
EUROGRAPHICS 2022 / R. Chaine and M. H. Kim
(Guest Editors)

Volume 41 (2022), Number 2

Fast and Exact Root Parity
for Continuous Collision Detection

Bolun Wang1, Zachary Ferguson2, Xin Jiang1,3, Marco Attene4, Daniele Panozzo2, and Teseo Schneider5

1 LMIB & School of Mathematical Sciences & Shenyuan Honor College, Beihang University
2 New York University

3 Zhengzhou Aerotropolis Institute of Artificial Intelligence
4 IMATI - CNR

5 University of Victoria

Figure 1: The parity of the roots between a moving triangle and a point (left) and between two moving edges (right), can be computed by
counting the parity of the intersections of a ray (red) casted from the origin (red sphere) with the surface of a prism for the vertex-triangle
case (left) or a cube for the edge-edge case (right).

Abstract

We introduce the first exact root parity counter for continuous collision detection (CCD). That is, our algorithm computes the
parity (even or odd) of the number of roots of the cubic polynomial arising from a CCD query. We note that the parity is unable
to differentiate between zero (no collisions) and the rare case of two roots (collisions).
Our method does not have numerical parameters to tune, has a performance comparable to efficient approximate algorithms,
and is exact. We test our approach on a large collection of synthetic tests and real simulations, and we demonstrate that it can
be easily integrated into existing simulators.

CCS Concepts
• Computing methodologies → Collision detection; • Mathematics of computing → Mathematical software;

1. Introduction

Continuous Collision Detection (CCD) between two objects is a
fundamental tool to guarantee that the two moving objects will not
pass through each other (tunneling). Among several object repre-
sentations (e.g., spline patches, point clouds, etc.) and trajectories,
we focus on the popular case of triangle meshes moving along
piecewise linear trajectories. Using this assumption, CCD can be
reduced to CCD between two triangles. Since two triangles moving
along linear trajectories will either intersect when a vertex touches

a face (including its boundary) or when an edge crosses another
edge, CCD can be further simplified to vertex-triangle detection
and edge-edge collision detection.

With the aforementioned assumptions (triangular meshes with
vertices moving on linear trajectories), CCD queries can be solved
by finding roots of low-degree cubic polynomials. Theoretically,
any collision can be detected if the root-finding is accurate. How-
ever, under a computer’s floating-point calculation, rounding er-
rors often cause inaccurate results, which may cause false positives

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-5969-636X

B. Wang, Z. Ferguson, X. Jiang, M. Attene, D. Panozzo, & T. Schneider / Fast and Exact Root Parity for Continuous Collision Detection

(meaning a collision is reported when there is no collision) or false
negatives (meaning a collision is not reported when there is a colli-
sion).

Many methods [BEB12, TTWM14] attempt to exactly find the
roots of the low-degree polynomial to detect collisions; however,
none succeeds [WFS∗21]. Among all existing ostensibly exact
methods, [BEB12] reformulates the parity of the CCD roots as a ge-
ometric problem: the CCD roots have the same parity as the parity
of the number of intersections between a ray and bilinear surfaces
(Figure 1). Thus, it constructs the co-domain (which are polyhe-
drons, prisms and hexahedra, with bilinear faces) of the collision
equations, casts a ray from the origin, and counts the parity of the
intersections. As with many geometric approaches, the main chal-
lenge of this approach is to account both for inexact floating-point
representations and enumerate all possible degenerate configura-
tions. According to our study, [BEB12] misses important corner
cases and relies on a complex arithmetic expansion to account for
rounding errors.

The only downside of our method, as noted by [BEB12], is that
it cannot distinguish between zero and two roots. This is practi-
cally a minor issue as these cases only occur in very contrived con-
figurations. To construct such examples, we considered very large
time steps (which have only become practical with the IPC simula-
tor [LFS∗20]); in our dataset this occurs only in seven cases out of
60 million (Table 1). Additionally, as noted in [BEB12], this is not
an issue for closed meshes [BEB12, Section 3].

Our work is inspired by [BEB12] with a runtime comparable to
the original method. Our method sidesteps the arithmetic expansion
by using a numerical shifting method and detects and processes
all the degenerate cases. Our approach requires rounding only the
input scene (and no other subsequent modifications to the simula-
tions is required) based on its bounding-box and guarantees that all
subsequent time-steps are exact and do not require any rounding.
Fortunately, the rounding error is on the order of 10−15, Figure 5;
thus its impact on the simulation is practically none.

In this paper, we generalize the construction in [BEB12] by:

• Floating-Point Construction. We introduce a shifting proce-
dure that allows constructing the polyhedron using standard
floating-point numbers. This reduces the computational cost and,
at the same time, simplifies the implementation.
• Degeneracies. We enumerate all the degeneracies of the bilinear

faces (such as flips or collapse to a line or point) and robustly
handle them, avoiding tunneling failures of [BEB12].
• Ray-Bilinear Face Intersection Parity. We provide a floating-

point arithmetic-based algorithm to determine the parity of ray-
bilinear face intersections. In our algorithm, we can not only
determine the parity of intersections between a ray and a non-
degenerate bilinear face but can also detect the intersection be-
tween a ray and a degenerate bilinear face using a very simple
XOR detector. The ability to process degenerate cases makes our
root-parity counting algorithm robust.

Overall, our algorithm using an exact and robust root parity
counting method has a runtime comparable to the most efficient in-
accurate method published for CCD, while returning no false posi-
tives when counting the parity.

We test our algorithm on the large-scale benchmark provided
by [WFS∗21] to prove its efficiency, stability, and accuracy in Sec-
tion 5. The comparison results also show that our algorithm is able
to handle challenging inputs not supported by the original algo-
rithm provided by [BEB12]. We provide our reference implemen-
tation with scripts to reproduce all our results (Section 5), and our
framework to foster quick adoption of our technique. Finally, we
describe the minimal changes required in solvers to use our CCD
algorithm (Section 6) and demonstrate its performance when in-
tegrated into popular collision response algorithms. We note that,
similarly to [BEB12], our algorithm is only able to count the par-
ity of the roots and might miss collisions when there are two roots.
These cases are rare (7 cases out of 60 million queries) in applica-
tions. Additionally, double roots can be reduced by using a smaller
simulation time-step. On the positive side, our method is, to the
best of our knowledge, the only one that has a reasonable runtime
(Section 5) and can exactly count the parity of the CCD roots.

2. Related Work

Here we present a short overview of continuous collision detec-
tion methods for deformable triangle meshes with linear vertex-
trajectories. We refer to [WFS∗21] for a complete overview.

CCD problems can be represented as finding roots of special low
order polynomials. Thus the majority of research focuses on devel-
oping efficient and accurate cubic polynomial solvers. [Pro97] in-
troduced the most popular method which first solves a cubic equa-
tion to check coplanarity, then checks for overlap. If there is no
root to coplanarity, then there is no collision; otherwise overlap-
ping will be validated to determine if a collision occurs. Based
on this idea, refined constructions have been introduced to solve
rigid body collision [RKC02, KR03] and deformable body colli-
sion [HF07, TMY∗11]. All of these methods are based on floating-
point arithmetic, which is efficient but introduces numerical errors.
In fact, the roots of the cubic polynomials are in general irrational
numbers thus cannot be represented as floating-point results ex-
actly. However, even if numerical thresholds are applied to account
for the rounding errors, these root finders only guarantee to be ro-
bust for some specific scenarios and still suffer from false positives.

False positives can be regarded as adding an extra numerical
padding layer above the objects during simulation that is not related
to any physical quantity. [TMT10] propose a filter that can conser-
vatively detect roots and effectively reduce the number of elemen-
tary tests and false positives. [Wan14] and [WTTM15] improve the
reliability of algorithms by introducing forward error analysis, in
which error bounds for floating-point computation are used to re-
duce false positives.

Inclusion-based root-finding algorithms are another family of
conservative CCD methods [Sny92, SWF∗93, RKC02, VHBZ90,
WFS∗21]. Snyder [Sny92] applied interval arithmetic to computer
graphics for collision finding. Recently, [WFS∗21] introduced an
algorithm totally depending on floating-point arithmetic to acceler-
ate the hierarchical root-finding algorithm. However, while provid-
ing no false negatives, these algorithms are not exact, often produc-
ing false positives.

Relying on exact arithmetic, [BEB12] and [TTWM14] provide

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

B. Wang, Z. Ferguson, X. Jiang, M. Attene, D. Panozzo, & T. Schneider / Fast and Exact Root Parity for Continuous Collision Detection

exact continuous collision detection methods. However, the two al-
gorithms cannot always provide exact answers, according to the
careful research of [WFS∗21]. [BEB12] introduces a root-parity
counting algorithm to detect collisions, thus sidestepping the actual
computation of the roots. The algorithm constructs the co-domain
of the multi-variate equation of the CCD query as a polyhedron,
and computes the parity of the roots, by casting a ray from the
origin and counting the parity of the number of intersections be-
tween the ray and the surface of the co-domain. If rational numbers
or arithmetic expansion is used, while making the algorithm much
slower in performance, polyhedron construction, ray casting, and
intersection can be done exactly. However, as shown in [WFS∗21],
the algorithm is not robust to degenerate configurations.

The linear assumption, as we described in Section 1, meaning
all vertices of the meshes move in linear trajectories during each
time step, is well established and commonly used. However, rigid
motions [TKM09, RKC02, Can86, ZRLK07] and polynomial tra-
jectories [PZM12] also require corresponding CCD algorithms to
avoid approximation errors caused by linearization.

3. Preliminaries and Notation

We briefly overview continuous collision detection, and in particu-
lar, the geometrical interpretation introduced in [BEB12] to make
our paper self-contained.

The goal of exact CCD is to provide an exact predicate in
floating-point coordinates telling us if two objects, whose vertices
move in a linear trajectory, collide. This is a common task dur-
ing simulation or animation of moving objects, to detect if and
when they come in contact and how they deform. Assuming that
the objects are represented using triangular meshes, the first colli-
sion between moving triangles can happen either when a vertex hits
a triangle, or when an edge hits another edge. We will focus on the
former for simplicity as the latter is a minor variant.

Given a point p and a triangle with vertices v1,v2,v3 at two dis-
tinct timesteps t0 and t1 (we use the superscript notation to denote
the time, i.e., p0 is the position of p at t0), the goal is to determine
if at any point in time between t0 and t1 the point is contained in
the moving triangle. [BEB12] reduces this problem to a geometric
intersection parity counting problem by introducing the map

F(t,u,v) = p(t)−
(
(1−u− v)v1(t)+uv2(t)+ vv3(t)

)
, (1)

which maps the domain Ω = [0,1]× {u,v ≥ 0|u + v ≤ 1} to a
triangular prism P with bilinear faces. Equipped with this defini-
tion, [BEB12] showed that the roots of (1) have the same parity as
the number of intersections between P and a ray cast from the ori-
gin. The edge-edge case leads to a formula similar to Equation (1),
but maps the domain to a hexahedron bounded by 6 bilinear faces
instead of a prism.

4. Method

To solve vertex-triangle CCD, [BEB12] represents the root parity
problem of Equation (1) as an intersection-parity counting algo-
rithm: First, the co-domain of Equation (1) is presented as a prism
P in R3 by constructing its vertices. While observing that the faces

of the prism are bilinear surfaces, the algorithm casts a random ray
R from origin O = (0,0,0) to intersect the bilinear faces (Figure 1,
left). In the end, if the number of intersections between the ray and
the bilinear faces is odd, then the algorithm returns true (as (1) has
an odd number of roots), which means collision happens; other-
wise, the algorithm returns false, which means there are either two
collisions or zero collisions in this time step. The edge-edge CCD
follows the same algorithm, other than constructing a hexahedron
with six bilinear faces instead of a prism with five bilinear faces
(Figure 1, right). We note that, since we are only able to deter-
mine the parity of the number of root, our algorithm is unable to
distinguish between two and zero roots, thus producing false neg-
atives. As pointed out by [BEB12], false negatives are rare (only 7
cases on our simulation dataset) and can be reduced by shrinking
the time-step in the simulations.

Besides the inability to distinguish between zero and two
roots, [BEB12] is not exact for two main reasons: (1) The vertices
of the prism P need to be computed exactly (which can only be
done using rational number arithmetic) and (2) several degenerate
cases are not properly handled.

Following the idea of [BEB12], we provide an exact and efficient
root-parity counter (i.e., we do not rely on rational computations)
for continuous collision detection. A key property of our method is
that the results of our predicates are not affected by rounding errors
in the floating-point computation, a necessary property required by
the simulation algorithms that assume that the scene is intersection-
free at every step. To achieve this goal, our final answer should
not rely on intermediate floating-point calculations which might be
rounded, and hence inexact. We thus rely only on exact input val-
ues, and base our final answer on exact predicates computed from
these values. We note that, to avoid the complexity of dealing with
floating-point predicate construction, one could consider the easy
solution of building the ray and bilinear faces of F(Ω) explicitly
and checking their intersection using exact computation. This so-
lution requires implementing the whole algorithm using rational
arithmetic, which is simple, but can be impractically slow.

4.1. Algorithm Overview

The input to our algorithm is the generalized prism P = F(Ω) and
a ray R cast from the origin O = (0,0,0), and our algorithm returns
a Boolean indicating if there are an odd or even number of inter-
sections between R and the surfaces of P which is equivalent to the
parity of the roots of Equation (1) [BEB12].

Constructing the corners of P requires evaluating Equation (1) at
the corners of Ω, which may introduce numerical rounding errors.
We show in Section 4.2 how to compute them exactly using only
floating-point operations by a shifting algorithm. The entire bound-
ary of P is then explicitly parametrized by bilinear patches, whose
equations depend only on the corner vertices, which are exactly
represented in floating-point with our method.

To count the parity of intersections between R and the bilinear
surfaces b of P, we enumerate four possible relative configurations
between R and a bilinear face b (Figure 2):

1. O is exactly on b, Figure 2 (1);

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

B. Wang, Z. Ferguson, X. Jiang, M. Attene, D. Panozzo, & T. Schneider / Fast and Exact Root Parity for Continuous Collision Detection

b
P

O

R

(1)

b

P

O

i
1

R

(2)

b

P

O

i
1

R

(3)

b

P

O

i
1

i
2

R

(4)

Figure 2: Illustration of the four possible relative configurations
between a ray R cast from the origin O and a bilinear surface b of
a generalized prism P; i1 and i2 are the intersection points between
R and b.

2. O is not on b, and R intersects the boundary of b, Figure 2 (2);
3. O is not on b, and R intersects b in the interior of b once, Fig-

ure 2 (3);
4. b and R have zero or two intersections, Figure 2 (4).

[WFS∗21] shows that the axis aligned bounding box BB of the
vertices of P is the tightest axis aligned bounding box of P. So,
our algorithm 1 first checks if O intersects BB (line 5), as a quick
culling method for acceleration: if O and BB do not intersect, the
parity is even, then there is no collision, and our algorithm returns
NO_COLLISION.

The algorithm then checks the intersection between R and b,
while dealing with all possible degenerate cases. If the case falls
into Case 1 (line 12), then the algorithm directly return COLLI-
SION since Case 1 means the parity is odd. Case 2 is extremely
difficult since intersection is degenerate and the parity is impossi-
ble to detect. For instance R might be collinear with an edge of b
and thus generate infinite intersections. Fortunately this case is ex-
tremely rare; Thus if it happens, as suggested by [BEB12], we cast
another ray in a random direction and retry (line 15).

If Case 3 or Case 4 happens we first check if the patch is de-
generate (line 19); If it is, we identify the case and use a simple
XOR to count the number of intersections (line 21). In the case of
a non-degenerate patch, we count the intersections between R and
b (line 23). We repeat this process for every bilinear face until all
the bilinear faces are checked (line 11). After counting the num-
ber of roots for every face, we return the parity of the number of
intersections (line 26).

The key challenge is distinguishing between Case 3 and Case
4: counting the intersections between a ray R and a prism face b
(which can be either a triangle, a bilinear patch, or degenerated).
Counting the intersections can be done as explained in [BEB12] or
using standard predicates (Section 4.3). However, computing the
coordinates of the corners of the prism P using standard floating-
points arithmetic introduces potential floating-point rounding er-
rors. Additionally, several degenerate configurations might occur
(e.g., the bilinear quad becomes flat and concave) that need to be
carefully enumerated and handled (Section 4.4). All these problems
(i.e., numerical and geometrical) may cause the failure of the algo-
rithm. Thanks to the rounding (Section 4.2) and handling of degen-
erate cases (Section 4.4), our method can use standard orientation
predicates (since the vertices are exact in floating-point numbers)
thus making it a robust and efficient root-parity counter.

Algorithm 1 Exact CCD

1: function CCD(p0,v0
1,v

0
2,v

0
3, p1,v1

1,v
1
2,v

1
3)

2: P← PRISM(p0,v0
1,v

0
2,v

0
3, p1,v1

1,v
1
2,v

1
3) . Equation (2)

3: BB← PRISMBOUNDINGBOX(P)
4:
5: if O∩BB = ∅ then. Check origin and prism bounding-box
6: return NO_COLLISION
7: end if
8:
9: C← 0

10: R←RANDOMRAY

11: for b ∈ P do . Loop over the faces of P
12: if O∩b 6= ∅ then
13: return COLLISION
14: end if
15: if R intersects b on the boundary then
16: Cast another random ray and retry, line 10.
17: end if
18:
19: if ISDEGENERATE(b) then
20: T ← DEGENERATETYPE(b)
21: C←C+ XOR(b,T) . Section 4.4
22: else
23: C←C+ RAYBILINEARCHECK(b,R). Section 4.3
24: end if
25: end for
26: if C% 2 = 0 then
27: return COLLISION
28: else
29: return NO_COLLISION
30: end if
31: end function

4.2. Reduced Precision

The computation of the corners of the prism P = F(Ω) introduces
potential floating-point rounding errors. In [BEB12], this is tackled
using a custom construction that uses higher precision to represent
these points. We opt for a simpler and more efficient approach, by
rounding the input vertices to ensure that evaluating F on the cor-
ners will not introduce errors. This construction adds a minor hur-
dle when integrating our method in existing solvers, since it has to
be performed on the solver side. The input to our algorithm needs
to be already rounded and we cannot handle inputs with full pre-
cision. In Section 6 we discuss in more detail how to achieve this
with only a minor modification, and no perceptible impact on the
simulation.

We need to evaluate Equation (1) at 6 corners, resulting in the
following expressions

ṽ1 = p0− v0
1, ṽ2 = p0− v0

2, ṽ3 = p0− v0
3,

ṽ4 = p1− v1
1, ṽ5 = p1− v1

2, ṽ6 = p1− v1
3.

(2)

All these expressions are similar and involve a single difference of
the input coordinates.

To make the evaluation of the difference exact, we round the

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

B. Wang, Z. Ferguson, X. Jiang, M. Attene, D. Panozzo, & T. Schneider / Fast and Exact Root Parity for Continuous Collision Detection

input vertex coordinates so as to make them lose a bit of preci-
sion [Ste74]. This precision loss is in the order of 10−15 on average
(Figure 5) and it is thus comparable to the rounding errors that are
introduced by the numerical solvers used in simulators. We perform
this rounding by shifting the whole mesh away from the origin by a
certain amount. The shifting amount is calculated by exploiting the
so-called Sterbenz theorem [Ste74].

Let a and b be two floating-point values. Sterbenz’s theorem
states that their exact difference a−b is representable as a floating-
point number if 1/2 ≤ a/b ≤ 2 (Sterbenz’s condition). According
to the IEEE-754 standard, the result of a floating-point operation
is the rounding of the exact result. Hence, if the exact result is
representable, the floating-point result must coincide with such an
exact result. Stated differently, if Sterbenz’s condition holds then
a−b = round(a−b).

If Sterbenz’s condition does not hold, the question is how to
round a and b so that their difference is exact. We observe that
(1) if either operand is zero the difference is exact and (2) if a = b
the difference is exact (Sterbenz condition holds). If none of these
conditions hold, we need to find a value e such that:

a′ = a+ e, b′ = b+ e, and 1/2≤ a′/b′ ≤ 2.

If e = b−2a we have

a′/b′ = (a+ e)/(b+ e) = (b−a)/(2b−2a) = 1/2.

Similarly, if e = a−2b we have

a′/b′ = (a+ e)/(b+ e) = (2a−2b)/(a−b) = 2.

Therefore, any of the two options for e is appropriate. Since we
must coherently shift a whole set of values using a unique dis-
placement e, we conservatively select the maximum over the two
possibilities. Hence, for a set of pairs (ai,bi) we calculate a corre-
sponding set of displacements ei = max((bi−2ai),(ai−2bi)) and
pick the maximum. Note that this makes sense because the viola-
tion of Sterbenz’s condition implies that ei > 0 independently of
the sign of ai and bi: this can be easily proved by analyzing each
of the six possible cases (four sign combinations with a/b < 1/2,
plus another two with a/b > 2). The value of e and all the displaced
values can be easily calculated using floating-point arithmetic if the
rounding mode is set to plus_infinity.

To avoid having a different rounding over time, we compute the
bounding box of the scene, then compute a global shift e for the
x,y, and z-component based on the eight vertices of the bounding
box.

4.3. Ray Shooting

To enable early termination of our algorithm, we rely on ray shoot-
ing as in [BEB12]. Note that we handle all the degenerate cases as
explained in Section 4.4 and, if the ray hits a vertex or an edge we
discard it and retry. Differently from [BEB12] we avoid using inter-
vals and expansions and rely on an efficient ray_plane predicate
(Appendix A).

The ray-triangle predicate checks if a ray R defined by an ori-
ented pair of points (s1,s2) intersects a triangle T = (t1, t2, t3). This
is similar to the line-triangle intersection (Appendix A). The only

difference is that we need to check if the three vi, i = 1,2,3 have the
same sign as o1 = orient3d(s1, t1, t2, t3) to ensure that the ray is
pointing towards the plane spanned by T and not in the opposite
direction.

4.4. Degenerate Cases

In the previous sections we compute intersections between rays and
a bilinear quad, where special care is needed since the bilinear patch
can degenerate. We enumerate these cases and discuss how to han-
dle them in a unified manner.

We call a bilinear quad degenerate when the volume of the tetra-
hedron T is zero, that is when the four points are coplanar or
collinear. For this specific case we define the plane D spanned by
the four points. Figure 3 illustrates and enumerates all such possi-
ble degenerate configurations, ranging from a simple regular quad,
passing through a “butterfly” configuration, to a line or a point.

Let us enumerate the four vertices of the quad with numbers from
1 to 4. With this enumeration we can decompose the quad in two
triangles having distinct configurations: either connect 1 with 3, or
2 with 4. We call the two configurations c13 and c24. To differen-
tiate the degenerate cases, we pick a random point p not copla-
nar with D and construct two pairs of tetrahedra (T 1

13, T 2
13 and T 1

24,
T 2

24) by connecting the two pairs of triangles with p. Each specific
degenerate case can then be uniquely identified by the four signs
of the volumes of the two pairs, which we compute using ori-
ent3d [Lév19, She97, Att20]. We note that the position of p with
respect to D is not relevant as we compare the signs. That is, by
selecting a point on the other side of D all signs will flip but their
relative sign will not change. Figure 3 illustrates all possible com-
binations of signs and which degenerate cases they form. For in-
stance, if the four volumes are positive (or all negative) we have
a regular quad or if only one volume is negative (or only one is
positive) we have a concave quad.

When all four volumes are positive or zero we can simply check
if R intersects b by using the pair generated by c13 and check for
two ray_triangle intersections. When one of the volumes is
negative, we select the configuration containing it, check if R inter-
sects the two triangles using ray_triangle, and use a XOR to
decide if R intersects b (Figure 4).

5. Results

Our algorithm is implemented in C++ and uses Eigen [GJ∗10]
for the linear algebra routines and [She97] for the standard ori-
entation predicate. We run our experiments on a 2.35 GHz AMD
EPYC™ 7452. We attach the reference implementation and the
data used for our experiments and we will release it as an open-
source project.

5.1. Datasets

To compare our method with existing CCD algorithms we tested
our algorithm using a large scale dataset provided in [WFS∗21].
The dataset contains a handcrafted dataset that contains over 12
thousand point-triangle and 15 thousand edge-edge queries, and a

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

B. Wang, Z. Ferguson, X. Jiang, M. Attene, D. Panozzo, & T. Schneider / Fast and Exact Root Parity for Continuous Collision Detection

++ +− −+ −− 0+ 0− +0 −0 00

++

+−

−+

−−

0+

0−

+0

−0

00 or

Figure 3: Enumeration of the possible degenerate cases. All of them can be decided by the two signs of T13 (columns) and T24 (rows).

1

3 2 4

(a)

1 3

2 4

(b)

4

1
3

2

(c)

Figure 4: Illustration of how a simple XOR between the positive
and negative configuration can decide the three cases (up to sym-
metry) where one of the volumes is negative and the configuration
c24 is selected. For each of them, the grey area depicts the inte-
rior of the degenerate bilinear patch b bounded by the blue and
red edges. If R intersects both triangles t123 and t134, or none, then
the ray does not intersect b. If R intersects only one of triangles,
then the ray intersects b. This operation can be summarized with:
R needs to intersect one XOR the other triangle.

Vertex-Face Edge-Edge

H
an

dc
ra

ft
ed

0 1e-16 1e-15 1e-14

10%

20%

30%

40%

Error
0 1e-16 1e-15 1e-14

10%

20%

30%

40%

Error

Si
m

ul
at

io
n

0 1e-16 1e-15 1e-14

20%

40%

60%

80%

Error
0 1e-16 1e-15 1e-14

20%

40%

60%

80%

Error

Figure 5: Histograms of ε for our method.

Handcrafted Dataset (12K) – Vertex-Face CCD

IRF UIRF FPRF TCCD RP RRP BSC MSRF TI Ours

T 14674.60 134494.00 3.12 0.40 2.82 1042.59 113.62 9.47 1605.72 1.07
TP 46748.97 220967.74 3.07 1.06 16.02 882.80 96.27 2.77 28004.70 4.72
TN 12784.93 129119.67 3.12 0.31 2.16 1050.59 114.52 9.66 94.06 0.88
FP 92 127 6 902 0 0 42 10 74 0
FN 0 0 98 0 5 5 26 254 0 5

Handcrafted Dataset (15K)– Edge-Edge CCD

IRF UIRF FPRF TCCD RP RRP BSC MSRF TI Ours

T 11116.80 16294.00 0.68 0.34 2.53 1362.76 79.88 2.69 3110.59 3.29
TP 95241.05 203781.84 4.65 1.15 36.90 1099.73 990.90 1.19 77870.26 10.82
TN 7820.85 7767.89 0.60 0.29 1.46 1370.81 48.92 2.71 78.58 3.06
FP 118 209 6 370 4 0 128 14 138 0
FN 0 0 170 0 8 8 86 292 0 8

Simulation Dataset (18M) – Vertex-Face CCD

IRF UIRF FPRF TCCD RP RRP BSC MSRF TI Ours

T 96.83 4872.95 9.85 0.29 0.43 1053.85 34.38 64.98 0.79 0.31
TP 949.77 115.92 1.25 1.16 8.35 518.91 264.56 1.07 63.70 2.95
TN 95.94 4877.90 9.86 0.28 0.43 1054.41 33.84 65.00 0.73 0.31
FP 2 18 0 96102 0 0 23013 0 2 0
FN 0 0 5103 0 0 0 0 15007 0 0

Simulation Dataset (41M) – Edge-Edge CCD

IRF UIRF FPRF TCCD RP RRP BSC MSRF TI Ours

T 146.58 648.50 0.37 0.27 0.62 1240.22 12.61 13.10 0.81 1.14
TP 49945.51 1995.81 5.87 1.30 17.30 1139.63 542.03 1.54 162.13 5.15
TN 137.68 647.71 0.37 0.27 0.62 1240.24 12.45 13.10 0.78 1.14
FP 71 16791 0 82708 0 0 4757 0 17 0
FN 0 0 2318 0 7 7 17 4712 0 7

Table 1: Summary of the average runtime in µs (T), average run-
time of positive queries (TP), and average runtime of negative
queries (TN), number of false positives (FP), and number of false
negatives (FN), for the competing methods.

simulation dataset that contains over 18 million point-triangle and
41 million edge-edge queries. Our method requires the vertices of
the prism or hexahedron to be representable in floating-point co-
ordinates which we achieve by rounding the input (Section 4.2).
To compare other methods with ours, we take the initial datasets
and apply the necessary rounding for each component (x,y,z) and
query individually. We will release the rounded dataset in the same
format as [WFS∗21], with the only modification that we export the

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

B. Wang, Z. Ferguson, X. Jiang, M. Attene, D. Panozzo, & T. Schneider / Fast and Exact Root Parity for Continuous Collision Detection

number of roots (we use−1 for infinite roots) instead of a Boolean
flag. For each query we measure the error ε as

ε = |a+ e−a′|,

where a is the original number (i.e., one the x,y,z coordinate of
the query), a′ is the rounded number, and e is the displacement
(Section 4.2). Figure 5 shows the distribution of ε introduced by
our method for the four datasets: the maximum is close to machine
epsilon and the average is negligible.

5.2. Comparison

We compare our method with the interval root-finder (IRF)
[Sny92], the univariate interval root-finder (UIRF) [Sny92,
RKC02], the floating-point root finder (FPRF) [VHTG10],
TightCCD (TCCD) [WTTM15], Root Parity (RP) [BEB12], a ra-
tional implementation of Root Parity (RRP) with the degenerate
cases properly handled [BEB12, WFS∗21], Bernstein Sign Classi-
fication (BSC) [TTWM14], the minimum separation floating-point
root finder (MSRF) [HPSZ11] and Tight Inclusion (TI) [WFS∗21].
We collect the average query time T, average positive query time
PT, average negative query time NT, the number of false positives
FP (i.e., there is no collision but the method detects one), and the
number of false negatives FN (i.e., there is collision but the method
misses it).

Table 1 summarizes the results of the comparison; for fairness we
included the average rounding time in our timings (as a reference
the rounding takes 0.33µs for the handcrafted dataset and 0.30µs
for the simulation dataset). The runtime of our method is compara-
ble with TCCD, while being an exact root-parity counter. Thanks
to the rounding, our method can use standard orientation predicates
(since the vertices are exact in floating-point numbers) thus making
it faster. Comparing with TI, IRF and BSC, our method has a more
stable runtime (i.e., the runtime is similar independent of whether
the algorithm returns true or false), as TI, IRF, and BSC are signifi-
cantly slower in returning true. We note that both our algorithm and
RP have few false negative (collision missed) for the handcrafted
dataset, where [WFS∗21] fabricated examples with multiple roots.
Multiple roots appear only in 7 queries in the real data, as the time
step in simulation is usually small. However only our method (and
its variations RP, RRP) are exact; that is, they do not produce any
false positive.

6. Integration in Existing Simulators

We examine using our CCD in elastodynamic simulations dur-
ing a line search to prevent intersections [LFS∗20]. Our CCD al-
gorithm can replace existing standard CCD algorithms (for suffi-
ciently small time-steps) since it uses the same interface. However,
it has one additional requirement: its input needs to be at reduced
precision to allow us to evaluate Equation (2) exactly (Section 4.2).
This is a minor but fundamental change that needs to be made to
existing simulator codes, since our algorithm cannot consume full
precision inputs (even if the difference is in the order of machine
precision).

6.1. Consistent Rounding Across Time Steps

Our algorithm requires rounding the coordinates of the mesh at
lower precision in the simulator, by calling the rounding proce-
dure (Section 4.2) on the mesh vertices before using our CCD.
The rounding procedure depends on the displacement e, and, up
to this point, we selected the largest e across all candidate colli-
sion pairs. While this choice is valid for one time step, it might
introduce different rounding across timesteps, thus potentially in-
troducing intersections (given that the rounding is in the order of
machine precision, this is unlikely but still a concern).

To avoid this problem, we simply compute a single displacement
e for each component valid for the entire simulation by estimating a
bounding box of the scene over all frames (conservatively specified
to ensure no objects will leave the box during the simulation). In
this way, the starting position at step i+ 1 will be identical to the
previously rounded final positions at step i (since the displacement
e is the same), ensuring an exact result. This equates to a single
shift of the entire scene once at the beginning of the simulation (a
simple modification to existing codes). Note that in the following
section we use prime to denote rounded variables (e.g., x′ is the
rounded version of x).

In our experiments, the error introduced by the rounding is
slightly larger than the query experiments in Figure 5 because of
the larger scale used to conservatively bound the simulation world:
The scenes in figures 6 and 7 have a rounding error of 1.42×10−14

and 2.66×10−15 respectively. We could not observe any change in
the simulation behaviour due to the additional rounding.

6.2. Line Search

Algorithm 2 Time of impact through bisection

1: function CCDBISECTION(x′0,x
′
1,εt)

2: t0, t1← 0,1
3: while |t1− t0|> εt do
4: t← (t0 + t1)/2
5: x′← (x′1− x′0)t + x′0
6: if CCD(x′0,x

′) = COLLISION then
7: t1← t
8: else
9: t0← t

10: end if
11: end while
12: return t0 . Most conservative value within tolerance
13: end function

It is possible to build upon an existing line search in an im-
plicit time-stepping algorithm, that solves for an update ∆x to the
state variables x, to incorporate our CCD. Taking a full step in
the update direction, in general, can lead to difficulties in conver-
gence [NW06], and, in the particular case of collision handling,
intersecting states. To avoid these problems one can use a line
search to find an appropriate step-size α along the update direction
that satisfies both the convergence criterion and the non-penetration
constraints. The optimal step-size α is the earliest time of impact
that, when using our method, can be approximate using a simple

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

B. Wang, Z. Ferguson, X. Jiang, M. Attene, D. Panozzo, & T. Schneider / Fast and Exact Root Parity for Continuous Collision Detection

Figure 6: We drop three elastic Octocats into a bowl and use our
CCD within a filtered line search to keep the meshes intersection-
free (simulated using IPC [LFS∗20] with a timestep of 0.07s).
From the current position (left), taking a full step in the update
direction leads to serious intersections between the bottom Octocat
and bowl (middle). Using Algorithm 2, we determine a step-size of
α = 0.0625 that prevents intersections (right).

Figure 7: We run the mat-twist experiment from [LFS∗20] using
our CCD method in the filtered line-search and timestep of 0.04s.
The mat is 1m× 1m× 8mm and our algorithm conservatively
shifts the world by [11.75,11.75,12.24] which results in a round-
ing error of 2.66×10−15.

bisection method (Algorithm 2). The bisection starts from a valid
rounded configuration x′0 and a final rounded configuration (possi-
bly with collision) x′1, then it iteratively splits (line 4) the timestep
and checks for CCD (line 6). If a collision is found the algorithm re-
peats the same computation for the first half of the timestep (line 7),
otherwise for the second half (line 9). The algorithm terminates
when the size of the step is smaller than an input numerical toler-
ance εt (line 3). In our simulation experiments (Figures 6 and 7) we
use a constant εt = 10−3.

Figure 6 illustrates that our CCD used in a filtered line-search
is able to find a collision-free α, while Figure 7 shows our method
works well even for challenging scenes like twisting cloth.

7. Limitations and Concluding Remarks

We revisited the classical problem of continuous collision detec-
tion. By assuming an input with reduced precision and designing
an algorithm using floating-point predicates, we show it is possible
to solve CCD queries exactly at a cost comparable to commonly
used, inaccurate root finders.

Our algorithm has three limitations: (1) it cannot efficiently com-
pute the time of impact (in our experiments we use a naïve bisection
algorithm), (2) it requires (minor) changes in the simulation solver
to reduce the input precision, and (3) it can only detect the parity of
the roots (thus it is unable to distinguish zero from two roots).

The first limitation could probably be addressed by deriving an
estimate from the point in the image of F(Ω) closest to the origin:
this is an important avenue for future work. The second limitation is
only an implementation concern since the rounding does not affect
the simulation accuracy or the runtime in a noticeable way. The
third limitation is the most severe: despite the very low probability
of this happening (7 cases out of 60 million for the real data), it
leads to false negatives, which are problematic for certain solvers
[LFS∗20]. Addressing this limitation, while still ensuring that no
false positives are introduced, is an interesting avenue for future
work.

An interesting avenue for future work is the design of an exact
algorithm with minimum separation and for non-linear trajectories.

We release the open-source reference implementation of our
technique with an MIT license to foster adoption of our technique
by existing commercial and academic simulators.

Acknowledgements

We thank the NYU IT High Performance Computing for resources,
services, and staff expertise. This work was partially supported by
the NSF CAREER award under Grant No. 1652515, the NSF grants
OAC-1835712, OIA-1937043, CHS-1908767, CHS-1901091, Na-
tional Key Research & Development Program of China Grant No.
2020YFA0713701, Natural Science Foundation of China Grants
No. 12171023 & No. 12001028, NSERC DGECR-2021-00461
and RGPIN-2021-03707, EU ERC Advanced Grant CHANGE No.
694515, a Sloan Fellowship, a gift from Adobe Research, a gift
from nTopology, and a gift from Advanced Micro Devices, Inc.

References

[Att20] ATTENE M.: Indirect predicates for geometric constructions.
Computer-Aided Design (2020). 5

[BEB12] BROCHU T., EDWARDS E., BRIDSON R.: Efficient geometri-
cally exact continuous collision detection. ACM Transactions on Graph-
ics 31, 4 (July 2012), 96:1–96:7. 2, 3, 4, 5, 7, 9

[Can86] CANNY J.: Collision detection for moving polyhedra. IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-8, 2
(1986), 200–209. 3

[GJ∗10] GUENNEBAUD G., JACOB B., ET AL.: Eigen v3, 2010. URL:
http://eigen.tuxfamily.org. 5

[HF07] HUTTER M., FUHRMANN A.: Optimized continuous collision
detection for deformable triangle meshes. 2

[HPSZ11] HARMON D., PANOZZO D., SORKINE O., ZORIN D.:
Interference-aware geometric modeling. ACM Transactions on Graphics
30, 6 (Dec. 2011), 1–10. 7

[KR03] KIM B., ROSSIGNAC J.: Collision prediction for polyhedra un-
der screw motions. pp. 4–10. 2

[Lév19] LÉVY B.: Geogram, 2019. URL: http://alice.loria.
fr/index.php/software/4-library/75-geogram.html.
5

[LFS∗20] LI M., FERGUSON Z., SCHNEIDER T., LANGLOIS T., ZORIN
D., PANOZZO D., JIANG C., KAUFMAN D. M.: Incremental poten-
tial contact: Intersection- and inversion-free large deformation dynamics.
ACM Transactions on Graphics 39, 4 (2020). 2, 7, 8

[NW06] NOCEDAL J., WRIGHT S. J.: Numerical Optimization, sec-
ond ed. Springer, New York, NY, USA, 2006. 7

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

http://eigen.tuxfamily.org
http://alice.loria.fr/index.php/software/4-library/75-geogram.html
http://alice.loria.fr/index.php/software/4-library/75-geogram.html

B. Wang, Z. Ferguson, X. Jiang, M. Attene, D. Panozzo, & T. Schneider / Fast and Exact Root Parity for Continuous Collision Detection

[Pro97] PROVOT X.: Collision and self-collision handling in cloth model
dedicated to design garments. In Computer Animation and Simulation.
Springer, 1997, pp. 177–189. 2

[PZM12] PAN J., ZHANG L., MANOCHA D.: Collision-free and smooth
trajectory computation in cluttered environments. The International
Journal of Robotics Research 31, 10 (2012), 1155–1175. 3

[RKC02] REDON S., KHEDDAR A., COQUILLART S.: Fast continuous
collision detection between rigid bodies. Computer Graphics Forum 21
(May 2002). 2, 3, 7

[She97] SHEWCHUK J. R.: Adaptive precision floating-point arithmetic
and fast robust geometric predicates. Discrete & Computational Geom-
etry 18, 3 (1997), 305–363. 5

[Sny92] SNYDER J. M.: Interval analysis for computer graphics. Com-
puter Graphics (Proceedings of SIGGRAPH) 26, 2 (July 1992), 121–130.
2, 7

[Ste74] STERBENZ P. H.: Floating-point computation. Prentice-Hall
series in automatic computation. Prentice-Hall, Englewood Cliffs, NJ,
1974. 5

[SWF∗93] SNYDER J. M., WOODBURY A. R., FLEISCHER K., CURRIN
B., BARR A. H.: Interval methods for multi-point collisions between
time-dependent curved surfaces. In Proceedings of the 20th Annual Con-
ference on Computer Graphics and Interactive Techniques (New York,
NY, USA, 1993), SIGGRAPH ’93, Association for Computing Machin-
ery, p. 321–334. 2

[TKM09] TANG M., KIM Y., MANOCHA D.: C2A: Controlled conserva-
tive advancement for continuous collision detection of polygonal models.
pp. 849–854. 3

[TMT10] TANG M., MANOCHA D., TONG R.: Fast continuous collision
detection using deforming non-penetration filters. pp. 7–13. 2

[TMY∗11] TANG M., MANOCHA D., YOON S.-E., DU P., HEO J.-P.,
TONG R.: VolCCD: Fast continuous collision culling between deforming
volume meshes. ACM Transactions on Graphics 30 (Jan. 2011), 111. 2

[TTWM14] TANG M., TONG R., WANG Z., MANOCHA D.: Fast and
exact continuous collision detection with Bernstein sign classification.
ACM Transactions on Graphics 33 (Nov. 2014), 186:1–186:8. 2, 7

[VHBZ90] VON HERZEN B., BARR A. H., ZATZ H. R.: Geometric col-
lisions for time-dependent parametric surfaces. In Proceedings of the
17th Annual Conference on Computer Graphics and Interactive Tech-
niques (New York, NY, USA, 1990), SIGGRAPH ’90, Association for
Computing Machinery, p. 39–48. 2

[VHTG10] VOUGA E., HARMON D., TAMSTORF R., GRINSPUN E.:
Asynchronous variational contact mechanics. Computer Methods in Ap-
plied Mechanics and Engineering 200 (July 2010), 2181–2194. URL:
https://github.com/evouga/collisiondetection. 7

[Wan14] WANG H.: Defending continuous collision detection against
errors. ACM Transactions on Graphics 33 (July 2014), 1–10. 2

[WFS∗21] WANG B., FERGUSON Z., SCHNEIDER T., JIANG X., AT-
TENE M., PANOZZO D.: A large scale benchmark and an inclusion-
based algorithm for continuous collision detection. ACM Transactions
on Graphics (2021). 2, 3, 4, 5, 6, 7

[WTTM15] WANG Z., TANG M., TONG R., MANOCHA D.: TightCCD:
Efficient and robust continuous collision detection using tight error
bounds. Computer Graphics Forum 34 (Sept. 2015), 289–298. 2, 7

[ZRLK07] ZHANG X., REDON S., LEE M., KIM Y. J.: Continuous col-
lision detection for articulated models using taylor models and temporal
culling. ACM Transactions on Graphics 26, 3 (July 2007), 15–es. 3

Appendix A: Intersection Predicates

Line-Triangle

The line-triangle predicate checks if a straight line L defined by two
points (s1,s2) intersects a triangle T = (t1, t2, t3). We compute the

sign of the three volumes of the tetrahedra formed by (s1,s2) and
each edge of the triangle T , that is

v1 = orient3d(s1,s2, t1, t2),

v2 = orient3d(s1,s2, t2, t3), and

v3 = orient3d(s1,s2, t3, t1).

If the three vi, i = 1,2,3 have the same sign we return true. Note
that this predicate can also detect if the intersection is on an edge
of T by checking if only one of the vi is zero and the other two have
same sign.

Ray-Triangle

The ray-triangle predicate checks if a ray R defined by an oriented
pair of points (s1,s2) intersects a triangle T = (t1, t2, t3). This is
similar to the line-triangle intersection (Appendix A). The only dif-
ference is that we need to check if the three vi, i = 1,2,3 have the
same sign as o1 = orient3d(s1, t1, t2, t3) to ensure that the ray
is pointing towards the plane spanned by T and not in the opposite
direction.

Appendix B: Definition of the function φ

The implicit function φ(x) [BEB12] of a bilinear quad b is defined
as

φ(x) = h23(x)−h14(x),

where the indices 1 to 4 refer to vertices of b, and h23(x) and h14(x)
are defined as

h23(x) = g123(x)g143(x),

h14(x) = g243(x)g124(x),

gpqr(x) = (x− xp) · (xq− xp)× (xr− xp).

Then the zero level set of φ(x) contains the bilinear quad b. More-
over, the sign of φ(x) changes across the zero level set, dividing
space into positive and negative regions.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/evouga/collisiondetection

