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Abstract

Simulating physical systems is a core component of scientific computing, encom-
passing a wide range of physical domains and applications. Recently, there has been
a surge in data-driven methods to complement traditional numerical simulations
methods, motivated by the opportunity to reduce computational costs and/or learn
new physical models leveraging access to large collections of data. However, the
diversity of problem settings and applications has led to a plethora of approaches,
each one evaluated on a different setup and with different evaluation metrics. We
introduce a set of benchmark problems to take a step towards unified benchmarks
and evaluation protocols. We propose four representative physical systems, as well
as a collection of both widely used classical time integrators and representative
data-driven methods (kernel-based, MLP, CNN, nearest neighbors). Our frame-
work allows evaluating objectively and systematically the stability, accuracy, and
computational efficiency of data-driven methods. Additionally, it is configurable to
permit adjustments for accommodating other learning tasks and for establishing a
foundation for future developments in machine learning for scientific computing.

1 Introduction

Computational modeling of physical systems is a core task of scientific computing. Standard methods
rely on discretizations of explicit models typically given in the form of partial differential equations
(PDEs). Machine learning techniques can extend these techniques in a number of ways. In some
cases, a closed system of analytic equations relating all variables may not be available (e.g., a
constitutive relation for a material may not be known). In other cases, while a full analytic description
of a system is available, a traditional solution may be too costly (e.g., turbulence) or can be sped
up substantially using data-driven reduced-order models. However, despite promising results, a



successful adoption of these data-driven approaches into scientific computing pipelines requires
a solid and exhaustive assessment of their performance—a challenging task given the diversity
of physical systems, corresponding data-driven approaches, and the lack of standardized sets of
problems, comparison protocols, and metrics.

We focus on the setting where the physical model is unavailable during training, mimicking situations
in computational science and engineering with ample data and a lack of models. One can generally
distinguish two different flavors of physical simulation with different associated computational
cost: those that map a high-dimensional state space into another high-dimensional space (as in
temporal integration schemes, mapping the state of the system at one time step to the next), or from a
high-dimensional input space to a lower-dimensional output (as in surrogate models, mapping the
initial conditions to a functional of the solution). While this distinction also applies to data-driven
approaches, another critical aspect emerges from the choice of input data distribution. We identify
two extremes: the narrow data regime, where initial conditions are sampled from a low-dimensional
manifold (even within a high-dimensional state space), and the wide regime, where initial conditions
span a truly high-dimensional space. As could be expected, narrow data regimes define an easier
prediction task where data-driven methods can potentially ‘bypass the physics’, whereas wide regimes
require models with enough encoded physical priors in order to beat the curse of dimensionality.
Therefore, such choice of data distribution is a critical component of any data-driven physical
simulation benchmark.

In this work, we introduce an extensible benchmark suite, including: (1) an extensible set of simple,
yet representative, physical models with a range of training and evaluation (test) setups, as well
as reference, high-accuracy numerical solutions to benchmark data-driven methods, (2) reference
implementations of traditional time integration schemes, which are used as baselines for evaluation,
and (3) implementations of widely used data-driven methods, including physics-agnostic multi-layer
perceptrons (MLPs), convolutional neural networks (CNNs), kernel machines and non-parametric
nearest neighbors. Our benchmark suite is modular, permitting extensions with limited code changes,
and captures both ‘narrow’ and ‘wide’ regimes by appropriately parametrizing the set of initial
conditions.

Our analysis reveals two important conclusions. First, even in the simplest physical models, current
data-driven pipelines, while providing qualitatively acceptable solutions, are quantitatively far from
directly numerically integrating physical models, and this performance gap appears unfeasible to
close by merely scaling up the models and/or the dataset size. In other words, the cost of ignoring
the physics is high, even for the simplest physics, and cannot in general be compensated by data,
matching insights that have been obtained in other scientific computing settings [5, 55]. Next,
and more importantly, our simple L2-based nearest neighbor regressor is used to calibrate how
‘narrow’ the learning task is. Our finding is that even for seemingly complex systems, such as
the incompressible Navier-Stokes systems, such naive predictor outperforms most deep-learning-
based models in the narrow regime—thus providing a simple calibration of the true difficulty of the
simulation task, that we advocate should be present in every future evaluation.

2 Related work

Machine learning is used in physical simulation in a number of interrelated ways. Some important uses
include reduced-order/surrogate modeling, learning constitutive models or more generally compact
analytic representations from data. A unifying theme of these applications of machine learning is
automatic construction of parametric models capable of reproducing the behavior of physical systems
for a sufficiently broad range of initial data, boundary conditions and other system parameters.
The purpose of these representations varies from acceleration (e.g., surrogate machine learning
models are used to accelerate optimization), to automatic construction of multiscale models (learning
macroscopic constitutive laws from microscopic simulation), to inferring compact descriptions of
unknown representations from experimental data.

The purpose of our proposed benchmarks is to enable comparisons of different learning-based
methods in terms of their accuracy and efficiency. We briefly review two streams of learning
methods for physical systems: (1) One line of work aims to understand how neural networks can
be structured and trained to reproduce known physical system behavior, with the goal of designing
general methods applicable in a variety of settings [8, 42, 4, 41, 37, 38, 26, 10, 50, 51]. Our
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benchmark cases fit primarily into this category. (2) Another line of research aims to develop
a variety of techniques to accelerate solving PDEs. Typically, these methods are developed for
specific PDEs and a specific restricted range of problems: for example, fluid dynamics problems
[39, 16, 56], with particular applications to cardiovascular modeling [25, 19] and aerodynamics
[53]; or solid mechanics simulation tasks, including stresses [29, 24, 27, 15, 22, 23]. In cases where
the governing equations are not given, the learning task becomes approximating them from data
[30, 7, 1, 9, 2, 28, 3, 43, 44, 46, 45, 52, 35].

3 Background and problem setup

PDEs, dynamical systems, and time integration Consider a time-dependent PDE of the form
∂tu = L(u), where u is the unknown function and L is a possibly nonlinear operator that includes
spatial derivatives of u. By discretizing in space, one obtains a dynamical system

ẋ(t) = f(x(t)) (1)

with an N -dimensional state x(t) ∈ RN at time t ∈ [0, T ]. The function f is assumed to be Lipschitz
to ensure solution uniqueness and the initial condition is denoted as x0 ∈ RN . A PDE of a higher
order in time can be reduced to the first-order form in the standard way, e.g., if we have a second-
order system q̈(t) = f(q(t)), then we consider its formulation via position q and momentum p as
a first-order system with x = [q; p]: [q̇(t); ṗ(t)] = [p(t); f(q(t))]. To numerically integrate (1), we
choose time steps 0 = t0 < t1 < · · · < tK = T . Then, a time integration scheme (e.g., [49, 12, 11])
gives an approximation xk ≈ x(tk) of the state x(tk) at each time step k = 1, . . . ,K. A list of the
schemes we use along with details is given in Appendix A.

Problem setup and learning problems Given M initial conditions x(1)0 , . . . , x
(M)
0 ∈ RN and the

corresponding M trajectories X(i) = [x
(i)
0 , . . . , x

(i)
K ] ∈ RN×(K+1), i = 1, . . . ,M obtained with a

time integration scheme from dynamical system (1), we consider the following two learning problems,
both of which aim to learn the physical model of the problem, viewed as unknown, from trajectory
samples: (1) Learning an approximation f̃ of the right-hand side function f in Eq. (1). This gives
an approximate ˙̃x(t) = f̃(x̃(t)) that is then numerically integrated to produce a trajectory X̃ for an
initial condition x̃0. The aim is that X̃ approximates well the true trajectory X obtained with f from
(1) for the same initial condition. (2) Directly learning the next steps in the trajectory from the current
one, i.e. predict x(i)k given x(i)k−1.

To assess the learned models, we evaluate them on their ability to produce good approximate
trajectories from randomly sampled initial conditions, by either integration or direct step prediction.
During evaluation, we use initial conditions drawn independently from those used to produce training
data, both from the same distribution as the training samples, as well as from a distribution with
support outside the training range. We train networks on data sets of various sizes. For details, see
Appendix B.

4 Benchmark systems

We consider four physical systems, illustrated in Figure 1: a single oscillating spring, a one-
dimensional linear wave equation, a Navier-Stokes flow problem and a mesh of damped springs.
These systems represent a progression of complexity: the spring system is a linear system with
low-dimensional space of initial conditions and low-dimensional state; the wave equation is a low-
dimensional linear system with a (relatively) high-dimensional state space after discretization; the
Navier-Stokes equations are nonlinear and we consider a setup with low-dimensional initial condi-
tions and high-dimensional state space; finally, the spring mesh system has both high-dimensional
initial conditions as well as high-dimensional states. Additionally, the proposed spring system and
Navier-Stokes problems represent diffusion-dominated and advection-dominated (for sufficiently
low viscosity) PDE behaviors, as well as variability in initial conditions with fixed domain (spring
system) and variable domain (Navier-Stokes). These varying complexities provide an opportunity to
test methods on simpler systems and the ability to examine changing performance as system size
increases, both in terms of the state dimension, and the initial condition distribution. The ground truth
models for the spring, wave, and spring mesh systems with classical time integrators are implemented
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Figure 1: Representative visualizations of the four systems, depicting the results and ranges of initial
condition sampling. Each has two state components: for the Navier-Stokes system, a flow velocity
and a pressure field, and for the other three a position q and momentum p.

using NumPy [13], SciPy [54], and accelerated, where possible, with Numba [21]. The Navier-Stokes
snapshots are generated using PolyFEM [47], a finite element library.

These systems were chosen in an effort to reflect the variety of systems used for testing in this
area, while unifying choices of particular formulations. Past works have chosen systems of the
types featured here: simple oscillators (both spring and pendulum [8]), particle systems with various
interaction laws (gravity, spring forces, charges, cloth simulations, etc. [6, 18, 42, 4, 34]), and fluid-
flow systems (with various sorts of obstacles, airfoils or cylinders [51, 34]). We make particular
selections here in an effort to unify systems of interest and facilitate comparisons across experiments
by providing a shared set of tasks which can be used for development and testing of machine learning
methods.

Some examples of initial condition selection for each system are illustrated in Figure 1. The ground
truth for the spring, wave, and spring mesh systems consists of the state variables (q, p) for position
and momentum, and their associated derivatives (q̇, ṗ). For the Navier-Stokes system the state consists
of flow velocities, and a pressure field, along with approximated time derivatives for each.

Table 1 lists the parameters used to generate trajectories for training and evaluation. Training sets
of three sizes are generated, each containing the specified number of trajectories. The systems are
integrated at the listed time step sizes, but the ground truth data is subsampled further by the factor
shown after ÷ in the table: the integration schemes are run at a smaller time step and intermediate
computations are discarded. Each larger training set is a strict superset of its predecessor to ensure
that previous training samples are never removed.

4.1 Spring

We simulate a simple one-dimensional oscillating spring. In this system, the spring has zero rest
length, and both the oscillating mass and spring constant are set to 1. The spring then exerts a force
inversely proportional to the position of the mass q: ṗ(t) = −q and q̇(t) = p.

The energy of the system is proportional to r = q2+p2 which is the radius of the circle in phase space.
To sample initial conditions, we first sample a radius uniformly, then choose an angle theta uniformly.
This produces a uniform distribution over spring system energy levels and starts at an arbitrary point in
the cycle. The spring system has a closed-form solution: (q(t), p(t)) = (r sin(t+ θ0), r cos(t+ θ0))
where r is the radius of the circle traced in phase space (the energy of the spring) and θ0 is the
phase space angle at which the oscillation will start. While this closed form solution is useful,
for consistency with our other systems, we generate snapshots of the spring system by numerical
integration. Simulations of the spring system always run through one period. For “in-distribution”
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training values, the radius is selected in the range (0.2, 1) and “out-of-distribution” radii are chosen
from (1, 1.2).

4.2 Wave

This benchmark system is similar to the one used in Peng and Mohseni [33]. Consider the wave
equation with speed c = 0.1

∂ttu = c2∂xxu , (2)

on a one-dimensional spatial domain [0, 1) with periodic boundary conditions. We represent this
second-order system as a first-order system and discretize in space to obtain[

q̇(t)
ṗ(t)

]
=

[
0 I

c2Dxx 0

] [
q(t)
p(t)

]
, (3)

where Dxx ∈ Rn×n corresponds to the three-point central difference approximation of the spatial
derivative ∂xx and the matrices I and 0 are the identity and zero matrix, respectively, of appropriate
size. We discretize in space with n = 125 evenly spaced grid points and evolve the system following
the dynamics described above.

Initial conditions are sampled with an initial pulse in the q component centered at 0.5. All initial
conditions have zero momentum. The initial pulse is produced by a spline kernel as described in [33]:

s(x) =
10

pw
· |x− 0.5| , h(s) = ph ·


1− 3

2s
2 + 3

4s
3 if 0 ≤ s ≤ 1

1
4 (2− s)3 if 1 < s ≤ 2

0 else

where the width and height of the pulse are scaled by parameters pw and ph, respectively. The spline
kernel pulse is then h(s(x)) for x ∈ [0, 1), evaluated at the discretized grid points.

For “in-distribution” samples, parameters pw, ph are both chosen uniformly in the range (0.75, 1.25)
and “out-of-distribution” runs sample uniformly from (0.5, 0.75) ∪ (1.25, 1.5). All trajectories are
integrated until t = 5 when the wave has traveled through half a period.

4.3 Spring mesh

This system manipulates a square grid of particles connected by springs, in a two dimensional space,
and can be considered a simplified version of deformable surface and volume systems (cf. [34]). The
particles all have mass 1, and are arranged into a unit grid. Springs are added along the axis-aligned
edges and diagonally across each grid square, with rest lengths selected so that the regularly-spaced
particles are in a rest position.

In this work we use a 10× 10 grid where the top row of particles is fixed in place. Initial conditions
are sampled by choosing a perturbation for the position of each non-fixed spring. These perturbations
are chosen as uniform vectors inside a circle with radius 0.35. Out-of-distribution perturbations
are chosen uniformly in a ring with inner radius 0.35 and outer radius 0.45. The sampled initial
conditions all have zero momentum.

In this system, a spring between particles a and b exerts a force:

Fab = −k ·
(
‖qa − qb‖2 − `ab

) qa − qb
‖qa − qb‖2

− γq̇a (4)

where `ab is the rest length of the spring, γ = 0.1 is a parameter controlling the magnitude of an
underdamped velocity-based decay, and k = 1 is the spring constant.

4.4 Navier-Stokes

We consider the standard Navier-Stokes equation over a domain Ω (cf. [34, 51])

ρ
∂u

∂t
+ ρ(u · ∇)u− ν∆u+∇p = b

∇ · u = 0
u(0) = u0

 on Ω× (0, T ) ,
u = d
ν ∂u∂n + pn = g

}
on ∂ΩD × (0, T ) ,
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Table 1: Dataset sizes and simulation parameters
System # Train Trajectories # Eval Trajectories Time Step Size # Steps

Spring 10, 500, 1000 30 0.00781, ÷128 805
Wave 10, 25, 50 6 0.00049, ÷8 10204
Spring Mesh 25, 50, 100 15 0.00781, ÷128 805
Navier-Stokes 25, 50, 100 5 0.08, ÷1 65

where u : Ω × (0, T ) → R2 is the velocity at time t ∈ (0, T ) of a fluid with kinematic viscosity
ν and density ρ, p : Ω × (0, T ) → R is the pressure and ∂ΩD and ∂ΩN are the Dirichlet and
Neumann boundary conditions, respectively. In our setup we use the finite element method (FEM)
to solve the PDE using mixed discretization: quadratic polynomial for the velocity and linear for
pressure. In our experiment the domain Ω is a rectangle 0.22 × 0.41 with a randomly generated
set of circular obstacles. We start with u0 = 0 and specify a velocity on the left boundary of
u(0, y) = (6(1− e−5t)(0.41− y)y/0.1681, 0), zero on the top and bottom, and zero Neumann on
the right side (g = 0). We solve the system using PolyFEM [47] using dt = 0.08 and backward
differentiation formula (BDF) of order 3 for the time integration.

We sample obstacles into two configurations: a single obstacle, or a set of four. In each case, we
sample the obstacles leaving a margin of 0.05 between each circle, and a margin of 0.25 from the
left and right sides, and 0.05 between the top and bottom. Otherwise, each obstacle is determined
by first sampling a radius, then sampling a center from the valid space, respecting the margins. If
the sampled obstacle is too close to an existing circle, it is discarded and a new sample is drawn.
In-distribution obstacles have radii in the range (0.05, 0.1) and out-of-distribution radii are drawn
from (0.025, 0.05).

5 Numerical experiments

Experimental setup We apply several basic learning methods to the datasets developed in this
work: k-nearest neighbor regressors, a neural network kernel method, several sizes of feed-forward
MLPs, and a variety of CNNs. Details of the architectures and the training protocol are provided in
supplementary material, Appendix B. Each of the neural networks we consider is implemented using
PyTorch [31].

The learning methods considered in this work are each trained on one of the two target task formula-
tions described in Section 3. For derivative-based prediction, the training is conducted supervised
on ground truth snapshots gathered from the underlying models. For each system we randomly
sample initial conditions and each of these is then numerically integrated to produce a trajectory.
Each trajectory includes state samples x as well as target derivatives ẋ used for training. For direct
prediction, we no longer require numerical integration; instead we directly predict the trajectory in a
sequential fashion. In this setting, we approximate f̃θ(x(t)) ≈ x(t+ δt) for a discrete time step size
δt. For the derivative prediction task we report results using the leapfrog integrator. Full results using
other numerical integration schemes are available in the supplementary materials.

We pick the same set of learning methods and apply it to both tasks independently to judge perfor-
mance in each. For many systems the state is divided into position and momentum components:
x ≡ (q, p). For the Navier-Stokes problem, the state x is made up of the flow velocity field, and
the scalar field for pressure. After training, we produce rolled-out trajectories from held-out initial
conditions, either by combining with a numerical integrator in the case of derivative prediction, or
in a directly recurrent fashion in the case of step prediction. Each neural network is instantiated in
three independent copies, each of which is trained and evaluated across all sampled trajectories. We
compute a per-step MSE against a ground truth value, average these per-step MSEs to produce a
per-trajectory error, and record these errors for analysis. Our experiments are designed to test several
aspects of physical simulation. We highlight the most salient ones next, and report more extensive
results in Appendix C.

Training set size In general ML problems, one would expect additional training samples to sys-
tematically improve (in-distribution) evaluation performance. However, Figure 2 illustrates a clear
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Figure 2: Median MSE error with respect to the training set size for each of our system configurations.
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10 7 10 4 10 1

In-distribution MSE

10 7

10 5

10 3

10 1

Ou
t-o

f-d
ist

rib
ut

io
n 

M
SE Spring

10 3 10 1

In-distribution MSE

10 2

10 1

100
Wave

10 2 100

In-distribution MSE

10 2

10 1

100
Spring Mesh

10 2 10 1 100

In-distribution MSE

10 2

10 1

100
Navier Stokes 1 Obst.

10 1 100

In-distribution MSE

10 1

100
Navier Stokes 4 Obst.

knn nn-kernel mlp cnn unet derivative step
mlp-2-2048 mlp-3-200 mlp-4-4096 mlp-5-2048 cnn-9-32 cnn-9-64 cnn-5-32
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Marker shapes distinguish step and derivative prediction, and the dotted line is the identity line.
Outliers for the spring mesh and both Navier-Stokes configurations were removed. Values on both
axes were approximately 1013 for the spring mesh and in the range 102–103 for Navier-Stokes.

saturation of performance on the simplest systems when using neural networks as function approxima-
tors, in contrast with non-parametric KNNs and the kernel method. We attribute this saturation to an
inherent gap between the training and evaluation objectives. While data-driven methods are optimized
to minimise next-step predictions, the final evaluation requires built-in stability to prediction errors.
Including regularisation strategies to incorporate stability, such as noise injection [34], is shown to
help, but not fully resolve this issue.

Out-of-distribution evaluation For simplicity, we only examine the out-of-distribution error for
networks trained on the largest training set size. The added challenge of out-of-distribution samples
varies with the construction of each system. It is possible to get some idea of the difficulty increase
by examining the accuracy penalty for the KNNs, and comparing it to how well the more advanced
models are able to generalize.

Benefits of neural networks for generalization over KNN are visible across several systems in Figure 3,
particularly in the spring system for small MLPs for derivative prediction and nn-kernel in both
cases. The KNN suffers a significant increase in error while these methods produce only somewhat
worse predictions. Benefits are still present, though less pronounced, for the wave system derivative
prediction where neural networks increase in error, but the kernel method and small MLP maintain a
lower absolute error than the KNN. On the Navier-Stokes systems none of the methods suffers an
increase in error for out-of-distribution evaluation. The change in radius distribution for the obstacles
did not pose an additional challenge sufficient to produce a measurable change in error distribution.
We attribute this to low dimension of the initial condition space.

Step and derivative prediction The step and derivative prediction instances of each learning
problem lead to different accuracy from the learning methods we test. While most physical systems
are naturally described in terms of their derivatives through corresponding ODEs/PDEs, data-driven
simulations also offer the alternative of bypassing this differential formulation and predict the next
state directly. Such ‘cavalier’ approach avoids the compounding error amplification effects across
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Figure 4: Median MSEs for derivative vs. step prediction on the same evaluation set. Results are
displayed for each of our system configurations. The dotted line is the identity line.

integration steps, at the expense of sample efficiency. Figure 4 illustrates these tradeoffs across our
systems.

An important example of this effect is the performance of CNNs on the spring mesh system (Figure 8
in the Appendix). When working through a numerical integrator and performing derivative prediction
they produce the lowest error of all methods tested, but following the same training protocol for step
prediction these architectures produce high errors, or are unstable. This case is likely an interaction
of the architecture with the specific learning task. For the spring mesh, step prediction requires
outputting the position of the particle which requires manipulating its global coordinates, while
derivative predictions allow the network to more easily act locally and compute only a relative motion
for the particle. The derivative prediction task better takes advantage of the spatial invariance of the
CNNs. This difference in performance reflects the importance of tailoring architectures to the specific
task, and some potential for neural network architectures to benefit from incorporating knowledge of
a system’s behavior.

System and dataset complexity Several trends we observe correlate with the difficulty of learning
to simulate a system, and the variation in its behavior across the training and evaluation samples. This
is generally a combination of the system’s state dimension, and variation in its behavior, approximated
by the dimension of the distribution from which initial conditions are sampled.

This is particularly visible in Figure 5 in the performance of the KNN methods, and, in many cases,
the performance of simpler methods such as the small MLPs. On the simpler systems, such as the
spring and wave, the KNNs generally perform well because even though the wave system has a
relatively large state dimension of 125, like the spring its initial condition is sampled from only two
parameters and its behavior can be readily predicted from these. The Navier-Stokes system with
a single obstacle is another instance of this sort of behavior: the KNN is readily able to reproduce
flows it has not seen because a sampling of 100 obstacle positions is such that an evaluation sample is
close to a trajectory seen at training time. Therefore, small MLPs and the kernel method produce
similar performance. When the difficulty is increased by sampling four obstacles, the KNN and MLP
performances suffer, and larger networks such as the u-net are needed to maintain approximately the
same performance.

Choice of numerical integrator For our derivative prediction tasks we combine our trained meth-
ods with three explicit integrators with orders 1, 2, and 4. In most of our systems these produce
at most a small increase in accuracy, holding all other training and evaluation parameters equal.
However on the Navier-Stokes system the higher order integrators produce somewhat higher errors,
particularly for the u-net and the MLPs. This appears related to the approximated derivatives used for
training this system. The learned derivatives produce some small deviations which are compounded
when combining multiple derivative samples.

Computational overheads Another important aspect to consider when applying learning methods
to physical simulation problems is the time required to compute each step, and the computational
overheads introduced by the lack of knowledge of the true system physics. With standard numerical
integration methods, it is generally possible to improve the quality of generated trajectories by
decreasing the size of the time step used during integration. We take advantage of this in order to
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Table 2: Time comparison for derivative prediction against baseline numerical integrators

System Architecture Euler Leapfrog RK4

Time Ratio Scaling Time Ratio Scaling Time Ratio Scaling

Spring

knn 367.0 1× 405.8 16× 311.3 64×
nn kernel 180.7 1× 198.6 1× 173.3 1×
mlp-2-2048 185.8 1× 191.6 16× 177.7 64×
mlp-3-200 237.6 1× 237.5 16× 227.2 64×
mlp-5-2048 473.8 4× 369.6 64× 360.9 128×

Wave

knn 24,102.7 8× 16,945.1 256× 16,132.0 256×
nn kernel 35.3 8× 22.3 256× 19.9 256×
mlp-2-2048 25.4 8× 16.5 256× 14.2 256×
mlp-3-200 31.0 16× 19.7 256× 17.8 256×
mlp-5-2048 60.5 16× 38.0 256× 34.6 256×

Spring Mesh

knn 708.6 8× 626.1 128× 690.4 256×
nn kernel 5.3 8× 4.4 128× 4.8 256×
mlp-2-2048 3.0 8× 2.6 128× 2.8 256×
mlp-3-200 3.4 8× 3.2 128× 3.4 256×
mlp-4-4096 7.8 16× 7.1 128× 7.7 256×
mlp-5-2048 7.1 8× 6.2 128× 5.3 256×
cnn-9-32 11.0 2× 10.5 32× 11.3 64×
cnn-5-32 7.4 1× 9.2 32× 7.3 64×

estimate the time overheads of our learning methods relative to our baseline numerical integrators at
approximately corresponding error levels.

We numerically integrate each system at time step sizes scaled by powers of two. For each trajectory in
the derivative prediction setting, we find the smallest scaling factor at which the numerical integrator
exceeds the learning method’s error at their final shared time step, approximating the factor by which
numerical integration can be made faster until it begins to underperform the learned method.

Table 2 reports the results of these experiments. For each numerical integrator, the “scaling” column
reports the most common scaling factor found for each trajectory. The “time ratio” column represents
the learned method’s evaluation overhead (median times, counting only per-step network evaluation
costs, not numerical integration or data transfers). Note that the numerical integrator makes fewer
steps than the learned method so the overall trajectory time must be further adjusted by the scaling
factor.

In general, the neural networks are slower per-step by one or two orders of magnitude. KNNs are
slower by significantly larger factors, particularly for the wave system. This is likely partially due
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to the default scikit-learn KNN implementation used, and due to the large size of the wave system
training sets (large state dimension and large number of training snapshots). Scaling factors increase
with the order of the integrator as higher-order integrators are more tolerant of large step sizes and
maintain low error.

It is likely that these overheads could be reduced with more optimized implementations of both the
numerical integrators and learned methods. The derivative prediction task is also constrained by its
need to interact with the numerical integrator. In this setting the learned methods cannot be expected
to outperform the quality of the solutions generated by the true system derivatives. This reflects a
penalty resulting from a lack of knowledge of the true underlying system, and a penalty for learning
from observations in this case. Step prediction without involving the numerical integrator potentially
avoids some of these constraints, if learning is successful.

6 Conclusions and limitations

The results in this work illustrate the performance achievable by applying common machine learning
methods to the simulation problems in our proposed benchmark task. We envision three ways
in which the results of this work might be used: (1) the datasets developed here can be used for
training and evaluating new machine learning techniques in this area, (2) the simulation software
can be used to generate new datasets from these systems of different sizes, different initial condition
dimensionality and distribution; the training software could be used to assist in conducting further
experiments, and (3) some of the trends seen in our results may help inform the design of future
machine learning tasks for simulation.

For the first and second groups of downstream users, we have made available the pre-generated
datasets used in this work, as well as the software used to produce them and carry out our experiments.
These components allow carrying out the measurements we have made here, and permit further
adjustments to be made. Documentation on using the datasets and the software is included in
Appendix D.

For the third group, we highlighted a few trends that suggest useful steps to take in developing new
problems and datasets in this area. First, we advise including several simple baseline methods when
designing new tasks. In particular the inclusion of standard numerical integrators (for derivative-type
problems) and KNNs are useful to evaluate the difficulty of the proposed task. Specifically, KNNs
are useful for examining the performance achievable by memorizing the training set, and are thus
witnessing an appropriate design of data distribution that captures the true high-dimensionality of
the prediction task. As an example, in the Navier-Stokes examples some task formulations may
inadvertently be simple to memorize, even if the complexity of the system itself may not immediately
suggest it. The numerical integrators are likewise useful as baselines both to ensure that the derivative
learning is feasible even when achieving no error in predictions, and also to evaluate the penalty
in accuracy which is incurred by operating without access to the true physics. We believe that in
light of these observed trends, including baseline methods such as standard numerical integration
schemes and simple learning methods such as the KNN is important in understanding tasks in this
area. Including these assists in experiment design by helping to calibrate the difficulty of a target task.

Limitations While our benchmark provides actionable conclusions on a wide array of simulation
domains, it is currently focused on temporal integration, and as such it does not cover important
settings in scientific computing. For instance, we do not currently include an instance of a surrogate
model, which could provide different tradeoffs benefiting ML models. Additionally, we have
focused on two setups for data-driven simulation (differential snapshot prediction and direct snapshot
prediction), but other alternatives exist that might mitigate some of the shortcomings we observed; for
instance by considering larger temporal contexts (as in [4]), as well as enforcing certain conservation
laws into the model [8, 4]. Finally, while we report some measurements of timings and relative
computational overheads, there are other dimensions to the time-accuracy tradeoff which remain to
be explored and further software optimizations are most likely possible.
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A Numerical integration schemes

We briefly review the time integration schemes that we consider in this study: forward Euler (FE),
leapfrog (LF), Runge-Kutta 4 (RK4), and backward Euler (BE). Other sources also discuss these
integration schemes, for example Süli and Mayers [49], Hairer et al. [12], Hairer and Wanner [11].

Time integration with the explicit Euler method leads to

xk = xk−1 + δt f(xk−1),

where δt > 0 is the time step size and f is the right-hand side function. The explicit Runge-Kutta 4
scheme is

xk = xk−1 +
δt

6
(h1 + 2h2 + 2h3 + h4) ,

where

h1 = f(xk−1) h2 = f(xk−1 + δt /2h1)

h3 = f(xk−1 + δt /2h2) h4 = f(xk−1 + δt /2h3)

for k = 1, . . . ,K. For leapfrog integration we separate the components of the state x = (q, p) and
f(qk, pk) = (q̇k, ṗk) and compute:

pk+1/2 = pk +
δt

2
ṗk

qk+1 = qk + q̇(qk, pk+1/2) δt

pk+1 = pk+1/2 +
δt

2
ṗ(qk+1, pk+1/2)

where the notation q̇(qk, pk+1/2) denotes the q̇ component of f(qk, pk+1/2) and analogously for ṗ.

We also consider the implicit Euler method, which is given by the potentially nonlinear equation

xk − δt f(xk) = xk−1

that is solved in each time step k = 1, . . . ,K.

We tested another implicit method, BDF2. This is a second order multistep method with the formula
given by

xk −
4

3
xk−1 +

1

3
xk−2 =

2

3
δtf(tk, xk)

To kickstart this method, which requires two steps of history, we initially do one step of backward
Euler. This maintains the stability and error properties of the method.

B Learning methods

B.1 Training

Training for both step and derivative problem formulations is done with the Adam [17] optimizer for
all neural networks, except the neural network kernel which uses standard stochastic gradient descent
with learning rate 0.001 and weight decay 0.0001. With the Adam optimizer, no weight decay is
used, and most networks use a learning rate of 1× 10−3. Exceptions to this are: CNNs, MLPs and
the u-net for Navier-Stokes, and CNNs and MLPs on the spring mesh. For both of these systems the
CNNs and MLPs use a learning rate of 1× 10−4 and the u-net uses 4× 10−4.

On the Navier-Stokes system we also perturbed each batch of training data with normally-distributed
noise with a variance of 1 × 10−3. For step prediction the previous step was corrupted and the
subsequent step left uncorrupted. For derivative prediction, the derivatives were updated to correct
for the noise (i.e. x̃ = x+N =⇒ ˜̇x = ẋ−N where N is the sampled noise). This is inspired by
the approach taken in Pfaff et al. [34] and we found it to improve stability for neural networks on the
Navier-Stokes system.

The number of training epochs varies based on the target system. On spring, wave, and spring
mesh the networks are trained for 400, 250, 800, and 800 epochs, respectively. When reporting
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evaluation errors below, we average errors over all time steps of each randomly-sampled trajectory in
the held-out evaluation set.

We train three independent copies of each neural network. When evaluating these, each test trajectory
is evaluated with each duplicate neural network and the performance results are collected and pro-
cessed together. Variance in plots of these results is produced both by the differences in performance
for the three duplicated neural networks, and differing performance across the sampled evaluation
trajectories.

B.2 KNN regressor

We use a k-nearest neighbors regressor to predict the value of the state derivatives, using k = 1.
With this method f̃θ(x̃

(i)
k ) finds the closest matching point in the training set, and uses that point’s

associated derivatives as its approximation, ˜̇x
(i)
k in the case of derivative prediction. For direct step

prediction, the KNN finds the closest point and returns the next time step from that point’s trajectory in
the training set. We use the KNN implemented in scikit-learn [32], along with its default Minkowski
metric.

B.3 Kernel methods

Kernel methods provide a nonparametric regression framework [48]. In this benchmark we consider
dot-product kernels of the form k(x, x′) = η(〈x, x′〉), which can be efficiently implemented in their
primal formulation using random feature expansions [36] via the representation

k(x, x′) = Ez∼ν [ρ(〈x, z〉)ρ(〈x′, z〉)] ≈ 1

L

∑L

l=1
ρ(〈x, zl〉)ρ(〈x′, zl〉) ,

where ν is a rotationally-invariant probability distribution over parameters and zl ∼ ν iid. The
resulting maps x 7→ ρ(〈x, zl〉) are random features, associated with a shallow neural network with
‘frozen’ weights. While further choices of kernel may be considered in the future, dot-product kernels
have flexible approximation properties and are easily scalable [40].

In our experiments, we use ρ = ReLU and L = 32768 random features and train using kernel ridge
regression. We do not apply this approach to our Navier-Stokes system as its large state dimension
makes achieving a sufficiently large set of random features infeasible.

B.4 Deep networks

MLPs We apply simple multilayer perceptron (MLP) networks in a variety of sizes. The configura-
tion of the MLPs used varies with the target system. In particular, we divide our two systems into two
classes: those with smaller state dimension (the spring and wave systems), and those with a larger
state dimension (the spring mesh, and the Navier-Stokes problem). We describe these architectures in
terms of “depth” and “width.” The depth denotes the number of fully-connected operations in the
MLP, so that for a depth of d there are d− 1 hidden layers. The width is the size of each hidden layer;
the input and output dimensions are fixed by the state dimension of the system. The MLPs use tanh
activations.

For the small systems we use three MLP architectures: (1) a depth of 2 and a hidden dimension
(width) of 2048, (2) a depth of 3 and width of 200, and (3) a depth of 5 and a hidden dimension of
2048. For the large systems, we use two architectures: (1) a depth of 4 and width of 4096, and (2) a
depth of 5 and width of 2048. The 10× 10 spring mesh merges both sets of MLP architectures.

For the Navier-Stokes and spring mesh systems, the MLP gets as input both the current network state,
and a one-hot mask indicating which points in the discrete simulation space are “fixed,” meaning
either a boundary point, a point in an obstacle, or an immovable, fixed particle.

CNNs We also test several feed-forward convolutional neural networks. These use ReLU activa-
tions and we specify their architectures by a kernel size, and internal channel count. We use these
simple CNNs only on the larger systems: the spring mesh and the Navier-Stokes. For both of these
systems we test two CNN architectures: both have a kernel size of 9× 9 and, respectively, 32 and
64 channels internally. The number of input channels is fixed by the system. Both systems have
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five: for the spring mesh, two channels each for position and momentum; and for the Navier-Stokes
system two channels for velocity, one for pressure field, and two more for one-hot masks highlighing
boundaries and the obstacles.

U-net Finally, we implement another convolutional network—only for the Navier-Stokes system—
a u-net following the architecture tested in Thuerey et al. [51]. That work applied this architecture
to another Navier-Stokes problem, predicting a single step of flow about an airfoil profile. Here we
adjust the input and output channels of this architecture, and test on our Navier-Stokes problem,
performing several recurrent steps of derivative or step prediction around circular obstacles.

The architecture itself consists of seven convolution operations on both the downsampling and
upsampling side. The convolutions have a mix of 4×4 and 2×2 kernels, and have strides of two. The
network includes skip connections common to u-net-style architectures. With each downsampling,
the number of channels is doubled starting from an internal channel count of 64. Our Navier-Stokes
system has a grid size of 221× 42. To accommodate the amount of downsampling in this architecture
we first upsample to 256× 256 with bilinear interpolation.

B.5 Other experimental details

Our experiments were conducted on NYU’s research HPC system, Greene. Neural networks were
predominantly trained using NVIDIA RTX8000 GPUs, with a few runs on V100 GPUs. CPU-based
runs used Intel Xeon Platinum 8268 CPUs. Our neural networks required, on average, approximately
two hours to train and we consumed in total approximately 1785 hours of GPU time, across all our
experiments, including some early experimental and exploratory runs not discussed here. Our dataset
generation and non-neural network evaluation runs, which do not use GPUs, consumed approximately
2270 core-hours of CPU time, again including some exploratory runs. Datasets were generated
using CPUs only. Neural network training and evaluation passes ran using GPUs through PyTorch.
Evaluations and trainings of baseline numerical integrators and KNNs ran on CPU only.

C Experiment results

To illustrate the error distribution for each neural network over the evaluation sampling distribution,
we plot the errors as a box plot. Figures 6, 7, 8, 9, and 10 show these error distributions, one plot for
each system configuration.

Each plot is divided into two panes: one for derivative, and the other for step prediction. The datasets
and training protocols followed are identical between the two task formulations. In each, the boxes
are grouped first according to learning method, labeled at the bottom on the x-axis. For derivative
prediction, the boxes are assembled into sub-groups according to the integrator applied (forward
Euler/FE, leapfrog/LF, RK4, backward Euler/BE, or BDF2). These integrators are also indicated by
the color of the box. In each group, from left to right the boxes become darker; this indicates the
increasing training set size (see Table 1). The final box is hatched; this shows the evaluation results
on the out-of-distribution set for the network exposed to the largest training set.

The boxes illustrate the distribution over per-trajectory average errors. For each system configuration
(a system, derivative/step prediction, learning method, integrator, and particular training set size)
we compute the per-step MSE against a ground truth result; these per-step errors are averaged to
produce an error estimate for the trajectory. We also train three independent instantiations of each
neural network architecture and evaluate each of these on all trajectories independently. These three
repetitions of each trajectory for each network are included as part of the distribution in the box
plot. The KNNs and numerical integrators are run a single time each. The errors of these different
sampled trajectories form the distribution summarized by the box plot. The variance in the results
is produced by a combination of the training results for the three copies of each network, and by
the varying performance on each of the sampled evaluation trajectories. These plots were generated
using Matplotlib’s [14] box plot routines. The box itself ends at the first and third quartiles of the data
and the line in the middle is placed at the median of the data. The whiskers extend past the box by
1.5 times the size of the box. Circles are plotted for outlier points which lie outside the range of the
whiskers. The plots here have a logarithmic y-axis to accommodate the wide range of error values,
thus the boxes do not appear symmetric.
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Figure 6: Error distribution for spring system for multiple training set sizes as well as out-of-
distribution results.
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Figure 7: Error distribution for wave system for multiple training set sizes as well as out-of-distribution
results.
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Figure 8: Error distribution for 10× 10 spring mesh system for multiple training set sizes as well as
out-of-distribution results.
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Figure 9: Error distribution for Navier-Stokes system for multiple training set sizes, and out-of-
distribution results. Each trajectory has a single randomly-positioned obstacle. Note that this system
does not have results for plain numerical integration.
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Figure 10: Error distribution for Navier-Stokes system for multiple training set sizes, and out-of-
distribution results. Each trajectory has four randomly-positioned obstacles.
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C.1 Weighted errors

In most cases, due to accumulated errors, per-step errors increase as numerical integration proceeds
away from the initial condition. To compensate for this trend and in an effort to explore the impact
of early vs. late step errors, we include several plots of error distributions for which each time
step’s MSE has been weighted. To produce these weights, each step’s MSE is scaled by a value
1/ exp(ln(102) · pt) where pt ∈ [0, 1] is a scalar representing the proportional time of the step (zero
at start of the trajectory, and one at the end). This produces an exponential decay from the initial steps
to the end and reduces the contribution of the final steps by two orders of magnitude. These scaled
MSEs are then averaged for each trajectory and each neural network retraining as in the plots above.

The results of these distributions for the Navier-Stokes system—both single- and multi-obstacle
forms—are included in Figure 11 and Figure 12 below. A change in the relative behavior of the
learned methods is most visible in the step prediction results in Figure 12. Without the weighting,
many of the learning methods perform comparably to the KNN; however when emphasizing early
steps, these methods demonstrate improved errors relative to the re-weighted KNN errors. This
indicates that the learned methods outperform the accuracy of the KNN on the early steps, but are
somewhat unstable as the simulation progresses.

For other systems, we did not observe significant changes in relative performance of the learned
methods. MSE distributions shifted, but roughly in proportion to each other. This represents a greater
general stability in the learned methods on other systems, likely reflecting the more predictable
long-term behavior of the other systems. The spring system is periodic, the wave system is stable
over time, and the spring mesh system has an energy decay term which simplifies and stabilizes
its long-term evolution. As a result, in most cases, successfully learning the target task permits
the learned methods to maintain some stability over time, which decreases the relative effect of the
per-step weighting.
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Figure 11: Error distribution for Navier-Stokes system for multiple training set sizes, and out-of-
distribution results. Each trajectory has a single randomly-positioned obstacle. Per-step errors are
weighted to decrease the contribution of later time steps with higher errors.
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Figure 12: Error distribution for Navier-Stokes system for multiple training set sizes, and out-of-
distribution results. Each trajectory has four randomly-positioned obstacles. Per-step errors are
weighted to decrease the contribution of later time steps with higher errors.
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D Dataset and software documentation

This section contains information documenting the contents, structure, and intended uses of the
datasets used in this work.

D.1 Overview

The datasets used in this work consist of snapshots gathered from numerical simulations of dynamical
systems. These simulations were carried out as part of this work and the software used to generate
them as well as stored outputs are made available for use and further modification. The software
source code is available under the MIT license, and the stored data is available under a Creative
Commons Attribution 4.0 license (CC BY 4.0).

Simulations are carried out for four system types, described in greater detail in the main work, above:
(1) spring, (2) wave, (3) spring mesh, and (4) Navier-Stokes. Each simulation’s outputs are intended
to be used for developing and testing machine learning methods for numerical simulations. They
include snapshots of each system’s state across several data channels, as well as time derivatives,
either of which can be used as learning targets.

An archival copy of the stored data and software source code has been placed in the NYU Faculty
Digital Archive (https://archive.nyu.edu/handle/2451/63285) for long-term storage. The
source code is also available on GitHub at https://github.com/karlotness/nn-benchmark.

The stored data for each simulation type is stored in two components: a JSON file containing
metadata for the particular simulation, and an associated uncompressed NumPy .npz-formatted
file containing the numerical results. Details of the contents of these files are provided below. Our
experiments were carried out in Python and these files are readable using the Python standard
library’s json module and the widely-used NumPy library. For other languages or environments, the
.npz files are ZIP archives containing NumPy .npy files whose format is documented by NumPy
https://numpy.org/doc/stable/reference/generated/numpy.lib.format.html.

D.2 Stored format

Each dataset is a directory storing two files: “system_meta.json” and “trajectories.npz”. The .npz
file contains several NumPy array records with various shapes and data types. The names of each
of these records are referenced in the JSON file (documented below). When loading the data from
these systems these names should be treated as opaque and always sourced from the JSON-formatted
metadata. In some cases, the same name is referenced several times for purposes of data deduplication.
The .npz file is used for bulk storage of numerical data, separated from general metadata.

The simulation snapshots are divided into trajectories, each defined by a particular initial condition
from which a series of snapshots is taken at several later time steps, by numerical simulation. Each
trajectory is divided into several “channels” of data, in particular separating various state quantities,
state time derivatives, and masks marking special spatial locations for that trajectory, particular to that
system. The JSON file also contains trajectory-level parameter information, and settings for global
system-level parameters.

The stored data sets are intended to be used to test against the same snapshots used in this work,
without needing to configure the dependencies necessary to generate the snapshots. The process of
running the simulations and reproducing the tests described in this work is discussed in a separate
section, below.

D.2.1 Top-level object contents

The JSON-formatted metadata file contains important information used when loading these data sets.
The contents of certain sections vary by simulated system to reflect differences in relevant parameters
and other generic data. However, each has a similar global structure. Each JSON file contains a
top-level object with the same four keys: system, system_args, metadata, and trajectories.

The value of system is a string identifying which system is stored in that dataset. Its value will be
one of: “spring”, “wave”, “spring-mesh”, or “navier-stokes”.
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The value of system_args is another object storing the parameters which were passed to the
simulation code to generate these snapshots. These contents vary per system, but may be useful in
understanding what settings were configured for the simulators.

The system_args object stores several key-value pairs which vary by system reflecting different
global parameters which apply to every trajectory in the set. However it also always contains a
key system_args.trajectory_defs whose value is an array of objects which contain parameters
which may vary per-trajectory.

In addition to parameters in these objects which vary by system, several are always present with the
same meaning: num_time_steps, time_step_size, and subsample. The field num_time_steps
is an integer which sets the number of snapshots which are to be generated, including the first snapshot
which contains the initial condition. The parameter time_step_size is a floating-point value which
sets the time difference between each stored snapshot. The physical effect of the time step varies per
system. The parameter subsample is an integer (1 or larger) which allows generating the dataset on
a finer time grid than is reflected in the stored trajectory. Values greater than 1 cause the simulator
to run at a time step of time_step_size/subsample for num_time_step · subsample steps, and
to discard intermediate snapshots to produce an output at an un-subsampled stride. This allows
generating data sets at a higher simulation quality while keeping the same end time and desired
number of steps.

The metadata key stores an object with key-value pairs providing system-dependent information on
particular global parameters.

The trajectories key contains an array of objects giving information about the stored trajectory
data. These are likely to be the most useful when loading the snapshots as this object also provides a
mapping from each system’s data channels to the array in the dataset’s “trajectories.npz” file.

The objects in the trajectories array each contain system-dependent per-trajectory metadata
which will be discussed below, but as elsewhere several entries are always present. The first is a
name entry which gives a human-readable name for the trajectory. The keys num_time_steps and
time_step_size have the same value and function as discussed above. The timing entry contains
an object with information on timing of the data generation process. At present this object has one
entry of its own: traj_gen_time, which gives the time to generate this trajectory measured in
seconds.

Beyond these, each object in the trajectories array contains a key field_keys storing an object.
This object has keys for each data channel in this system whose values are strings giving the name
of a record stored in the “trajectories.npz” file. These mappings are the best way to determine the
correspondence between a trajectory in the dataset and the stored bulk arrays which make up its
snapshot data. The names used for keys follow a general pattern, usually prefixed with the name of
the trajectory discussed above, but they should be treated as opaque and always sourced from the
JSON files. This mapping is in some cases used to reduce duplication and some array records may be
referenced multiple times.

Next, we discuss per-system variation in the overall structure listed above, describing the metadata
components and data channels which are specific to each system.

D.2.2 Spring

This system is identified by a system entry with value “spring”.

Under system_args this system has no additional global parameters, only per-trajectory parameters
in the system_args.trajectory_defs array. These per-trajectory objects have a system-specific
initial_condition attribute which is a sub-object with attributes q and p, both of which are
floating-point, giving the initial values for the position and momentum of the simulated spring.

The metadata object contains one attribute, n_grid for consistency with the wave system, below.
Its value is always the integer 1.

The objects in the trajectories array contain only the standard values defining the number of time
steps and the name of each trajectory. The object field_keys defines name mappings for the data
channels of this system described below. Some additional details for each channel are included in
Table 3.
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The channels “q” and “p” give the position and momentum of the spring, respectively. Both values
evolve in the one-dimensional space of the system. Channels “dqdt” and “dpdt” are time derivatives
of these two quantities. The vector “t” gives the time of each snapshot in the trajectory.

Table 3: Data channels for the Spring system. Nt denotes the number of time steps in the trajectory.
Channel name Shape Data type

q (Nt, 1) float64
p (Nt, 1) float64
dqdt (Nt, 1) float64
dpdt (Nt, 1) float64
t (Nt) float64

D.2.3 Wave

This system is identified by a system entry with value “wave”.

Under system_args, the wave system has two global parameters: n_grid and space_max. The
parameter n_grid controls how many points are sampled on a regular, one-dimensional spatial
grid covering the interval [0, space_max], with a periodic boundary condition. space_max is a
floating-point value controlling the end point of this interval.

System-specific per-trajectory elements in system_args.trajectory_defs are wave_speed,
start_type, and start_type_args. The wave_speed parameter is a floating-point value control-
ling the distance the wave pulses travel in a unit of time.

The other two parameters control the shape and position of the initial pulse. start_type is a string
parameter selecting the type of pulse to form; at present only “cubic_splines” is supported. The value
of start_type_args is an object with additional parameters which affect the starting pulse. For a
cubic spline these are: height, width, and position. Each of these is a floating-point value which
scales the height and width of the pulse, and selects its center point in the spatial interval.

The metadata object repeats the values of the n_grid and space_max attributes described above.

Each object in the trajectories array contains the trajectory’s value of the wave_speed parameter
discussed above. There are no further system-specific entries in these objects, other than the data
channels. Some attributes of these are given in Table 4.

The channels “q” and “p” give the position/height and vertical velocity of the wave at each grid point,
respectively. The channels “dqdt” and “dpdt” are time derivatives of these quantities. The vector “t”
gives the simulation time for each snapshot in the trajectory.

Table 4: Data channels for the Wave system. Nt denotes the number of time steps in the trajectory,
and Np denotes the number of points in the spatial grid, determined by n_grid.

Channel name Shape Data type

q (Nt, Np) float64
p (Nt, Np) float64
dqdt (Nt, Np) float64
dpdt (Nt, Np) float64
t (Nt) float64

D.2.4 Spring mesh

This system is identified by a system entry with value “spring-mesh”.

Under system_args, this system has a global parameter vel_decay which is a floating-point
value configuring the damping applied to the velocity of each mass. Per-trajectory elements in
system_args.trajectory_defs objects are particles and springs, which are both arrays of
objects.
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Each object in particles has three attributes: is_fixed, a boolean indicating whether this particle
is fixed in place and immovable; mass, a floating-point value for the particle’s mass; and position,
an array of two floating-point values giving the x and y coordinates of the particle’s initial position.
The order of the particles is significant and their index in this array is their index referenced in
springs, below.

The objects in the springs array have four attributes: a, b, rest_length, and spring_const. The
values of a and b are integers specifying which two particles this spring connects in the order of the
objects in the particles array. The springs are undirected so the order of a and b is not important.
The values rest_length and spring_const are floats giving the rest length of the spring and its
spring constant, respectively. In this work, the edges described in the array are one-hop nearest
neighbors in each axis-aligned direction, and are the edges of the regular, square grid.

The metadata object has attributes repeating some values from system_args: edges is an array
of objects repeating springs as described above, and particles repeats the corresponding array,
both sourced from the first entry in system_args.trajectory_defs.

Beyond these in metadata are: n_dim, giving the spatial dimensions in which the particles move
(in this work, always 2); n_grid, repeating the same value; n_particles, giving the length of the
particles array; and the vel_decay value repeated here as well.

There are no system-specific entries in the objects in the trajectories array, other than the data
channels. Some attributes of each of these are given in Table 5.

The channel “q” and “p” give the per-particle position and momentum, respectively. These values are
provided in both x and y components for the two-dimensional space. The channels “dqdt” and “dpdt”
give time derivatives for these quantities.

The channel “t” provides the simulation time at which each snapshot was taken.

The “edge_indices” gives the locations of the edges (the springs) between each particle. The integers
in this channel index in the same order as the per-particle Np dimension in the other channels. The
values in this channel are directed so each spring is repeated twice, once with its two end indices in
both orders.

The array for “masses” gives the mass of each particle in the same order as the Np dimensions in
other channels.

The channel “fixed_mask” is a boolean mask with true for each particle which is fixed in place.
The channels “fixed_mask_q” and “fixed_mask_p” are the same, except with repeated values to be
suitable for broadcasting.

Table 5: Data channels for the Spring-Mesh system. Nt denotes the number of time steps in the
trajectory, Np denotes the number of particles, Ne denotes the number of edges.

Channel name Shape Data type Notes

q (Nt, Np, 2) float64
p (Nt, Np, 2) float64
dqdt (Nt, Np, 2) float64
dpdt (Nt, Np, 2) float64
t (Nt) float64
edge_indices (2, Ne) int64
masses (Np) float64
fixed_mask (Np) bool
fixed_mask_q (Np, 2) bool
fixed_mask_p (Np, 2) bool Alias: “fixed_mask_q”
extra_fixed_mask (Np) bool Alias: “fixed_mask”

D.2.5 Navier-Stokes

The Navier-Stokes system is identified by a system entry with value “navier-stokes”.
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Under system_args, this system has a global parameter grid_resolution which is a floating-point
value, giving the space stride of the regular grid on which the solutions are sampled. Per-trajectory
elements in system_args.trajectory_defs objects are viscosity and in_velocity, which
are parameters passed to the FEM solver giving the viscosity of the fluid and the velocity of the
incoming flow, respectively. Both are floating-point values.

The objects in system_args.trajectory_defs also have a parameter mesh which describes the
location of obstacles in the simulated space. Each entry in the array is an object with two keys:
radius, a single floating point value for the radius of the circular obstacle, and center, an array of
two floating point values giving the x and y position of the center of the circle. These values allow
placing multiple obstacles in the simulation space and impact the mesh which is generated and used
by the external finite element solver.

The metadata entry for this system contains two values: grid_resolution and viscosity, a
copy of the same values as described above. The viscosity value is taken from the first trajectory
entry.

The objects in the trajectories array have extra global parameter values: in_velocity, and
viscosity, which are as discussed above. Their field_keys entries have mapped names for
the data channels listed in Table 6. The “q”- and “p”-related channels are present as aliases for
consistency with other systems.

The core values for this system are the “solutions” and “pressures” channels which store the flow
velocity of the fluid and the pressure field, respectively. The two channels for the solutions are the x
and y flow velocities.

Separately the “grads” and “pressures_grads” channels store approximated time derivatives computed
from neighboring time steps from the FEM solver’s output.

The “t” channel is a vector giving the simulation time of each snapshot.

The channels “vertices” and “edge_indices” identify the spatial position and neighboring grid points
for each sample point, respectively. “vertices” gives the x- and y-coordinates as separate channels,
and “edge_indices” stores indexes into the per-particle dimension Np of each spatial value. The edges
described in the array are one-hop nearest neighbors in each axis-aligned direction, the edges of the
regular, square grid.

The “fixed_mask” channels are boolean masks for the sample points, indicating which of them form
part of the boundary or an obstacle. “fixed_mask” itself stores a value of true for points which are
either a boundary or an obstacle. The arrays “fixed_mask_solutions” and “fixed_mask_pressures”
store the same, just repeated to match the dimensions of the corresponding data channels, suitable for
broadcasting and masking or other purposes. The “extra_fixed_mask” is like “fixed_mask” except
that it provides boolean per-particle masks for two kinds of points. The last dimension of this mask
separates the two sub-channels, one for each type of mask. Mask 0 has true for the obstacles and
the boundaries, while mask 1 has true only for the obstacles.
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Table 6: Data channels for Navier-Stokes system. Nt denotes the number of time steps in the
trajectory, and Np denotes the number of points in the regular grid. Np = 9282 for the datasets in
this work.

Channel name Shape Data type Notes

solutions (Nt, Np, 2) float64
pressures (Nt, Np) float64
grads (Nt, Np, 2) float64
pressures_grads (Nt, Np) float64
t (Nt) float64
q (Nt, Np) float64 Alias: “pressures”
p (Nt, Np, 2) float64 Alias: “solutions”
dqdt (Nt, Np) float64 Alias: “pressures_grads”
dpdt (Nt, Np, 2) float64 Alias: “grads”
edge_indices (2, Np) int64
vertices (Np, 2) float64
fixed_mask (Np) bool
fixed_mask_solutions (Np, 2) bool
fixed_mask_pressures (Np) bool
fixed_mask_q (Np) bool Alias: “fixed_mask_pressures”
fixed_mask_p (Np, 2) bool Alias: “fixed_mask_solutions”
extra_fixed_mask (Np, 2) bool

D.3 Data generation

The section above discussed how to make use of the stored data sets. Here we document the process
used to configure these data sets and invoke the simulators to produce the snapshots. The steps
used here cover the very similar process of running the neural network training and evaluation
phases. Following the steps here on the run descriptions we have distributed allows recreating the
experimental setup used in the report above.

D.3.1 Dependencies

This section includes instructions for configuring the software environment.

While the software we have produced for this work is available under an open source license, the
required dependencies are made available under a variety of other licenses. These include some
proprietary components such as NVIDIA’s CUDA libraries, and Intel’s Math Kernel Library (MKL).
Review the licenses of the required dependencies before installing or running.

Anaconda The majority of software dependencies can be installed using the Conda package
management tool (https://docs.conda.io). The root directory of our software project contains
an environment definition in the file “environment.yml”. Using this file will create an environment
nn-benchmark containing the Python dependencies needed for this project. If you are obtaining
these dependencies from another source, the contents of this file include the names of the packages
which will be required.

PolyFEM In addition to the Python libraries needed for the project, if you wish to generate
new Navier-Stokes trajectories, you will also need a copy of PolyFEM. The source code for this
software can be obtained from the PolyFEM GitHub repository (https://github.com/polyfem/
polyfem/). This portion of the project requires a copy of PolyFEM linked with Intel’s Math Kernel
Library (MKL). To do this, locate the root directory of your MKL installation and build PolyFEM
from the root directory of its source code with:

mkdir build
cd build
MKLROOT=/path/to/mkl/root/ cmake .. -DPOLYSOLVE_WITH_PARDISO=ON -DPOLYFEM_NO_UI=ON
make
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This will produce a binary PolyFEM_bin, required to produce new Navier-Stokes trajectories. This
binary must either be placed in the directory from which you will run the simulation software, or you
should specify the parent directory of this binary in the environment variable POLYFEM_BIN_DIR so
that it can be located.

Singularity container (optional) It is possible to run the software directly in a manually-created
Anaconda environment. However, for convenience we include a build definition file for a Singularity
container (https://singularity.hpcng.org). Building a .sif container from this definition
will produce an environment suitable for running the software, including PolyFEM and the required
environment variables. Consult the Singularity documentation for more information on building these
containers in your computing environment.

If you choose to use the Singularity container, either place it in the directory from which you will
run the simulation software or provide the path to the resulting nn-benchmark.sif file’s parent
directory in the environment variable SCRATCH. The run management scripts (described below) will
look in this directory for the container and use it to run jobs if it is found.

D.3.2 Run descriptions

The software used to generate the datasets, train networks, and perform evaluations takes arguments
from JSON files, specified on the command line. This makes it possible to provide a large number
of arguments, to submit the jobs in batches, and to detect tasks that have failed or that remain
outstanding. The structure of these files is relatively complex, so we provide additional tooling to
assist in generating them.

These utilities are located in the src/run_generators directory, in utils.py. Examples of their
use are included in the other Python scripts in that directory. These tools consist of several object
definitions which define jobs to run. These are divided into three phases: data generation, network
training, and evaluation. To produce the descriptions of the desired jobs, one constructs Python
objects representing each of these, and calls their write_description(dir) methods. This method
takes a single argument: the root directory under which the job descriptions and the resulting outputs
will be stored. Create a new directory for each experiment.

Each task takes an Experiment object as an argument; this principally sets a prefix on the resulting
file names, and records the experiment name in the run description file. This separation is not enforced
and results of jobs combining different Experiment objects can freely be mixed.

Datasets are generated by creating various Dataset subclass objects. Each of these takes as an
argument an InitialConditionSource which provides the sampling of initial conditions de-
scribed above. Be aware that these objects cache the initial conditions they have previously gener-
ated. This ensures that larger datasets drawn from the same source are always strict supersets of
smaller datasets. The initial condition sources have parameters which control the distribution from
which samples are drawn, and the datasets themselves have parameters controlling the simulations
which are carried out from these samples (such as the time step size, number of steps, etc.). The
InitialConditionSource objects do not represent jobs and do not have write_description
methods.

Neural network training tasks are created by providing both an Experiment object and two datasets:
one for training, and one for validation. The objects representing each dataset are provided as
constructor arguments to the objects representing each type of neural network. Most networks have
parameters which control their architecture, choosing kernel sizes, hidden dimensions, etc.

Finally, evaluation run descriptions are generated by the NetworkEvaluation object. This takes an
Experiment object, the object representing the network training task, an object for the evaluation set
to use, and the numerical integrator to combine with the network. The exception to this is configuring
runs for the KNNs. These do not have a normal training phase and run entirely at evaluation-time.
These evaluation objects take an additional parameter for their training dataset. When run, the job
will load this training set, fit the KNN, and then proceed with the rest of the regular evaluation phase.
KNNPredictorOneshot runs a KNN for step prediction and KNNRegressorOneshot runs a KNN
for derivative prediction with the integrator specified as an argument to its constructor.

As an illustration of configuring jobs using these utilities we provide the Python scripts used to
generate the run descriptions for the experiments discussed above. Be aware that running these scripts
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will sample new datasets from the distributions specified above. Each script takes the name of the
directory created for its experiment as an argument and writes the run descriptions to that directory in
a descr directory, with three subdirectories, one for each of the three phases.

D.3.3 Launching jobs

Once the run descriptions are generated, running the jobs is in large part managed by the
manage_runs.py script. This script can inspect the experiment directory to identify runs which are
outstanding, appear possibly incomplete, or whose description files have been modified after the job
was launched. The script also runs the jobs from the description file, either serially, or in parallel by
submitting to a Slurm queue.

Scanning Running python manage_runs.py scan <experiment directory> will output
information about the state of all jobs in that experiment. The script will indicate whether the
jobs are yet to be run (outstanding), appear to be incomplete, or whether their descriptions were mod-
ified after the job launched. Jobs in one of the error states (incomplete or mismatched descriptions)
can be deleted by adding the --delete=<mismatch or incomplete> argument. This extra flag
deletes the jobs in the specified state with no further confirmation.

Launching python manage_runs.py launch <experiment directory> <phase> where
phase is one of data_gen, train, or eval will launch all outstanding jobs for the specified experi-
ment and phase. Wait for all jobs from earlier phases to complete before beginning the next phase. By
default the script will attempt to run the jobs locally in serial, but if the sbatch program is detected
it will submit jobs to the Slurm queue instead. This selection can be overridden by passing one of
slurm or local to the --launch_type argument. If the Singularity container is being used the
script may output a warning that the “nn-benchmark” Anaconda environment is not loaded. This
warning can be ignored as the container will provide the necessary environment.

D.3.4 Recreating experiments

We provide the JSON run descriptions for the experiments discussed above. Once the software
environment is configured, the manage_runs.py script can be used to launch copies of these
experiments.
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