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Figure 1: Ourmethod takes a triangle mesh, and renders smooth occluding contours for a given camera viewpoint. For each view,
the algorithm produces a piecewise-quadratic surface, for which we show the occluding contours can be computed algebraically
under orthographic projection. We use a projective transformation of the input mesh to handle perspective projection. By
precomputing a conformal parameterization and a mapping from the viewpoint to the quadratic coefficients, contours and
visibility can be computed very efficiently, in contrast to previous methods that used expensive heuristics or computations to
produce smooth contours with accurate visibility. (Public domain Spot model by Keenan Crane.)

ABSTRACT
Computing occluding contours is a key step in 3D non-photorealistic

rendering, but producing smooth contours with consistent visi-

bility has been a notoriously-challenging open problem. This pa-

per describes the first general-purpose smooth surface construc-

tion for which the occluding contours can be computed in closed

form. Given an input mesh and camera viewpoint, we show how

to approximate the mesh with a 𝐺1
piecewise-quadratic surface,

for which the occluding contours are piecewise-rational curves in

image-space. We show that this method produces smooth contours

with consistent visibility much more efficiently than the state-of-

the-art.

CCS CONCEPTS
•Computingmethodologies→Non-photorealistic rendering;
Visibility; Parametric curve and surface models.
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1 INTRODUCTION
Computing occluding contour lines of 3D objects is a common step

in 3D non-photorealistic rendering algorithms, whether for archi-

tectural drawings, cartoon stylization, or pen-and-ink illustration.

Conceptually, the problem is deceptively simple: find the points of

the surface where the dot product n · 𝜏 of the view direction 𝜏 and

the normal vector n changes sign, and determine which of these

points are visible [Bénard and Hertzmann 2019].

For triangle meshes, the exact occluding contours can easily

be defined: they are a subset of the edges of the original mesh.

However, when themesh represents a smooth object, these contours

usually have many spurious singularities, and do not produce the

clean contour topology of a smooth surface (Figure 2). This makes

them unsuitable for curve stylization, and noisy during animation,

e.g., [Bénard et al. 2014]. This mismatch between mesh contours

https://doi.org/10.1145/3588432.3591547
https://doi.org/10.1145/3588432.3591547
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and smooth surface contours can be attributed to the fact that the

normal n is discontinuous on the mesh, and sign-change sets of

discontinuous functions fundamentally differ in structure from the

zero sets of smooth functions.

Unfortunately, robustly computing the occluding contours for

smooth surfaces is difficult. For common representations, the oc-

cluding contours are projective-transformed piecewise higher-order

algebraic implicit curves. Existingmethods approximate these curves

with polylines, but visibility for these polylines is unreliable, as

they are not the contours of the smooth surface [Bénard et al. 2014;

Eisemann et al. 2008]. Recent methods construct a new triangle

mesh with the extracted polylines as contours [Bénard et al. 2014;

Liu et al. 2023], but require very costly heuristic search. These diffi-

culties raise the question: is there a practical smooth representation

for which visible occluding contours can be computed exactly?

In this paper, we describe a method for computing occluding

contours in closed form. For a given input mesh and camera view-

point, we show how to approximate the mesh with a 𝐶1
(excluding

a small set of points) surface so that the occluding contours are

piecewise-rational curves in image space. This algebraic represen-

tation allows for reliable visibility by solving low-order polynomial

equations, and for direct, efficient computations without heuristics

or search.

Our approach operates as follows. We first apply a projective

transformation to the input mesh, reducing the problem to ortho-

graphic occluding contours. We use a Powell-Sabin construction

to produce a 𝐶1 quadratic patch surface, which, we observe, is the

only algebraic representation with rational contours. To support

perspective views, our surface construction is view-dependent but
can be evaluated very efficiently with a precomputed matrix factor-

ization. All possible piecewise rational quadratic contour lines in

the parametric domain are easily enumerated, and correspond to

piecewise rational quartic curves in the image domain. Visibility

for the contours is also resolved precisely by a straightforward com-

putation (up to numerical errors in solving low-order polynomial

equations).

In proposing the first algebraic smooth occluding contour pro-

cedure, our main contribution is a careful integration and adap-

tation of a number of recent and classical techniques in a highly-

constrained setting. This includes recent methods for robust surface

parameteriztion, a view-dependent almost-everywhere 𝐶1
surface

approximation, supporting efficient per-view updates with precom-

putation, quantitative invisibility for piecewise quadratic surfaces,

and efficient cusp computation.

In comparison to state-of-the-art methods for accurate contours

[Bénard et al. 2014; Liu et al. 2023], our method does not involve

expensive search and unpredictable refinement heuristics; we find

order-of-magnitude faster performance on larger meshes, while

avoiding the visibility errors that older methods are prone to.

2 RELATEDWORK
It has long been known that the occluding contours for a smooth

surface cannot be computed analytically, except for simple primi-

tives like spheres and quadrics [Cipolla and Giblin 2000]. Hence, all

previous methods employ numerical approximations of the smooth

(a)

c
(b)

c

Figure 2: While contour lines on piecewise-linear surfaces
can be computed robustly and efficiently, these consist of a
noisy set of mesh edges (b), not suitable for constructing, e.g.,
vector approximations of contours or stylized rendering; in
comparison, smooth surface contours (a) typically yield a
clean spatial curve. Figure courtesy of the authors of [Liu
et al. 2023].

contour; see [Bénard and Hertzmann 2019] for a survey. Past meth-

ods either often produce artifacts, or else require expensive compu-

tations to achieve topologically-accurate curves.

Raster methods, based on edge detection of an image buffer are

the simplest way to approximate the contour, e.g., [Decaudin 1996;

Saito and Takahashi 1990]; however, these methods do not produce

a vector representation of the contours.

Representing a smooth surface as a triangle mesh yields accu-

rate image-space contours but with erroneous topology (Figure 2).

Heuristics may be used to smooth the topology for stylization [Eise-

mann et al. 2008; Isenberg et al. 2002; Kirsanov et al. 2003; Northrup

and Markosian 2000], but these too may be very inaccurate and

often produce artifacts.

A third approach is to directly compute a polyline contour ap-

proximation, e.g., by root-finding on the smooth surface repre-

sentation [Elber and Cohen 1990; Stroila et al. 2008; Weiss 1966;

Winkenbach and Salesin 1996]. However, visibility of these sam-

pled contours are inconsistent with the smooth surface [Bénard

et al. 2014]. Defining a piecewise-smooth contour function on a

triangle mesh [Hertzmann and Zorin 2000] has the same problem.

Bénard et al. [2014] generate a new triangle mesh from sampled

contours that produces consistent visibility. However, this method

has a high computational cost and is not guaranteed to find a valid

mesh. Planar-maps can produce consistent visibility [Stroila et al.

2008; Winkenbach and Salesin 1996], but may also include incorrect

topology from polyline contour approximations.

Liu et al. [2023] recently explained why this problem has been

so difficult: sampling smooth contours produces 2D polylines that

cannot be the contours of any valid surface. Liu et al. do guarantee

valid polylines, but their method uses expensive numerical sampling

operations, involving costly iterative refinements and heuristics to

find a consistent mesh.
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In contrast to these works, we present a method using a 𝐶1
ap-

proximation of an arbitrary input mesh for which we can compute

exact (up to numerical precision) contours algebraically, with pre-

cise visibility, without any of the heuristics or expensive refinement

procedures of previous methods.

The geometric modeling literature on constructing 𝐺1/𝐶1
sur-

faces is vast, but due to constraints of our problem, only a few

constructions are relevant in our context; [He et al. 2005; Powell

and Sabin 1977] which we rely on, and [Dahmen 1989] being most

closely related. We provide more details in Section 5.

Linear-normal (LN) surfaces [Jüttler 1998; Jüttler and Sampoli

2000] produce 𝐺1
surfaces with normals depending linearly on

the parametric coordinates, which, in turn, yields piecewise-linear

contour lines in the parametric domain, but they are limited in the

type of surfaces that these can represent, e.g., they have singularities

at parabolic points.

3 OVERVIEW
Given an input mesh 𝑀 and camera position c, we seek a tan-

gent plane-continuous surface representation that approximates

the mesh and yields high-quality contours that are continuous

and have explicit algebraic form, allowing exact and efficient com-

putation. Our key observation is that the problem of finding this

representation is extremely constrained—yet it does have a solution.

We start with defining the problem more precisely.

We use p(𝑢, 𝑣) : Ω ⊂ R2 → R3 to denote a surface patch

parameterized over a domain Ω in the plane. The parameterization

is assumed to be at least 𝐶1
. The normal n(𝑢, 𝑣) = p𝑢 × p𝑣 is not

necessarily unit length. The camera position is c, and the image

plane is 𝑃 , with unit normal 𝜏 .

The occluding contour of the image of the surface patch p in 𝑃

is the projection to the image plane of the set of points p(𝐶), with
the curve 𝐶 in the parametric domain defined by

n(𝑢, 𝑣) · (c−p(𝑢, 𝑣)) = 0 (perspective), n(𝑢, 𝑣) ·𝜏 = 0 (orthographic)

(1)

The curve p(𝐶) is the occluding contour generator, and the apparent
contour is the visible projection of that curve. For brevity, we refer

to each of these 2D and 3D curves as “contours.” These elements are

illustrated in Figure 3. Existing methods for solving these equations

employ numerical approximations, as no closed-form solution is

known for these equations for general-purpose smooth surfaces.

Algebraic Contour Existence. Under what conditions does Equa-
tion 1 yield curves in closed-form? For algebraic functions, the

following is known, e.g., [Ferrer et al. 2008]:

Proposition 1. An irreducible algebraic curve 𝑐 (𝑢, 𝑣) = 0 admits
a rational parameterization for an arbitrary choice of coefficients if
and only if it is linear or quadratic.

The linear case corresponds to using a triangle mesh, which

has been heavily used in previous methods, with the problems dis-

cussed in Section 2. Juttler et al. [Jüttler 1998; Jüttler and Sampoli

2000] describe a higher-order algebraic surface with constraints

that make 𝐶 reducible into a linear factor and another factor inde-

pendent of the view direction, but the construction is degenerate

at parabolic points. Instead, we consider surfaces where p(𝑢, 𝑣)
is quadratic, which has not been explored in depth. When p(𝑢, 𝑣)

r ≡ (u,v)

r(t)

n(u,v)

p(u,v)τ

Figure 3: Left: The occluding contours of a smooth patch are
the points p(𝑢, 𝑣) where the normal and view direction are
orthogonal (n(𝑢, 𝑣) · 𝜏 = 0). In this paper, we show that the
contour for a quadratic patch can be described by an alge-
braic curve r(𝑡) in the parameter domain, so the 3D contour
is p(r(𝑡)). Right: 3D perspective transformation converting
perspective projection frustum to a cube. (Public domain
Spot model by Keenan Crane.)

is quadratic, n(𝑢, 𝑣) is also quadratic. Then, for orthographic pro-
jection, Equation 1 is quadratic, and thus the solution curves are

rational functions. It is also clear from Equation 1 that contour

continuity requires that the surface is at least 𝐺1
.

Hence, if we can approximate an input mesh with a𝐺1, piecewise-
quadratic surface, then its contours are piecewise rational functions
for orthographic projections.

Next, we summarize the key features of our method, determined

by this observation.

Handling Perspective. Many applications require perspective pro-

jection, which we handle by applying a projective transformation

to the input mesh. That is, an input vertex with camera coordinates

[𝑥,𝑦, 𝑧] becomes [𝑥/𝑧,𝑦/𝑧,−1/𝑧], with orthographic view vector

𝜏 = [0, 0, 1], yielding a view equivalent to perspective projection

of the original input. A key insight is that, for algebraic contours,

we must apply the transformation to the mesh before constructing
a smooth representation, which makes the surface approximation

view-dependent, but does not lead to visible artifacts.

Quadratic Surface Construction. After the projective transforma-

tion, we seek to approximate the mesh with a surface composed

of quadratic patches. In order for the contours to be continuous

across patch boundaries, the surface must be 𝐺1
everywhere, ex-

cept a small number of isolated points. The existing surface choices

are quite constrained. A classical solution to this problem for sur-

faces parameterized over arbitrary triangulations of the plane is

the Powell-Sabin interpolant, which was in part motivated by a

need for continuous isolines for height fields. Applying these to

arbitrary meshes requires several additional components: mesh

parametrization, a method for dealing with singular vertices of the

parametrization, a way to generate high-quality surfaces without

extraneous oscillations, and fast update to handle view-dependence.

Our solution is based on the overall idea of He et al [2005], but with

several important differences. In particular, their method does not

produce quadratic patches for one-ring of triangles near singular

vertices of the parametrization (cones) and it is interpolating, rather

than approximating, the input mesh.
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Visibility. To compute visibility of occluding contours, we adapt

the Quantitative Invisibility (QI) algorithm [Appel 1967; Bénard

and Hertzmann 2019]. QI is normally applied to mesh contours;

we show how to apply it to rational occluding contours, which

requires computing curve intersections and solving equations for

cusps efficiently.

3.1 Method summary
For a given mesh𝑀 , our method begins with preprocessing steps.

First, we scale𝑀 to fit within a unit box. We then compute a global

(𝑢, 𝑣) parameterization for𝑀 . We split each triangle into 12 trian-

gles, each of which will be a quadratic patch in the final surface.

Finally, we precompute a factorized matrix that will allow us to

efficiently produce patch coefficients for each new viewpoint, mini-

mizing thin-plate surface energy.

At run-time, given a new camera view c, we perform the follow-

ing steps: (1) we apply a projective transformation to the mesh𝑀 ,

producing transformed mesh vertices; (2) we use the precomputed

matrices to produce Bézier coefficients defining our piecewise qua-

dratic Powell-Sabin surface from the updated vertex position; (3) we

then find all contours contained within all patches; (4) we compute

their intersections and cusp points, split them at these points and

(5) compute visibility using QI. The output rational image space

curves may be then rendered in 2D.

Our algorithm allows to perform these steps at a relatively low

cost: specifically, (2) requires a single backsubstitution solve for

a factorized matrix (3) requires solving a quadratic equation and

small linear transformations for patches that may contain contours

(4) requires solving a system of two quadratic equations for cusps

for each contour segment, and intersecting fourth-degree rational

curves for a small number of curve pairs, and (5) tracing a small

number of rays intersecting them with quadratic patches (also a

system of two quadratic equations).

4 EXTRACTING VISIBLE CONTOURS
Given a 𝐶1

(excluding isolated points) piecewise quadratic surface

viewed under orthographic projection, we now show exact proce-

dures for extracting the occluding contour generator and determin-

ing which portions are visible. We do assume a general-position

view direction, assuming it is perturbed to avoid exact alignment

with tangents to flat parts of the surface, and that the surface does

not self-intersect. We do not assume that the surface itself is in a

fully general position: we do require that the surface normal does

not vanish, except at cones.

4.1 The contours of a single quadratic patch
We first enumerate parametric expressions for the contours of a

quadratic surface, ignoring the triangular domain bounds.

For a quadratic surface parameterized by coordinates r = [𝑢, 𝑣],
the normal n(r) is also quadratic. Hence, the contour equation (1)

can be written as

𝜏 · n(r) = 1

2

r𝑇𝐴r + b𝑇 r + 𝑐 = 0, (2)

i.e., the contours are conic sections in the parametric domain (Figure

3). For completeness, we now enumerate all stable cases, i.e., the

ones that are not always eliminated by a perturbation of the view

direction.

We diagonalize the contour equation using𝐴 = 𝑈𝑇
diag(𝜎1, 𝜎2)𝑈 .

If𝐴 is not singular, thenwe can reparameterize in terms of unknown

z = 𝑈 (r −𝐴−1b) = [𝑧1, 𝑧2]. The contour equation is then:

𝜎1𝑧
2

1
+ 𝜎2𝑧

2

2
+ 𝑐 = 0. (3)

where 𝑐 = 𝑐 − b𝑇𝐴−1b/2. We ensure 𝑐 ≥ 0 by negating 𝜎1, 𝜎2, 𝑐 if

necessary. We then seek a solution curve of the form z(𝑡). When

𝑐 > 0, the solution curve z(𝑡) may be an ellipse or hyperbola with

scales 𝑘1 =
√︁
𝑐/|𝜎1 |, 𝑘2 =

√︁
𝑐/|𝜎2 |. In cone patches (Section 5), 𝑐 = 0

occurs stably, in which case the solution z(𝑡) is a pair of intersecting
lines. The first three columns of Table 1 provide the solution curves

z(𝑡) for these cases. Then, the solution curves are converted to

parameter domain by r(𝑡) = 𝑈𝑇 z(𝑡) +𝐴−1b.
If 𝐴 is singular (𝜎2 = 0), we reparameterize with z = 𝑈 r, and the

contour equation becomes

𝜎1𝑧
2

1
+ ˆb𝑇 z + 𝑐 = 0 (4)

where
ˆb = 𝑈 b. We negate terms if 𝜎1 < 0. Then, the solution curve

z(𝑡) may be either a parabola or two parallel lines in parameter

space, depending on whether
ˆ𝑏2 = 0. Solution curves z(𝑡) are

provided in the fourth and fifth columns of Table 1. The parameter-

domain curve is then r(𝑡) = 𝑈𝑇 z(𝑡). We note that 𝐴 being near-

singular can be stable with respect to the viewpoint change for a

cylindrical surface; the contours along a cylinder are always straight

lines; see supplemental material for details).

All tests of a quantity 𝑥 equal to zero are implemented by check-

ing |𝑥 | < 𝜖 , where we use 𝜖 = 10
−10

.

Trimming. In general, only a subset of the occluding contour

for a quadratic may lie within a patch. We compute the bounds

𝑡 ∈ [𝑡0, 𝑡1] as follows. The above procedure yields a small number of

parametric curves of the form r(𝑡) that we intersect with each of the
lines bounding the domain triangle (𝑢 = 0, 𝑣 = 0, 𝑢 + 𝑣 = 1). If there

are intersections, then the curve is broken into any subintervals

[𝑡min, 𝑡max] contained within the triangle, up to three per curve.

Image-space curve. The above steps identify the occluding con-

tour generators within a patch. Each of these are rational curves in

3D, given by p(r(𝑡)), within bounds 𝑡 ∈ [𝑡0, 𝑡1]. Under orthographic
projection with the appropriate rotation, projection to image-space

curves amounts to removing the third coordinate from a curve,

yielding the final result of the computation, a quartic rational curve.

4.2 Visibility of contours on a p.w. quadratic 𝐶1

surface.
To compute curve visibility, we adapt the Quantitative Invisibility

(QI) algorithm [Appel 1967]. The QI of a surface point is the number

of occluders of that point; a point is visible if and only if it has a QI

of zero. Visibility along a curve can only change at cusps, image-

space intersections, and contour-boundary intersections. Hence, if

we split a curve into segments at each of these cases, then QI for an

entire segment can be computed by a single ray-test for the curve.

Moreover, the number of ray-tests is minimized by propagating QI

through these cases, e.g., using the fact that the QI increases by
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Table 1: The occluding contours of a quadratic patch under orthographic projection can be parameterized in one of these five
forms, depending on the parameters in Equation 2. Other cases not listed (e.g., 𝜎1, 𝜎2>0) do not produce stable contours. See
Section 4.1 for details.

𝐴 nonsingular (𝜎1, 𝜎2 ≠ 0) 𝐴 singular (𝜎1 ≠ 0, 𝜎2 = 0)

𝑐 > 0, 𝜎1, 𝜎2 < 0 𝑐 > 0, 𝜎1𝜎2 < 0 𝑐 = 0, 𝜎1𝜎2 < 0
ˆb2 ≠ 0

ˆb2 = 0, ˆb2
1
> 4𝜎2

1
𝑐

Ellipse: Hyperbola: Intersecting lines: Parabola: Parallel lines:

z(𝑡) =
[
𝑘1 (1−𝑡2 )

1+𝑡2 ,
2𝑘2𝑡

1+𝑡2
]

z(𝑡) =
[
𝑘1 (1+𝑡2 )
𝑡2−1 ,

2𝑘2𝑡

𝑡2−1

]
z(𝑡) =

[
𝑡,±𝑡

√︃
−𝜎1
𝜎2

]
z(𝑡) =

[
𝑡,

−𝜎1𝑡2− ˆ𝑏1𝑡−𝑐
ˆ𝑏2

]
z(𝑡) =

[
− ˆb1±

√︃
ˆb2
1
−4𝜎2

1
𝑐

2𝜎2

1

, 𝑡

]

one from the near side to the far side of a cusp. See [Bénard and

Hertzmann 2019] for a full description of the QI algorithm.

Previous work applied QI to triangle mesh contours. In order to

compute QI for piecewise-quadratic surfaces, we need new algo-

rithms for computing ray tests, detecting cusps, detecting image-

space intersections, and propagating QI.

View graph construction. We first connect contour generator

curves across patch boundaries. Since the surface is 𝐶1
by design,

the occluding contours will be continuous at patch boundaries,

and form disjoint loops, with the exception of cone points, where

multiple loops can share a point. We disallow visibility propagation

through cone points.

After we compute cusps and image-space contour intersections

as explained below, we split the countour curves at these points,

constructing a graph of non-intersecting rational quadratic seg-

ments with nodes labeled as cusp, intersection, contour-boundary

intersection or interior.

Detecting interior cusps. To determine cusp positions in the inte-
rior of a quadratic patch, we need to find points where 𝜏 is parallel

to the tangent to the contour curve. One can use this definition

directly, solving the univariate equation 𝜏 · 𝑑
𝑑𝑡
p(r(𝑡)) = 0; how-

ever, this equation is a degree 10 polynomial. Instead we opt for

a different approach. We introduce two orthogonal vectors 𝜏1 and

𝜏2 perpendicular to the view direction, and define the cusp as the

point on the contour for which the tangent is orthogonal to both of

these vectors. An important observation is that the unnormalized

tangent to all isolines of n · 𝜏 in the parametric domain is given

by [−n𝑣 · 𝜏, n𝑢 · 𝜏], which is a linear function on the whole patch.

Mapped to 3D this yields a quadratic equation:

t(𝑢, 𝑣) = −p𝑢 (n𝑣 · 𝜏) + p𝑣 (n𝑢 · 𝜏) (5)

i.e., the components of the tangent are also quadratic, and the

condition for a cusp is a system of two quadratic equations in (𝑢, 𝑣):

t(𝑢, 𝑣) · 𝜏1 = 0, and t(𝑢, 𝑣) · 𝜏2 = 0, (6)

Note that the contour equation itself is redundant, because if the

view direction is aligned with a surface tangent, it is perpendicular

to the normal. We solve this equation using the pencil method

which reduces it to a cubic equation in one variable, and a pair of

quadratic equations, which we also use for ray-patch intersections

[Ogaki and Tokuyoshi 2011]; the cubic equation is solved by finding

the companion matrix eigenvalues with QR decomposition.

QI increases by 1 along the contour in the direction of t.

Interior cusp Boundary cusp

Figure 4: Two types of cusps, a cusp interior to a patch, and a
boundary cusp.

Patch-boundary cusps. At a patch boundary, a contour may have

two distinct tangents t and t′ corresponding to the common end-

point of the contour segments in two patches; a cusp occurs if

𝜏 · (n × t) and 𝜏 · (n × t′) have different signs. While in this case

there is no need to split either of the curves at the cusp, the visi-

bility may change at the common endpoint, which we refer to as

a boundary cusp. We opt not to propagate visibility through such

cusps.

Image-space contour intersections. The intersections of contours
in the image domain are computed using the standard Bézier clip-

ping algorithm [Sederberg and Nishita 1990], which typically con-

verges in a few iterations. The QI on the top contour is a constant

𝑞, the segment of the lower contour not occluded by the near sur-

face also has QI 𝑞, and the lower contour segment occluded by the

surface has QI 𝑞 + 2.

Ray tests and QI propagation. Once the contours have been split

at cusps and intersections, the visibility can be determined by per-

forming a ray test at a contour segment and then propagating

QI. We do not propagate QI through cone points, since multiple

contours may meet there, and we do not propagate QI though patch-

boundary cusps. If any segments do not have QI values assigned

after propagation, the process repeats with a new ray test. We use

a highly efficient ray-quadratic patch intersection test [Ogaki and

Tokuyoshi 2011]; however, a substantial speed up is obtained using

the standard bounding-box tests and spatial grid for acceleration.

5 SURFACE CONSTRUCTION
We now describe our smooth surface construction; producing a

high-quality surface is essential to generating well-behaved con-

tours. The input is an arbitrary manifold mesh𝑀 = (𝑉 , 𝐸, 𝐹 ) pos-
sibly with boundary, along with vertex positions. The output is a

surface composed of quadratic patches joined with 𝐺1
continuity,
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Figure 5: Surface definition. (a) An input mesh with vertex
positions p𝑖 . (b) 3D mesh is mapped to the plane with cuts
with texture coordinates r = (𝑢, 𝑣), consistent edge length and
sum of angles at most vertices equal to 2𝜋 (c) Vertex 𝑎 (red
vertex) occurs at three places on the cut, but a chart can be
constructed where the sum of the angles around 𝑎 is 2𝜋 . For
a cone vertex 𝑏 (green vertex), the sum is less than 2𝜋 . (d) The
chart for each vertex with respect to which gradient DOF are
defined.

everywhere except at a small number of isolated vertices. Our ap-

proach is based on He et al. [2005], with several important changes.

5.1 Conformal parameterization
We first compute a locally bijective global surface parameteriza-

tion, to produce 𝑢𝑣 coordinates for the mesh, as required for the

Powell-Sabin interpolant. More specifically, the parameterization

is a flattening into the 𝑢𝑣 plane of the input mesh 𝑀 (Figure 5).

The mesh is cut to a disk𝑀𝑐
along mesh edges, such that, for two

images of a cut edge in the 𝑢𝑣 domain, their lengths match. The

metric is almost everywhere flat if, for all vertices—including all

cut vertices, but excluding a small number of cone vertices—the sum
of the angles in the parametric domain is 2𝜋 .

The first step is to select a small number of cone vertices, consis-

tent with genus; we use 4(𝑔 − 1) cones for 𝑔 > 1 and 8 for genus

zero. We uniformly distribute them over the surface, by partitioning

it into clusters of close size, and, for each cluster, picking the vertex

of smallest discrete curvature, as this minimizes visual artifacts of

the surface. We do not fix angles at the cones; instead, we fix the

conformal scale factors at cones to 1, as in [Springborn et al. 2008],

to minimize parametrization distortion at these points. Additionally,

we perform one step of Loop subdivision on the incident triangles,

to further reduce artifacts.

Then, we apply an efficient implementation of discrete confor-

mal maps [Campen et al. 2021; Gillespie et al. 2021] mathematically

guaranteed [Gu et al. 2018] to satisfy these requirements, possi-

bly with a moderate amount of mesh refinement. These methods

compute an edge length assignment, which we convert to a 𝑢𝑣

parametrization using a greedy layout algorithm, as in [Springborn

et al. 2008].

While conformal parameterization can have extreme scale vari-

ation, uniformly scaling the parametric domain of a polynomial

patch does not affect its shape, and so this scaling does not signif-

icantly impact our output surface construction. This stage of our

algorithm differs from the parameterization step of He et al. [2005],

which does not guarantee injectivity, fixes cone angles to multiples

of 𝜋 , and does not provide control over their position, leading to

higher distortion.

5.2 Powell-Sabin construction
The Powell-Sabin interpolant transforms a set of input degrees-of-

freedom (DOFs) 𝑞 associated with a mesh𝑀 into a set of quadratic

patches p(𝑢, 𝑣). Each patch is defined by six Bézier points on a

triangle in the 𝑢𝑣 plane. Each of these triangles is obtained by

splitting the parametric images of the triangles in the original mesh

(Figure 6(right)). We use the more-expensive 12-split Powell-Sabin

construction as it yields higher surface quality, but a 6-split can also

be used with acceptable results. All quadratic patches associated

with an input triangle form a 𝐶1
piecewise-quadratic macropatch

P(𝑢, 𝑣).
The input coefficients include, for every vertex, the position p

and two tangents g𝑢 , g𝑣 , and for every edge midpoint, a single tan-

gent g𝑚 (Figure 6(left)). If the parametrization has no cuts, then g𝑢 ,
g𝑣 are prescribed values of 𝜕𝑢P(𝑢𝑖 , 𝑣𝑖 ) and 𝜕𝑣P(𝑢𝑖 , 𝑣𝑖 ) at a vertex 𝑖
respectively, and g𝑚 is 𝜕e⊥

𝑖 𝑗
P(𝑢, 𝑣), where e⊥

𝑖 𝑗
is the vector perpen-

dicular to the edge e𝑖 𝑗 . All macropatches P sharing a vertex share

these coefficients at the vertex, and similarly, when two patches

sharing a midpoint, they share a coordinate derivative in the direc-

tion e⊥
𝑖 𝑗
. Powell and Sabin [1977] show that sharing these degrees

of freedom is sufficient for their construction to yield a 𝐶1
surface.

We write the complete set of free DOFs for the surface as a vector

of coefficients:

𝑞 = [p1, g𝑢1 , g
𝑣
1
. . . p𝑛, g𝑢𝑛, g

𝑣
𝑛, g

𝑚
1
. . . g𝑚𝑚] (7)

where 𝑛 is the number of vertices, 𝑚 the number of edges, and

g𝑚
ℓ

= g𝑚
𝑖 𝑗

if the edge (𝑖 𝑗) has index ℓ ; the 3 components of each

vector are flattened.

Local parameters. To construct a single macropatch for a triangle

(𝑖 𝑗𝑘) we extract the relevant 12 DOFs from this vector to obtain a

local DOF vector, 𝑞loc = [p𝑖 , g𝑢𝑖 , . . . g
𝑚
𝑘
], with 12 vector DOFs; the

coefficients of the 12 quadratic subpatches are obtained by the stan-

dard Powell-Sabin linear transformation of this vector, described

in supplementary: this yields six Bezier points for each quadratic

patch as shown in Figure 6.

𝑝ℓ = 𝐵ℓ𝑞
loc, ℓ = 1 . . . 12

where each 𝐵ℓ is a 6 × 12 matrix applied coordinatewise, mapping

twelve local degrees of freedom to six quadratic patch coefficients.

Cut vertices. To determine local DOFs 𝑞loc from global 𝑞 at a ver-

tex 𝑖 or edge (𝑖 𝑗) on the cut, we need to define the local gradients g
consistently across the cut. We do so by constructing a chart com-

prising all incident triangles of the vertex or edge. One of the edges

of the chart is arbitrarily chosen to be the 𝑢′ coordinate direction,
defining a local coordinate system (𝑢′, 𝑣 ′). All triangles are mapped

to the chart by a rigid transformation 𝑇𝑖 𝑗𝑘 from global r = (𝑢, 𝑣)
to chart coordinates r′ = (𝑢′, 𝑣 ′) (Figure 5(c)). Constructing such a

common domain is possible because the parameterization (Section

5.1) produces angles that sum up to 2𝜋 and edge lengths that match

across the cut.

Then we can obtain the gradient DOFs g in coordinates (𝑢′, 𝑣 ′)
on the chart. To obtain the vertex DOFs for each triangle (𝑖 𝑗𝑘), we
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Figure 6: Left: The smooth surface is parameterized by the
following coefficients: for each vertex, a position p and
gradients g𝑢 and g𝑣 , and, for each edge, a midpoint gradi-
ent g𝑚 . Right: Each input triangle is split into 12 triangles,
with Bézier controls named as shown here. These control
points are computed from the smooth surface coefficients
𝑞loc = [p𝑖 , g𝑢𝑖 , ..., g

𝑚
𝑘
].

 Cone on a surface   Contour generator

  Cone closeup

  Cone location on contour

Figure 7: Surface and contour behavior near a cone. (Open
source Helmet model from OpenSubdiv.)

apply 𝑇𝑖 𝑗𝑘 and apply the corresponding transform to ∇r′P(r′) =
[𝜕𝑢′P, 𝜕𝑣′P], to obtain the local DOF vector ∇rP = 𝑇𝑖 𝑗𝑘∇r′P for

the macropatch. This construction retains 𝐶1
continuity across cut

edges and at non-cone vertices [He et al. 2005].

Cone vertices. At cone vertices, we create degenerate patches,
e.g., [Neamtu and Pfluger 1994]. In order to achieve consistent

gradients across the cut, we set gradients g𝑢 , g𝑣 to zero at cone

vertices, making the patch map p(𝑢, 𝑣) singular at these points.

The conditions for 𝐶1
continuity are still satisfied, although the

surface has a cone point at the vertex (Supplemental Material).

While one could apply spline surface construction methods that

force a common tangent plane at a singular vertex, we found our

approach to have negligible impact on contour quality. Typical

surface behavior near a cone is shown in Figure 7.

5.3 Thin-plate optimization
We now describe how to optimize the global parameters 𝑞 to pro-

duce a smooth surface shape that approximates the input mesh

vertices. One nice property of a Powell-Sabin spline surface is that

it is 𝐶1
, and, at the same time, minimal degree. 𝐶1

is a requirement

for conforming finite-element discretization of optimization objec-

tives containing second derivatives, in particular, the thin-plate

functional:

𝐸 (𝑞) =
∑︁
ℓ

∫
Ωℓ

p2𝑢𝑢 + p2𝑣𝑣 + 2p2𝑢𝑣𝑑𝑢𝑑𝑣 +𝑤
∑︁
𝑖

𝐴𝑖 (p𝑖 − p0𝑖 )
2

(8)

where p0
𝑖
are the input mesh vertices and Ωℓ is the ℓ-th triangle

domain. We discretize the functional by simply substituting the

expressions for quadratic patches in terms of the degrees of free-

dom 𝑞𝑙𝑜𝑐 , yielding constant expressions for the integrands for each

quadratic patch. These expressions are quadratic in the degrees of

freedom, so the energy can be written as a quadratic form for each

patch with a constant local matrix, which are then assembled into a

global system. We pre-compute matrices𝐻𝑠
and𝐻 𝑓

, combined into

a matrix𝐻 = 𝐻𝑠 +𝑤𝐻 𝑓
, corresponding to the fitting and smoothing

terms of the quadratic objective (8) respectively. Then the energy

can be written in the form

𝐸 (𝑞) = 1

2

(𝑞𝑇𝐻𝑠𝑞 +𝑤 (𝑞 − 𝑞0)𝑇𝐻 𝑓 (𝑞 − 𝑞0)) (9)

=
1

2

𝑞𝑇𝐻𝑞 −𝑤𝑞𝑇𝐻 𝑓 𝑞0 + const (10)

The constant term 𝑞0 is the vector of degrees of freedom with

the original mesh vertex positions for p𝑖 and zeros for all other

components. This objective is minimized by solving 𝐻𝑞 = 𝑤𝐻 𝑓 𝑞0
for 𝑞, i.e. a single sparse linear solve.

One can also show by direct computation that our optimization

objective minimum, expressed as Bézier control points of patches,

is independent of the choice of the chart coordinates (𝑢′, 𝑣 ′).

Efficient computation. Changes to viewpoint change the mesh

vertex positions due to the projective transformation (Section 3),

thus changing 𝑞0. However, the matrix 𝐻 depends on paramet-

ric coordinates and not on the vertex positions. Hence, all of the

computations in this section, including mesh parameterization and

defining local and global coordinates, can be computed in a pre-

process. We precompute the Cholesky decomposition of the sparse

matrix𝐻 , which makes the cost of solving the system𝐻𝑞 = 𝑤𝐻 𝑓 𝑞0
negligible at run-time.

6 EVALUATION
We show results of our method in Figures 1 and 8. Our method

produces clean, smooth rational output curves without gaps or

other topological errors.

Timings and scaling. We tested our algorithm on the same small

test set that was used in [Liu et al. 2023]. We preprocessed the

meshes by performing boolean unions of parts to eliminate all

intersections, and cleaning up the resulting mesh to eliminate very

short edges. Figure 11 shows the timings for the view-dependent

and view-independent parts of our algorithm. We use 29 models

and 26 randomized views per model. We see relatively very little

per-frame timing variation (standard deviation less than 150 ms

for the largest models), and both precomputation and per-view

performance scales approximately linearly with the input size. Our

implementation is serial and not heavily optimized, and we expect

that performance can be significantly improved.

Comparison with previous work. Precise comparison with Con-

Tesse [Liu et al. 2023], the state-of-the-art method for accurate

contours, is difficult for various reasons, e.g., that paper reports

timing only for mesh generation. Nonetheless, it is clear that our

approach operates an order of magnitude faster during run-time,

and scales much better as well. Our entire per-view processing
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time, for smaller meshes, is comparable to ConTesse’s mesh gener-

ation step alone. However, for larger meshes, our method becomes

orders-of-magnitude faster, e.g., for “Fertility,” ConTesse averages

16 seconds per view for mesh generation, whereas we require 0.4

seconds per view for the entire visibility pipeline, after a 4.4 seconds

of preprocessing time. For "Killeroo," ConTesse requires 33 seconds

per view for mesh generation, whereas we require 0.5 seconds per

view, after 3 seconds preprocessing. We evaluated timing on an

MacBook Pro 2.7 GHz, an older machine than the ConTesse results

are reported on.

This is to be expected, since our method requires only a linear

solve to compute patch coefficients for each new view, whereas

ConTesse employs many iterative heuristic search steps to find a

valid mesh for each new view.

View-dependent effects. Because we construct a view-dependent
surface approximation, in principle, the object could appear non-

rigid during rotation. Figure 10 and the accompanying video show

that the projective transformation does not alter the geometric

appearance or produce non-rigid effects.

Smoothness vs. approximation. All examples in this paper were

generated using a constant weight𝑤 = 1 for the fitting term in (10);

Figure 9 shows how the surface changes as this weight varies.

7 CONCLUSIONS
We have presented a method for efficient computation of high-

quality occluding contours on 𝐶1
surfaces approximating arbitrary

input meshes. As contours are computed in closed algebraic form

and are the exact (modulo numerical errors) contours of the sur-

face, visibility computation is a straightforward extension of the

QI algorithm for meshes, and, at the same time, are close to the

contours on the smooth surface that the mesh is approximating.

The resulting contour lines cannot violate topological conditions

from [Liu et al. 2023], except due to numerical error for non-general-

position choices of the view direction. Hence, the output contours

have valid, well-defined visibility, without the artifacts that have

plagued previous methods.

There are many extensions that are easy to add to our framework:

it is straightforward to add sharp features, and handle non-manifold

surfaces, e.g., resulting from intersections or self-intersections.

Other curves, like suggestive contours, apparent ridges [DeCarlo

2012], and can be added as polylines, as well as stylized shading

effects. The per-view computational cost of our approach is propor-

tional to the number of contour segments and is embarrassingly

parallel: an optimized implementation is likely to improve perfor-

mance by a large factor. Another potentially important direction

is to explore higher-order constructions with constraints with re-

ducible parametric contour equations, as these may eliminate the

need for a global parametrization.
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Figure 8: Examples of of contour line sets obtained using our method on models from the modified dataset of [Liu et al. 2023].
(Bigguy and Monster Frog ©Bay Raitt. Fertility courtesy UU from AIM@SHAPE-VISIONAIR Shape Repository. Public domain
Blub, Bob, and Ogre models by Keenan Crane. Killeroo ©headus.com.au. Open source Pawn model from OpenSubdiv.)
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0.1 1 10 100

Figure 9: Given a triangle mesh, we need a representation of the underlying smooth surface. Here we visualize the dependence
of our smooth surface shape fitting on the weight𝑤 , without a projective transformation step. We use𝑤 = 1 for all experiments
in this paper. (Public domain Ogre model by Keenan Crane.)

Perspective PerspectiveOrthographic Orthographic

Low FOV High FOV

Figure 10: Perspective projection of a mesh, vs. orthographic projection of the projective-transformed mesh. In each pair, the
two renderings are geometrically equivalent. (The shading differs, but is not used in contour detection and shown here only for
visualization. Killeroo ©headus.com.au.)
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Figure 11: Timing for our method, on meshes from the ConTesse [Liu et al. 2023] dataset. Orange circles show preprocessing
computation time, and blue circles show per-frame time, averaged over 26 frames. While preprocessing can take several seconds,
per-frame computation is very efficient, growing very slowly as a function of mesh size. Computation times were measured
on a MacBook Pro 2.7Ghz Intel Core i7, 16Gb memory. The "car" mesh is more intensive at run-time due a very high shape
complexity, requiring over a million ray-patch intersection tests per frame.
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