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Fig. 1. Example of four different mesh editing algorithms implemented with our library. With our framework, users can implement different flavor of mesh
editing with built in robustness, and readily available parallelism. From left to right: harmonic triangulation, QSlim, the input, isotropic remeshing, and robust
tetrahedral mesh generation.

We introduce a novel approach to describemesh generation, mesh adaptation,
and geometric modeling algorithms relying on changing mesh connectiv-
ity using a high-level abstraction. The main motivation is to enable easy
customization and development of these algorithms via a declarative specifi-
cation consisting of a set of per-element invariants, operation scheduling,
and attribute transfer for each editing operation.

We demonstrate that widely used algorithms editing surfaces and volumes
can be compactly expressed with our abstraction, and their implementation
within our framework is simple, automatically parallelizable on shared-
memory architectures, and with guaranteed satisfaction of the prescribed
invariants. These algorithms are readable and easy to customize for specific
use cases.
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We introduce a software library implementing this abstraction and pro-
viding automatic shared memory parallelization.

CCS Concepts: • Mathematics of computing → Mesh generation; •
Computing methodologies→ Shape modeling.
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1 INTRODUCTION
Unstructured triangular and tetrahedral meshes are widely used in
graphics, engineering, and scientific computing due to their flexibil-
ity to represent objects with complex boundaries. Such unstructured
meshes find their usage in modeling and rendering 3D objects and
scenes, discretizing partial differential equations for physical simu-
lation, collisions detection and response, path planning in robotics,
and many other applications.

An unstructured mesh is usually stored in a custom data-structure
supporting a set of local operations to add, remove, or change its ele-
ments and their properties. Amajor research effort has been invested
in exploring different data-structures and evaluating their generality
and efficiency (Section 2), which led to the development of mesh
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libraries such as CGAL [The CGAL Project 2020], VCG/meshlab
[Cignoni et al. 2021], OpenMesh [Botsch et al. 2002], libigl [Jacobson
et al. 2016], PMP [Sieger and Botsch 2019], and OpenVolumeMesh
[Kremer et al. 2013]. Commonly, mesh-editing algorithms (i.e., algo-
rithms based on operations changing the connectivity of a mesh)
are tightly coupled with a data-structure and its API, and porting an
algorithm from one library to another is a major engineering effort.
Code relying on local operations is also inherently error prone, as
it usually involves keeping track of properties attached to mesh
elements as the mesh itself changes due to the local operations.
Parallelizing code using a mesh data structure is also challenging,
due to race conditions when multiple threads attempt to change the
same region of the mesh.

At a high-level, it is common practice to describe a mesh editing
algorithm as a sequence of topological and geometrical editing
operations. We argue that this approach is unnecessarily low-level,
as it exposes the algorithm designer to technical problems that can
be handled automatically by changing the abstraction level. It also
makes it challenging to use or customize mesh editing algorithms in
larger projects (such as their use in physical simulation for adaptive
refinement), as low-level data structure details percolate in the entire
code-base. A particularly difficult challenge in these algorithms
is to ensure that a set of conditions (such as manifoldness, being
free from self-intersections, minimal quality, maximal geometrical
approximation) hold after each operation is applied. This is usually
tackled by simulating each operation for the purpose of checking
these conditions, an error-prone process that needs to be carefully
designed for each pair of operation and condition. The additional
presence of attributes attached to vertices, edges, or faces further
complicates these problems.

We propose a different way to describe mesh-editing algorithms
on simplicial manifold meshes, using a declarative specification
instead of a more traditional procedural approach. Instead of focus-
ing on what the algorithm does, we ask the user to specify what
are the requirements that the desired mesh should have. We divide
these requirements into two groups: invariants and desiderata. The
former is a description of hard requirements on the mesh (for ex-
ample, no inverted elements or no self-intersections) and the latter
is a set desirable properties (such as good quality). A mesh editing
algorithm is then described as: (1) a set of per-element invariants
(for example, all elements should have correct orientation), (2) a
measure for the desiderata (for example, element quality), (3) a set
of application-specific attributes attached to mesh elements (e.g.,
vertex coordinates), and how they are affected by local operations,
and (4) a schedule of operation types. We show that many existing
algorithms for mesh generation, remeshing, and parametrization,
can be concisely expressed in this form (Section 4), which we denote
IDAS (Invariant-Desiderata-Attributes-Schedule).
The IDAS specification has been designed with four goals:

(1) Modularity: The connectivity of the mesh is abstracted from
the user, which can only navigate the mesh using a high-
level abstraction based on a cell tuple [Brisson 1989]. This
reduces the learning curve for new users, as they only need
to learn a navigation API to implement algorithms in IDAS.
It will also allow IDAS programs to benefit from continuous

progress in data-structure design, as the data structure will
be swappable without requiring downstream code changes
in the high level IDAS code. This is in stark contrast with
existing mesh libraries, which tend to be very invasive in
the user code relying on them due to the close connection
between navigation, mesh editing, and property management.

(2) Usability: The user code handles, at all times, a valid mesh:
the library simulates each operation transparently allowing
the user to navigate on a valid mesh before and after every
operation, dramatically simplifying the logic required to de-
fine invariants and desiderata. Properties on the mesh are
also similarly abstracted, allowing to attach attributes on ev-
ery simplex independently on the data structure used for
implementing the specification.

(3) Efficiency: The specification purposely requires only def-
initions of properties on individual elements. This feature
allows runtimes for IDAS program to parallelize the compu-
tation (Section 4) without requiring special attention from a
user. We demonstrate that automatic parallelization of mesh
editing algorithms is possible on multi-core architectures.

(4) Robustness: The IDAS specification moves the majority of
the robustness issues typical of meshing algorithm on the
runtime used to execute a IDAS program instead of the IDAS
code itself. This simplifies the development of robust algo-
rithms: for example, the user invariants are guaranteed to be
enforced during processing, as the runtime will automatically
check them on every modified element. As long as the user
provides correct code for the invariant (for example to check
for area positivity of an element using a predicate), then the
runtime ensures that the invariants will be satisfied for all
elements.

Given an algorithm in IDAS form, we design an algorithm and
runtime library to realize it, with guarantees on satisfying the in-
variant and a best effort to maximize the desiderata. Our library
exploits shared memory parallelism without any additional effort
required from users in the algorithm specification.

To demonstrate the generality and effectiveness of our approach,
we provide IDAS formulations for five popular mesh editing algo-
rithms (Section 4, Figure 1): (1) shortest edge collapse [Hoppe 1996]
(decimation for triangle meshes), (2) QSlim [Garland and Heckbert
1997], (3) isotropic triangle meshing [Botsch and Kobbelt 2004]
(remeshing for triangle meshes), (4) harmonic triangulations [Alexa
2019] (quality improvement for 3D volumes), and (5) robust tetrahe-
dral mesh generation [Hu et al. 2019b] (conversion of surface meshes
to volumetric meshes). The IDAS formulation closely resemble the
textual description of the algorithms in the corresponding papers: it
is compact, readable, and easy to adapt for requirements of specific
applications. As an example, we show that modifying (1) and (2) to
guarantee a maximal geometric error is straightforward. Despite its
generality, IDAS implementations executed using our library are
comparable or faster than state of the art implementations in open-
source software: the overhead due to the framework generality is
more than compensated by the automatic parallelization (Section
4).

ACM Trans. Graph., Vol. 41, No. 6, Article 251. Publication date: December 2022.



Declarative Specification for Unstructured Mesh Editing Algorithms • 251:3

We believe our contribution is an important step to allow re-
searchers and practitioners to effectively develop new mesh-editing
algorithms, shielding the designer of mesh editing algorithms from
many of the robustness and correctness challenges plaguing previ-
ous low-level approaches, by moving these components inside the
runtime environment. It will also allow mesh editing algorithms
to be used more easily in larger systems, as they can be tailored to
requirements of a specific application with minimal programming
effort.

We provide an open-source implementation 1 of our library and
of the five mesh editing algorithms as additional material.

2 RELATED WORK

2.1 Mesh Data Structures
Efficient data structures for representing solid geometry have been
an intriguing research topic since the early days of computer graph-
ics [Requicha 1980]. As a result, there is a large variety of mesh
data structure designs, where they are each optimized for different
usage scenarios. Index-array-based mesh data structure encodes
each element as a list of vertex indices on its boundary. It is simple
and memory efficient, but neighborhood query and local operations
are not directly supported. Graph-based mesh data structures, in-
cluding half-edge [Mäntylä 1987], winged-edge [Baumgart 1972],
quad-edge [Guibas and Stolfi 1985], cell-tuple [Brisson 1989], etc.,
view meshes as graphs, where each element contains links to its
adjacent elements. This design allows for efficient local query and
update, making it ideal for algorithms like mesh simplification [Gar-
land and Heckbert 1997]. Linear-algebra-based mesh data struc-
tures, such as [DiCarlo et al. 2014; Mahmoud et al. 2021; Zayer et al.
2017], encode adjacency information as sparse matrices. This de-
sign elegantly reduces neighborhood query and local operations to
sparse matrix computations, which are highly optimized for modern
parallel computing architecture. Closely related, is the concept of
generalized combinatorial maps [Dufourd 1991; Lienhardt 1994],
and the CGoGN library [Kraemer et al. 2014] provide an efficient
implementation which includes parallel traversal of the mesh. By
design, mesh data structures provide a low level interface to ma-
nipulate vertices, edges, faces, and tetrahedra. Different designs
differ vastly in API and implementation details, making it hard to
port algorithm from one data structure to another. In contrast, our
framework decouples mesh data structure choice from algorithm
specification, providing the flexibility of switching the underlying
data structure in a seamless manner.

2.2 Domain specific languages in graphics
Our abstraction model of mesh processing algorithms draw inspira-
tion from domain specific languages (DSL) in graphics. For dense
regularly structured data such as images, Halide [Ragan-Kelley et al.
2013] popularized the idea of decoupling image processing opera-
tions from low level scheduling tasks. Similar abstraction that sep-
arates algorithm description from low level data structure and/or
parallel architecture can also be found in other DSLs such as Simit
[Kjolstad et al. 2016] for simulation over triangle meshes, Taco [Kjol-
stad et al. 2017] for dense and sparse tensor algebra, Taichi [Hu et al.
1https://github.com/wildmeshing/wildmeshing-toolkit

2019a] for simulation over sparse volumetric data, and Penrose [Ye
et al. 2020] for generating diagrams from math notation.

2.3 Parallel Meshing
To meet the demand of generating large meshes, a number of popu-
lar mesh generation algorithms have been redesigned to leverage
modern parallel computing hardware, both in a shared memory and
distributed memory setting. Typically a divide-and-conquer strategy
is adopted where a mesh is partitioned to run local processing oper-
ations on each subdomain in parallel. There are two key challenges
involved: (1) how to handle operations involving elements shared
by multiple partitions; (2) how to ensure load stay balanced across
different processors as the mesh evolves.
One way to mitigate both challenges is to ensure mesh is par-

titioned into similar sized patches with high area to boundary ra-
tio. A large number of partitioning strategies are available, includ-
ing clustering-based approaches [Mahmoud et al. 2021], spacial-
hierarchy-based approach [Lo 2012; Loseille et al. 2017], space-
filling-curve-based approach [Borrell et al. 2018; Marot et al. 2019],
and general purpose graph partitioning [Karypis and Kumar 1998].
Many variations of space-filling curves have also been used to con-
struct mesh partitions [Aluru and Sevilgen 1997; Chrisochoides
2006]. To handle potential conflicts that may arise at partition
boundaries, various synchronization strategies have been proposed
[Chrisochoides 2006; Chrisochoides and Nave 2003; Okusanya and
Peraire 1996] to minimize the amount of communication.

After generating the submeshes, some methods allow each com-
pute node to work on them independently without synchronization.
Once all threads are done, the meshes are merged [Blelloch et al.
1999; Chen 2010; Cignoni et al. 1993; Funke and Sanders 2017].
However these methods require complicated merge steps since the
tetrahedra in the intermediate boundaries may not align. There are
some techniques that compromise the Delaunay condition in some
cases, so that the merging operation can be simpler [Lachat et al.
2014]. To avoid the tricky merge operations, other parallel strategies
maintain a single complete Delaunay tetrahedralization and use
synchronization techniques to avoid race conditions when working
on a partition boundary [Chrisochoides and Nave 2003; Okusanya
and Peraire 1997]. The parallel constrained Delaunay meshing al-
gorithm [Chew et al. 1997] cleverly defines the boundary and edge
constrains to reduce the variable and unpredictable communication
patterns. Some other techniques use locks for handling conflicts and
data races [Batista et al. 2010; Blandford et al. 2006; Foteinos and
Chrisochoides 2011].
Another set of methods use recursive divide-and-conquer tech-

niques for parallel implementation on shared memory machines
[Marot and Remacle 2020]. All threads independently work on the
internal parts of the mesh and skip the operations at the boundary.
After this phase, processing of only the boundary elements becomes
the new problem. This technique is then recursively used until all
the mesh elements are processed. A similar set of techniques use
clever space-filling curves for re-partitioning the mesh boundaries
after each recursive phase [Aluru and Sevilgen 1997; Chrisochoides
2006].
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Since the submesh boundaries are the main areas of concern,
some methods entirely avoid any operations on these boundaries
while ensuring the correctness of the result [Galtier andGeorge 1996;
Linardakis and Chrisochoides 2006]. These methods precompute the
domain separators such that their facets are Delaunay admissible.
This completely eliminates synchronization overheads, but only
applies for Delaunay meshing.

Another conflict handling strategy is to simply reject the offend-
ing operations and try executing them later with a new domain
partitioning [Marot et al. 2019]. This reject-and-repartition strat-
egy may not guarantee algorithm termination, thus special care is
needed to handle this case.
As the domain mesh evolves, keeping load balanced across pro-

cessors becomes critical. Typically, this is done by periodically repar-
titioning the updated mesh. Zhou et al. [2012] proposes a predictive
load balancing method to keep partitions balanced. Marot et al.
[2019] uses simple rescaling of the space-filling curve to repartition
the domain.
In this work, we are targeting only shared-memory parallelism,

thus making the problem of reducing communications between
processors less relevant. We use a graph-based space partitioning
technique [Karypis and Kumar 1998] due to its simplicity and avail-
ability as open-source code (METIS), but we use it only to reduce the
risk of conflicts. To avoid conflicts, we use a shared memory locking
mechanism. This approach is only possible for shared-memory par-
allelism but has the major advantage of not requiring rebalancing
and to respect, to a certain degree, the execution order prescribed
by the user-code. This approach is possible thanks to the availability
of efficient parallel atomic instructions, and parallel libraries based
on them (oneTBB).

2.4 Scope of Mesh Editing
Mesh Generation. Tetrahedral meshing algorithms heavily rely

on mesh editing operations. The most common approaches are
Delaunay methods [Alliez et al. 2005a; Bishop 2016; Boissonnat et al.
2002; Boissonnat and Oudot 2005; Busaryev et al. 2009; Chen and
Xu 2004; Cheng et al. 2008, 2012; Chew 1989; Cohen-Steiner et al.
2002; Dey and Levine 2008; Du and Wang 2003; Jamin et al. 2015;
Murphy et al. 2001; Remacle 2017; Ruppert 1995; Shewchuk 1996,
1998, 2002; Si 2015; Si and Gartner 2005; Si and Shewchuk 2014;
Tournois et al. 2009], which strive to generate meshes satisfying
the Delaunay condition, grid methods [Bern et al. 1994; Bridson
and Doran 2014; Bronson et al. 2013; Doran et al. 2013; Labelle and
Shewchuk 2007; Molino et al. 2003; Yerry and Shephard 1983], which
start from a regular lattice or with a hierarchical space partitioning
and optionally intersect the backgroundmeshwith the input surface,
and front-advancing methods [Alauzet and Marcum 2014; Cuilliere
et al. 2013; Haimes 2014; Sadek 1980], which insert one element at a
time, growing the volumetric mesh (i.e. marching in space), until
the entire volume is filled .

These algorithms rely on local operations onmesh data-structures,
and benefit from our framework to simplify the implementation
and gain automatic parallelization. We discuss an implementation
of one the more recent algorithms [Hu et al. 2019b, 2018] in Section
4. Note that some of these algorithms use local operation that are

not implemented yet (such as 5-6 swap), but they could be added to
our framework.

Constrained Meshing. Downstream applications often require
meshes to satisfy either quality (avoidance of zero volume elements)
or geometric (distance to the input surface) constraints. For exam-
ple, Mandad et al. [2015] creates a surface approximation within a
tolerance volume, the TetWild algorithms [Hu et al. 2019b, 2018]
use an envelope [Wang et al. 2021] to restricts the geometry of
the boundary of the tetrahedral mesh, [Brochu et al. 2012] adds
constraints to local remeshing to avoid interpenetrations in sim-
ulations, and [Gumhold et al. 2003] extends mesh simplification
[Garland and Heckbert 1999; Popović and Hoppe 1997] to ensure a
non self-intersecting result.
These criteria are explicitly modeled as invariants in our frame-

work, and they can be easily swapped in and out existing implemen-
tations, as we demonstrate in Section 4.

Mesh Improvement. Mesh improvements modifies an existing
mesh by changing its connectivity and position of the vertices to
improve the quality of its elements [A. Freitag and Ollivier-Gooch
1998; Alexa 2019; Alliez et al. 2005b; Canann et al. 1996, 1993; Chen
and Xu 2004; Feng et al. 2018; Hu et al. 2018; Klingner and Shewchuk
2007; Lipman 2012]. We show in Section 4 a reimplementation of
[Alexa 2019] in IDAS form.

Dynamic Remeshing and Adaptive Mesh Refinement (AMR). Sim-
ulations involving large deformations are common in computer
graphics, and if the surface or volume deformed is represented by a
mesh, it is inevitable that after a large deformation the quality of
the elements will deteriorate, and the mesh will have to be updated.
Additionally, it is often required to concentrate more elements in
regions of interest whose location is changing during the simulation,
for example to capture a fold in a cloth simulation, or a fracture in
a brittle material. These two challenges are tackled in elastoplastic
and viscoplastic simulations [Bargteil et al. 2007; Hutchinson et al.
1996; Wicke et al. 2010; Wojtan and Turk 2008], in fluid simulations
[Ando et al. 2013; Chentanez et al. 2007; Clausen et al. 2013; Klingner
et al. 2006; Misztal and Bærentzen 2012], in cloth simulation [Bender
and Deul 2013; Li and Volkov 2005; Narain et al. 2013, 2012; Pfaff
et al. 2014; Simnett et al. 2009; Villard and Borouchaki 2002], and
fracture simulation [Busaryev et al. 2013]. All these algorithms could
benefit from our contribution, to simplify their implementation and
obtaining speedup due to the automatic parallelization offered by
our approach.

A different approach is discussed in [Grinspun et al. 2002], where
the refinement is performed on the basis to avoid the difficulties
with explicit remeshing. However, this approach cannot coarsen
a dense input, and also cannot increase the quality of elements,
making it usable only for specific scenarios [Grinspun et al. 2002].
Our approach aims at lowering the barrier for integrating explicit
remeshing algorithms in simulation applications, thus allowing
to directly use standard simulation methods on adaptive meshes
without having to pay the high implementation cost for the mesh
generation.
When remeshing is paired with algorithms simulating contacts

that do not tolerate interpenetrations (for example [Li et al. 2020]),
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Fig. 2. Overview of the components behind our specification. A mesh is
represented trough its topology, implemented by our library, and a list of
user provided attributes. Before an operation is attempted, we explicitly
perform a pre-check, and, if successful, we generate a mesh (attributes and
topology). At this point, we trigger the after check to validate the operation
(e.g., check if the newly generate mesh has positive volume). In case the
after check fails, we automatically rollback the operation and restore the
mesh to its previous valid state.

it is necessary to ensure that adaptive remeshing does not break this
invariant. This can be achieved adding non-penetration constraints
to each local mesh editing operations, as proposed in [Brochu et al.
2012]. Our framework is ideal for developing such methods, as addi-
tional constraints can be added to existing mesh editing algorithms
with minimal modifications, as we demonstrate in Section 4.

Parametrization. Conformal mesh parametrization algorithms
adapt the mesh during optimization, as a a fixed triangulation re-
stricts the space of metrics realizable [Campen et al. 2019; Campen
and Zorin 2017a,b; Gu et al. 2018a,b; Luo 2004; Springborn 2020; Sun
et al. 2015]. Two very recent works [Campen et al. 2021; Gillespie
et al. 2021] introduce robust algorithms based on Ptolemy flips to
compute conformal maps satisfying a prescribed metric.

All these methods require changing the mesh connectivity of a tri-
angle mesh, and could thus benefit from our framework to simplify
their implementation and parallelize the mesh editing operations.

Mesh Arrangements/Boolean Operations. Boolean operations are
basic algorithms often used in geometry processing applications.
Recently, [Zhou et al. 2016] proposed a robust way to compute them
by constructing a space arrangement, and then filtering the result
using the generalized winding number [Jacobson et al. 2013]. A
similar approach, using an approximated meshing algorithm, has
been extended in [Hu et al. 2019b], using a tetrahedral mesher to
create the initial arrangement. The reimplementation of TetWild
introduced in this paper (Section 4) can be extended for a similar
purpose.

3 METHOD
Our declarative specification is designed to remove the burden of
low-level management of the mesh connectivity and attributes,
allowing an algorithm designer to focus only on high-level require-
ments. The design consists of five components (Figure 2).

3.1 Mesh editing components
Operation Rollback. It is common to perform mesh editing to im-

prove a given energy functional, such as mesh quality or element
size. However, due to the discrete and combinatorial nature of the
operations, it is not possible to use standard smooth optimization
techniques to reduce the energy (e.g., Newton’s method or line-
search to ensure that the energy decreases). Instead, in such settings,
the energy can only be evaluated before and after every operation
to measure the operation’s effect. This paradigm is commonly im-
plemented using an ad-hoc energy evaluation that “simulates” the
operation only for the purpose of measuring the energy change.
This simulation is complex (especially in 3D), and error-prone, as
not only the connectivity changes, but the energy likely depends on
properties attached to mesh elements, which needs to be updated
accordingly.
We propose instead to make this process opaque to the user,

providing to the user-code an explicit copy of the mesh (and up
to date attributes) before and after the operation is performed to
allow an easy and reliable energy evaluation. The correctness and
efficiency of this process is handled by the runtime. This reduces
the complexity of mesh editing considerably in our experience, as it
makes them more similar to traditional finite difference approaches
where the energy is evaluated on different points on the domain to
approximate its derivative.

Explicit Invariants. It is common to have a set of desiderata on
the mesh that needs to be satisfied, such as avoiding triangle inser-
tions or self-intersections. Given the complexity of a mesh editing
algorithm it is difficult to ensure that they are satisfied, as these
conditions needs to be checked after every operation is applied (and
they often depend on attributes too, such as vertex positions).

We propose to make these invariants explicit, and delegate to the
library the task of ensuring that they are checked after every mesh
modifications, and after the input is loaded. In this way, not only
the code is simpler, but it is much easier to ensure correctness, as
the checks are handled transparently by the library.

Explicit Attribute Update. Mesh attributes are usually handled by
low-level meshing libraries, allowing to attach them to the desired
mesh element (vertex, edge, face, triangle, or tetrahedra). However,
the handling of attributes after a local operation is performed is
usually a responsibility of the user code, as it is dependent on the
application.

We propose to make this process more explicit, requiring the user
to provide the rules on how to update attributes after operation
in a high-level specifications, and delegating the actual update to
the library. This makes the specification more direct and less error-
prone, and allows users to write algorithms without having to know
the low-level details on how the local mesh operations work.

Parallel Scheduling. The type and scheduling of local operations
is crucial in mesh editing algorithms. It usually involves maintaining
a priority queue of operations, which is updated after every local
operation.

We provide a direct way of controlling the operations performed
and how the queue is updated. In the library, we can then distrib-
ute the work automatically on multiple threads, hiding from the
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user code the complexity of performing mesh editing operations in
parallel and ensuring that race conditions are avoided.

Abstract Mesh Navigation. Both invariant and attribute updates
require navigating a mesh. Instead of relying on data-structure
specific navigation, we favor the use of the cell tuple abstraction
[Brisson 1989]. This allows the specification to be independent of
the mesh data structure used in the library. The Tuple stores four
indices (three for surface meshes), vertex, edge, face, and tetra-
hedron and provides a single function per index, called switch, to
change one index while keeping the other indices fixed. For instance
switch_vertex changes the vertex index while keeping edge, face,
and tetrahedron fixed which has the effect of selecting the opposite
vertex on an edge.

3.2 Declarative Specification
Our API provides two abstractions: a TetMesh (and TriMesh class
for 2D) (Algorithm 1), and a Scheduler (Algorithm 2).

Mesh Classes. Both the TetMesh and TriMesh classes provide the
basic local operations (e.g., edge split or collapse) and, for each
operation, their corresponding before and after methods. The mesh
class is responsible of implementing the operations changing the
topology, and the application code must only override the before
and after methods to update attributes. The before method has a
view of the mesh before the operation, and can thus navigate it to
cache local attributes, while the after method has a view after the
operation is performed, and it is responsible for updating attributes.
In the simple case of regular subdivision of a triangle mesh, the
split_before caches the coordinates of the two edge endpoints,
and the split_after computes the position of the newly inserted
vertex by averaging them.

In addition, the mesh class provides a method, which can be over-
ridden by the user code, that automatically verifies user-provided in-
variants (e.g., maintain positive elements’ volume). All user-provided
methods return a Boolean status to notify the mesh classes if the
operation fails; in case it does, our API rolls back the operation and
restores the topology to the previous valid state. As the connectivity
and attributes management is handled by the class, this ensures that,
in case of failure of the operation, the mesh will go back to a valid
state.
Our API provides the standard local operations: edge collaps-

ing, edge/face swapping, edge splitting, and smoothing. We also
provide an additional, non standard, operation: triangle insertion.
This operation is an enhanced version of splitting where multiple
edges, faces, and tetrahedra are subdivided to represent an input
triangle provided as input. This operation is useful to compute mesh
arrangements, and it is also used in meshing algorithms [Hu et al.
2019b].

Since the TetMesh class only handles topology, the operation re-
quires the list of edges and tetrahedron the input triangle intersects.
Internally it subdivides all of them, and generates a valid tetrahedral
mesh using the connectivity table in [Hu et al. 2019b]. The before
operation provides the user the list of faces that will be changed
by the operation, allowing the user code to explore the mesh and

Algorithm 1 API of our TetMesh class.
class TetMesh
{
public:

bool split_edge(const Tuple& t,
std::vector<Tuple>& new_tets);

bool collapse_edge(const Tuple& t,
std::vector<Tuple>& new_tets);

bool swap_edge(const Tuple& t,
std::vector<Tuple>& new_tets);

bool swap_face(const Tuple& t,
std::vector<Tuple>& new_tets);

bool smooth_vertex(const Tuple& t);

bool insert_triangle(
const std::vector<Tuple>& intersected_tets,
const std::vector<Tuple>& intersected_edges);

protected:

bool invariants(const std::vector<Tuple>& tets);

bool split_before(const Tuple& t);
bool split_after(const Tuple& t);

bool collapse_before(const Tuple& t);
bool collapse_after(const Tuple& t);

bool swap_edge_before(const Tuple& t);
bool swap_edge_after(const Tuple& t);

bool swap_face_before(const Tuple& t);
bool swap_face_after(const Tuple& t);

bool smooth_before(const Tuple& t);
bool smooth_after(const Tuple& t);

bool insert_triangle_before(
const std::vector<Tuple>& faces);

bool insert_triangle_after(
const std::vector<Tuple>& faces,
const std::vector<std::vector<Tuple>>& new_f);

};
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Algorithm 2 API of our Scheduler.
template <class Mesh>
struct Scheduler
{

function<double
(const Mesh&, Op op, const Tuple&)>
priority = ...;

function<vector<pair<Op, Tuple>>
(const Mesh&, Op, const vector<Tuple>&)>
renew_neighbor_tuples = ...;

function<vector<size_t>
(Mesh&, const Tuple&)>
lock_vertices = ...

function<bool(const Mesh&)>
stopping_criterion = ...;

function<bool
(const Mesh&, tuple<double, Op, Tuple>& t)>
should_process = ...;

size_t num_threads = ...;
size_t max_retry_limit = ...;
size_t stopping_criterion_checking_frequency = ...;

bool operator()
(Mesh& m,
const vector<pair<Op, Tuple>>& ops);

};

cache attributes, while the after provides a mapping between the
old faces and any newly inserted face in the mesh.

Scheduler. The second part of our API is the Scheduler that is
responsible to control the order of the individual operations and then
execute a list of operations. The main purpose of the scheduler is to
abstract the operation order and hide parallelization details from
the user. Our scheduler provides customizable callbacks, including,

• Priority to order the local mesh edit operations.
• Renew neighbor tuples that is invoked after a successful op-
eration, to add newly created tuples and operations into the
queue.

• Lock vertices that provides information on the affected region
for the operations, and avoiding conflicts.

• Stopping criterion that is checked periodically to terminate
the program if certain criterion is met. For example, number
of vertices, or quality criterion.

3.3 Implementation.
We implement a runtime for our specification in C++, using Intel
oneTBB for parallelization.

Fig. 3. Example of the locking region for two edges. In the example the
operation requires locking a two-ring neighborhood (e.g., for the edge col-
lapse operation). If the two edges are sufficiently far (right) both operations
can be safely executed in parallel. When the two edges are close (left) the
operations might fail acquiring the mutexes in the shared area.

Data Structure. We opt for an indexed data structure, where we
explicitly represent the vertices and the simplex of higher dimension
(triangle for 2D, tetrahedra for 3D). Each vertex explicitly stores a
list of incident simplices, and each simplex stores a sorted list of
its vertices. While not the most efficient option for navigation, this
data structure makes the implementation of local operations much
simpler.

Parallelization. To avoid conflicts between local operations work-
ing on the same part of the mesh, we introduce a synchronization
mechanism using locks.

Each mesh vertex is associated with a mutex. Whenever a thread
wants to access (read/write) any attribute stored in a vertex, edge,
triangle, or tetrahedron it must first acquire a lock on all the vertices
of the tetrahedron containing the element(s) storing the attribute
(Figure 3). For example, if a thread wants to read a value on an edge
of a 3D mesh, it first needs to acquire a lock on all vertices of all the
tetrahedra containing that edge. This mechanism is used also for
mesh navigation, and for updating the mesh connectivity.
At a first look, this mechanism might seem cumbersome and

expensive. However, we rely on asynchronous, tentative lock ac-
quisition operations. We try to acquire the lock, and give up and
release all previously acquired locks if the lock is already taken by
another thread. These operations are efficient on modern hardware
and dramatically improve the performance, while avoiding dead-
locks: the locking region is dependent on the local operation, and for
all the operation we implement (edge split, collapse, flip, and vertex
smoothing), the two-ring neighborhood is sufficient to prevent a
deadlock. A downside is that an operation might be skipped due to
impossibility of acquiring a mutex. These operations are retried for
several times (by default 10 times) and run serially if the still do not
succeed. Before performing any local operation, we try to acquire
the lock on vertices in the 1-ring or 2-ring of the vertex involved in
the operation. For example, a vertex smoothing operation requires
acquiring the 1-ring vertex neighborhood of the smoothed vertex,
while an edge-collapse operation on an edge (𝑣1, 𝑣2) requires ac-
quiring the lock on the 2-ring vertex neighborhood of both 𝑣1 and
𝑣2 (Figure 3).

Finally, since we partition the input mesh using Morton Encoding
[Karras 2012], the amount of conflicts (and skipped operations) is
low.
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3.4 Example: Shortest Edge Collapse
We show how the library is used in a classical example, shortest
edge collapse. In this case, we add a 3D position to every vertex as a
vertex attribute (by default, there are no attributes attached to mesh
elements). For every attribute and for every operations we plan to
use in the scheduler, we need to provide a function that updates
such attribute (Algorithm 3). In the collapse_before function,
we cache the two vertex coordinates associated with the collapsed
edge represented by Tuple t. In the collapse_after function, we
generate a new vertex in the middle of the two endpoints of the
collapsed edge.

Algorithm 3 Overridden methods in TriMesh sub-class to imple-
ment shortest edge collapse.
//Save two vertices attached to edge t
bool collapse_before(const Tuple& t)
{

cache.v1p = verts[t.vid()];
cache.v2p = verts[switch_vertex(t).vid()];
return true;

}

//Generate a new point
bool collapse_after(const Tuple& t)
{

verts[t.vid()] = (cache.v1p + cache.v2p) / 2.0;
return true;

}

Equipped with the 3D position attribute, which at this point will
be automatically kept up to date by the library, we can now schedule
the collapse operation (Algorithm 4). For shortest edge collapse, we
want to attempt to collapse all edges, prioritizing the shortest ones,
until we reach a fixed number of collapses n_collapse: in the code
we registering the operation type (ops), specify how to update the
queue after an operation (renew) by adding all the neighbouring
edges, and specifying the edge length as a priority (priority). Note
that the outdated elements in the queue that are affected by a local
operation are automatically invalidated using a tagging mechanism
on the tuples which is opaque to the user.

4 APPLICATIONS
To showcase the generality and effectiveness of our approach, we
implement five popular mesh editing algorithms in our framework,
and compare them with reference implementations. Overall, the
performance of our method are competitive for surface applications,
but the overhead due to the approach generality is higher in 3D,
leading to higher running time.

Shortest Edge Collapsing. The simplest algorithm for simplifying
a triangle edge is shortest edge collapse [Hoppe 1996], which per-
forms a series of collapse operations prioritizing the shorter edges.
The algorithm requires only one local operation, edge collapse. A
common criteria for termination is reaching a desired number of
mesh elements. We compare our implementation with the “deci-
mate” implementation in libigl [Jacobson et al. 2016]. The serial

Algorithm 4 Scheduler setup for the schedule shortest edge col-
lapse.
//Collect edges attacched to tris
vector<Tuple> new_edges_after(const vector<Tuple>& tris)
{

vector<Tuple> new_edges;
for (auto t : tris) {

for (auto j = 0; j < 3; j++) {
new_edges.push_back(

tuple_from_edge(t.fid(), j));
}

}
return new_edges;

}

bool collapse_shortest(int n_collapses)
{

//Register operations
auto ops = vector<pair<Op, Tuple>>();
for (auto& l : get_edges())

ops.emplace_back("edge_collapse", l);

//After a successful operation,
//we append all new edges
auto renew = [](auto& m, auto op, auto& tris) {

auto edges = m.new_edges_after(tris);
auto optup = vector<pair<Op, Tuple>>();
for (auto& e : edges)

optup.emplace_back("edge_collapse", e);
return optup;

};

//priority in which we collapse
auto priority = [](auto& m, auto op, const Tuple& e) {

const auto v1 = m.verts[e.vid()];
const auto v2 = m.verts[e.switch_vertex(m).vid()];
auto len2 = (v1 - v2).squaredNorm();
return -len2;

};

//Set the functions to the scheduler
Scheduler executor;
executor.renew_neighbor_tuples = renew;
executor.priority = priority;
executor.stopping_criterion_checking_frequency =

n_collapses;
//We stop only when we perform n_collapses
executor.stopping_criterion =

[](auto& m) { return true; };
//Run the executor
executor(*this, ops);

}
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Fig. 4. Comparison of our parallel implementation (32 threads) of shortest
edge collapse (scalability plot on the right, from 1 to 32 threads) of a model
with 281, 724 faces with the serial version in libigl. Both libigl and our output
have 28, 168 faces and comparable edge length (1.058 for libigl versus 1.061
for ours). Our serial method runs in 4.9s (5.84s on a single thread, 0.52s with
32 thread, leading to a speedup of 11×), while libigl runs in 2.74s.
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Fig. 5. Comparison of our parallel implementation of QSlim with the serial
version in libigl for a model with 1, 909, 755 faces. Top right, the libigl output
has 17, 891 faces and takes 41.26s. Bottom left, our output has 17, 906 faces
and runs in 306.59s. Our implementation scales well: 347.59s with one thread
and 13.88s with 32 (25× speedup).

libigl implementation is comparable when running the algorithms
serially, and our parallel implementation is up to 9 times faster when
using 32 threads (Figure 4).

QSlim. We use our framework to implement QSlim [Garland and
Heckbert 1997]. QSlim collapse edges based on the planarity of the
two adjacent faces measured with an error quadric. The algorithm
continues to collapse until it reaches a target number of edges. We
compare our implementation with the QSlim implementation in
libigl [Jacobson et al. 2016]. The serial libigl implementation is 8
times faster than our implementation, due to their direct manipula-
tions of elements in the queue with each collapse. But our parallel
implementation is twice as fast when using 16 threads (Figure 5).
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Fig. 6. Example of uniform remeshing a model with 2, 529, 744 triangles
(left) with the same target edge length. Middle, [Möbius and Kobbelt 2010]
remeshes it to 78, 322 faces in 31.96 seconds. On the right is our 32-thread
implementation, which generates 71, 640 triangles in 8.2 seconds (78.34s
serial, 95.0s for a single thread, leading to a speedup of 11×). The difference
in density of the meshes is due to differences in the detail of the implemen-
tation, which makes the two methods reach an average vertex valence of
5.999, and a similar target edge length (differ 0.01% of the bounding box
diagonal length) with a different element budget.

Isotropic Remeshing. We implemented the widely used algorithm
for isotropic remeshing proposed in [Botsch and Kobbelt 2004]. This
algorithm alternates edge collapse, edge flips, edge splits, and tan-
gential smoothing to obtain a mesh that is isotropic (i.e. all elements
have the same size) and where all triangles are close to equilateral.
The process is guided by a user-provided target edge length 𝐿, and
terminates when no local operation leads to either an improvement
in the desired edge lengths or an improvement in vertex valence
[Botsch and Kobbelt 2004].
In Figure 6, we compare our implementation of [Botsch and

Kobbelt 2004] with the implementation in OpenFlipper [Möbius
and Kobbelt 2010]. The OpenFlipper implementation is 2.5 times
faster when running on a single thread, and our implementation
becomes faster after 4 threads are used (Figure 6).

Harmonic Triangulations. The harmonic triangulations algorithm
has been introduced as an alternative to sliver exudation in the
Delaunay tetrahedralization pipeline to efficiently reduce sliver
tetrahedra. The original paper [Alexa 2019] proposes to use both
flip and smoothing operations.

The code provided by the authors implements a reduced version
of the algorithm proposed in the paper, restricting the optimization
to 3-2 edge swap operations. We thus implemented both a reduced
version for a fair comparison (Figure 7) and a complete version. Our
more generic framework is twice as slower than the hand-optimized
code written by the authors when running serially, and it is 2 times
faster when running on 32 threads (Figure 7).

TetrahedralMeshing. The TetWild algorithm is a tetrahedralmesh-
ing algorithm with minimal input requirements: given an input tri-
angle soup, it can generate a tetrahedral mesh which approximates
its volume. We take inspiration from the original algorithm intro-
duced in [Hu et al. 2019b, 2018] with a few modifications: (1) we use
the insertion operation [Hu et al. 2019b] (using rational coordinates)
as a replacement for their BSP partitioning, as this simplifies the
implementation, (2) we use the envelope proposed in [Wang et al.
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Fig. 7. Example of Harmonic Triangulations starting with one million Gauss-
ian distributed random points. Both our and the reference implementation
reach a similar target number of tetrahedra (5.9 million for the reference
and 6.1 million for ours, due to a difference in operation ordering) and a
similar Mean Harmonic Index (0.547 for the reference and 0.554 for ours).
Our method takes 3.82s with 32 threads (15.49s serial, 40.49s on a single
thread, speedup of 11×), while the reference serial implementation takes
6.37s.

2020] instead of sampling, and (3) we use 2-3 face swapping, 3-2 and
4-4 edge swapping operations, to simplify the implementation. We
show results on two models in Figure 8: the results are very similar
to the original implementation, and our version is 2 times faster
when using 8 threads. We experimentally observe that our frame-
work scales well up to 8 threads, after that the algorithm becomes
slower. This is because, as we increase the number of threads and
partitions, the frequent conflict in tetrahedral mesh edge operations
affects the parallel performance. We believe that this observation
might be useful for the future design of high performance concur-
rent mesh generation algorithms. We also measure the qualities of
resulting tetrahedral meshes in Figure 9. Note that due to various
different implementation design, our performance and quality may
be better or worse compared with TetWild[Hu et al. 2019b]. Fine
tuning our performance and a large scale comparision is beyond
the scope of this work.

4.1 Parallelization
Enabling the parallelization mechanism introduces a minor slow-
down as visible in the difference between the pure serial and one
thread timings on our applications, due to the additional cost of
allocating mutexes and to acquire them. Additionally, due to the
nature of parallelization, our concurrent implementation is not de-
terministic. The differences between different runs are however
minor: we run uniform remeshing on the model in Figure 6 five
times and obtained an average vertex valence of 5.999 with a stan-
dard deviation of 9.885 × 10−7. The average Hausdorff distance is
0.5% of the size of the bounding box diagonal compared to the se-
rial result, with a standard deviation of 0.2%. The algorithm scales
well in all 5 applications (figures 4, 5, 6, 7, 8), obtaining a scaling
speedup (see the timing breakdown and the additional overhead in
Table 1). We would like to remark that thanks to our specification
and our runtime, the serial and parallel implementation of the five
algorithms above is almost identical.
An inevitable drawback of parallelization is that the algorithms

cannot efficiently preserve ordering. For instance, in shortest edge
collapse, every thread will try to collapse edges in its own partition
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Fig. 8. Tetrahedralize a surface with 856, 294 faces. Original TetWild (top
right) generates a mesh with 56, 761 tetrahedra in 287.58s; our reimplemen-
tation (bottom left) generates a mesh with 44, 866 tetrahedra in 153.33s with
8 threads (452.42s serial, 521.47s on a single thread, speedup of 3.4×). The
difference in number of tetrahedra is likely due to the different order of
scheduling of operations due to the partitioning.
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Fig. 9. Histogram of the AMIPS energy for the tetrahedra by tetrahedral-
ization the models from in Figure 4, 8, 11. In the dragon model (Figure 8),
our re-implementation produces higher quality meshes on average, likely
due to the different operation scheduling. However, the parallel output has
a small number of elements with low quality (e.g., AMIPS energy over 400)
on this model when stopped at 10 iterations. We believe this is due to the
postponement of operations when threading conflicts arise, as this effect
disappears if we allow more iterations.

Serial Single thread Overhead # Mutex locked Per lock overhead
Figure 4 4.733 5.377 0.64 2269085 2.8e-07
Figure 6 78.573 108.261 30 110768681 2.7e-07
Figure 7 13.047 42.232 29 64803789 4.5e-07

Table 1. Timings of the serial version compared with the single threaded
version, which has additional overhead due to the unnecessary lock-
ing/unlocking.

ACM Trans. Graph., Vol. 41, No. 6, Article 251. Publication date: December 2022.



Declarative Specification for Unstructured Mesh Editing Algorithms • 251:11

Fig. 10. Example of splitting the longest edge on the bottom of the triangle.
On the left, the bottom edge can be split first with the introduction of the
dark blue edge; next, the left edge is split (added the light blue edge) leading
to a decreasing maximum edge-length. On the right, the bottom edge is
locked (illustrated by a dashed line) ; when the bottom edge is unlocked in
the next iteration, the edge length decrease is less effective.
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Fig. 11. Shortest edge collapse with envelope containment of a model with
857, 976 faces. Our method successfully generates a mesh with 71, 298 faces
in 37.49s with 32 threads (731.32s serial, 725.34s on a single thread, speedup
of 20×).

independently from the others. If one of these collapses append on
the partition’s interface, the thread will need to acquire a lock. In
case of failure the collapse is postponed to a later stage thus not
respecting the order (Figure 10). This is a rare event that is more
problematic for fast operations.

4.2 Algorithm Modifications
A major motivation to invent and develop this declarative language
is enabling easy customization of meshing algorithms. As an ex-
ample, we add an additional termination criteria to the shortest
edge collapse and uniform surface refinement. Integrating the enve-
lope check is straightforward with our approach, as it only requires
adding the envelope check to the invariants. We use the open-source
library proposed in [Wang et al. 2020], which allows to directly
specify the maximal allowed surface deviation. The envelope adds a
noticeable computational cost, which is ameliorated by our parallel
implementation (figures 11 and 12).

4.3 Large-scale dataset validation
To validate our framework we run our reimplementation of uniform
remeshing and tetrahedral meshing on the Thingi10k dataset [Zhou
and Jacobson 2016]. We run all experiments serially on an individual
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Fig. 12. Uniform remeshing with envelope containment check of a model
with 198, 918 faces. Our method produces a mesh with 68, 202 faces in 29.11s
with 32 threads and 493.54s for a single thread (483.68s for the serial version)
leading to a speedup of 16×.
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Fig. 13. Timings, target edge length ratio, and valence for every model in
the dataset. Most models finish within a minute. The target edge length
ratio measures how well our algorithm simplifies the meshes to reach the
desired edge length, with an optimal value of 1. Since uniform remeshing
strives to generate regular meshes, for most models our algorithm is able to
obtain the optimal valence of 6.
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Fig. 14. Timing, max and average AMIPS energy (capped at 20) for maximum
25 iterations of tetrahedral meshing. Most models finish withing 20 minutes
with only a few taking up to a day. Even by limiting the iterations to 25,
most models reach an average AMIPS energy lower than 10, with optimal
value at 3.

node of an HPC cluster an Intel Xeon Platinum 8268 24C 205W
2.9GHz Processors limiting the runtime to 15 hours.
For uniform remeshing, Figure 13 shows the time, average edge

length normalized by the target, and average valence of isotropic
remeshing on the ten thousand models. Most of our models finish
within 10 seconds with only a few requiring more than a minute.
For almost all meshes, the algorithm succeeds at reaching the target
edge length and valence of 6.
For TetWild we limit the number of iterations to 25 (Figure 14).

We note that within the 15 hours limit only 2.5% models did not
finish, and after 25 iterations 3% of the models still have some ratio-
nal coordinates. Among the successful models, most finish within
20 minutes and succeed in achieving high-quality meshes (only 8
models have an average AMIPS energy larger than 10).
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5 CONCLUDING REMARKS
This paper introduces a new declarative specification for mesh algo-
rithms based upon five guiding principles (Section 3.1) to allow an
easier implementation, while at the same time obtaining competitive
performances and exploiting parallel hardware. We note that the
principles are based on our experience in mesh optimization and not
necessarily the only or optimal choices. A more formal justification
would be interesting to explore in the future.

Using this specification, we implement five popular mesh editing
algorithms covering mesh generation and optimization on surfaces
and volumes, which can be easily adapted for other use cases: we
demonstrated that integrating an envelope check requires only a
few lines of code.

The library we implemented supports shared memory parallelism,
which leads to a good scaling on the machines we tested it on. We
believe an exciting venue for future work would be the implemen-
tation of a library for our specification targeting MPI to distribute
the computation over an HPC cluster. Having access to such a li-
brary would allow our five mesh editing applications to run on a
distributed environment with minimal or no changes.

ACKNOWLEDGMENTS
This work was supported in part through NYU IT High Performance
Computing resources, services, and staff expertise. This work was
also partially supported by the NSF CAREER award under Grant No.
1652515, the NSF grants OAC-1835712, OIA-1937043, CHS-1908767,
CHS-1901091, NSERC DGECR-2021-00461 and RGPIN 2021-03707,
a Sloan Fellowship, a gift from Adobe Research and a gift from
Advanced Micro Devices, Inc. The authors thank all the reviewers
for their feedback.

REFERENCES
Lori A. Freitag and Carl Ollivier-Gooch. 1998. Tetrahedral Mesh Improvement Using

Swapping and Smoothing. Internat. J. Numer. Methods Engrg. 40 (05 1998).
F. Alauzet and D. Marcum. 2014. A Closed Advancing-Layer Method With Changing

Topology Mesh Movement for Viscous Mesh Generation. In Proceedings of the
22nd International Meshing Roundtable. Springer International Publishing, Cham,
241–261.

Marc Alexa. 2019. Harmonic Triangulations. ACM Transactions on Graphics (Proceedings
of SIGGRAPH) 38, 4 (2019), 54.

Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. 2005a.
Variational Tetrahedral Meshing. ACM Transactions on Graphics 24, 3 (07 2005), 617.
https://doi.org/10.1145/1073204.1073238

Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. 2005b.
Variational Tetrahedral Meshing. ACM Trans. Graph. 24, 3 (July 2005), 617–625.
https://doi.org/10.1145/1073204.1073238

Srinivas Aluru and Fatih Erdogan Sevilgen. 1997. Parallel domain decomposition
and load balancing using space-filling curves. In Proceedings fourth international
conference on high-performance computing. IEEE, 230–235.

Ryoichi Ando, Nils Thürey, and ChrisWojtan. 2013. Highly Adaptive Liquid Simulations
on Tetrahedral Meshes. ACM Trans. Graph. (Proc. SIGGRAPH 2013) (July 2013).

Adam W. Bargteil, Chris Wojtan, Jessica K. Hodgins, and Greg Turk. 2007. A Finite
Element Method for Animating Large Viscoplastic Flow. In ACM SIGGRAPH 2007 Pa-
pers (San Diego, California) (SIGGRAPH ’07). Association for Computing Machinery,
New York, NY, USA, 16–es. https://doi.org/10.1145/1275808.1276397

Vicente HF Batista, David L Millman, Sylvain Pion, and Johannes Singler. 2010. Parallel
geometric algorithms for multi-core computers. Computational Geometry 43, 8
(2010), 663–677.

Bruce G. Baumgart. 1972. Winged Edge Polyhedron Representation. Technical Report.
Stanford, CA, USA.

Jan Bender and Crispin Deul. 2013. Adaptive cloth simulation using corotational finite
elements. Computers & Graphics 37, 7 (2013), 820–829. https://doi.org/10.1016/j.
cag.2013.04.008

Marshall Bern, David Eppstein, and John Gilbert. 1994. Provably good mesh generation.
J. Comput. System Sci. 48, 3 (1994), 384 – 409.

Christopher J. Bishop. 2016. Nonobtuse Triangulations of PSLGs. Discrete & Computa-
tional Geometry 56, 1 (2016), 43–92.

Daniel K Blandford, Guy E Blelloch, and Clemens Kadow. 2006. Engineering a compact
parallel Delaunay algorithm in 3D. In Proceedings of the twenty-second Annual
Symposium on Computational Geometry. 292–300.

Guy E Blelloch, Gary L Miller, Jonathan C Hardwick, and Dafna Talmor. 1999. Design
and implementation of a practical parallel Delaunay algorithm. Algorithmica 24, 3
(1999), 243–269.

Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Pion, Monique Teillaud, and Mariette
Yvinec. 2002. Triangulations in CGAL. Computational Geometry 22 (2002), 5–19.

Jean-Daniel Boissonnat and Steve Oudot. 2005. Provably Good Sampling and Meshing
of Surfaces. Graphical Models 67, 5 (09 2005), 405–451. https://doi.org/10.1016/j.
gmod.2005.01.004

Ricard Borrell, Juan Carlos Cajas, Daniel Mira, Ahmed Taha, Seid Koric, Mariano
Vázquez, and Guillaume Houzeaux. 2018. Parallel mesh partitioning based on space
filling curves. Computers & Fluids 173 (2018), 264–272.

Mario Botsch and Leif Kobbelt. 2004. A remeshing approach tomultiresolutionmodeling.
In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry
processing. 185–192.

Mario Botsch, Stephan Steinberg, Stephan Bischoff, and Leif Kobbelt. 2002. Openmesh-a
generic and efficient polygon mesh data structure. (2002).

Robert Bridson and Crawford Doran. 2014. Quartet: A tetrahedral mesh generator
that does isosurface stuffing with an acute tetrahedral tile. https://github.com/
crawforddoran/quartet.

E. Brisson. 1989. Representing Geometric Structures in 𝑑 Dimensions: Topology and
Order. In Proceedings of the Fifth Annual Symposium on Computational Geometry
(Saarbruchen, West Germany) (SCG ’89). Association for Computing Machinery,
New York, NY, USA, 218–227. https://doi.org/10.1145/73833.73858

Tyson Brochu, Essex Edwards, and Robert Bridson. 2012. Efficient Geometrically Exact
Continuous Collision Detection. ACM Trans. Graph. 31, 4, Article 96 (jul 2012),
7 pages. https://doi.org/10.1145/2185520.2185592

Jonathan R. Bronson, Joshua A. Levine, and Ross T. Whitaker. 2013. Lattice Cleaving:
Conforming Tetrahedral Meshes of Multimaterial Domains With Bounded Quality.
In Proceedings of the 21st International Meshing Roundtable. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 191–209. https://doi.org/10.1007/978-3-642-33573-0_12

Oleksiy Busaryev, Tamal K. Dey, and Joshua A. Levine. 2009. Repairing and Meshing
Imperfect Shapes with Delaunay Refinement. In 2009 SIAM/ACM Joint Conference on
Geometric and Physical Modeling (San Francisco, California) (SPM ’09). ACM, 25–33.

Oleksiy Busaryev, Tamal K. Dey, and HuaminWang. 2013. Adaptive Fracture Simulation
of Multi-Layered Thin Plates. ACM Trans. Graph. 32, 4, Article 52 (jul 2013), 6 pages.
https://doi.org/10.1145/2461912.2461920

Marcel Campen, Ryan Capouellez, Hanxiao Shen, Leyi Zhu, Daniele Panozzo, and
Denis Zorin. 2021. Efficient and Robust Discrete Conformal Equivalence with
Boundary. ACM Trans. Graph. 40, 6, Article 261 (dec 2021), 16 pages. https:
//doi.org/10.1145/3478513.3480557

Marcel Campen, Hanxiao Shen, Jiaran Zhou, and Denis Zorin. 2019. Seamless
Parametrization with Arbitrary Cones for Arbitrary Genus. ACM Trans. Graph. 39,
1 (2019).

Marcel Campen and Denis Zorin. 2017a. On Discrete Conformal Seamless Similarity
Maps. arXiv:1705.02422 [cs.GR]

Marcel Campen and Denis Zorin. 2017b. Similarity Maps and Field-Guided T-Splines: a
Perfect Couple. ACM Trans. Graph. 36, 4 (2017).

S. A. Canann, S. N. Muthukrishnan, and R. K. Phillips. 1996. Topological refinement
procedures for triangular finite element meshes. Engineering with Computers 12, 3
(01 Sep 1996), 243–255. https://doi.org/10.1007/BF01198738

Scott A. Canann, Michael B. Stephenson, and Ted Blacker. 1993. Optismoothing: An
optimization-driven approach to mesh smoothing. Finite Elements in Analysis and
Design 13, 2 (1993), 185 – 190. https://doi.org/10.1016/0168-874X(93)90056-V

Long Chen and Jin-chao Xu. 2004. Optimal Delaunay Triangulations. Journal of
Computational Mathematics 22, 2 (2004), 299–308.

Min-Bin Chen. 2010. The merge phase of parallel divide-and-conquer scheme for
3d delaunay triangulation. In International Symposium on Parallel and Distributed
Processing with Applications. IEEE, 224–230.

Siu-Wing Cheng, Tamal K Dey, and Joshua A Levine. 2008. A Practical Delaunay
Meshing Algorithm for a Large Class of Domains. In Proceedings of the 16th Interna-
tional Meshing Roundtable. Springer, Springer Berlin Heidelberg, Berlin, Heidelberg,
477–494.

Siu-Wing Cheng, Tamal K. Dey, and Jonathan Shewchuk. 2012. Delaunay Mesh Genera-
tion. Chapman and Hall/CRC, Boca Raton, Florida.

Nuttapong Chentanez, Bryan E. Feldman, François Labelle, James F. O’Brien, and
Jonathan R. Shewchuk. 2007. Liquid Simulation on Lattice-Based Tetrahedral Meshes.
In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (San Diego, California) (SCA ’07). Eurographics Association, Goslar, DEU,
219–228.

ACM Trans. Graph., Vol. 41, No. 6, Article 251. Publication date: December 2022.

https://doi.org/10.1145/1073204.1073238
https://doi.org/10.1145/1073204.1073238
https://doi.org/10.1145/1275808.1276397
https://doi.org/10.1016/j.cag.2013.04.008
https://doi.org/10.1016/j.cag.2013.04.008
https://doi.org/10.1016/j.gmod.2005.01.004
https://doi.org/10.1016/j.gmod.2005.01.004
https://github.com/crawforddoran/quartet
https://github.com/crawforddoran/quartet
https://doi.org/10.1145/73833.73858
https://doi.org/10.1145/2185520.2185592
https://doi.org/10.1007/978-3-642-33573-0_12
https://doi.org/10.1145/2461912.2461920
https://doi.org/10.1145/3478513.3480557
https://doi.org/10.1145/3478513.3480557
https://arxiv.org/abs/1705.02422
https://doi.org/10.1007/BF01198738
https://doi.org/10.1016/0168-874X(93)90056-V


Declarative Specification for Unstructured Mesh Editing Algorithms • 251:13

L. P. Chew. 1989. Constrained delaunay triangulations. Algorithmica 4, 1 (01 Jun 1989),
97–108. https://doi.org/10.1007/BF01553881

L Paul Chew, Nikos Chrisochoides, and Florian Sukup. 1997. Parallel constrained
Delaunay meshing. ASME APPLIED MECHANICS DIVISION-PUBLICATIONS-AMD
220 (1997), 89–96.

Nikos Chrisochoides. 2006. Parallel mesh generation. In Numerical solution of partial
differential equations on parallel computers. Springer, 237–264.

Nikos Chrisochoides and Démian Nave. 2003. Parallel Delaunay mesh generation
kernel. Internat. J. Numer. Methods Engrg. 58, 2 (2003), 161–176.

Paolo Cignoni, Fabio Ganovelli, et al. 2021. VCG Library.
P. Cignoni, C. Montani, R. Perego, and R. Scopigno. 1993. Parallel 3D Delaunay Triangu-

lation. Computer Graphics Forum 12, 3 (1993), 129–142. https://doi.org/10.1111/1467-
8659.1230129

Pascal Clausen, Martin Wicke, Jonathan R. Shewchuk, and James F. O’Brien. 2013.
Simulating Liquids and Solid-Liquid Interactions with Lagrangian Meshes. ACM
Trans. Graph. 32, 2, Article 17 (apr 2013), 15 pages. https://doi.org/10.1145/2451236.
2451243

David Cohen-Steiner, Éric Colin de Verdière, and Mariette Yvinec. 2002. Conforming
Delaunay Triangulations in 3D. In Proceedings of the eighteenth annual symposium
on Computational geometry - SCG ’02. ACM Press, 217 – 233.

Jean-Christophe Cuilliere, Vincent Francois, and Jean-Marc Drouet. 2013. Automatic
3D Mesh Generation of Multiple Domains for Topology Optimization Methods. In
Proceedings of the 21st International Meshing Roundtable. Springer Berlin Heidelberg,
Berlin, Heidelberg, 243–259. https://doi.org/10.1007/978-3-642-33573-0_15

Tamal K. Dey and Joshua A. Levine. 2008. Delpsc: A Delaunay Mesher for Piece-
wise Smooth Complexes. In Proceedings of the twenty-fourth annual symposium
on Computational geometry - SCG ’08. ACM Press, New York, NY, USA, 220–221.
https://doi.org/10.1145/1377676.1377712

Antonio DiCarlo, Alberto Paoluzzi, and Vadim Shapiro. 2014. Linear algebraic rep-
resentation for topological structures. Computer-Aided Design 46 (2014), 269–274.
https://doi.org/10.1016/j.cad.2013.08.044 2013 SIAM Conference on Geometric and
Physical Modeling.

CrawfordDoran, Athena Chang, and Robert Bridson. 2013. Isosurface Stuffing Improved:
Acute Lattices and Feature Matching. In ACM SIGGRAPH 2013 Talks on - SIGGRAPH
’13. ACM Press, New York, NY, USA, 38:1–38:1. https://doi.org/10.1145/2504459.
2504507

Qiang Du and Desheng Wang. 2003. Tetrahedral Mesh Generation and Optimization
Based on Centroidal Voronoi Tessellations. International journal for numerical
methods in engineering 56, 9 (2003), 1355–1373.

Jean-François Dufourd. 1991. An OBJ3 functional specification for boundary represen-
tation. In Proceedings of the first ACM symposium on Solid modeling foundations and
CAD/CAM applications. 61–72.

Leman Feng, Pierre Alliez, Laurent Busé, Hervé Delingette, and Mathieu Desbrun.
2018. Curved Optimal Delaunay Triangulation. ACM Trans. Graph. 37, 4 (2018),
61:1–61:16.

Panagiotis Foteinos and Nikos Chrisochoides. 2011. Dynamic parallel 3D Delaunay
triangulation. In Proceedings of the 20th International Meshing Roundtable. Springer,
3–20.

Daniel Funke and Peter Sanders. 2017. Parallel d-D delaunay triangulations in shared
and distributed memory. In 2017 Proceedings of the Ninteenth Workshop on Algorithm
Engineering and Experiments (ALENEX). SIAM, 207–217.

Jérôme Galtier and Paul Louis George. 1996. Prepartitioning as a way to mesh subdo-
mains in parallel. In in 5th International Meshing Roundtable. Citeseer.

Michael Garland and Paul Heckbert. 1999. Quadric-Based Polygonal Surface Simplifica-
tion. Ph.D. Dissertation. USA. AAI9950005.

Michael Garland and Paul S Heckbert. 1997. Surface simplification using quadric error
metrics. In Proceedings of the 24th annual conference on Computer graphics and
interactive techniques. ACM Press/Addison-Wesley Publishing Co., 209–216.

Mark Gillespie, Boris Springborn, and Keenan Crane. 2021. Discrete Conformal Equiv-
alence of Polyhedral Surfaces. ACM Trans. Graph. 40, 4 (2021).

Eitan Grinspun, Petr Krysl, and Peter Schröder. 2002. CHARMS: A Simple Framework
for Adaptive Simulation. ACM Trans. Graph. 21, 3 (jul 2002), 281–290. https:
//doi.org/10.1145/566654.566578

Xianfeng Gu, Ren Guo, Feng Luo, Jian Sun, and Tianqi Wu. 2018a. A discrete uni-
formization theorem for polyhedral surfaces II. Journal of Differential Geometry 109,
3 (2018), 431–466.

Xianfeng Gu, Feng Luo, Jian Sun, and Tianqi Wu. 2018b. A discrete uniformization
theorem for polyhedral surfaces. Journal of Differential Geometry 109, 2 (2018),
223–256.

Leonidas Guibas and Jorge Stolfi. 1985. Primitives for the Manipulation of General
Subdivisions and the Computation of Voronoi. ACM Trans. Graph. 4, 2 (apr 1985),
74–123. https://doi.org/10.1145/282918.282923

Stefan Gumhold, Pavel Borodin, and Reinhard Klein. 2003. Intersection free simplifica-
tion. International Journal of Shape Modeling 9, 02 (2003), 155–176.

Robert Haimes. 2014. MOSS: Multiple Orthogonal Strand System. In Proceedings of the
22nd International Meshing Roundtable. Springer International Publishing, Cham,

75–91. https://doi.org/10.1007/978-3-319-02335-9_5
Hugues Hoppe. 1996. Progressive meshes. In Proceedings of the 23rd annual conference

on Computer graphics and interactive techniques. ACM, 99–108.
Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.

2019a. Taichi: a language for high-performance computation on spatially sparse
data structures. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1–16.

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2019b. Fast
Tetrahedral Meshing in the Wild. arXiv preprint arXiv:1908.03581 (2019).

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral meshing in the wild. ACM Trans. Graph. 37, 4 (2018), 60–1.

Dave Hutchinson, Martin Preston, and Terry Hewitt. 1996. Adaptive Refinement for
Mass/Spring Simulations. In Proceedings of the Eurographics Workshop on Computer
Animation and Simulation ’96 (Poitiers, France). Springer-Verlag, Berlin, Heidelberg,
31–45.

Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust Inside-Outside
Segmentation Using GeneralizedWinding Numbers. ACMTrans. Graph. 32, 4, Article
33 (jul 2013), 12 pages. https://doi.org/10.1145/2461912.2461916

Alec Jacobson, Daniele Panozzo, C Schüller, O Diamanti, Q Zhou, N Pietroni, et al. 2016.
libigl: A simple C++ geometry processing library, 2016.

Clement Jamin, Pierre Alliez, Mariette Yvinec, and Jean-Daniel Boissonnat. 2015.
CGALmesh: A Generic Framework for Delaunay Mesh Generation. ACM Trans.
Math. Software 41, 4 (10 2015), 1–24. https://doi.org/10.1145/2699463

Tero Karras. 2012. Maximizing parallelism in the construction of BVHs, octrees, and
k-d trees. In Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on
High-Performance Graphics. 33–37.

George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1 (1998),
359–392.

Fredrik Kjolstad, Stephen Chou, David Lugato, Shoaib Kamil, and Saman Amarasinghe.
2017. Taco: A tool to generate tensor algebra kernels. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 943–948.

Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David IW Levin, Shinjiro Sueda,
Desai Chen, Etienne Vouga, Danny M Kaufman, Gurtej Kanwar, Wojciech Matusik,
et al. 2016. Simit: A language for physical simulation. ACM Transactions on Graphics
(TOG) 35, 2 (2016), 1–21.

Bryan Klingner and Jonathan Shewchuk. 2007. Aggressive Tetrahedral Mesh Improve-
ment. Proceedings of the 16th International Meshing Roundtable, IMR 2007, 3–23.

Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F. O’Brien.
2006. Fluid Animation with Dynamic Meshes. In ACM SIGGRAPH 2006 Papers
(Boston, Massachusetts) (SIGGRAPH ’06). Association for Computing Machinery,
New York, NY, USA, 820–825. https://doi.org/10.1145/1179352.1141961

Pierre Kraemer, Lionel Untereiner, Thomas Jund, Sylvain Thery, and David Cazier. 2014.
CGoGN: N-dimensional meshes with combinatorial maps. In Proceedings of the 22nd
International Meshing Roundtable. Springer, 485–503.

Michael Kremer, David Bommes, and Leif Kobbelt. 2013. OpenVolumeMesh–A versatile
index-based data structure for 3D polytopal complexes. In Proceedings of the 21st
International Meshing Roundtable. Springer, 531–548.

François Labelle and Jonathan Richard Shewchuk. 2007. Isosurface Stuffing: Fast
Tetrahedral Meshes With Good Dihedral Angles. In ACM SIGGRAPH 2007 papers
on - SIGGRAPH ’07. ACM Press, New York, NY, USA, 57. https://doi.org/10.1145/
1275808.1276448

Cédric Lachat, Cécile Dobrzynski, and François Pellegrini. 2014. Parallel mesh adapta-
tion using parallel graph partitioning. In 5th European conference on computational
mechanics (ECCM V), Vol. 3. CIMNE-International Center for Numerical Methods in
Engineering, 2612–2623.

Ling Li and Vasily Volkov. 2005. Cloth Animation with Adaptively Refined Meshes.
In Proceedings of the Twenty-Eighth Australasian Conference on Computer Science
- Volume 38 (Newcastle, Australia) (ACSC ’05). Australian Computer Society, Inc.,
AUS, 107–113.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential
Contact: Intersection- and Inversion-free Large Deformation Dynamics. ACM Trans.
Graph. (SIGGRAPH) 39, 4, Article 49 (2020).

Pascal Lienhardt. 1994. N-dimensional generalized combinatorial maps and cellular
quasi-manifolds. International Journal of Computational Geometry & Applications 4,
03 (1994), 275–324.

Leonidas Linardakis and Nikos Chrisochoides. 2006. Delaunay decoupling method
for parallel guaranteed quality planar mesh refinement. SIAM Journal on Scientific
Computing 27, 4 (2006), 1394–1423.

Yaron Lipman. 2012. Bounded Distortion Mapping Spaces for Triangular Meshes. ACM
Trans. Graph. 31, 4 (2012), 108.

SH Lo. 2012. Parallel Delaunay triangulation in three dimensions. Computer Methods
in Applied Mechanics and Engineering 237 (2012), 88–106.

Adrien Loseille, Frédéric Alauzet, and Victorien Menier. 2017. Unique cavity-based oper-
ator and hierarchical domain partitioning for fast parallel generation of anisotropic
meshes. Computer-Aided Design 85 (2017), 53–67.

ACM Trans. Graph., Vol. 41, No. 6, Article 251. Publication date: December 2022.

https://doi.org/10.1007/BF01553881
https://doi.org/10.1111/1467-8659.1230129
https://doi.org/10.1111/1467-8659.1230129
https://doi.org/10.1145/2451236.2451243
https://doi.org/10.1145/2451236.2451243
https://doi.org/10.1007/978-3-642-33573-0_15
https://doi.org/10.1145/1377676.1377712
https://doi.org/10.1016/j.cad.2013.08.044
https://doi.org/10.1145/2504459.2504507
https://doi.org/10.1145/2504459.2504507
https://doi.org/10.1145/566654.566578
https://doi.org/10.1145/566654.566578
https://doi.org/10.1145/282918.282923
https://doi.org/10.1007/978-3-319-02335-9_5
https://doi.org/10.1145/2461912.2461916
https://doi.org/10.1145/2699463
https://doi.org/10.1145/1179352.1141961
https://doi.org/10.1145/1275808.1276448
https://doi.org/10.1145/1275808.1276448


251:14 • Zhongshi Jiang, Jiacheng Dai, Yixin Hu, YunFan Zhou, Jeremie Dumas, Qingnan Zhou, Gurkirat Singh Bajwa, Denis Zorin, Daniele Panozzo, and Teseo Schneider

Feng Luo. 2004. Combinatorial Yamabe flow on surfaces. Communications in Contem-
porary Mathematics 6, 05 (2004), 765–780.

Ahmed H. Mahmoud, Serban D. Porumbescu, and John D. Owens. 2021. RXMesh: A
GPU Mesh Data Structure. ACM Trans. Graph. 40, 4, Article 104 (jul 2021), 16 pages.
https://doi.org/10.1145/3450626.3459748

Manish Mandad, David Cohen-Steiner, and Pierre Alliez. 2015. Isotopic Approximation
Within a Tolerance Volume. ACM Trans. Graph. 34, 4, Article 64 (July 2015), 12 pages.
https://doi.org/10.1145/2766950

Martti Mäntylä. 1987. An introduction to solid modeling. Computer Science Press, Inc.
Célestin Marot, Jeanne Pellerin, and Jean-François Remacle. 2019. One machine, one

minute, three billion tetrahedra. Internat. J. Numer. Methods Engrg. 117, 9 (2019),
967–990.

Célestin Marot and Jean-François Remacle. 2020. Quality tetrahedral mesh generation
with HXT. arXiv preprint arXiv:2008.08508 (2020).

Marek Krzysztof Misztal and Jakob Andreas Bærentzen. 2012. Topology-Adaptive
Interface Tracking Using the Deformable Simplicial Complex. ACM Trans. Graph.
31, 3, Article 24 (jun 2012), 12 pages. https://doi.org/10.1145/2167076.2167082

Jan Möbius and Leif Kobbelt. 2010. Openflipper: An open source geometry process-
ing and rendering framework. In International Conference on Curves and Surfaces.
Springer, 488–500.

Neil Molino, Robert Bridson, and Ronald Fedkiw. 2003. Tetrahedral Mesh Generation
for Deformable Bodies. In Proc. Symposium on Computer Animation.

Michael Murphy, David M. Mount, and Carl W. Gable. 2001. A Point-Placement Strategy
for Conforming Delaunay Tetrahedralization. International Journal of Computational
Geometry & Applications 11, 06 (12 2001), 669–682.

Rahul Narain, Tobias Pfaff, and James F. O’Brien. 2013. Folding and Crumpling Adaptive
Sheets. ACM Trans. Graph. 32, 4, Article 51 (jul 2013), 8 pages. https://doi.org/10.
1145/2461912.2462010

Rahul Narain, Armin Samii, and James F. O’Brien. 2012. Adaptive Anisotropic Remesh-
ing for Cloth Simulation. ACM Trans. Graph. 31, 6, Article 152 (nov 2012), 10 pages.
https://doi.org/10.1145/2366145.2366171

T Okusanya and J Peraire. 1996. Parallel unstructured mesh generation. (1996).
T Okusanya and J Peraire. 1997. 3-D Parallel unstructured mesh generation. In Proc.

Joint ASME/ASCE/SES Summer Meeting. Citeseer.
Tobias Pfaff, Rahul Narain, Juan Miguel de Joya, and James F. O’Brien. 2014. Adaptive

Tearing and Cracking of Thin Sheets. ACM Trans. Graph. 33, 4, Article 110 (jul 2014),
9 pages. https://doi.org/10.1145/2601097.2601132

Jovan Popović and Hugues Hoppe. 1997. Progressive Simplicial Complexes. In Pro-
ceedings of the 24th Annual Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH ’97). ACM Press/Addison-Wesley Publishing Co., USA, 217–224.
https://doi.org/10.1145/258734.258852

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman Amarasinghe. 2013. Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines. Acm Sigplan
Notices 48, 6 (2013), 519–530.

Jean-François Remacle. 2017. A Two-Level Multithreaded Delaunay Kernel. Computer-
Aided Design 85 (04 2017), 2–9. https://doi.org/10.1016/j.cad.2016.07.018

Aristides G. Requicha. 1980. Representations for Rigid Solids: Theory, Methods, and
Systems. ACM Comput. Surv. 12, 4 (dec 1980), 437–464. https://doi.org/10.1145/
356827.356833

J. Ruppert. 1995. A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh
Generation. Journal of Algorithms 18, 3 (05 1995), 548–585. https://doi.org/10.1006/
jagm.1995.1021

Edward A. Sadek. 1980. A scheme for the automatic generation of triangular finite
elements. Internat. J. Numer. Methods Engrg. 15, 12 (1980), 1813–1822.

Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D quality mesh generator
and Delaunay triangulator. In Applied Computational Geometry Towards Geometric
Engineering, Ming C. Lin and Dinesh Manocha (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 203–222.

Jonathan Richard Shewchuk. 1998. Tetrahedral Mesh Generation by Delaunay Refine-
ment. In Proceedings of the fourteenth annual symposium on Computational geometry
- SCG ’98. ACM Press, New York, NY, USA, 86–95. https://doi.org/10.1145/276884.
276894

Jonathan Richard Shewchuk. 2002. Constrained Delaunay Tetrahedralizations and
Provably Good Boundary Recovery. In Eleventh International Meshing Roundtable.
Sandia National Laboratories, 193–204.

Hang Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM
Trans. Math. Softw. 41, 2, Article 11 (Feb. 2015), 36 pages. https://doi.org/10.1145/
2629697

Hang Si and Klaus Gartner. 2005. Meshing Piecewise Linear Complexes by Con-
strained Delaunay Tetrahedralizations. In Proceedings of the 14th international mesh-
ing roundtable. Springer, Springer Berlin Heidelberg, Berlin, Heidelberg, 147–163.

Hang Si and Jonathan Richard Shewchuk. 2014. Incrementally Constructing and Updat-
ing Constrained Delaunay Tetrahedralizations With Finite-Precision Coordinates.
Engineering with Computers 30, 2 (04 2014), 253–269. https://doi.org/10.1007/s00366-
013-0331-0

Daniel Sieger and Mario Botsch. 2019. The Polygon Mesh Processing Library.
http://www.pmp-library.org.

Timothy J. R. Simnett, Stephen D. Laycock, and Andy M. Day. 2009. An Edge-based
Approach to Adaptively Refining a Mesh for Cloth Deformation. In Theory and Prac-
tice of Computer Graphics, Wen Tang and John Collomosse (Eds.). The Eurographics
Association. https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG09/077-084

Boris Springborn. 2020. Ideal Hyperbolic Polyhedra and Discrete Uniformization.
Discrete & Computational Geometry 64, 1 (2020), 63–108.

Jian Sun, Tianqi Wu, Xianfeng Gu, and Feng Luo. 2015. Discrete conformal deformation:
algorithm and experiments. SIAM Journal on Imaging Sciences 8, 3 (2015), 1421–1456.

The CGAL Project. 2020. CGAL User and Reference Manual (5.0.3 ed.). CGAL Editorial
Board. https://doc.cgal.org/5.0.3/Manual/packages.html

Jane Tournois, Camille Wormser, Pierre Alliez, and Mathieu Desbrun. 2009. Interleaving
Delaunay Refinement and Optimization for Practical Isotropic Tetrahedron Mesh
Generation. ACM Transactions on Graphics 28, 3 (07 2009), 1.

Julien Villard and Houman Borouchaki. 2002. Adaptive Meshing For Cloth Animation.
In In Proceedings of the 11th International Meshing Roundtable (IMR 2002. 243–252.

Bolun Wang, Zachary Ferguson, Teseo Schneider, Xin Jiang, Marco Attene, and Daniele
Panozzo. 2021. A Large-Scale Benchmark and an Inclusion-Based Algorithm for
Continuous Collision Detection. ACM Trans. Graph. 40, 5, Article 188 (sep 2021),
16 pages. https://doi.org/10.1145/3460775

Bolun Wang, Teseo Schneider, Yixin Hu, Marco Attene, and Daniele Panozzo. 2020.
Exact and Efficient Polyhedral Envelope Containment Check. ACM Trans. Graph.
39, 4 (July 2020).

Martin Wicke, Daniel Ritchie, Bryan M. Klingner, Sebastian Burke, Jonathan R.
Shewchuk, and James F. O’Brien. 2010. Dynamic Local Remeshing for Elasto-
plastic Simulation. ACM Trans. Graph. 29, 4, Article 49 (jul 2010), 11 pages.
https://doi.org/10.1145/1778765.1778786

Chris Wojtan and Greg Turk. 2008. Fast viscoelastic behavior with thin features. ACM
Trans. Graph. 27, 3 (2008), 1–8. https://doi.org/10.1145/1360612.1360646

Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan Aldrich,
Joshua Sunshine, and Keenan Crane. 2020. Penrose: from mathematical notation to
beautiful diagrams. ACM Transactions on Graphics (TOG) 39, 4 (2020), 144–1.

M. A. Yerry and M. S. Shephard. 1983. A Modified Quadtree Approach To Finite Element
Mesh Generation. IEEE Computer Graphics and Applications 3, 1 (Jan 1983), 39–46.

Rhaleb Zayer, Markus Steinberger, and Hans-Peter Seidel. 2017. A GPU-Adapted
Structure for Unstructured Grids. Comput. Graph. Forum 36, 2 (may 2017), 495–507.
https://doi.org/10.1111/cgf.13144

Min Zhou, Ting Xie, Seegyoung Seol, Mark S Shephard, Onkar Sahni, and Kenneth E
Jansen. 2012. Tools to support mesh adaptation on massively parallel computers.
Engineering with Computers 28, 3 (2012), 287–301.

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh arrange-
ments for solid geometry. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–15.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10k: A dataset of 10,000 3d-printing
models. arXiv preprint arXiv:1605.04797 (2016).

ACM Trans. Graph., Vol. 41, No. 6, Article 251. Publication date: December 2022.

https://doi.org/10.1145/3450626.3459748
https://doi.org/10.1145/2766950
https://doi.org/10.1145/2167076.2167082
https://doi.org/10.1145/2461912.2462010
https://doi.org/10.1145/2461912.2462010
https://doi.org/10.1145/2366145.2366171
https://doi.org/10.1145/2601097.2601132
https://doi.org/10.1145/258734.258852
https://doi.org/10.1016/j.cad.2016.07.018
https://doi.org/10.1145/356827.356833
https://doi.org/10.1145/356827.356833
https://doi.org/10.1006/jagm.1995.1021
https://doi.org/10.1006/jagm.1995.1021
https://doi.org/10.1145/276884.276894
https://doi.org/10.1145/276884.276894
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697
https://doi.org/10.1007/s00366-013-0331-0
https://doi.org/10.1007/s00366-013-0331-0
https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG09/077-084
https://doc.cgal.org/5.0.3/Manual/packages.html
https://doi.org/10.1145/3460775
https://doi.org/10.1145/1778765.1778786
https://doi.org/10.1145/1360612.1360646
https://doi.org/10.1111/cgf.13144

	Abstract
	1 Introduction
	2 Related Work
	2.1 Mesh Data Structures
	2.2 Domain specific languages in graphics
	2.3 Parallel Meshing
	2.4 Scope of Mesh Editing

	3 Method
	3.1 Mesh editing components
	3.2 Declarative Specification
	3.3 Implementation.
	3.4 Example: Shortest Edge Collapse

	4 Applications
	4.1 Parallelization
	4.2 Algorithm Modifications
	4.3 Large-scale dataset validation

	5 Concluding Remarks
	Acknowledgments
	References

