; Misztal

and Bærentzen 2012; Müller et al. 2015; Stein et al. 2004; Wojtan et al.

2009]. Here we focus solely on elastodynamic simulation without

fracture and look to extensions in these areas as exciting potential

future directions.

Changing a physical model’s spatial discretization during elas-

todynamic simulation requires four high-level algorithmic compo-

nents:

(1) Criteria: where to change the discretization and, when doing

so, where to increase or decrease the number of DOF;

(2) Operations: which operations are applied to change the dis-

cretization;

Initial mesh

(a)

Sizing field Ours

(b)

Fig. 2. Sizing field comparison. (a) The initial conditions and mesh used
for the “ball on spikes” simulations in Figures 1 and 2b. (b) A comparison of
our algorithm (right) and results of applying a contact-aware sizing field-
based adaptive meshing criteria [Li et al. 2018; Narain et al. 2012; Wicke et al.
2010] (left) for in-timestep simulation. We show a cutaway view (bottom
row) where we have clipped the geometry to see the inside of the sphere’s
surface. While the sizing field result refines around the contacts, it severely
over-refines right away (circled in red) and so fails to capture intricate
interactions. In comparison, our method adaptively updates while tracking
both contact and internal forces and so locally refines to capture the spikes
pushing into the ball (see Figure 1 for a closer view of our results).

(3) Mapping: once a discretization is changed, how physical quan-

tities are mapped from the prior discretization to the new one;

and

(4) Solution Schedule: how and when these mapped quantities

are applied to update the physical model’s solution.

In the following, we next categorize and consider related works

with respect to their treatment of these four core components.

2.1 Criteria
Geometry. Starting from the seminal work of Hutchinson et al.

[1996] for mass-spring systems, a popular way of guiding simulation

mesh adaptation is to rely on the geometry of the discretization,

either in rest configuration [Bargteil et al. 2007], deformed configu-

ration [Dunyach et al. 2013], or both, enabling the use of a snapshot

of strains or stresses [Bargteil et al. 2007; Debunne et al. 2001; Spill-

mann and Teschner 2008; Wicke et al. 2010]. Similar criteria have

been proposed for shells [Li and Volkov 2005; Narain et al. 2013, 2012;

Simnett et al. 2009; Villard and Borouchaki 2005], where additional

considerations for the complex in-plane and bending behaviors of

thin materials play an important role. Additionally, and interestingly,

user-dependent geometric criteria such as camera view [Koh et al.

2015] can be considered for refinement. These measures are then

primarily proxies for the variations in physical energy in the system,

and for the quality of the underlying discretization to represent it.

They are, however, approximations based solely on the current rest

and deformed configurations at the current, fixed discretization.

Contact. Contacts pose both significant challenges to, and high

demand for, adaptive remeshing. Contact forces generate large, yet

localized, deformations in many simulation meshes and regularly

introduce highly singular strains on boundaries for which it is often

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://polyfem.github.io

1:4 • Zachary Ferguson, Teseo Schneider, Danny M. Kaufman, and Daniele Panozzo

desirable to improve resolution. Geometric proximity criteria are of-

ten applied to help select regions for remeshing on simulation mesh

boundaries where two ormore surfaces are geometrically close [Ben-

der and Deul 2013; Erhart et al. 2006; Simnett et al. 2009]. Proximity

alone is often insufficient and so is sometimes augmented by tem-

poral continuity conditions of the detected collisions [Spillmann

and Teschner 2008], and even higher-order approximations that

consider a contact region’s curvature via contact tangents across

mesh faces [Li et al. 2018; Narain et al. 2013, 2012; Pfaff et al. 2014].

While often effective, these measures do not account for the actual

contacting geometry, force balance between contacts and the elastic

materials (e.g., considering whether materials involved are equally

stiff and so less likely to deform and require adaptation), contact

force magnitudes, nor the frictional forces involved. With purely

geometric analysis these underlying material and configurational

aspects are unaccounted for and so opportunities for necessary re-

finement and useful coarsening on the contact regions are missed –

leading to significant over-refinement or under-refinement in many

cases; see Section 4.1 and Figures 2b and 5 for examples and evalua-

tion.

Elastic Energy. Rather than apply geometric proxies, a number

of recent works focus on applying criteria that measure a model’s

elastic energy as a criterion in assessing the effectiveness of remesh-

ing [Demkowicz 2006; Mitchell and McClain 2014]. Most closely

related to our approach Mosler and Ortiz [2007] propose elastic- and

incremental-plastic energy decrease as criteria for small remeshing

problems in elastostatics and plasticity, but are limited to solely

refinement operations, and do not address contact, friction, nor

dynamics.

2.2 Operations
Global. Global methods [Jiang et al. 2017; Klingner et al. 2006;

Skouras et al. 2014; Stein et al. 2004], create a new mesh for every

timestep. Often this is applied via an external meshing tool and

so gives the advantage of reducing the implementation effort that

would otherwise be required for tighter integration. However, in

building a new mesh from scratch, opportunities for problem-aware

and ideally smaller updates are lost while such large global changes

in the simulation mesh, necessarily incur larger errors in mapping;

see Section 2.3 below.

Local. Local methods applied in simulation [Li et al. 2018; Narain

et al. 2013, 2012; Spillmann and Teschner 2008] utilize a sequence

of local remeshing operations (splits, collapses, swaps/flips) to mod-

ify the mesh according to the criteria applied (Section 2.1). While

applied locally these operations can still cause trouble by creating

intersections that must be prevented [Brochu and Bridson 2009] and

inversions [Wicke et al. 2010], while also potentially injecting error

by introducing instabilities if not resolved carefully (Section 2.4).

We apply local mesh operations in concert with invariant checks

and post-operation energy evaluations to guarantee effective (error-

decreasing) and safe (invariant-preserving) mesh adaptations.

Basis and r-Refinement. An alternative to explicit changes in the

mesh is to adaptively refine the basis, either via h-refinement within-

element [Grinspun et al. 2002] or via p-refinement [Mitchell and

McClain 2014]. While adaptive, these methods are not designed

to deal with large deformations as they cannot change the shape

of the elements (the mesh is fixed). Complementary adaptivity is

also provided by r-adaptive or “moving-mesh” methods [Budd et al.

2009] which update the nodal locations in the deforming model’s

rest mesh but not the topology.While effective in capturing localized

dynamics behavior [Zielonka et al. 2008], on its own r-adaptivity is

not suited for dynamic contact problems, which generally require

concentrated refinement in highly local and often rapidly changing

regions.

2.3 Mapping
Closest Point. An efficient approach to transfer vertex-based quan-

tities between two meshes in close spatial proximity is to transfer

the attributes from a vertex/quadrature point of one mesh to its

closest neighbor on the other [Molinari and Ortiz 2002]. This ap-

proach introduces large errors when the meshes have elements of

different sizes, and usually requires post-stabilization techniques

(Section 2.4) to avoid simulation artifacts, especially in the presence

of stiff materials and contact.

Interpolation. A more accurate method with a bit larger computa-

tional overhead is to interpolate via the finite element basis – when

linear elements are applied, this is equivalent to the barycentric

coordinate interpolation commonly applied in graphics [Spillmann

and Teschner 2008; Wicke et al. 2010]. Despite higher accuracy,

significant errors still accumulate and post-stabilization techniques

remain necessary [Narain et al. 2013; Spillmann and Teschner 2008].

𝐿2 Projection. Given the above issues, a natural strategy is to com-

pute a mapping that minimizes error [Léger et al. 2014; Vavourakis

et al. 2013]. The 𝐿2
projection finds the representation of the func-

tion in the finite element space of the target mesh that is a least-

squares fit of the function in the finite element space of the source

mesh [Léger et al. 2014], and so minimizes the residual of the map-

ping. Considerably more expensive and challenging to implement

than the above alternatives, this projection is commonly applied in

scientific computing and mechanical engineering.

We advocate, to our knowledge, for the first time in the graphics

community, the 𝐿2
projection for adaptive mesh refinement, as it

is robust to both varying mesh densities and low-quality elements.

However, despite these important properties, the 𝐿2
projection, on

its own, remains insufficient for large-deformation dynamics as it

can not ensure necessary invariants in elastodynamics are preserved.

In particular, the projection can create intersections and element

inversions. In Section 3.5, we provide a brief overview of the 𝐿2

projection and then propose our extension to obtain an invariant-

preserving, error-minimizing mapping.

2.4 Solution Schedule
For elastodynamic simulation, a fundamental question is how to

integrate remeshing and mapping variables into each timestep’s

solution of the physical model.

Interleaving. The standard strategy is to decouple timestepping

from remeshing, generally by interleaving timestep solve, remesh-

ing, and mapping. This leaves the remeshing criteria to the mercy

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

In-Timestep Remeshing for Contacting Elastodynamics • 1:5

of post hoc quantities, while after remeshing, the newly mapped

variables are finalized as the updated state for the timestep [Narain

et al. 2012; Wicke et al. 2010]. Except for local remeshing operations

that create nested spaces, the above-covered mappings (Section 2.3)

all necessarily introduce errors in the projected quantities – mean-

ing the newly mapped solution is inaccurate and inconsistent with

the underlying mesh it is defined on and so introduces artifacts

including instabilities and jittering [Narain et al. 2013]. Moreover,

the updated solution can introduce intersections and inversions,

generated by the prior mapping. Earlier works, recognizing these

issues, do apply geometric corrections for intersections [Narain et al.

2012] but, at the same time, generally strive to minimize the overall

number of remeshing operations to reduce total error [Narain et al.

2012; Wicke et al. 2010].

Post-Stabilization. Post-stabilization methods, recognizing the in-

stability and jittering introduced by direct mapping of timestepped

variables to the new mesh, introduce an additional step, after map-

ping, to improve stability (although not accuracy). Narain et al.

[2013], apply a nonlinear least-squares solve to perturb mapped

positions to find a more stable configuration, while Spillmann and

Teschner [2008] apply a similar strategy with additional collision

response phases to also correct for intersections. These methods,

with proper parameter tuning, can be effective at removing visual

artifacts, such as jittering, but they also introduce significant errors

in the physical model, as they can apply arbitrary perturbations to

a solution that already contains errors.

2.5 IPC and In-Timestep Remeshing
The above analysis leads us to the conclusion that for simulating

elastodynamics, the remeshing criteria, remeshing operations, and

variablemappings, should all be tightly coupled, and so integrated to-

gether within each timestep solve. The next question is how. Mosler

and Ortiz’s [2007] work on simulating elastostatics using the elas-

ticity potential is our starting point for contacting elastodynamics.

We begin by applying the recently proposed, IPC model [Li et al.

2023, 2020] which provides a convergent and smooth model for fric-

tionally contacting solids. In turn, because IPC contact forces are

smooth and the IPC timestep update is variational, this allows us

to formulate, per timestep, a spatially smooth merit function as our

meshing criteria. This merit function includes elasticity, contact,

and friction, and its decrease guarantees solution improvement. We

then carefully design our solver to refine, coarsen and safely 𝐿2
-

project, within each timestep solve, to maintain consistent updates,

while ensuring that the final output of each timestep is an accu-

rate, intersection-free, and inversion-free solution progressing the

simulation dynamics forward in time.

Hierarchical Methods. Hierarchical methods provide solver strate-

gies, complementary to AMmethods, that can be applied to improve

timestep solves. These methods (e.g., [Hormann et al. 1998; Zhang

et al. 2022]) apply a hierarchy of pre-determined resolutions to

better compute a solution for a final (pre-specified) and generally

uniform, high-resolution target mesh.

O
ur

s
N

o
R

em
es

hi
ng

Fig. 3. Masticator. A challenging 3D compression example, simulated with-
out refinement (top) and with (bottom) our algorithm, starting from the
same initial mesh. The insets highlight how our method is able to capture
the sharp contact features and buckling under compression by increasing
mesh resolution. Without remeshing, these details are lost, resulting in a
different deformation.

In contrast, AM methods (including ITR) locally adapt solution

meshes to apply detailed resolution where it can be better used. In fu-

ture work, it should be an interesting extension to consider the appli-

cation of hierarchical methods within ITR to obtain faster nonlinear

solves. For this, the most closely related approach to ITR in the hier-

archical literature, is the recent work of Zhang et al. [2022] who build

a hierarchical solver for IPC. They propose a Euclidean projection

to find non-intersecting geometries nearest to possibly-intersecting,

Loop-subdivision-upsampled targets, by applying barrier-enforced,

continuous collision detection (CCD)-filtering to the direct path

from a “safe”, midpoint-upsampled triangle mesh, to a target. Here

we construct a complementary, error-minimizing, L2-projection, for

tetrahedral meshes, constructed by constrained quadratic energy

minimization, supplemented with CCD-filtered collision barriers,

suitable for refinement and coarsening operations.

3 IN-TIMESTEP REMESHING

3.1 Spatially Continuous Setting
We consider the solution of simplicial simulation meshes (triangles

in 2D, tetrahedra in 3D) undergoing large-deformation elastody-

namics with frictional contact. Before discretizing to a spatial mesh,

we first begin by discretizing in time: we construct the solution of

each timestep’s problem in semi-discrete optimization form,

𝑥𝑡+1 = argmin

𝑥
𝐸𝑡 (𝑥) (1)

with a spatially continuous Incremental Potential,

𝐸𝑡 (𝑥) =
∫
Ω

𝜌

2

𝑥 (𝑋) − 𝑥𝑡 (𝑋)

2

d𝑉

+ 𝛼ℎ2

∫
Ω
Ψ
(
𝑥 (𝑋)

)
− 𝑥 (𝑋)⊤ 𝑓 (𝑋) d𝑉

+ 𝛼ℎ2

∫
𝜕Ω

𝐵
(
𝑥 (𝑋)

)
+ 𝐷

(
𝑥 (𝑋)

)
d𝐴.

(2)

Here Ψ is a hyperelastic deformation-energy density (e.g. neo-Hook-

ean), 𝑓 encodes the sum of body forces and (when ranging over

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:6 • Zachary Ferguson, Teseo Schneider, Danny M. Kaufman, and Daniele Panozzo

boundary regions) any applied reactions, and 𝐵 and 𝐷 are the spati-

ally-continuous analogs of the IPC energies [Li et al. 2023] for, re-

spectively, contact barrier and friction pseudo-potential. In turn,

the choice of predictor position, 𝑥𝑡 (an explicit function of prior

deformation, velocity, and possibly acceleration fields: 𝑥𝑡 , 𝑥𝑡−1, . . . ,

𝑣𝑡 , 𝑣𝑡−1, . . . , 𝑎𝑡 , 𝑎𝑡−1, . . .), scaling term 𝛼 ∈ R+, and an explicit up-

date equation for velocity (and acceleration as needed) from optimal

solution 𝑥𝑡+1, jointly define the specific choice of numerical time-

integration method. Here, in the main text, for simplicity, we will

keep in mind implicit Euler with

𝑥𝑡 = 𝑥𝑡 + ℎ𝑣𝑡 , 𝑣𝑡+1 = 1

ℎ
(𝑥𝑡+1 − 𝑥𝑡), 𝛼 = 1, (3)

while similarly, a wide range of additional time integration methods

are directly covered
1
.

3.2 SolutionQuality per Timestep
In this continuum form, the optimization timestep solve in Equa-

tion (2) highlights an important deciding feature: when we are

allowed to range over the space of all valid deformations 𝑥 , a defor-

mation giving the (locally) smaller value of 𝐸𝑡 is the better solution

to the timestep. Looking ahead to our next step of spatial discretiza-

tion, this provides a simple, physics-focused metric for ranking

finite-element meshes in a solution space, that is custom-suited to

each timestep. Of course, a corollary is that this energy decrease is

always “easily” obtained via uniform refinement to finer and finer

meshes but this also comes with the associated cost of more, and

generally too much, computation. Instead, here we focus on apply-

ing this metric to locally adapt our mesh in regions of high value.

To do so we focus our adaptivity on this actual, temporally local,

measured change in the timestep’s solution quality itself, rather than

on intermediate proxies via mesh qualities or physical properties.

3.3 Spatial Discretization
We apply piecewise-linear discretization of Equation (2) on meshes

T with discrete fields defined, per triangulation/tetrahedralization,

at the 𝑛 vertices of the mesh in 3D (respectively 2D) space and stored

in vectors 𝑥, 𝑣, 𝑎 ∈ R3𝑛
(respectively R2𝑛

).

Each of the spatially discrete energy terms in our incremental

potential are now expressed as weighted sums of energy functions

over mesh element stencils, 𝑠 (tetrahedral, triangle, edge, point or

pairings thereof depending on energy and dimension) in T ,∑︁
𝑠∈T

𝑤𝑠𝑊𝑠 (𝑥) ,

where 𝑤𝑠 > 0 is the volume, area or length-weighted scaling of

the rest shape element 𝑠 , and𝑊𝑠 is the respective energy density

function of each potential restricted to this element’s stencil.

1
For example, other time-integration methods we applied are Implicit Newmark, with

𝛼 = 1/4, �̃�𝑡 = 𝑥𝑡 + ℎ𝑣 + ℎ2/4𝑎𝑡 , 𝑣𝑡+1 = 2/ℎ
(
𝑥𝑡+1 − 𝑥𝑡

)
− 𝑣𝑡 , and

𝑎𝑡+1 = 2/ℎ
(
𝑣𝑡+1 − 𝑣𝑡

)
− 𝑎𝑡 ,

and second-order backward differentiation formula (BDF2), with

𝛼 = 4/9, �̃�𝑡 = 1

3
(4𝑥𝑡 − 𝑥𝑡−1) + 2ℎ

9
(4𝑣𝑡 − 𝑣𝑡−1), 𝑎𝑡+1 = 4ℎ2

9
(𝑥𝑡+1 − �̃�𝑡), and

𝑣𝑡+1 = 1

3
(4𝑣𝑡 − 𝑣𝑡−1) + 2ℎ

3
𝑎𝑡+1 .

Small changes by additional terms in the arguments of the energy functions extend the

range of our application even further to a yet wider range of numerical time integration

methods without loss of generality [Li et al. 2023].

For a fixed mesh T , the timestep solution is then a local minimizer

of a fully discrete Incremental Potential, per timestep

𝐸𝑡 (𝑥,T) =𝐸 (𝑥,T , 𝑥𝑡)

=
1

2

(𝑥 − 𝑥𝑡)⊤𝑀T (𝑥 − 𝑥𝑡)

+ 𝛼ℎ2
(
ΨT (𝑥) + 𝐵T (𝑥) + 𝐷T (𝑥) − 𝑥⊤ 𝑓 𝑡

)
,

(4)

where𝑀T is the mesh’s consistent mass matrix, and ΨT, 𝐵T, and 𝐷T
are the total resultant energy potentials generated, respectively, by

the aforementioned discretizations of the corresponding deforma-

tion, contact barrier, and friction energies on T [Li et al. 2023].

3.4 Timestepping Framework and Invariants
We advance our simulation domain through time using an incre-

mentally updating triangulation of the domain, T (𝑡), with deforma-

tions 𝑥 (𝑡), velocities 𝑣 (𝑡), and rest positions, 𝑥 (𝑡) defined at T (𝑡)’s
vertices. Input for the solve of each timestep optimization is then:

𝑥𝑡 , 𝑥𝑡 , 𝑣𝑡 , and current applied forces (body and external), 𝑓 𝑡 , defined

on mesh T 𝑡
with the deformed mesh (𝑥𝑡 ,T 𝑡) giving a penetration-

and inversion-free configuration.

In turn output for each of our timestep solves is then a new mesh

T 𝑡+1
and updated fields, 𝑥𝑡+1, 𝑥𝑡+1, 𝑣𝑡+1 that maintain the invariants

of non-intersection and non-inversion at end state, while accurately

satisfying the numerical time-integration model by minimizing the

incremental potential with

∇𝑥𝐸𝑡 (𝑥,T 𝑡+1)

 ≤ 𝜖𝑑 .

At the same time, as we cover in detail below, to better resolve

dynamics, each of our timestep solves also incrementally updates

the simulation mesh T , as a “configurational” degree of freedom
with mesh-refinement to lower the total value of the incremental

potential solution in Equation (2) measured by

𝑚𝑡 (T) = min

𝑥
𝐸𝑡 (𝑥,T), (5)

and similarly coarsening where this does not significantly increase

this same value.

Maintaining Invariants. We apply Newton iterations to minimize

𝐸𝑡 (𝑥,T) when holding the mesh fixed. Preserving invariants for

these steps we follow the IPC method’s filtered line-search step [Li

et al. 2020] which applies CCD and inversion-checking to descent

steps. This ensures that all applied displacements for position up-

dates to 𝑥 ensure both safety and energy decrease towards con-

vergence. In our setting with remeshing, this is not enough – all

operations during each timestep computation, including remeshing,

must maintain non-intersection and non-inversion at every update.

3.5 Safe Projections Between Spaces
Each remeshing operation, 𝑖 , applied during a timestep solve changes

the mesh, T 𝑖 → T 𝑖+1
. This means that all quantities, (𝑥𝑡 , 𝑣𝑡 , 𝑓 𝑡 ,

𝑥, . . .) defined in the prior mesh must, of course, be mapped, or

projected, to the new one.

When simulating dynamics these quantities are generally trans-

ferred in-between timestep solves (see Section 2.3); that is given

𝑥, 𝑥𝑡 , 𝑣𝑡 , and T 1
we would first solve for a new timestep solution,

𝑥𝑡+1, 𝑣𝑡+1, then update the mesh to a new one T 2
. Then, only after

remeshing, 𝑥𝑡+1, 𝑣𝑡+1, are projected to the new mesh. Unfortunately,

this staggered process means that 𝑥𝑡+1 ≠ argmin𝑥 𝐸𝑡 (𝑥,T 2) and

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

In-Timestep Remeshing for Contacting Elastodynamics • 1:7

so is not a solution to the timestep problem on the current mesh.

This inconsistency between solution space and deformation then

commonly generates instabilities and jittering artifacts, especially

when dealing with stiffer materials and collisions (see e.g., Narain

et al. [2013] and their supplemental video).

Another fundamental challenge for remapping variables is the

actual definition of the projection operator itself. As alluded to above,

changing the mesh also changes the underlying function space of

the model. This is why inconsistencies from staggering the timestep

solves and projections can generate such significant errors when

timestepping.

A cheap, popular, and perhaps simplest projection strategy is

closest-point sampling where we assign new nodal values from the

closest node in the prior mesh. While tempting, this “projection”

introduces large artifacts and instabilities when elements’ sizes

differ [Vavourakis et al. 2013], e.g., under refinement, where many

new nodes’ values are often assigned from the same source node in

the prior mesh. A popular alternative is to apply interpolation from

the finite-element basis – barycentric interpolation in our linear-

element setting. This generally gives better results than closest-point

sampling, but still introduces large projection errors, again leading

to artifacts [Léger et al. 2014; Vavourakis et al. 2013; Wicke et al.

2010].

We instead begin with the 𝐿2
projection that minimizes the two-

norm error residual when we map from starting to target finite-

element space [Léger et al. 2014]. Consider again updating from

T 1
with function space 𝑉 1

and basis {𝜑1

𝑖
| 1 ≤ 𝑖 ≤ 𝑛} to T 2

with

corresponding function space 𝑉 2
and basis {𝜑2

𝑖
| 1 ≤ 𝑖 ≤ 𝑚}. We

now define a least-squares projection operator

P : 𝑉 1 → 𝑉 2, (6)

so that for functions 𝑓 1 ∈ 𝑉 1
their projection 𝑓 2 = P(𝑓 1) ∈ 𝑉 2

minimizes the 𝐿2
residual

1

2

𝑓 1 − 𝑓 2

2

. Optimality conditions min-

imizing this residual [Léger et al. 2014] give the projection of a

quantity 𝑢, defined on the vertices of T 1
(e.g., the coefficient vector

of 𝑓 1
), to the vertices of T 2

as

𝑀−1

T2
𝐴T

1

T2
𝑢, (7)

where 𝑀T2 ∈ R𝑚×𝑚 is the density-normalized mass matrix on

T 2
and 𝐴T

1

T2
∈ R𝑚×𝑛 is a transfer matrix between bases so that

𝑎𝑖 𝑗 =
∫
Ω 𝜑2

𝑖
𝜑1

𝑗
𝑑𝑉 . The two bases are then defined on two different

meshes and so we use arrangement via PolyClipper [Powell 2021]

to compute the quadrature points necessary for the integral [Krause

and Zulian 2016].

Although not, to our knowledge, previously applied in graphics,

this 𝐿2
-projection has long been appreciated in mechanics applica-

tions for its better preservation of quantities [Léger et al. 2014] due

to minimized error. However, while well-projecting unconstrained
quantities the 𝐿2

projection (and all others) are oblivious to our in-

variants. Projections can and will create both element inversions and

intersections, meaning we can not apply the 𝐿2
projection operator

as-is.

Tomake the 𝐿2
projection safe we return to the variational picture

and now rebuild a constrained least-squares residual minimization,

subject to non-intersection and non-inversion constraints, that safely

OursUR 1

t=0 s t=1.05 s t=2 s t=3.66 s

Fig. 4. Gorilla rollers. a very soft gorilla model (𝐸 = 2 × 10
4

Pa) is dropped
on a pair of stiff rotating elastic rollers (𝐸 = 2 × 10

8
Pa) with softer spikes

(𝐸 = 2 × 10
7

Pa). As the gorilla impacts the spikes, the mesh is refined
to account both for the large elastic forces in thin features and for the
rapidly changing contact forces. Our method adapts to the different material
stiffness, by refining the softer gorilla in the necessary regions of contact,
much less for the stiffer spikes, and leaves the even stiffer roller unadapted.
The dynamics for the single-level uniformly-refined (UR) solution (UR 1)
is comparable up to 𝑡 = 2 s where the spike is (unlike the adapted mesh
solution) is unable to push into the gorilla’s left shoulder.

projects quantities from an old mesh T old
to a new one, T ,

𝑃T (𝑢) = argmin

𝑣

1

2
𝑣⊤𝑀T𝑣 − 𝑣⊤𝐴Told

T 𝑢 + 𝐵T (𝑥) + 𝐼T (𝑥) . (8)

The first two terms form the least squares condition, 𝐵T is our

discretized IPC contact barrier defined on the new mesh, and 𝐼T
discretizes a new barrier we propose to enforce non-inversion dur-

ing projection without biasing the solution with elastic material

behavior,

𝐼T (𝑥) =
∑︁
𝑡 ∈T

𝑤𝑡𝑐𝑡 (𝑥, 𝑣), (9)

where, the function 𝑐𝑡 returns a log barrier on the volumes 𝑣𝑡 (𝑥) of
tetrahedra 𝑡 , that is smoothly activated when volume falls below 𝑣 ,

𝑐𝑡 (𝑥, 𝑣) =
{
−𝜅𝑣

(
𝑣𝑡 (𝑥)
𝑣
− 1

)
2

ln

(
𝑣𝑡 (𝑥)
𝑣

)
, 0 < 𝑣𝑡 (𝑥) < 𝑣

0 𝑣𝑡 (𝑥) ≥ 𝑣 .
(10)

We use 𝑣 = 10
−12

m
3
and 𝜅𝑣 = 0.1𝐸 (same as contact barrier stiff-

ness) throughout where 𝐸 is the material’s Young’s modulus. To

apply each constrained projection we first safely initialize our dis-

placement variables on the new mesh via linear interpolation and

then directly reuse our same line-search-filtered Newton method to

solve Equation (8) and so minimize the 𝐿2
-residual while ensuring

safe new variables on the updated mesh.

For all of our ITR phases, detailed in the next two sections, all

prior timestep quantities (·𝑡) must be projected to ensure consistency.

However, in our setting, we are able to take advantage of a simple

optimization: during refinement (only), barycentric interpolation

is equivalent to our 𝐿2
projection and so can be safely and cheaply

applied rather than Equation (8) for all our edge-split operations.

3.6 Remeshing with Local Operations
Changing the geometry (i.e., vertex rest-positions in our setting) of

a mesh is attractive for mesh adaptation as it leads to continuous

changes in the underlying finite element space, and so is amenable

to gradient-based optimization of functionals depending on them.

However, such r-adaptive-type updates are insufficient to capture

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:8 • Zachary Ferguson, Teseo Schneider, Danny M. Kaufman, and Daniele Panozzo

the large, often transient, and highly localized deformations we cap-

ture in accurate elastodynamic modeling. Instead, we often require

increasing (and decreasing) the number of DOF and so the number

of vertices in our meshes. However, in changing the connectivity of

a mesh we obtain discontinuous changes in our finite-element space.

In turn, this will drive nonsmooth changes in our meshing crite-

ria functional in Equation (2) and so here we will apply a discrete

optimization strategy.

We consider two types of operations that are applicable to both

triangle and tetrahedral meshes: 1) an edge split, which splits every

triangle/tetrahedra touching an edge into two while inserting a

vertex, and 2) its inverse, an edge collapse. These operations are

discrete in nature, but depend on both discrete and continuous

parameters: a split operation is applied to a discrete edge, but the

position of the newly inserted vertex is controlled by two or three

continuous coordinates.

Due to the discrete nature of the problem, it is not practical to seek

an optimal sequence of operations minimizing Equation (5) (pre-

suming a fixed sequence length or a targeted given tolerance). We

instead apply a greedy block-coordinate descent strategy: we test a

set of potential operations and pick those that provide maximal local

improvement in the energy for the inserted DOF. We first discuss

how we evaluate the effect of a single operation, and then how to

greedily select a sequence of operations reducing Equation (5).

Effect of an individual operation. To evaluate the effect of an op-

eration on Equation (5) a naive approach would be to perform the

mesh modification, project quantities (Section 2.3), ensure that the

invariants are still valid, and minimize Equation (5) globally. How-

ever, this is computationally prohibitive: inspired by approaches

used for a posteriori error estimators [Mitchell 1991; Schmidt and

Siebert 2000], we perform local solves in the neighborhood of the

mesh modification. This enables a sound approximation of each op-

eration’s impact, under the assumption that this effect decays as we

move from the operation’s stencil. By changing the neighborhood’s

size, we trade accuracy of our estimator with computational cost.

Scheduling. While we can not tractably obtain globally optimal

sequences for meshes, we could potentially find locally optimal so-

lutions by always continually selecting splits that satisfy a sufficient

amount of energy decrease (i.e., a minimal necessary reduction) of

our energy until no more remain. However, as we scale to larger

(and 3D) meshes, this approach is no longer practical either. De-

tailed below we thus introduce a culling method that preemptively

discards candidate split operations that are not likely to lead to

large energy reductions (and correspondingly discards candidate

edge collapses that are likely to lead to energy increases). We do

this by filtering based on the elastic and contact energies per mesh

element, with greater local energy concentration indicating a higher

likelihood (although not guaranteed) of energy reduction benefit

by splitting. Note that our filtering heuristic is applied solely to cull
likely ineffective operations – our criteria for acceptance remains

unchanged by it. We detail our filtering method in the next section.

Implementation. Implementing this discrete optimization algo-

rithm is challenging, especially for tetrahedral meshes, as we need

a mechanism to preview each connectivity change, extract its patch,

and minimize Equation (5). If the operation is invalid, or else does

not satisfy our criteria, changes to the connectivity and to its as-

sociated fields defined on our mesh need to be rolled back. This is

significantly challenging to implement via low-level libraries, e.g.,

CGAL, libigl, or OpenMesh. We opt to implement our remeshing

with declarative specification in Jiang et al. [2022], which allows us

to explicitly work on the mesh before and after the operation, and

directly supports invariant checks and rollbacks.

3.7 In-Timestep Remeshing Algorithm
We provide a high-level overview of our method in Algorithm 1.

Initial Timestep Solution. Give a current solution state 𝑥𝑡 , 𝑣𝑡 from

the last timestep solve
2
at time 𝑡 , our ITR first computes a new

predictor timestep solution 𝑥 ′ by minimizing Equation (4) on the

current mesh T 𝑡 (Line 3).

Refinement. Using the new solution 𝑥 ′, we sort every edge 𝑒𝑖
according to its elastic energy ΨT𝑡 (𝑒𝑖) (area-weighting all adjacent

cells) to form list 𝐸Ψ , and create list 𝐸𝐵 by sorting 𝑒𝑖 according to

its contact energy 𝐵T𝑡 (𝑒𝑖) (averaged over two adjacent faces in 3D)

(Line 6). We then select the top 𝜖𝑆% of both lists to form the filtered

set 𝑆 of edges as candidates for splitting operations (Line 7).

We then proceed to the Split procedure (Line 8). The Split pro-

cedure takes the set of candidate operations 𝑆 , and for each op-

eration performs the split (Line 25), obtaining a new mesh T ′𝑡 ,
updates the variable on the mesh by linear interpolation along

the split edge
3
(Line 26), which for each split is equivalent to a

zero-error 𝐿2
projection, and then performs a small local solve

(Line 27). See the next section below for details on the Local Solve.
The split operation is accepted if we obtain sufficient decrease,

𝛿𝐸 = 𝐸𝑡+1 (𝑥𝑖 ,T𝑖) − 𝐸𝑡+1 (𝑥𝑝 ,T𝑝) > 𝛿𝑠 , and the newly created edges

are applied to update the queue (Line 31). Otherwise, if the oper-

ation is rejected for providing insufficient improvement, we undo

the split.

Local Solve. Local solves applied in both the Split procedure above
and the Collapse procedure below follow the same procedure. A

timestep re-solve is performed in a local patch by minimizing Equa-

tion (4) on the current mesh, but now fixing all nodes in the system

except for DOF in a local patch with a size that is the maximum

between the 2-ring of the edge and 1% of the domain’s volume,

and using 𝑥 ′ as a safe and “near-to-solution” warm start. A first 𝑖

iterations are run (𝑖 = 4 for contacting patches and 1 otherwise) and

then checked to see if it reaches respectively, sufficient decrease

for a split (see above) or small (by |𝛿𝑐 |) acceptable increase for a
collapse (see below). If the remeshing criteria is not reached the oper-

ation is abandoned (as covered) as the Newton decrement shows no

progress. Otherwise, if the criteria are met and we will be accepting

the operation we continue the local-patch solve to convergence

2
For clarity in pseudocode and discussion we do not track the update of 𝑎𝑡 , 𝑎𝑡+1

nor 𝑥𝑡−1
here. Treatment for acceleration terms, when time-integration methods are

applied that use them, follow identically to 𝑣𝑡 , 𝑣𝑡+1 throughout, similarly treatment of

𝑥𝑡−1
follows identically to 𝑥𝑡 .

3
In practice, we use a simple averaging of endpoint values.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

In-Timestep Remeshing for Contacting Elastodynamics • 1:9

Algorithm 1 Overview of our in-timestep remeshing algorithm.

1: procedure InTimestepRemeshing(𝑥𝑡 , 𝑣𝑡 ,T 𝑡)

2: // Initial Timestep
3: 𝑥 ′ ← argmin𝑥 𝐸𝑡 (𝑥,T𝑡)
4:

5: // Refinement
6: 𝐸Ψ ← Sort({ΨT𝑡 (𝑒𝑖)}), 𝐸𝐵 ← Sort({𝐵T𝑡 (𝑒𝑖)})
7: 𝑆 ← 𝐸Ψ > 𝜖𝑆 ∪ 𝐸𝐵 > 𝜖𝑆 ,

8: T ′𝑡 , 𝑥 ′𝑡+1, 𝑥
′
𝑡 , 𝑣
′
𝑡 ← Split(𝑆,T 𝑡 , 𝑥

′, 𝑥𝑡 , 𝑣𝑡)
9: 𝑥𝑡 , 𝑣𝑡 ← 𝑥 ′𝑡 , 𝑣

′
𝑡

10:

11: // Coarsening
12: 𝐶 ← 𝐸Ψ < 𝜖𝐶 ∩ 𝐸𝐵 < 𝜖𝐶 ,

13: T 𝑡+1, 𝑥 ′𝑡+1, 𝑥
′
𝑡 , 𝑣
′
𝑡 ← Collapse(𝐶,T ′𝑡 , 𝑥 ′𝑡+1, 𝑥

′
𝑡 , 𝑣
′
𝑡)

14: 𝑥𝑡 , 𝑣𝑡 ← SafeProject(T𝑡 ,T𝑡+1, 𝑥𝑡 , 𝑣𝑡)
15:

16: // Global Solve
17: 𝑥𝑡+1 ← argmin𝑥 𝐸𝑡 (𝑥,T𝑡+1)
18: return T 𝑡+1, 𝑥𝑡+1, 𝑥𝑡 , 𝑣𝑡
19: end procedure
20:

21: procedure Split(𝑆,T , 𝑥𝑡+1, 𝑥𝑡 , 𝑣𝑡)
22: 𝑄 ←BuildPriority(𝑆)

23: while 𝑄 ≠ ∅ do
24: 𝑒 ← Pop(𝑄)

25: T ′ ← SplitEdge(𝑒,T)
26: 𝑥 ′

𝑡+1, 𝑥
′
𝑡 , 𝑣
′
𝑡 ← Interpolate(𝑥𝑡+1, 𝑥𝑡 , 𝑣𝑡 ,T ,T ′)

27: 𝑥 ′
𝑡+1 ← LocalSolve(𝑥 ′

𝑡+1,T
′
)

28: if 𝐸𝑡 (𝑥𝑡+1,T) − 𝐸𝑡 (𝑥 ′𝑡+1,T
′) > 𝛿𝑠 then

29: T ← T ′
30: 𝑥𝑡+1 ← 𝑥 ′

𝑡+1, 𝑥𝑡 ← 𝑥 ′𝑡 , 𝑣𝑡 ← 𝑣 ′𝑡
31: 𝑄 ← UpdateQueue(𝑄,T)
32: end if
33: end while
34: return T , 𝑥𝑡+1, 𝑥𝑡 , 𝑣𝑡
35: end procedure
36:

37: procedure Collapse(𝐶,T , 𝑥𝑡+1, 𝑥𝑡 , 𝑣𝑡)
38: 𝑄 ←BuildPriority(𝐶)

39: while 𝑄 ≠ ∅ do
40: 𝑒 ← Pop(𝑄)

41: T ′ ← CollapseEdge(𝑒,T)
42: 𝑥 ′

𝑡+1, 𝑥
′
𝑡 , 𝑣
′
𝑡 ← Interpolate(𝑥𝑡+1, 𝑥𝑡 , 𝑣𝑡 ,T ,T ′)

43: if InvariantCheck(𝑥 ′𝑡 , 𝑥
′
𝑡+1,T

′
) then

44: 𝑥 ′
𝑡+1 ← LocalSolve(𝑥 ′

𝑡+1,T
′
)

45: if 𝐸𝑡 (𝑥𝑡+1,T) − 𝐸𝑡 (𝑥 ′𝑡+1,T
′) > 𝛿𝑐 then

46: T ← T ′
47: 𝑥𝑡+1 ← 𝑥 ′

𝑡+1, 𝑥𝑡 ← 𝑥 ′𝑡 , 𝑣𝑡 ← 𝑣 ′𝑡
48: 𝑄 ← UpdateQueue(𝑄,T 𝑡)

49: end if
50: end if
51: end while
52: return T , 𝑥𝑡+1, 𝑥𝑡 , 𝑣𝑡
53: end procedure

(same termination tolerance as the global solve) ensuring that down-

stream operations (and the final solve) all start from well-resolved

regions.

Coarsening. Next, we then select the bottom 𝜖𝐶% from 𝐸Ψ and 𝐸𝐵
to form the set𝐶 of candidate edges for potential collapse operations
(Line 12) and attempt to collapse them (Line 13).

As in Split, the Collapse procedure takes a set of candidate op-
erations 𝐶 , and for each operation performs the collapse (Line 41),

obtaining a new mesh T ′𝑡 . However, differently from Split, the col-
lapse operation does not create a nested space, and so interpolation

will introduce mapping-errors. In turn, these errors can occasionally

break our invariants. To avoid this problem, we locally perform an

interpolation, and then explicitly check if the invariants are violated

(Line 43). If they are violated, we reject the operation, otherwise we

proceed similarly to check that the Split operation does not increase
system energy by more than a small, prescribed tolerance via a

𝛿𝑐 ≤ 0 and otherwise follow as in the Collapse procedure.
As in the interpolation applied in our Split operations, we in-

terpolate the endpoints of the collapsed edge to determine each

new vertex’s attributes. We collapse boundary edges if and only if

neighboring faces are coplanar in order to preserve the mesh’s rest

shape. For the same reason, when an edge has a single vertex on

the boundary, we collapse it to the boundary endpoint. For all other

edges, we average the endpoints.

After all collapse operations are complete, unlike after splits, we

now require a 𝐿2
-projection of prior displacements and velocities

on T 𝑡+1 by means of the safe 𝐿2
projection (Line 14) described in

Section 3.5, using our interpolated quantities as safe initialization.

Global Solve. Finally, warm-starting with the latest solution es-

timate 𝑥 ′
𝑡+1, we perform a final re-solve of Equation (4) on the full

domain using the finalized new mesh T 𝑡+1 and then explicitly up-

date velocity to 𝑣𝑡+1. As we have been incrementally updating (ef-

fectively relaxing) the solution throughout this process this final

solve is efficient (the number of iterations for convergence is low)

as the majority of the effort has been performed in both the initial

and intermediary solves during remeshing.

4 EVALUATION
Our algorithm is implemented in C++, using Eigen [Guennebaud

et al. 2010] for basic linear-algebra, PolyFEM [Schneider et al. 2019]

for finite element (FE) system construction, IPC Toolkit [Ferguson

et al. 2020] for evaluating IPC potentials and collision detection,

Wildmeshing-toolkit [Jiang et al. 2022] for mesh data structures and

editing, Pardiso [Alappat et al. 2020; Bollhöfer et al. 2019, 2020] for

the large linear systems in our global Newton solves, and Eigen’s

dense Cholesky decomposition (𝐿𝐿⊤) for the small linear systems

in our local Newton solves. All experiments are run on a cluster

node with an Intel Cascade Lake Platinum 8268 processor limited

to 16 threads. Our reference implementation, used to generate all

results, will be released as an open-source project. Please see our

supplemental video for result animations and Table 3 for parameters

used.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:10 • Zachary Ferguson, Teseo Schneider, Danny M. Kaufman, and Daniele Panozzo

No Remeshing Sizing Field Ours

Fig. 5. 2DMasticator. Simulation of the deformation of a 2D bar deformed
by a set of squares. the same mesh is used for the simulation without
remeshing (left column), remeshed using a sizing field based on [Li et al.
2018; Narain et al. 2012; Wicke et al. 2010] within our in-timestep frame-
work (middle column), and with ITR (“Ours”, right column). ITR produces a
more detailed simulation compared to the run without remeshing, adding
DOF to accurately capture the sharp contact with the cubes and the large
deformation of the bar. The method based on the sizing field overrefines
the contact regions (and does not refine elsewhere) and leads to a different
“snagged” final configuration.

4.1 Comparisons
To our knowledge, our ITR algorithm is the only AM method that

can ensure the preservation of IPC invariants and so can be com-

bined with the IPC contact model. This is because mappings and

contact failsafes applied in previous works can and will fail with

intersections and downstream failures in challenging contacting

scenarios like those we test here (Section 2). In order to compare

with prior methods on these challenging scenarios we focus on

comparing meshing criteria in a comparable side-by-side setting

allowing all methods to utilize within-timestep simulation and IPC

solves.

To robustly process contacts and implicitly solve dynamics with

IPC we replace our physics-aware meshing criteria within ITR with

Wicke et al.’s [2010] sizing field, based on the deformation gradient

[Wicke et al. 2010, Equation (7)], for internal deformation criteria,

and on the most recent, state-of-the-art contact sizing criteria pro-

posed by Li et al. [2018]. We compare our energy-based acceptance

criteria with this sizing field
4
. To do so we replace our criteria in our

implementation with the above sizing field and accept edge-split

and edge-collapses following the scheduling of Narain et al. [2012]

(same as Li et al. [2018]).

We instrument two side-by-side comparison examples: one in

2D (Masticator) and the other in 3D (Ball-on-Spikes). Initially, we
observe that the contact-based sizing field leads to runaway endless

refinement on contacting surfaces – rapidly leading to intractable

simulations. On closer inspection, we see that division by contact

distance in the denominator of Li et al.’s [2018] sizing tensors is the

source: here accurate IPC contact-processing allows for exceedingly

4
Note that we do not apply the additional deformation sizing field criteria from [Li

et al. 2018; Narain et al. 2012] as those are customized for shell models – for this, we

take our deformation sizing component instead from the volumetric work of Wicke

et al. [2010].

close compliance between surfaces. To enable the contact sizing

field strategy to progress we add a limit to the method restricting

edge lengths to 0.01.

For our 2D example, we see in Figure 5 that both our algorithm

and the sizing field method improve on the simulation of the origi-

nal unrefined mesh (left column). However, the sizing field greedily

refines in contact regions with large numbers of unnecessary faces

that can significantly slow simulation and lead to overly compliant

surfaces locally, that “snag” on boundaries. Please see our supple-

mental video for detailed trajectories of all three simulations.

Similar results bear out for our 3D test in Figure 2b. Here we again

see that our remeshing criterion automatically adapts to both the

contact geometries, the relative material stiffnesses of the domains,

and the force balance between the coiled spikes and the dropped ball

– leading to the resolution and local mesh adaptation necessary to

capture all these details. In contrast, we again see that the sizing field

rapidly over-refines for the first initial contacts, leading to highly

meshed, but minor, side indentations for the first initial collisions

with the spikes, but entirely misses the later spike protrusions and

compressed coiling as it does not account for the physical solution

and relative forces (compare with Figure 1). Please also see our

supplemental video for more details and a comparison with the

simulation of the unrefined starting mesh.

4.2 Results
Sharp Contact. In Figure 3, we reproduce the Masticator example

of Wicke et al. [2010] with a large timestep (ℎ = 0.05 s) to stress-test

a deformable bar compressed by a set of rigid boxes. Our algorithm

quickly captures the sharp contact interfaces upon collision, fol-

lowed by more refinement to allow compliance along the block,

curvature on top, and initially symmetric bulging of the bar out-

of-plane, followed by the start of buckling. In contrast, without

refinement, the simulated bar’s initial mesh does not have sufficient

DOF to capture contact and compliance – these behaviors are missed

and instead we obtain a jagged and twisted deformation.

Large Deformation with Self-Contact. In Figure 6, a stiff bar (𝐸 =

10
7

Pa) is anchored on both sides and twisted by rotating its top. In

the close-ups we see how prior to contact our algorithm progres-

sively refines the tetrahedral domain as more winding introduces

greater curvature and more stress. As winding continues, the simula-

tion adapts to provide even twisting along bar faces and edges until

buckling. Upon buckling, we observe in the zoom-in of Figure 6 how

our simulation of the bar adapts the mesh to capture the collapse,

fold-in, and exceedingly tight frictional contact of its faces (e.g., the

middle red face). In contrast, simulating directly (unrefined) with

the initial bar misses these details and leads to large deformation

errors even before the onset of buckling.

Complex geometry and material-awareness. Varying surface com-

plexity and material stiffness across domains are likewise simulta-

neously resolved by our algorithm. Here a stiff roller is scripted to

rotate, with slightly softer spikes and much softer dropped gorilla

geometry in Figure 4. On contact, we see the gorilla geometry in-

creasingly refines around the impact site with the bar (which refines

less due to a stiffer reaction) and then coarsens as it rebounds.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

In-Timestep Remeshing for Contacting Elastodynamics • 1:11
O

ur
s

N
o

R
em

es
hi

ng

Fig. 6. Bar-twist. Starting from the same coarse geometry (shown in grey)
the resulting deformedmesh is very different without (top) andwith (middle)
ITR. Our algorithm adaptively adds (and removes) DOF in the mesh to better
resolve elastodynamics. As our adaptive simulation progresses we move
from regular twisting to buckling. Bottom inset: during buckling our physics-
aware remeshing allows the face to collapse (see the center red face) and
fold in on itself with tightly resolved contact.

High-Speed Impact. While above we stress-test ITRwith a number

of large timestep examples, for many phenomena we may wish to

capture detailed deformation occurring at much finer time scales. In

Figure 8, we model the high-speed impact test from Li et al. [2020]

with ITR. A soft (𝐸 = 10
6

Pa) ball is fired at a wall obstacle with

high velocity (𝑣0 = 67 m/s) with a timestep of ℎ = 2 × 10
−5

s. Here

ITR begins with a much coarser (17× fewer tetrahedra) initial mesh.

Then, on impact, ITR automatically begins refining the mesh to

capture both the rapidly changing contact interface on the surface

and the internal propagation of shock waves across the material. It

then coarsens the mesh as the shockwave passes through, with light,

secondary refinement and coarsening applications capturing the

subsequent oscillations in free-flight. Please see our supplemental

video for the resulting dynamics of the simulation and the changing

mesh supporting it.

Dynamic Wave Propagation. In many cases, emergent behavior

in a system’s dynamics would best define a suitable mesh choice –

but this is hard to predict without a higher-resolution simulation

result to guide us in the first place. In Figure 7, we fix the left side of

a coarsely triangulated beam and then drive its other end with peri-

odic vertical oscillations. Appropriately modeled, this driven system

should lead to a steady state of attenuating waves damping as they

traverse the bar from right to left. Over multiple timesteps, we see

Deformed Rest Mesh

t=0 6 s0.625 1.875 3

Fig. 7. Elastic wave. Simulation of a driven periodic wave motion. Starting
from a coarse rectangular mesh (top), ITR progressively adapts the sim-
ulation mesh with increasing corresponding resolution from left to right
and local adaptations in appropriate regions to capture the steady wave
dynamics (bottom).

that ITR progressively adapts the simulation mesh with increas-

ing corresponding resolution left to right and local adaptations in

appropriate regions to smoothly capture the steady wave dynamics.

Energy Effectiveness of Remeshing. We instrument the above ball-

impact example to study the effectiveness of our ITR (Figure 9).

Across the entire simulation, we compute the energy decrease

per timestep of the total incremental potential energy obtained

by remeshing from the beginning of the timestep solve (prior to

our algorithm initializing the remeshing operation: Algorithm 1

Line 3) to the final solution output (Algorithm 1 Line 17) on the

timestep’s adapted mesh: Δ𝐸 = 𝐸 (𝑥𝑡+1,T 𝑡+1) − 𝐸 (𝑥 ′,T 𝑡). In Fig-

ure 9 we see that as we refine the mesh (noticeably just around the

first contact, marker (a)) our method dramatically improves the en-

ergy, while during coarsening (e.g., after complete separation in (d))

the energy does not increase, despite the removal of DOF. Looking

more closely at the trends we also see proportionately more energy

decrease when more refinement operations are performed demon-

strating the effectiveness of our criteria’s selection and timing of

operations.

Stability. As covered in Section 2, a fundamental challenge in

AM methods for dynamics, especially during coarsening, is stability.

Each ITR timestep solve in all the above examples is solved to con-

vergence on the timestep’s final output mesh with the prior state

safely L2-projected to it. We observe that qualitatively (see our sup-

plemental video), all the trajectories generated by ITR remain stable,

and so free of jittering and instability artifacts, e.g. as demonstrated

in prior methods by Narain et al. [2013].

4.3 Performance and Resolution
For non-adapted (fixed mesh) timestep solves of IPC there are three

primary sources of computational cost per Newton iterate: (1) eval-

uation of the energy potential gradients and Hessians, and their

assembly to a global linear system, (2) the linear solve of each such

system to compute a descent direction, and (3) line search along this

direction. Both (1) and (3) involve the evaluation of potential-energy

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:12 • Zachary Ferguson, Teseo Schneider, Danny M. Kaufman, and Daniele Panozzo

Ve
lo

ci
ty

 (m
/s

)

88

0

Fig. 8. Impacting ball.We replicate the high-speed impact test from [Li
et al. 2020] where a soft (𝐸 = 10

6
Pa) ball is fired at a static wall with a

high velocity (𝑣0 = 67 m/s). Beginning with a much coarser initial mesh,
ITR’s adaptive remeshing determines that refinement only begins during
initial collision (left column). As the ball bounces away from the wall, ITR
then begins removing DOF, which were earlier added to capture the contact
dynamics and are now unnecessary. The bottom row shows the velocity
magnitude throughout this process.

0 0.001 0.002 0.003 0.004

600

400

200

0

200

400

600

−2e−3

−2e−3

−1e−3

−5e−4

0e+0

5e−4

1e−3

2e−3

2e−3

Splits # Collapses ΔE

t (s)

O

pe
ra

tio
ns

(a) (b) (c) (d)

Δ
𝐸

Fig. 9. For each timestep of the impacting ball simulation (Figure 8), we
plot the number of splits (green bars), the number of collapses (orange bars),
and the change in energy (blue line) from the initial solve of the timestep
(prior to remeshing operations) via minimization of 𝐸 to the final solution
of the timestep on the final updated mesh. Key times in the simulation
are indicated by virtual lines: (a) first contact, (b) maximal compression, (c)
rebound of the material as peels away, and (d) complete separation. The
plot shows significant improvements (decrease) in the energy as we apply
splitting operations, and at the same time, the coarsening operations do not
negatively affect the energy, while increasing efficiency.

stencils and collision detection. As such, they generally dominate

costs only for exceedingly small systems since, with modern accel-

eration strategies and easy parallelization, they generally scale close

to linear in the number of elements. On the other hand, the large,

ill-scaled, sparse linear system solves per Newton iteration in (2)

dominate the costs for all practical examples as they require direct

solvers [Li et al. 2020] with poor parallel scaling of a memory bound

problem [Lipton et al. 1979].

By adapting the mesh ITR significantly lowers DOF count for

high-quality simulation output (see Table 1) and so reduces the size

of the largest (super-linear cost) solver bottleneck: linear system

sizes. At the same time, ITR introduces a new potentially large

(albeit linear and currently unoptimized) overhead cost per timestep

to evaluate the suitability of each mesh-adaptation proposal.

To evaluate the current runtime performance of ITR with respect

to these computational costs, we compare ITR with successive uni-

form refinements [Ong 1994] (splitting along the first diagonal) in

two inter-related analyses. In the first, we measure the wall-clock
time used by each implementation, including current (unoptimized)

costs for ITR’s remeshing overhead. Here we report both running

time and memory consumption, noting that there is only one value

for memory as linear solves are the bottleneck for memory usage.

In the second, we consider an ideal analysis; we keep in mind that

linear solver technology is an advanced, exceptionally well-studied

domain with little expectation of significant improvement, while

costs for ITR mesh adaptivity are currently linear and not yet ad-

dressed in our ITR implementation with significant optimization nor

even low-hanging opportunities for parallelization. For the latter,

we focus on the DOF difference (for comparable quality output) and

the corresponding difference in global system linear solve times for

the IPC timestep solver.

Statistics for these comparisons are reported in Tables 1 and 2. We

begin by visually identifying, per benchmark example, the artifact-

free baseline UR simulation with qualitatively comparable results

to our ITR simulation. As a concrete example, consider the ball

on-spike scene, where we observe that simulations with both one

and two levels of refinement exhibit significant snagging and severe

element distortion; please see Figure 10 for examples. On the other

hand, for the gorilla roller scene, two-levels of uniform refinement

are sufficient to remove most artifacts and obtain qualitatively sim-

ilar deformation and contact compliance to our ITR result, please

see Figure 11.

In summary, we see ITR’s DOF improvement ranging from 2.6

to 185× less DOF per example with corresponding 2.7 to 1,444×
linear solve speedups. At the same time, the impact of our initial,

unoptimized implementation of our remeshing procedures on wall-

clock time varies significantly across examples, ranging from 3.3×
speedup for the complex ball on spikes scene to 9.6× slowdown for

the much simpler bar-twist scene.

Opportunities for wall-clock performance improvement. We iden-

tify four high-impact and immediate directions for future exten-

sions that we believe will likely provide significant improvement in

remeshing costs (and so runtimes) for ITR: (1) the most immediate

and low-hanging opportunity is the development of parallel and

distributed versions of ITR; (2) similarly low-hanging is the appli-

cation of custom collision-detection that is spatially localized to

leverage the small local support that our individual mesh operations

evaluate in our local-solve updates (currently this is still applied

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

In-Timestep Remeshing for Contacting Elastodynamics • 1:13

Table 1. The average running time per timestep, peak memory, and the number of DOF for an unrefined mesh (UR 0), three levels of uniform refinement (UR
1–3), and our method. We bold the values corresponding to the lowest resolution showing comparable and artifact-free results to ITR.

Scene

Average running time per step (s) Peak memory (GiB) Number of DOF

UR 0 UR 1 UR 2 UR 3 Ours UR 0 UR 1 UR 2 UR 3 Ours UR 0 UR 1 UR 2 UR 3

Ours

avg (max)

Ball on spikes (Figure 1) 20.1 418.1 8,371.6 40,648.1 12,316.6 0.9 3.7 24.3 151.5 2.0 27k 144k 900k 6M 43k (55k)
Masticator (Figure 3) 70.8 480.7 9,781.7 16,775.8 8,230.8 0.9 0.5 2.7 16.2 4.1 1k 9k 63k 476k 16k (57k)
Gorilla rollers (Figure 4) 15.2 162.0 3,317.3 23,372.5 1,077.8 1.0 3.8 24.7 182.6 7.7 18k 115k 800k 5M 22k (27k)
Bar-twist (Figure 6) 0.2 1.5 232.5 2,733.6 2,234.9 0.1 0.4 3.1 21.1 3.7 1k 9k 63k 476k 24k (78k)
Impacting ball (Figure 8) 0.3 5.9 115.8 8,564.0 960.8 0.2 1.1 8.3 71.8 2.9 5k 34k 248k 1M 50k (61k)

OursUR 2

(t = 0.6 s)

Fig. 10. Ball on spikes uniform comparison. Here we plot a detailed view of the performance of the ball on spikes simulation (Figure 1). We compare an
unrefined mesh (UR 0), three levels of uniform refinement (UR 1–3), and our method. Circled in the rendering on the right, it is clear that UR 2 was insufficient
in capturing the local deformations and stretching caused by the spike tips.

Table 2. Average linear solver running time.

Scene UR 0 UR 1 UR 2 UR 3 Ours

Ball on spikes (Figure 1) 0.08 0.81 9.88 201.77 0.25

Masticator (Figure 3) 0.01 0.06 0.78 9.39 0.22

Gorilla rollers (Figure 4) 0.12 1.23 16.82 245.44 0.17

Bar-twist (Figure 6) 0.00 0.05 0.57 8.77 0.21

Impacting ball (Figure 8) 0.02 0.28 3.60 126.68 0.37

OursUR 2

Fig. 11. Gorilla rollers uniform comparison demonstrates results of the
gorilla roller simulation with two levels of uniform refinement (UR 2) and
ITR (“Ours”) at the halfway point of the simulation.

globally), (3) exploiting both temporal- and spatial-coherence during

collision-detection and culling, and (4) exploration of higher-order

bases and geometry to further reduce DOF count.

5 DISCUSSION
We have proposed ITR, a first fully-coupled adaptive-remeshing

algorithm for implicit timestepping elastodynamics with frictional

contact via a spatially continuous incremental potential merit func-

tion. To do so ITR ensures non-penetration and non-inversion

throughout all operations in both remeshing and solving. In turn,

it applies robust physics-aware remeshing to generate stable and

accurate trajectories with low DOF counts. Simulated geometries

conform well to necessary contacting interfaces and deformations

with parsimonious refinement where new DOF are needed to im-

prove the solution, and effective coarsening where they are not.

5.1 Limitations and Future Work
Along with the opportunities for improved remeshing operation

performance discussed above in Section 4.3 we see a number of

additional avenues for fruitful improvements and extensions.

Currently, we empirically demonstrate improved solution behav-

ior on a wide range of challenging examples. However, an important

next step, which we do not address here is a formal convergence

study of our refinement. We provide a preview of such a study in

Figure 12, where we consider a cantilever convergence test (see

e.g., Pelteret [2016]). As can be seen, ITR’s convergence is currently

highly dependent on the initial discretization. At least in part, this

dependence appears closely related to controlling for mesh quality.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:14 • Zachary Ferguson, Teseo Schneider, Danny M. Kaufman, and Daniele Panozzo

Table 3. IPC simulation and ITR parameters. For each example, we report the timestep size (ℎ), density (𝜌), Young’s modulus (𝐸), Poisson ratio (𝜈), barrier
activation distance (ˆ𝑑), barrier stiffness (𝜅), coefficient of friction (𝜇), friction accuracy parameter (𝜖𝑣), and max friction iteration setting. We also report the split
and collapse acceptance tolerances (𝛿𝑆,𝐶) and the culling thresholds (𝜖𝑆,𝐶). For all examples, we use a Newton convergence criteria of ∥Δ𝑥 ∥/ℎ ≤ 10

−3
m/s,

implicit Euler time integration, and a neo-Hookean material.

Scene ℎ (s) 𝜌 (kg/m3
), 𝐸 (Pa), 𝜈 ˆ𝑑 (m), 𝜅 (Pa) 𝜇, 𝜖𝑣 (m/s), friction iters. 𝛿𝑠 (J), 𝛿𝑐 (J) 𝜖𝑆 , 𝜖𝐶

Ball on spikes (Figure 1) 0.01 2000/1100, 1e5/1e8, 0.4 1e-3, 6e4 0.1, 1e-3, 1 1e-5, -1e-8 0.95, 0.01

2D Masticator (Figure 5) 0.05 1e3, 1e4, 0.4 1e-3, 1e3 0.1, 1e-3, 1000 1e-3, -1e-8 0.95, 0.01

3D Masticator (Figure 3) 0.05 1e3, 1e4, 0.4 1e-3, 1e3 0.1, 1e-3, 1000 1e-5, -1e-8 0.95, 0.01

Gorilla rollers (Figure 4) 0.01 1e3, 5e4/2e7/2e8, 0.3 1e-3, 3e5 0.5, 4e-3, 1 1e-5, -1e-8 0.95, 0.01

Bar-twist (Figure 6) 0.01 1e3, 1e7, 0.4 1e-3, 1e6 - 1e-3, -1e-8 0.95, 0.01

Elastic wave (Figure 7) 0.025 1340, 1e4, 0.495 1e-3, 1e3 - 5e-5, -1e-8 0.85, 0.01

Impacting ball (Figure 8) 2e-5 1150, 1e6, 0.45 6.9e-5, 1e5 - 1e-14, -1e-16 0.95, 0.01

Cantilever (Figure 12) 0.1 1e6, 1.1e9, 0.3 1e-3, 1.1e8 - *,-1e-13 0.6, 0.4

2 5 100 2 5 1000 2 5 10k 2 5

12

14

16

18

20

Uniform refinement Ours (1) Ours (2) Ours (3) Ours (swap+smooth)

Degrees of Freedom

T
ip
 D
is
p
la
ce
m
en
t 
(m

m
)

Fig. 12. Cantilever convergence. Using a cantilever example (see e.g., Pel-
teret [2016]), we examine the convergence behavior of ITR with varying
refinement acceptance tolerances 𝛿𝑠 from 1 𝜇J to 10 pJ. We observe that the
accuracy of our method is largely dependent on the initial discretization:
Ours (1–3) start from 1 to 3 levels of initial refinement, respectively. As
a proof-of-concept, we also test a preliminary extension of ITR that addi-
tionally utilizes edge-swapping and vertex smoothing, starting from the
same mesh as Ours (1). Here we see that these operations are important to
“breakaway” from the initial discretization.

We observe that while split and collapse operations are effective

for adaptive updates, they are insufficient to preserve mesh quality

and so limit the convergence and range of refinement that ITR can

currently apply. The inclusion of edge/face flips/swaps will be a

simple and direct improvement that naturally fits within the ITR

framework, as will be explicit optimization for mesh quality [Wicke

et al. 2010]. As a proof-of-concept investigation, in the above can-

tilever experiment, we have updated ITR operations to additionally

include a preliminary version of edge flips and vertex smoothing.

As we see in Figure 12 this improves ITR’s convergence.

Additional extensions of ITR’s adaptivity to also include r-refinement

should also be valuable. Likewise, while we focus here solely on

volumetric elastodynamics, ITR should usefully extend to codimen-

sional models for shell and rod simulations and even alternative

contact models.

We hope that this work and its reference implementation will en-

courage further research on the application of adaptive unstructured

remeshing. As simulation methods advance and problem complexi-

ties grow, it becomes all the more important to judiciously apply

computation where it can be most effective.

ACKNOWLEDGMENTS
This work was supported in part through the NYU IT High Per-

formance Computing resources, services, and staff expertise. This

work was also partially supported by the NSF CAREER award un-

der Grant No. 1652515, the NSF grants OAC-1835712, OIA-1937043,

CHS-1908767, CHS-1901091, NSERC DGECR-2021-00461 and RG-

PIN 2021-03707, a Sloan Fellowship, and a gift from Advanced Micro

Devices, Inc.

REFERENCES
Christie Alappat, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager, Olaf

Schenk, Jonas Thies, and Gerhard Wellein. 2020. A Recursive Algebraic Coloring

Technique for Hardware-Efficient Symmetric Sparse Matrix-Vector Multiplication.

ACM Trans. Parallel Comput. 7, 3, Article 19 (June 2020), 37 pages.
Adam W. Bargteil, Chris Wojtan, Jessica K. Hodgins, and Greg Turk. 2007. A Finite

Element Method for Animating Large Viscoplastic Flow. In ACM SIGGRAPH 2007 Pa-
pers (San Diego, California) (SIGGRAPH ’07). Association for Computing Machinery,

New York, NY, USA, 16–es.

Jan Bender and Crispin Deul. 2013. Adaptive cloth simulation using corotational finite

elements. Computers & Graphics 37, 7 (2013), 820–829.
Matthias Bollhöfer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk. 2019. Large-

scale Sparse Inverse Covariance Matrix Estimation. SIAM Journal on Scientific
Computing 41, 1 (2019), A380–A401.

Matthias Bollhöfer, Olaf Schenk, Radim Janalik, Steve Hamm, and Kiran Gullapalli.

2020. State-of-the-Art Sparse Direct Solvers. (2020), 3–33.

Tyson Brochu and Robert Bridson. 2009. Robust Topological Operations for Dynamic

Explicit Surfaces. SIAM Journal on Scientific Computing 31, 4 (2009), 2472–2493.

Chris J Budd, Weizhang Huang, and Robert D Russell. 2009. Adaptivity with moving

grids. Acta Numerica 18 (2009), 111–241.
Nuttapong Chentanez, Ron Alterovitz, Daniel Ritchie, Lita Cho, Kris K. Hauser, Ken

Goldberg, Jonathan R. Shewchuk, and James F. O’Brien. 2009. Interactive Simulation

of Surgical Needle Insertion and Steering. ACM Trans. Graph. 28, 3, Article 88 (July
2009), 10 pages.

Fang Da, Christopher Batty, and Eitan Grinspun. 2014. Multimaterial Mesh-Based

Surface Tracking. ACM Trans. on Graphics (SIGGRAPH North America 2014) (2014).
Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr. 2001. Dynamic

Real-Time Deformations Using Space and Time Adaptive Sampling. In Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’01). Association for Computing Machinery, New York, NY, USA, 31–36.

Leszek Demkowicz. 2006. Computing with hp-ADAPTIVE FINITE ELEMENTS. Chapman

and Hall/CRC.

Marion Dunyach, David Vanderhaeghe, Loïc Barthe, and Mario Botsch. 2013. Adaptive

Remeshing for Real-Time Mesh Deformation. In Eurographics 2013 - Short Papers,
M.-A. Otaduy and O. Sorkine (Eds.). The Eurographics Association.

Tobias Erhart, Wolfgang A.Wall, and Ekkehard Ramm. 2006. Robust adaptive remeshing

strategy for large deformation, transient impact simulations. Internat. J. Numer.
Methods Engrg. 65, 13 (2006), 2139–2166.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

In-Timestep Remeshing for Contacting Elastodynamics • 1:15

Zachary Ferguson et al. 2020. IPC Toolkit. https://ipc-sim.github.io/ipc-toolkit/

Eitan Grinspun, Petr Krysl, and Peter Schröder. 2002. CHARMS: A Simple Framework

for Adaptive Simulation. ACM Trans. Graph. 21, 3 (July 2002), 281–290.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.

David Hahn and Chris Wojtan. 2015. High-Resolution Brittle Fracture Simulation with

Boundary Elements. ACM Trans. Graph. 34, 4, Article 151 (July 2015), 12 pages.

Kai Hormann, Günther Greiner, and Swen Campagna. 1998. Hierarchical Parametriza-

tion of Triangulated Surfaces. Proceedings of Vision, Modeling and Visualization (Jan.

1998).

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.

2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July
2018), 14 pages.

Dave Hutchinson, Martin Preston, and Terry Hewitt. 1996. Adaptive Refinement for

Mass/Spring Simulations. In Proceedings of the Eurographics Workshop on Computer
Animation and Simulation ’96 (Poitiers, France). Springer-Verlag, Berlin, Heidelberg,
31–45.

Zhongshi Jiang, Jiacheng Dai, Yixin Hu, Yunfan Zhou, Jeremie Dumas, Qingnan Zhou,

Gurkirat Singh Bajwa, Denis Zorin, Daniele Panozzo, and Teseo Schneider. 2022.

Declarative Specification for Unstructured Mesh Editing Algorithms. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH Asia) 41, 6, Article 251 (Nov. 2022),
14 pages.

Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial Complex Aug-

mentation Framework for Bijective Maps. ACM Trans. Graph. 36, 6, Article 186 (Nov.
2017), 9 pages.

Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F. O’Brien.

2006. Fluid Animation with Dynamic Meshes. In ACM SIGGRAPH 2006 Papers
(Boston, Massachusetts) (SIGGRAPH ’06). Association for Computing Machinery,

New York, NY, USA, 820–825.

Woojong Koh, Rahul Narain, and James F. O’Brien. 2015. View-Dependent Adaptive

Cloth Simulation with Buckling Compensation. IEEE Transactions on Visualization
and Computer Graphics 21, 10 (Oct. 2015), 1138–1145.

Dan Koschier, Sebastian Lipponer, and Jan Bender. 2015. Adaptive Tetrahedral Meshes

for Brittle Fracture Simulation. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (Copenhagen, Denmark) (SCA ’14). Eurographics
Association, Goslar, DEU, 57–66.

Rolf Krause and Patrick Zulian. 2016. A Parallel Approach to the Variational Transfer of

Discrete Fields between Arbitrarily Distributed Unstructured Finite Element Meshes.

SIAM Journal on Scientific Computing 38, 3 (2016), C307–C333.

Jie Li, Gilles Daviet, Rahul Narain, Florence Bertails-Descoubes, Matthew Overby,

George E. Brown, and Laurence Boissieux. 2018. An Implicit Frictional Contact

Solver for Adaptive Cloth Simulation. ACM Trans. Graph. 37, 4, Article 52 (July

2018), 15 pages.

Ling Li and Vasily Volkov. 2005. Cloth Animation with Adaptively Refined Meshes.

In Proceedings of the Twenty-Eighth Australasian Conference on Computer Science
- Volume 38 (Newcastle, Australia) (ACSC ’05). Australian Computer Society, Inc.,

AUS, 107–113.

Minchen Li, Zachary Ferguson, Teseo Schneider, Chenfanfu Jiang, Denis Zorin, Daniele

Panozzo, and Danny M. Kaufman. 2023. Convergent Incremental Potential Contact.

arXiv.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele

Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential

Contact: Intersection-and Inversion-Free, Large-Deformation Dynamics. ACM
Transactions on Graphics (Proceedings of SIGGRAPH) 39, 4, Article 49 (Aug. 2020),
20 pages.

Richard Lipton, Donald Rose, and Robert Targan. 1979. Generalized Nested Dissection.

SIAM J. Numer. Anal. 16, 2 (1979), 346–358.
S. Léger, A. Fortin, C. Tibirna, and M. Fortin. 2014. An updated Lagrangian method

with error estimation and adaptive remeshing for very large deformation elasticity

problems. Internat. J. Numer. Methods Engrg. 100, 13 (2014), 1006–1030.
Pierre-Luc Manteaux, Wei-Lun Sun, Francois Faure, Marie-Paule Cani, and James F.

O’Brien. 2015. Interactive Detailed Cutting of Thin Sheets. In Proceedings of ACM
SIGGRAPH Motion in Games. 1–8.

P.-L. Manteaux, C. Wojtan, R. Narain, S. Redon, F. Faure, and M.-P. Cani. 2017. Adaptive

Physically Based Models in Computer Graphics. Computer Graphics Forum 36, 6

(2017), 312–337.

Sandeep Menon, Kyle G. Mooney, K.G. Stapf, and David P. Schmidt. 2015. Parallel

adaptive simplical re-meshing for deforming domain CFD computations. J. Comput.
Phys. 298 (2015), 62–78.

Marek Krzysztof Misztal, Kenny Erleben, Adam Bargteil, Jens Fursund, Brian Bunch

Christensen, Jakob Andreas Bærentzen, and Robert Bridson. 2014. Multiphase

flow of immiscible fluids on unstructured moving meshes. IEEE Transactions on
Visualization and Computer Graphics 20, 1 (2014), 4–16.

Marek Krzysztof Misztal and Jakob Andreas Bærentzen. 2012. Topology-Adaptive

Interface Tracking Using the Deformable Simplicial Complex. ACM Trans. Graph.
31, 3, Article 24 (jun 2012), 12 pages.

William F. Mitchell. 1991. Adaptive refinement for arbitrary finite-element spaces with

hierarchical bases. J. Comput. Appl. Math. 36, 1 (1991), 65–78. Special Issue on

Adaptive Methods.

William F. Mitchell and Marjorie A. McClain. 2014. A Comparison of Hp-Adaptive

Strategies for Elliptic Partial Differential Equations. ACM Trans. Math. Softw. 41, 1,
Article 2 (Oct. 2014), 39 pages.

J. F. Molinari and M. Ortiz. 2002. Three-dimensional adaptive meshing by subdivision

and edge-collapse in finite-deformation dynamic–plasticity problems with appli-

cation to adiabatic shear banding. Internat. J. Numer. Methods Engrg. 53, 5 (2002),
1101–1126.

J. Mosler and M. Ortiz. 2007. Variational h-adaption in finite deformation elasticity and

plasticity. Internat. J. Numer. Methods Engrg. 72, 5 (2007), 505–523.
Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2015. Air

Meshes for Robust Collision Handling. ACM Trans. Graph. 34, 4, Article 133 (July
2015), 9 pages.

Rahul Narain, Tobias Pfaff, and James F. O’Brien. 2013. Folding and Crumpling Adaptive

Sheets. ACM Trans. Graph. 32, 4, Article 51 (July 2013), 8 pages.

Rahul Narain, Armin Samii, and James F. O’Brien. 2012. Adaptive Anisotropic Remesh-

ing for Cloth Simulation. ACM Trans. Graph. 31, 6, Article 152 (Nov. 2012), 10 pages.
James F. O’Brien, Adam W. Bargteil, and Jessica K. Hodgins. 2002. Graphical Modeling

and Animation of Ductile Fracture. ACM Trans. Graph. 21, 3 (July 2002), 291–294.

James F. O’Brien and Jessica K. Hodgins. 1999. Graphical Modeling and Animation of

Brittle Fracture. In Proceedings of ACM SIGGRAPH 1999. ACM Press/Addison-Wesley

Publishing Co., 137–146.

Maria Elizabeth G. Ong. 1994. Uniform Refinement of a Tetrahedron. SIAM Journal on
Scientific Computing 15, 5 (1994), 1134–1144.

Jean-Paul Pelteret. 2016. The ’Quasi-Static Finite-Strain Compressible Elasticity’ code

gallery program. https://dealii.org/developer/doxygen/deal.II/code_gallery_Quasi_

static_Finite_strain_Compressible_Elasticity.html. Accessed: 2023-04-24.

Tobias Pfaff, Rahul Narain, Juan Miguel de Joya, and James F. O’Brien. 2014. Adaptive

Tearing and Cracking of Thin Sheets. ACM Trans. Graph. 33, 4, Article 110 (July
2014), 9 pages.

Devon Powell. 2021. PolyClipper. https://github.com/LLNL/PolyClipper.

Alfred Schmidt and Kunibert G. Siebert. 2000. A posteriori estimators for the h – p

version of the finite element method in 1D. Applied Numerical Mathematics 35, 1
(2000), 43–66.

Teseo Schneider, Jérémie Dumas, Xifeng Gao, Denis Zorin, and Daniele Panozzo. 2019.

PolyFEM. https://polyfem.github.io/

Timothy J. R. Simnett, Stephen D. Laycock, and Andy M. Day. 2009. An Edge-based

Approach to Adaptively Refining a Mesh for Cloth Deformation. In Theory and Prac-
tice of Computer Graphics, Wen Tang and John Collomosse (Eds.). The Eurographics

Association.

Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel,

Eitan Grinspun, and Markus Gross. 2014. Designing Inflatable Structures. ACM
Trans. Graph. 33, 4, Article 63 (July 2014), 10 pages.

Jonas Spillmann and Matthias Teschner. 2008. An Adaptive Contact Model for the

Robust Simulation of Knots. Computer Graphics Forum 27, 2 (2008), 497–506.

Keith Stein, Tayfun E. Tezduyar, and Richard Benney. 2004. Automatic mesh update with

the solid-extension mesh moving technique. Computer Methods in Applied Mechanics
and Engineering 193, 21 (2004), 2019–2032. Flow Simulation and Modeling.

Vasileios Vavourakis, Dimitrios Loukidis, Dimos C. Charmpis, and Panos Papanastasiou.

2013. Assessment of Remeshing and Remapping Strategies for Large Deformation

Elastoplastic Finite Element Analysis. Comput. Struct. 114–115 (Jan. 2013), 133–146.
J. Villard and H. Borouchaki. 2005. Adaptive Meshing for Cloth Animation. Eng. with

Comput. 20, 4 (Aug. 2005), 333–341.
Martin Wicke, Daniel Ritchie, Bryan M. Klingner, Sebastian Burke, Jonathan R.

Shewchuk, and James F. O’Brien. 2010. Dynamic Local Remeshing for Elastoplastic

Simulation. ACM Trans. Graph. 29, 4, Article 49 (July 2010), 11 pages.

Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk. 2009. Deforming Meshes

That Split and Merge. In ACM SIGGRAPH 2009 Papers (New Orleans, Louisiana)

(SIGGRAPH ’09). Association for Computing Machinery, New York, NY, USA, Article

76, 10 pages.

Jiayi Eris Zhang, Jèrèmie Dumas, Yun (Raymond) Fei, Alec Jacobson, Doug L. James,

and Danny M. Kaufman. 2022. Progressive Simulation for Cloth Quasistatics. ACM
Trans. Graph. 41, 6, Article 218 (2022).

M. G. Zielonka, M. Ortiz, and J. E. Marsden. 2008. Variational r-adaption in elastody-

namics. Internat. J. Numer. Methods Engrg. 74, 7 (2008), 1162–1197.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://ipc-sim.github.io/ipc-toolkit/
http://eigen.tuxfamily.org
https://dealii.org/developer/doxygen/deal.II/code_gallery_Quasi_static_Finite_strain_Compressible_Elasticity.html
https://dealii.org/developer/doxygen/deal.II/code_gallery_Quasi_static_Finite_strain_Compressible_Elasticity.html
https://github.com/LLNL/PolyClipper
https://polyfem.github.io/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Criteria
	2.2 Operations
	2.3 Mapping
	2.4 Solution Schedule
	2.5 IPC and In-Timestep Remeshing

	3 In-Timestep Remeshing
	3.1 Spatially Continuous Setting
	3.2 Solution Quality per Timestep
	3.3 Spatial Discretization
	3.4 Timestepping Framework and Invariants
	3.5 Safe Projections Between Spaces
	3.6 Remeshing with Local Operations
	3.7 In-Timestep Remeshing Algorithm

	4 Evaluation
	4.1 Comparisons
	4.2 Results
	4.3 Performance and Resolution

	5 Discussion
	5.1 Limitations and Future Work

	Acknowledgments
	References

