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Fig. 1. Our method is able to construct seamless parametrizations with prescribed holonomy signature, i.e. it offers full control over map topology. This
topological information can be given as values (holonomy numbers) on a system of certain loops on the surface (a) or, e.g., be derived from a cross-field that
the parametrization is supposed to align to. A state-of-the-art method [Campen et al. 2019] can reliably generate seamless parametrizations (b), but it ignores
this information at the global level, i.e. it does not offer full control over map topology. Our method adjusts the loop system with associated numbers into a
topologically equivalent state (c) of very particular type. Using a cut graph constructed from this loop system, we are then able to reliably generate a seamless
parametrization (d) that perfectly matches the prescribed holonomy signature, and for instance allows for lower distortion and better cross-field alignment.

Wedescribe amethod for the generation of seamless surface parametrizations

with guaranteed local injectivity and full control over holonomy. Previous

methods guarantee only one of the two. Local injectivity is required to enable

these parametrizations’ use in applications such as surface quadrangulation

and spline construction. Holonomy control is crucial to enable guidance or

prescription of the parametrization’s isocurves based on directional informa-

tion, in particular from cross-fields or feature curves, and more generally to

constrain the parametrization topologically. To this end we investigate the

relation between cross-field topology and seamless parametrization topol-

ogy. Leveraging previous results on locally injective parametrization and

combining them with insights on this relation in terms of holonomy, we

propose an algorithm that meets these requirements. A key component

relies on the insight that arbitrary surface cut graphs, as required for global

parametrization, can be homeomorphically modified to assume almost any

set of turning numbers with respect to a given target cross-field.
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1 INTRODUCTION
Seamless surface parametrization is one of the most common ap-

proaches to constructing seamless texture atlases, conforming sur-

face quadrangulations, and high-order (spline or subdivision) ap-

proximations to surface data. A chart-based parametrization is called

seamless if it satisfies certain conditions on its transitions between

charts or across cuts.

In particular, a seamless parametrization of a discrete surface

defines a metric, i.e., an edge length assignment on a mesh, that

is intrinsically flat almost everywhere, i.e. angles around vertices

sum to 2π , except at a (often small) set of cone vertices with an

angle deficit (or excess) of some multiple of
π
2
. More generally, the

holonomy angle for any closed loop on the surface is a multiple

of
π
2
. The holonomy angle is the angle between the first and last

edge when laying out a closed chain of mesh triangles in the plane

according to the metric (Fig. 2, cf. [Bright et al. 2017; Crane et al.

2010]). Informally, this holonomy condition on a parametrization’s

metric ensures that parametric lines continue seamlessly across cuts,

although, e.g., a u-parametric line may become a v-parametric line.

While the set of closed triangle chains on a discrete surface is

infinite, all their holonomy angles are actually defined by a set of

angles on a finite basis, the holonomy signature, which we define
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more precisely below. In essence, loops around individual vertices

capture all local aspects of holonomy, while (in case of non-trivial

topology, genus > 0) a system of non-contractible loops captures

the additional global aspects.

Holonomy Control. To clarify the importance of parametrization

topology defined by the holonomy signature, consider quad meshes

or quad layouts obtained from (constrained classes of) seamless

parametrizations by tracing a grid of parametric lines on the surface.

The cones become the extraordinary vertices, where n , 4 quads

meet. The holonomy angles determine how many quads meet at

such extraordinary vertices, andmore generally, howmany turns the

edges of the quads make along any closed curve on the surface, e.g.,

a feature line. As a consequence, controlling the parametrization’s

topology in the form of its holonomy angles is critical for obtaining

a high-quality parametrization with intended behavior.

In many approaches to seamless parametrization, the target topol-

ogy is provided as input, e.g., it is derived from a given cross-field

or partially or completely specified by the user. At the same time, as

we discuss in detail in Section 2, no existing general method guaran-

tees that the target topology is fully respected, although significant

progress was made towards this goal.

Existence. Moreover, to the best of our knowledge, the answer to

the following question is not known:

For which holonomy signatures, seamless parametriza-
tions with corresponding topology exist?

Partially, this question was answered in [Jucovič and Trenkler 1973],

and more specifically in [Campen et al. 2019], where angles at cones,

but not complete signatures (including global aspects), were consid-

ered. In this paper, we resolve the question of existence for a broad

class of signatures, subject to only a mild condition.

Remarkably, it turns out that for surfaces of genus , 1, there is a

seamless parametrization for any holonomy signature (e.g. implied

by a cross-field) under this condition. For genus 1, we show that

in this class the one known example of holonomy signatures for

which there is no seamless parametrization (signatures with exactly

two cones, with angles 3π/2 and 5π/2) is the only one.

For the condition to be satisfied, it is already sufficient (but not

necessary) to have one cone with angle deficit + π
2
or − π

2
in the

signature (corresponding to at least one valence 3 or valence 5 ex-

traordinary quad vertex). This is essentially always satisfied for

holonomy signatures implied by cross-fields optimized for smooth-

ness or curvature alignment [Vaxman et al. 2016].

Contribution. We describe an algorithm for the construction of

seamless parametrizations with full control over holonomy. It ex-

tends the construction of [Campen et al. 2019] (referred to as Seam-

less Padding (SP) in the following) which provides control only over

local holonomy aspects (i.e. cone angles). Our contribution includes:

• An existence result for seamless parametrizations with given

holonomy signature, indicating a remarkably small topologi-

cal gap between cross-fields and parametrizations;

• An algorithm for, given a holonomy signature, construct-

ing an alternative system of loops on which the equivalent

holonomy signature has arbitrary desired angles;

• A variant of the SP method that, based on the above, builds a

valid seamless parametrization with prescribed holonomy.

We note that the topology of cross-fields—which are often used

to guide the computation of seamless parametrizations—can be

controlled very flexibly and precisely using existing discrete con-

struction algorithms. In fact, one can easily construct a cross-field

with any given turning number signature (the field analogue of a

holonomy signature, cf. Section 3.1) by solving a linear system of

equations [Crane et al. 2010]. The ability to near-universally match

this signature, provided by our method, means that this possibility

of precise topology control extends to parametrizations.

2 RELATED WORK
Seamless Parametrization. Seamless surface parametrization with

prescribed singularities (locations and indices) is a problem that has

received significant attention recently. Results include [Bommes

et al. 2009; Bright et al. 2017; Campen et al. 2015, 2019; Chien et al.

2016; Ebke et al. 2016; Fang et al. 2018; Fu et al. 2015; Hefetz et al.

2019; Kälberer et al. 2007; Kovacs et al. 2011; Lyon et al. 2019; Myles

et al. 2014; Myles and Zorin 2013; Tong et al. 2006; Zhou et al. 2018,

2020]. Prominent use cases are surface quadrangulation [Bommes

et al. 2013b; Campen 2017] and spline conversion [Campen and

Zorin 2017; Marinov et al. 2019].

Cross-Field Guidance. Most often such parametrizations are gen-

erated and optimized guided by a cross-field or frame field on the

surface [Vaxman et al. 2016]. Seminal works on cross-field guided

parametrization are [Kälberer et al. 2007; Knupp 1995]. Important

ideas for cross-field generation are presented by [Bommes et al.

2009; Crane et al. 2010; Li et al. 2006; Ray et al. 2009, 2008]; many of

these offer control over the fields’ turning numbers.

Local Injectivity. For common use cases, parametrizations are

valid only if they are locally injective, i.e. free of fold-overs. Local

injectivity constraints required to ensure a valid parametrization

are, due to their challenging non-convex nature, not rarely omitted

[Bommes et al. 2009; Ebke et al. 2016; Kälberer et al. 2007; Kovacs

et al. 2011; Myles and Zorin 2013; Zhou et al. 2018] or convexified

in a conservative manner [Bommes et al. 2013a; Bright et al. 2017;

Campen et al. 2015; Hefetz et al. 2019; Lipman 2012].

Guarantees. In special cases (restricted genus, restricted cone

configurations) convex formulations can be used to reliably yield

locally injective seamless parametrizations [Aigerman and Lipman

2015; Gortler et al. 2006; Gu and Yau 2003]. Alternatively, additional

user input like a surface partition may be exploited to ensure validity

[Tong et al. 2006], or more general, non-piecewise-linear forms of

parametrization may be employed [Aigerman and Lipman 2016].

Recently, first methods have emerged that provide validity guar-

antees while supporting arbitrary genus and general cone config-

urations [Campen et al. 2019; Zhou et al. 2020]. In this sense, they

offer control over local holonomy aspects. No global control over
holonomy is provided, though. Therefore, when for instance aim-

ing to generate a cross-field guided parametrization, while locally

cones are reproduced, there may be global topological mismatches

between the given cross-field and the constructed parametrization,

for instance precluding proper alignment, as in Fig. 1 (b).
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Existence. [Jucovič and Trenkler 1973] consider the question of

existence of quadrilateral meshes with prescribed irregular vertex

valences, [Campen et al. 2019] the very closely related question

of existence of seamless parametrizations with prescribed cones.

Both consider only local holonomy (irregular vertex valence, cone

angles), not global holonomy.

Distortion Optimization. The task of parametrization optimization

(with respect to varying measures of distortion) while maintaining

properties such as local injectivity or seamlessness, is addressed in a

number of recent works [Hormann and Greiner 2000; Kovalsky et al.

2016; Mandad and Campen 2020; Rabinovich et al. 2017; Schüller

et al. 2013; Shtengel et al. 2017; Zhu et al. 2018]. They are useful as

a post-process in the context of our method as we initially focus

mainly on validity, holonomy, and seamlessness.

Cone Choice. The choice of cones (and more generally guiding

cross-fields, holonomy signatures) is an application dependent mat-

ter. Various approaches have been proposed for the selection of

a cone configuration, for instance curvature-based (e.g. via cross-

fields [Vaxman et al. 2016]), distortion-based [Ben-Chen et al. 2008;

Kharevych et al. 2006; Soliman et al. 2018], or interactive [Campen

and Kobbelt 2014; Ebke et al. 2016]. The problem of positioning

cones such that conformal maps with these cones become seamless

is addressed by [Chen et al. 2019, 2020].

Holonomy. Some of the above methods for parametrization con-

struction (such as [Bommes et al. 2009; Bright et al. 2017]) offer full

control over the resulting parametrizations’ holonomy, but do not

guarantee local injectivity. Those that guarantee local injectivity in a

general setting (e.g. [Campen et al. 2019; Myles et al. 2014; Zhou et al.

2020]), in turn, do not offer full control over holonomy. The method

of [Campen and Zorin 2017] offers full holonomy control, albeit

only for the broader class of seamless similarity parametrizations.

3 HOLONOMY SIGNATURE
We consider a closed orientable manifold meshM of genus д and a

cut graph G onM that cutsM to one or more topological disks. We

let Mc
denote the resulting cut mesh, which has a canonical map

π : Mc → M that is the identity on the interior and maps exactly

two boundary edges in Mc
to each edge in G ⊂ M . We call two

edges e, e ′ in the boundary of Mc mates if π (e) = π (e ′). We also

define a loop as an oriented closed walk of facets (or dual vertices) of

M and a simple loop as an oriented cycle of facets (or dual vertices).

Definition 1 (Seamless Parametrization). A discrete seam-
less parametrization, as in [Myles and Zorin 2013], is a continuous
piecewise linear, locally injective map F : Mc → R2 such that for
any boundary edge e with mate e ′, there is a rigid transformation
σe (x) = Rex + te , where Re is a rotation by an integer multiple of π

2
,

that maps F (e) to F (e ′), i.e. σe (F (e)) = F (e ′).

A seamless parametrization naturally induces a discrete metric

E → R>0
on Mc

by letting the length of an edge e of Mc
be the

length of F (e) ⊂ R2
. Since mated edges e, e ′ in the boundary of

Mc
are related by a rigid transformation, F (e) and F (e ′) have the

same length, so this metric extends to a well-defined metric on

Fig. 2. The holonomy angle κFγ (Def. 2) of a dual loop (cyclic triangle strip)
under a metric F is the sum of signed inner angles (yellow and orange). Up
to multiples of 2π (if the loop makes multiple turns) this corresponds to the
angle between first and last edge when laying out the strip in the plane.

M . Moreover, the metric on M is flat except at isolated vertices

C = {v1, ...,vm } in G, i.e. in the boundary ofMc
, called cones.

Definition 2 (Holonomy Angle). For a loop γ , the holonomy
angle (or discrete geodesic curvature [Crane et al. 2010]) of γ under a
seamless parametrization F is

κFγ =
∑
f ∗∈γ

αγ (f
∗),

where f ∗ is the vertex dual to facet f , αγ (f ∗) is the signed angle of
F (f ) at the vertex of f incident to the preceding and succeeding facets
in the loop. The sign is positive (negative) for vertices on left (right)
hand side of the loop. See Fig. 2 for an illustration.

Let v∗ denote the dual facet of vertex v , and ∂v∗ the cycle of this
dual facet’s dual vertices. In other words, ∂v∗ is the loop around

the single vertex v .

Definition 3 (Holonomy Number). For a loop γ , we define the
holonomy number as kFγ = κ

F
γ
/

2π . In the case of a vertex-loop, γ =
∂v∗, we additionally define the index of the vertex as I Fv = 1 − kF

∂v∗ .

Since the images of edges in the boundary of Mc
under F are

related by rotation angles that are integer multiples of
π
2
, the holo-

nomy numbers are always integer multiples of
1

4
.

Definition 4 (Holonomy Signature). We call the holonomy
numbers for a choice of homology basis loops γ1, ...,γ2д+m ofM \C
the holonomy signature of F . A natural choice of basis is a homology
basis γ1, ...,γ2д of M together with cone vertex loops ∂v∗

1
, ..., ∂v∗m .

The loops are referred to as signature loops.

A homology basis ofM can, for instance, be chosen as a so-called

system of loops [Erickson and Whittlesey 2005].

Importantly, such a finite holonomy signature completely cap-

tures the holonomy number of any loop: First, since the metric is flat

except at cones, any two loops homotopic inM \C (i.e., loops that

can be continuously deformed into each other within M without

crossing a cone vertex) have the same holonomy number (cf. Prop. 1

in [Myles and Zorin 2012]). Second, given an arbitrary loop γ and

a homology basis of M \C , there is (by the nature of a homology

basis [Hatcher 2002]) a surface M̄ so that its boundary is composed

of γ and some combination of the basis loops. The Gauss-Bonnet

theorem then gives a formula for the holonomy number of this

boundary in terms of the Euler characteristic of M̄ . Thus, the holo-

nomy number of γ is determined by the holonomy numbers of the
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(a) (b) (c) (d) (e)

Fig. 3. Algorithm overview: (a) Example input signature loops (yellow and green) and cones (red and blue). (b) Loops of an equivalent signature obtained
by strategically modifying this input; notice that the yellow loop takes a different path between the cones. (c) Conformal parametrization respecting the
prescribed cones and aligned with the cut graph that is formed by the loops; due to this alignment, it has a specific holonomy pattern along the loops. (d) The
map is modified by parametric padding to make it seamless while preserving its holonomy properties. (e) Finally, the map can be continuously optimized for
low distortion and possibly cross field alignment, naturally within its topological class.

loops of a homology basis (cf. Prop. 2 in [Myles and Zorin 2012]).

Fig. 3 (a) shows an example of signature loops: the green and yellow

loops form a homology basis ofM , while the small cone vertex loops

are visualized as red and blue dots at the respective vertices.

Note that the holonomy signature is not unique, neither its loops

nor its numbers (Fig. 4). For a fixed seamless parametrization F , a
different choice of signature loops will lead to different associated

holonomy numbers—even though the same parametrization topol-

ogy is represented. Such holonomy signatures are called equivalent.

3.1 Relation to Cross-Fields
Seamless parametrizations are often employed in conjunction with

cross-fields, most importantly when parametrizations are built and

optimized for directional alignment with such a field. In such cases

it is important for field topology and parametrization topology to

match. In this context, there is a close connection between the

holonomy of a seamless parametrization and the turning numbers

of a cross-field.

For a smooth surface S , a cross-field ®d is a differentiable mapping

of four tangent vectors to each point p ∈ S (except at isolated

singularities) that are invariant to rotation by π/2 around the normal

n̂p to S at p. Given such a field and a loop γ on the surface S , the
field will make some number of rotations along this loop, and due

to the rotational symmetry of the field these turning numbers Tγ
can be integer multiples of

1

4
.

0

0

1

4

1

4

Fig. 4. Example of two equivalent holonomy signatures. Red and blue cones
have index − 1

4
and + 1

4
, respectively; the holonomy numbers of the green

and yellow loops are indicated. Note that from left to right, the loops are
essentially deformed across a cone (the leftmost red cone), and this affects
the loops’ associated holonomy numbers accordingly.

Moreover, as shown in [Ray et al. 2008], there is a discrete ana-

logue of cross-fields and turning numbers for triangle meshes, and

turning numbers along loops satisfy a theorem analogous to the

Poincaré-Hopf theorem for vector fields that states T∂S = −χ (S).
This implies that the holonomy number of the boundary of a flat

surface, which does not contain any cone, is the same as the turning

number of a singularity-free cross-field along that boundary. Hence,

if turning numbers of a cross field agree with holonomy numbers

on a set of signature loops then they will agree for any loop on the

surface. Consequently, by taking as our desired holonomy numbers

the turning numbers of a given cross-field on a homology basis of

M \C , where C is the set of the cross-field’s singularities, the seam-

less parametrization is fully constrained to topologically match the

input cross-field—in terms of local (cone indices) as well as global

behavior.

4 APPROACH OVERVIEW
Given a holonomy signature (or a cross-field implying a holonomy

signature, cf. Section 3.1), consisting of loops associated with a

holonomy number each, on a surfaceM , our goal is to construct a

valid seamless parametrization F forM that respects this signature.

In Section 5 we discuss the question for which signatures this is

actually feasible.

Key Idea. We show in Section 5 that, given a holonomy signature,

we can find an equivalent signature (by exchanging or modifying

the signature loops) such that the associated holonomy numbers

assume almost any desired values. Essentially, we are exploiting the

above mentioned non-uniqueness of the signature (cf. Fig. 4). We

make use of this algorithmically in Section 6 in the following way:

The SPmethod [Campen et al. 2019] enables constructing a seamless

parametrization that has prescribed local holonomy (i.e. cones), but

it lacks the ability to prescribe holonomy globally. However, its

result has not a random but a fixed holonomy pattern along the cut

graph that is used in the construction. We therefore modify the 2д
global signature loops such that their union forms a cut graph and

such that their corresponding holonomy numbers in an equivalent

signature match exactly the fixed pattern that SPwill produce. Fig. 3

illustrates the main steps of our construction process.
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Fig. 5. A hole-chain cut graph G , as used in [Campen et al. 2019]. As an
example, the contained loop that is highlighted in red, because it makes two
left turns (in ccw sense), will have holonomy number 2

4
in the parametriza-

tion constructed by that method.

Cut Graph. The seamless parametrization construction by SP re-

lies on using cut graphs with certain structural restrictions, so-called

hole-chains (or modifications thereof). Fig. 5 shows an example, de-

tails follow in Section 6.1. Let G be such a cut graph. Let H be a

system of loops ofM , i.e., H is a homology basis and cutsM into a

topological disk. In particular, asG cutsM into a topological disk, H
can be chosen such that the (non-disjoint) union of its loops equals

G (Section 6.2).

Fixed-Holonomy Parametrization. By construction, SP will yield

certain predetermined holonomy numbers along G, thus on these

loops H , regardless of the loops’ geometry. More concretely, each

branch point of the hole-chain G has four incident cut segments,

conceptually forming a cross. When following a loop through G, at
such a branch point it may therefore take a left-turn, a right-turn, or

continue straight. The generated parametrization’s holonomy num-

ber along any loop inG is simply the (signed) difference between its

number of right-turns and its number of left-turns (times
1

4
). This

is due to the SP-parametrization being aligned to all segments of G ,
i.e., they are geodesic under this metric, and the corners between

segments at branch points form right angles under this metric.

Cut Graph Rerouting. Given target holonomy numbers on the

loops of H (e.g., derived from an input cross-field), by Prop. 2 we

can modify the loops of H , yielding H ′, such that their target ho-

lonomy numbers equal their left-right-turn balance. Conceptually,

this rerouting of loops is described in Section 5; in Section 6.3 we

describe algorithms that practically implement it. As this rerouting

does not alter the loops’ intersections, i.e., it preserves the branch

points ofG and the loops’ left-right-turns, the union of loops from

H ′ still forms a hole-chain, which we can then use as prescribed cut

graph for the parametrization construction.

Holonomy Soft-Guidance. In order to yield parametrizations that

are not just topologically correct but also (already initially, before

distortion optimization) of reasonable geometric quality, we aim to

reduce the need for cut graph rerouting as much as possible. To this

end we construct the individual paths that the initial hole-chain G
is made of in a holonomy-guided (e.g. cross-field guided) manner

(Sections 6.1.1 and 6.1.2). This promotes hole-chains that largely

have the desired holonomy properties right away.

γ
α

δ

Fig. 6. Illustration for Prop. 1 concerning quasi-additivity of holonomy
numbers on loops.

4.1 Algorithmic Outline
Ourmethod’s overall algorithmic pipeline can be outlined as follows:

(1) Construct Cut Graph

• Initial field-guided hole-chain G (Section 6.1)

• Extract loop basis H of G (Section 6.2)

• Reroute H → H ′, yield G ′ (Section 6.3)

(2) Construct Seamless Parametrization

• Construct G ′-aligned mapping f : Mc → Ω (Section 7.1)

• Pad f to yield seamless map f ′ : Mc → Ω′ (Section 7.2)

• Optimize f ′and Ω′, maintaining seamlessness (Section 7.3)

5 EXISTENCE OF SEAMLESS PARAMETRIZATIONS
Before discussing the algorithmic details, let us settle the question

of existence of seamless parametrizations for prescribed holonomy

signatures. In particular, this will allow us to guarantee that the

above mentioned rerouting can actually be performed as needed.

While any choice of homology basis loops will yield a holonomy

signature, our method relies on bases whose loops’ holonomy num-

bers are some specific values. As a first step towards achieving

this, the following proposition gives us a simple way to "add" to-

gether two loops so that the holonomy number of the new loop is

determined by the holonomy numbers of the constituent loops.

Proposition 1 (Quasi-Additivity). Suppose γ and δ are two
non-intersecting simple oriented loops and α is a path from the right
side of γ to the right side of δ that only intersects these loops at its
endpoints and does not contain any cones (see Fig. 6). Then (provided
the mesh is suitably refined) there is a simple loop γ0—which can be
made arbitrarily close to δ , γ , and α—such that

kFγ0

= kFγ + k
F
δ − 1

If α is a path from the left side of γ to the left side of δ we have nearly
the same result, but the holonomy number of γ0 is instead given by

kFγ0

= kFγ + k
F
δ + 1

A proof and an illustration can be found in appendix A.

Rerouting around a Cone. In particular, for a cone vi , provided
there is a path from the right side of γ to v∗i , the above proposition

tells us there is a loop γ0 such that kFγ0

= kFγ − I Fvi . We refer to

the construction of the latter loop as rerouting γ around v0 (with a

counterclockwise orientation). On the other hand, if there is a path

from the left hand side of γ to v∗i (the dual facet of vertex vi ), the

above proposition gives us a loop γ0 such that kFγ0

= kFγ + I
F
vi , which

we refer to as rerouting γ around vi with a clockwise orientation.
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Fig. 7. Rerouting (ccw, twice in a row) of a loop around a cone of index 1

4
.

Moreover, it is clear from the construction of these loops that γ0

is homotopic to γ on M , although the homotopy will necessarily

cross the cone as otherwise the holonomy numbers of the two loops

would be the same. Fig. 7 shows an example of rerouting a loop

around a cone of index
1

4
twice, so as to yield a loopwhose holonomy

number differs by
1

2
.

These observations lead to the following key proposition.

Proposition 2. Let H = {γ1, ...,γ2д} a basis of loops for M that
cutsM into a topological disk, and letv1, ...,vm be vertices ofM . Also,
let k1, ...,k2д , I1, ..., Im ∈

1

4
Z and assume gcd (I1, ..., Im ) =

1

4
. Then

there is another basis of loops δ1, ...,δ2д that cutsM into a disk such
that kFδi = k

F
γi + ki , i = 1, ..., 2д, for any seamless parametrization F

that has cones with indices I Fvj = Ij at the vertices v1, ...,vm .

For a constructive proof see appendix B. Conceptually, we can

reroute the loops γi one-by-one around suitable subsets of the cones
in a manner that preserves the topology of H , such that their holo-

nomy numbers change exactly by the desired values ki .
For the purpose of our method, this result means that we can start

from a cut graph formed by the union of 2д loops γ1, ...,γ2д , and

modify these loops using an appropriate choice of integersk1, ...,k2д
to yield loops δ1, ...,δ2д instead, with any holonomy numbers we

want, forming an equivalent signature—under the only condition

that gcd (I1, ..., Im ) =
1

4
. This ability is sufficient for the method

presented in the following to construct a seamless parametrization

with the desired holonomy, which constructively shows existence,

under the above condition.

GCD-Condition. This condition is obviously satisfied as soon as

there is even just one cone of index ± 1

4
among all prescribed cones.

But this (practically very mild assumption) is not even necessary;

even if all indices are of higher magnitude, they may have a greatest

common divisor of
1

4
. If the gcd is indeed larger than

1

4
(a poten-

tially realistic scenario is one with indices restricted to multiples

of
1

2
), note that while not all holonomy numbers can be achieved

by rerouting, it may still be possible to achieve those desired.

6 HOLONOMY-CONSTRAINED CUT GRAPH
The cut graph with particular holonomy pattern is built in three

steps. We start by constructing a hole-chain G; in deviation from

the algorithm described for this purpose in [Campen et al. 2019] we

employ soft-guidance by a given input cross-field already in this

step. Afterwards a holonomy basis of loops H is extracted from G,
and its associated target holonomy numbers are derived from the

cross-field. Finally, these loops are rerouted where necessary, i.e.,

where soft-guidance did not yield exactly those holonomy numbers

we require for the subsequent stage.

6.1 Field-Guided Hole-Chain
A hole-chain G onM is built out of д loops (non-contractible, non-

separating, non-homotopic) and 2д− 1 connecting paths. Intuitively,

cutting the surface by the д loops yields a topological sphere with

2д holes, and the 2д − 1 paths connect these in a chain-like manner,

further cutting the surface to a topological sphere with one hole,

i.e. a disk. Fig. 5 shows an example with 4 loops (circular, inside the

tunnels) and 7 connectors. We here describe how to construct these

loops and connectors guided by a given cross-field.

Remark: For certain special cases (genus ≤ 2) a slightly modified

hole-chain structure needs to be chosen. This is done exactly as in

the SP method. Likewise, an extra connector path possibly needs to

be added; this occurs after rerouting (Section 6.3).

6.1.1 Field-Guided Loops. We construct д non-contractible, non-

separating, non-homotopic loops onM \C following the algorithm

of [Diaz-Gutierrez et al. 2009]. To promote cross-field alignment

(thus turning number zero along the loop) we employ the field-

alignment metric of [Campen et al. 2012] in this process. This in

particular means that the loop construction is performed onM4, a

four-sheeted covering ofM , owing to the four different directions a

cross-field specifies per point.

A loop resulting from this, while simple (i.e. intersection-free) on

M4 by construction, may in some cases be self-intersecting when

projected down ontoM . Conceptually, it may pass “over” itself on a

different sheet ofM4, which corresponds to an actual crossing on

M . In such a case we fall back to a non-guided construction of a

replacement loop directly onM .

6.1.2 Field-Guided Connectors. Connector paths between the loops

are selected in a Hamiltonian path manner as in the SP method. By

contrast, however, we do not build these from simple shortest paths

but again in a field-guided manner. As in the loop construction in

Section 6.1.1 we use an anisotropic metric and perform the path

search on M4. As the above loops have an embedding in M4 by

construction, we know on which sheet ofM4 to start and end the

search, respectively: one sheet lower or higher than the respective

loop, as a connector will be orthogonal (rather than parallel) to its

two incident loops under the final parametrization. Again, should

a self-intersecting connector path occur, we fall back to a shortest

path computed onM .

Remark: Loops constructed by the fallback method (if any) have

no native embedding onM4. We locally (at the intended connector

start or end point) assign them to the sheet on which the field

direction best fits the loop’s tangent, so as to have a reasonable setup

for the computation of incident connectors. In any case, however, let

us remind that the worst possible outcome of a locally suboptimal

choice is a hole-chain that requires some more rerouting—structural

correctness is not at stake in this soft-guided approach.

The resulting loops and connectors are embedded in edges ofM
and together form the discrete cut graph G.
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Fig. 8. Two equivalent holonomy signatures, based on different signature
loops; the different associated holonomy numbers are not shown in the
figure. Both are the result of rerouting so as to achieve the required holo-
nomy pattern, therefore the resulting optimized seamless parametrizations
based on the cut graphs formed by these loop systems are identical (up to
seamless transformation, due to a differently located cut graph).

6.2 Homology Basis Extraction
We construct a homology basis H of M in the form of 2д loops

contained in the cut graphG. To this end we compute a spanning

tree T in G. The remainder G\T consists of 2д edges, called bridges

[Erickson and Whittlesey 2005]. For each bridge, its union with

the two paths from its incident vertices to the root of T is a loop,

and these 2д loops form a homology basis, and more specifically a

system of loops.

Note that these loops may coincide partially. Each of the 2д bridge
edges, however, is part of exactly one of these loops only. By rerout-

ing the segments ofG that contain these bridge edges (called bridge

segments) we are therefore able to individually alter the holonomy

number or turning number of each of these 2д loops with respect to

a given field. Effectively, the bridge segments are the places where

the conceptual α-path from the proof of Prop. 2 can be attached

without intersecting any other basis loops. Ultimately, a modified

cut graphG ′ with the desired holonomy number for each basis loop

can be obtained in this way, as detailed in the following.

6.3 Segment Rerouting
For each loop of H we count its number of left turnsml and right

turnsmr (in ccw sense). The holonomy number along this loop in

the parametrizationwewill construct will be
1

4
(ml−mr ) (cf. Fig. 5). If

its target holonomy number is t (e.g., the cross-field turning number

along this loop), we need to reroute this loop such that this number

changes by k = 1

4
(ml −mr ) − t .

This is performed by rerouting the loop’s bridge segment, which

we tackle in a two-tiermanner.We first attempt to find a replacement

path for the segment by an efficient field-guided method, detailed

in Section 6.3.1. As this method is not guaranteed to yield a simple
path (which, however, is needed), where necessary a guaranteed (but

less geometry aware) fallback strategy is employed, as described in

Section 6.3.2. Note that the resulting loops are not unique; many dif-

ferent equivalent signatures exhibit the desired holonomy numbers.

Due to equivalence, however, the final parametrization’s topology

is not affected by this (see Fig. 8).

Remark: Optionally, we may perform a pre-rerouting of the field-

guided loops from Section 6.1.1 already before moving on to the

connector computation. This is possible because these loops’ target

holonomy is known to be zero, regardless of how the connectors

will interact with them. This pre-rerouting is not necessary for cor-

rectness, but empirically it reduces the total amount of rerouting

required. As the д loops do not yet form a complete cut graph that

cuts the surface to a disk, one needs to take one additional precau-

tion, though, so as to ensure that a loop is rerouted homotopically.

Namely, we cut M minus the loops to a disk by additional tempo-

rary cuts (using the method of [Erickson and Whittlesey 2005]) and

perform rerouting within this disk.

6.3.1 Holonomy-Aware Dijkstra. Given a bridge segment ℓ ofG , sup-
posed to be rerouted such that the holonomy number of its unique

containing loop γ from H changes by k , we employ a holonomy-

constrained Dijkstra’s algorithm, as described in [Campen et al.

2019, §5.1]. This entails the following. We compute a spanning tree

ofMc
(cut by the currentG), rooted on ℓ. Indices of cone vertices are

propagated through this tree towards the root, and tree edges are

marked with the sum of indices propagated through them. By then

keeping track of the sum of these values of edges crossed during

Dijkstra’s shortest path algorithm (applied to the dual mesh), we

can read off the index sum of cones enclosed between a Dijkstra

path ℓ′ and bridge segment ℓ. The algorithm terminates when a

path enclosing the desired index sum (which determines the change

to the holonomy number of γ ) is found.
Similar to the path construction onM4 described in Section 6.1,

this holonomy-constrained path search effectively occurs on an (in

this case infinite) cover ofM (akin to the universal cover ofM \C).
Consequently, a non-simple path (inM) can be the result in some

cases. The following guaranteed fallback strategy takes care of such

cases.

6.3.2 Fallback Strategy. By following the rerouting construction

used in the proof of Prop. 2, a proper simple replacement path for a

bridge segment ℓ can safely be found. Let v be a vertex on a bridge

segment ℓ whose loop’s holonomy number needs to be increased

by k .
Assume for a moment that there is a cone vertexv∗ with |I (v∗)| ≤

k . Let α be the shortest path from cone v∗ to v—either meeting ℓ

from the right if I and k have opposite sign, or from the left in the

case of equal sign. Among all suitable cones, we choose the one

for which the path α is shortest, so as to reduce the amount of

modification.

Let the two vertices on ℓ which are directly adjacent to v be v−

and v+. Closely following the conceptual rerouting from Fig. 11 we

remove the edgesv−v andvv+ from ℓ and replace them by the path

from v− to v+ tightly along α and around v∗. Where necessary we

split edges ofM to make room so that this path does not touch any

other part of G.
This changes the loop’s holonomy number by I (v∗) or −I (v∗),

depending on which side of ℓ the path α connects to. This procedure

can be repeated as long as the remaining difference k ← k ± I (v∗)
is not zero yet.

While this strategy proved sufficient in all practical test cases

(cf. Section 8) (and indeed is guaranteed to work if there is at least
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one cone of index± 1

4
), in general a greedy selection of reroute-cones

v∗ in this greedy manner is insufficient. Instead, let V be a multiset

of cones such that its index sum is k . Under the GCD-condition

(Section 5), V exists, as also exploited in the proof of Prop. 2. By

selecting the cones from V as v∗ in the above one after the other

(also considering multiplicity), the desired result is achieved. A suit-

able multiset V , i.e. a subset of cones and multiplicities, is easily

computed using the Extended Euclidean Algorithm. The incorpo-

ration of distances also in this general case would enable smaller

rerouting modification, but given the practical irrelevance of this

multiset-case, the effort would hardly pay off.

Remark: In practice we tentatively perform the fallback-rerouting

starting from multiple root vertices v (sampled equidistantly on the

bridge segment; we use 10 samples in our experiments) and retain

the result of shortest length to reduce the complexity of the final

cut graph.

7 SEAMLESS PARAMETRIZATION
Once the final, i.e., rerouted and possibly extended (recall the remark

in Section 6.1), cut graphG ′ is available, the next step is to construct
a domain that is compatible with the cut surface Mc

and suitable

to serve as parameter domain for a seamless parametrization ofM .

The domain shape is derived from a conformal metric computed on

Mc
with prescribed cones and prescribed boundary curvature.

7.1 Cut Graph aligned Metric
A key role in the SP method that we build on is played by a discrete

conformal metric computation on the cut meshMc
. While the con-

formal metric algorithm from [Campen and Zorin 2017] that is used

in SPworks adequately in most cases, it does not provide strict guar-

antees of convergence. The cut graph rerouting used in our method

can sometimes lead to rather complex cut shapes, thus boundary

shapes of Mc
, implying additional metric distortion, making the

problem instances particularly challenging.

Very recently, a novel algorithm for discrete metric computation

with prescribed (boundary and cone) angles has been proposed

[Campen et al. 2021; Gillespie et al. 2021], based on mathematical in-

sights [Gu et al. 2018; Springborn 2019] that guarantee convergence.

We employ an implementation based on this work.

Using this algorithm we compute a discrete metric (i.e., edge

lengths) forMc
, prescribing the angles of cone vertices and the geo-

desic curvature on the boundary, i.e., along the cutG ′. Concretely,
the segments ofG ′ are constrained to be straight under the resulting
metric, and the corners (at branch points of G ′) are constrained to

be right.

7.2 Padding
Under the computed metric the two boundary segments ofMc

cor-

responding to a common segment ofG ′ are straight, their mutual

angle is a multiple of π/2 (as required for seamlessness), but their

lengths may differ. The SP method uses so-called padding, i.e., para-
metrically stretching out strips of the surface under the metric along

the boundary segments so that the boundary segments’ lengths ex-

pand to equalize the lengths of all paired segments, and this provably

is always possible.

Fig. 9. Illustration of padding operation (in parameter domain). A thin strip
along the top straight cut segment (with no interior vertices) is stretched in
vertical direction by its required padding width. Then, vertices are shifted
horizontally to match their mates across the cut.

The following steps perform this padding, analogous to the origi-

nal SP method from [Campen et al. 2019]:

(1) Add cuts from all cones to the boundary of Mc
. Make sure

each boundary segment is reached in at most one point.

Around each interior vertex the angles under the metric from

Section 7.1 now sum up to 2π , i.e. the cut surface is flat.
(2) Lay out this flatmesh in the plane, i.e., assign (u,v)-parameters

to all vertices of the mesh, e.g., in a breadth-first traversal.

The global rotation is chosen such that the straight boundary

segments are aligned with u or v axis directions. This yields

the (non-seamless) domain Ω.
(3) For each straight boundary segment, compute the amount of

padding (widthwi ) required to equalize parametric lengths

of the paired segments, using the equation system of the SP
method.

(4) Along each segment, determine a parametrically rectangular

strip free of cones, and make the mesh conform to this strip

by inserting the strip’s boundary line by splitting. Then apply

a stretch transformation to the (u,v)-coordinates inside the
strip, so as to shift the segment in perpendicular direction by

its padding widthwi ( Fig. 9).

(5) In cases where the cut graph has cut the surface into more

than one disk, glue these together parametrically along pairs

of boundary segments by means of rigid transformations

applied to the (u,v)-coordinates to finally obtain a map F ′

onto a single connected domain Ω′.

7.3 Optimization
As a final step, we optimize the established map for reduced distor-

tion. As objective, we employ a local cross-field (orientation and

sizing) alignment energy EA [Bommes et al. 2009] and add (with

a small factor of s = 10
−3
) the symmetric Dirichlet energy ED

[Rabinovich et al. 2017], which contributes its barrier behavior to

prevent parametric inversions in the course of optimization. Linear

constraints are added to preserve seamlessness. We use a projected

Newton solver and use an explicit triangle inversion check in the

line search [Smith and Schaefer 2015], using exact predicates, to

reliably maintain local injectivity. We experimentally discovered

that using an unconstrained Newton optimizer over the set of in-

dependent variables computed using a reduced row echelon form

of the constraint matrix is numerically more stable than solving a

KKT system at each iteration, leading to faster convergence.

We emphasize that we do not aim to address map optimality

here; our focus is on constructing a topologically correct initial map,

subject to further improvement geometrically.
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(a)

(b)

(c)

(d)

(e) (f)

Fig. 10. Comparison of seamless parametrizations on surfaces of non-trivial topology, computed by the bare SP method [Campen et al. 2019] (row b, e) and by
our method (row d, f). The used cut graphs are shown in red, the initial hole-chain used for SP (row a, e) and the rerouted version used by our method (row c,
f). Notice their topologically differing structure (i.e. they wind around some handles or cones differently), as well as the higher distortion of the results by the
bare SP method due to being unable to properly align to the underlying smooth cross-field for topological reasons. Notice that this distortion cannot be
reduced further by continuous optimization; there are topological obstacles.
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Table 1. Statistics about the number of cut segment reroutings performed.
It is further split into the numbers of field-guided and fallback reroutings.

Model Genus #Reroutings #Field-Guided #Fallback
twirl 1 0 0 0

robocatdeci 1 0 0 0

knot1 1 0 0 0

holes3 3 0 0 0

dancer2 1 0 0 0

sculpt 2 0 0 0

fertilitytri 4 0 0 0

rockerarm 1 1 1 0

genus3 3 1 1 0

elk 1 1 1 0

trimstar 1 1 1 0

wrench50K 1 1 1 0

bumpytorus 1 1 1 0

dancer25k 1 1 1 0

camel 1 1 1 0

dragonstandrecon 1 1 1 0

pulley 1 1 1 0

kitten 1 1 1 0

knot 1 1 1 0

mastercylinder 3 1 1 0

eight 2 1 1 0

femur 2 2 2 0

block 3 2 2 0

greeksculpture 4 2 2 0

elephant 3 2 2 0

thaistatue 3 2 2 0

oilpump 4 2 2 0

neptune0 3 2 2 0

carter 7 2 2 0

cup 2 2 2 0

botijo 5 3 3 0

chair 7 3 3 0

rollingstage 7 3 3 0

helmet 3 4 2 2

pegaso 6 4 4 0

chair 7 4 4 0

bozbezbozzel 5 5 5 0

dancingchildren 8 5 5 0

grayloc 9 6 6 0

seahorse2 8 10 5 5

raptor50K 10 12 6 6

heptoroid 22 15 14 1

gearbox 78 57 43 14

filigree 65 73 40 33

brain 57 83 70 13

vhskin 79 128 21 107

8 EVALUATION
We apply our method to a dataset of 3D models with cross-fields

[Myles et al. 2014]. We restrict ourselves to models of genus > 0,

as on topologically trivial surfaces there are no global holonomy

aspects to account for. The method succeeds in generating a cut

graph with exactly the needed holonomy numbers in all cases. As

all cases satisfy the gcd=
1

4
condition, and all crucial operations are

combinatorial/discrete, the general success of this step is indeed to

be expected. For each model, Table 1 lists the number of rerouting

operations that our method performed.

The construction of a seamless parametrization based on this cut

then succeeds in most cases; in six, however, the initial metric distor-

tion is very high, causing subsequent steps (padding or the simple

distortion optimization approach) to get into numerical trouble. In

Figs. 1 and 10 obtained optimized seamless parametrizations for ex-

amples from the dataset are shown, matching the input cross-field

by construction. Table 2 reports the final distortion of these.

Table 2. Residual energy (normalized by surface area) for the models from
Figs. 1 and 10. The columns “without rerouting” correspond to the direct
application of SP, without regard for global holonomy. From the last column
the advantage in terms of field alignment and distortion becomes clear.

with rerouting without rerouting
Fig. Model EA+sED EA EA+sED EA ours/SP
1 cup 0.0125 0.0125 0.3288 0.2882 3.8%

9 block 0.0136 0.0136 0.1115 0.1052 12.2%

9 eight 0.0350 0.0328 0.1524 0.1432 22.9%

9 genus3 0.0221 0.0208 0.1891 0.1747 11.7%

9 oilpump 0.0296 0.0293 0.0450 0.0370 65.7%

9 rollingstage 0.0127 0.0124 0.2666 0.1163 4.8%

9 thaistatue 0.0225 0.0225 0.0272 0.0257 82.7%

8.1 Comparison
To demonstrate the importance of our contribution in the context of

guaranteed locally injective seamless parametrization construction,

we also apply the bare SP method of [Campen et al. 2019] (which

takes local holonomy (cones) but not global holonomy into account)

to these models.

While SP is able to respect the singularities of the prescribed field

by construction, whether or not its resulting map matches the cross-

field topologically is essentially a matter of chance. If the cross-field

is very smooth (as generally is the case in this data set) and the

cut graph for the map is constructed from certain shortest paths,

the chance of a match may be higher than that of any particular

mismatch. Nevertheless, we encounter a mismatch for a large num-

ber of models—in line with the fact that, as can be seen in Table 1,

our method had to employ at least one rerouting operation in the

majority of cases. In case of a mismatch, the resulting map cannot

continuously be optimized to achieve reasonable alignment between

map isolines and the field, as there is a topological obstacle. This

can be observed in Table 2, where the remaining final distortion is

significantly higher when not employing rerouting. The difference

is also illustrated in Fig. 10. Our method, in essence by adjusting

the cut graph in the described manner, ensures a topological match

between the signature induced by the cross-field and the signature

of the generated seamless parametrization.

9 CONCLUSION AND FUTURE WORK
We have explored the relation between cross-fields and seamless

surface parametrizations (and therefore quadrangulations) on a topo-

logical level. A key insight is that there are hardly any practically

important obstacles to generating a seamless parametrization (or

quadrangulation) that topologically matches a given cross-field. We

have described a method to generate such a seamless parametriza-

tion, given an input cross-field or an abstract topological specifica-

tion in form of a holonomy signature. It is based on a variation of

the SP method [Campen et al. 2019], with the main difference being:

• The initial hole chain cut graph is constructed taking cross-

field guidance into account.

• The hole chain is then modified by extracting a loop basis

and rerouting of loop segments based on our theory.

• The generation of a cut-aligned parametrization is performed

using a different, theoretically sound conformal mapping

method.
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From the SP method that we employ for the parametrization

construction we inherit the restriction to surfaces without bound-

ary. While there are no fundamental obstacles to adding boundary

support to our rerouting procedure, padding feasibility requires ad-

ditional theory in this more general context. The situation regarding

support for alignment to feature curves, which is of interest in some

use cases of seamless parametrizations, is very similar.

The algorithm stage described in Section 6, in particular the

holonomy-constrained cut graph generation using rerouting, relies

on discrete operations and therefore is not only sound theoretically,

but can be executed without the risk of numerical issues and lim-

its in practice. The algorithm stage described in Section 7 (initial

parametrization followed by constrained optimization), by contrast,

involves numerical computations, with consequent limits in practice.

While for initial parametrization a discrete approach is imaginable

[Zhou et al. 2020], at least for the final distortion optimization a

numerical approach is inevitable.

While we observe the choice of loops that form the initial cut

graph to not affect the final result conceptually (Fig. 8), the dis-

tortion of the initial parametrization, and therefore the numerical

challenges in the final optimization, can depend strongly on this

choice. By testing various random root placements for the loop

construction [Diaz-Gutierrez et al. 2009] employed in Section 6.1.1,

initial parametrizations of low distortion could be found, but a more

direct approach—or a more resilient final distortion optimization

technique—is desirable.

The GCD-condition asserts that, for any given signature, there

is an equivalent signature whose loops have any desired set of

holonomy numbers. It therefore is a sufficient condition for the

existence of a seamless parametrization that topologically matches

a given signature. It is not necessary, though. While likely of limited

practical relevance, the exploration of even tighter conditions may

be interesting.
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A PROOF OF PROPOSITION 1
Proof. We consider the case where α is a path between the right

hand sides of the two loops. If the mesh is suitably refined, there is

a topological disk D in the dual mesh that contains α and does not

contain any cones (Fig. 11 left). Without loss of generality, we may

assume that ∂D intersects γ along a single nontrivial path βγ and

intersects δ along a similar path βδ . We denote the endpoints of

βγ as f ∗
1
and f ∗

2
and the endpoints of βδ as д∗

1
and д∗

2
. We now can

define γ0 as the simple loop given by traversing γ \ βγ (with respect

to the orientation of this loop) starting at f ∗
2
, then traversing the

component of ∂D (with boundary orientation) from f ∗
1
to д∗

2
, then

traversing δ \ βδ , and finally by traversing ∂D from д∗
1
to f ∗

2
. We

note that we can choose D so that the boundary is arbitrarily close

to α and thus so γ0 is arbitrarily close to the original loops and path.

Since ∂D is the boundary of a topological disk that does not

contain any cones, we have that κF
∂D = 2π . In the computation of

κFγ0

, we have that the signed angles satisfy αγ0
(f ∗) = αγ (f

∗) for

Fig. 11. Quasi-additivity of holonomy numbers, on the same example as in
Fig. 6. The inset on the right is a blow-up of the spot circled on the left.

Fig. 12. Example of iteratively rerouting one loop around two singularities.
Left: initial state with given loop γi and two paths α j , α ′j connecting to the
singularity vj . Center: reroute around singularity vj and find paths αk α ′k
for the next singularity vk . Right: result after rerouting around vj and vk

f ∗ ∈ γ \ βγ and α∂D (f
∗) = −αγ (f

∗) for f ∗ ∈ βγ \ { f
∗
1
, f ∗

2
} (Fig. 11

right). Furthermore, since α intersects γ on the right, we must have

that the angle of f1 that corresponds to αγ (f
∗
1
) is on the left hand

side of γ , a different angle of f1 corresponds to α∂D (f
∗
1
) and is on

the left hand side of ∂D, and the final angle of f1 corresponds to

αγ0
(f ∗

1
) and is on the right hand side of γ0. Therefore, we have that

αγ (f
∗
1
) + α∂D (f

∗
1
) − αγ0

(f ∗
1
) = π ,

and by a similar analysis the same result for f ∗
2
is obtained. The

situation is similar for δ and ∂D, so we have that

κFγ0

=
∑
f ∗∈γ0

αγ0
(f ∗)

=
∑
f ∗∈γ

αγ (f
∗) +

∑
f ∗∈δ

αδ (f
∗) +

∑
f ∗∈∂D

α∂D (f
∗) − 4π

= κFγ + κ
F
δ − 2π .

Thus, we have that

kFγ0

= kFγ + k
F
δ − 1.

The proof where α is on the left hand side of the two loops is

analogous. □

B PROOF OF PROPOSITION 2
Proof. We have that cuttingM along γ1, ...,γ2д results in a disk,

so, if the mesh is sufficiently refined, for any γi there is a path α j /α
′
j

(Fig. 12 left) from either side of γi to any v∗j such that neither path

intersects any of the other basis loops or cones. Thus, by the above,

we may reroute γi around vj clockwise or counterclockwise to

obtain a new loopγ ′i such thatH
′ = (H \{γi })∪{γ

′
i } also cutsM into

a topological disk and such that, for any seamless parametrization

F satisfying the properties listed in the proposition, we have

kFγ ′i
= kFγi ± I

F
vj = k

F
γi ± Ij

Since H ′ still cutsM to a disk, we may still reroute any loop around

any cone with either orientation, so we may iteratively reroute the

basis loops to modify their holonomy number by integer multiples

of Ij . Since
1

4
is the greatest common divisor of I1, ..., Im , we have

there are integers ai such that

1

4

=

m∑
i=1

ai Ii

Thus, we have that iteratively rerouting each loop γi around the

cone vj |4kiaj | times, with orientation determined by the signs of

ki and aj , will give us the desired system of loops. □

ACM Trans. Graph., Vol. 41, No. 4, Article 59. Publication date: July 2022.


	Abstract
	1 Introduction
	2 Related Work
	3 Holonomy Signature
	3.1 Relation to Cross-Fields

	4 Approach Overview
	4.1 Algorithmic Outline

	5 Existence of Seamless Parametrizations
	6 Holonomy-Constrained Cut Graph
	6.1 Field-Guided Hole-Chain
	6.2 Homology Basis Extraction
	6.3 Segment Rerouting

	7 Seamless Parametrization
	7.1 Cut Graph aligned Metric
	7.2 Padding
	7.3 Optimization

	8 Evaluation
	8.1 Comparison

	9 Conclusion and Future Work
	Acknowledgments
	References
	A Proof of Proposition 1
	B Proof of Proposition 2

