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Fig. 1. An iterative dipole propagation correctly predicts a consistent normal orientation from an unstructured point cloud.

Establishing a consistent normal orientation for point clouds is a notoriously
difficult problem in geometry processing, requiring attention to both local
and global shape characteristics. The normal direction of a point is a function
of the local surface neighborhood; yet, point clouds do not disclose the full
underlying surface structure. Even assuming known geodesic proximity,
calculating a consistent normal orientation requires the global context. In this
work, we introduce a novel approach for establishing a globally consistent
normal orientation for point clouds. Our solution separates the local and
global components into two different sub-problems. In the local phase, we
train a neural network to learn a coherent normal direction per patch (i.e.,
consistently oriented normals within a single patch). In the global phase,
we propagate the orientation across all coherent patches using a dipole
propagation. Our dipole propagation decides to orient each patch using the
electric field defined by all previously orientated patches. This gives rise to a
global propagation that is stable, as well as being robust to nearby surfaces,
holes, sharp features and noise.
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1 INTRODUCTION

Deep learning has been used to successfully synthesize point clouds
for shape generation [Achlioptas et al. 2018; Li et al. 2018c; Yang
et al. 2019; Cai et al. 2020], shape completion [Yuan et al. 2018;
Wang et al. 2020], and up-sampling/consolidation [Yu et al. 2018a,b;
Yifan et al. 2019b; Metzer et al. 2020]. However, since standard
loss functions (e.g., adversarial or Chamfer) do not trivially enable
normal regression, these methods do not generate a globally consis-
tent normal orientation. In addition, auxiliary information needed
to reconstruct a correct normal orientation (e.g., visibility direc-
tion) from various scanning modalities may be lost in processing
(registration/re-sampling/editing) scanned point cloud data. Yet, a
consistent normal orientation for point clouds is a pre-requisite
for many techniques in computer graphics and vision, for example:
surface reconstruction [Kazhdan 2005; Kazhdan et al. 2006; Kazh-
dan and Hoppe 2013], signing distance-fields, voxelizing volumes
(i.e., tetrahedralization), triangulating point sets, determining in-
side/outside information, and rendering point sets. Thus, geometric
computation is highly limited for point clouds that lack a consis-
tent normal orientation, either struggling or failing completely to
produce a meaningful solution.

Establishing a consistent normal orientation for point clouds is
a notoriously difficult problem in geometry processing, requiring
attention to both local and global attributes. The normal direction of a
point is a function of the local surface neighborhood. Yet, since point
sets do not represent the underlying surface structure, the definition
of local surface neighborhoods on point clouds is ill-defined. As such,
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point normals are estimated based on Euclidean neighborhoods,
which do not necessarily imply geodesic proximity (especially in
regions with nearby surfaces, non-convex structures and cavities).

Even when geodesic information is given, calculating a globally
consistent normal orientation is non-trivial, and requires global
context. Notably, when examining a flat patch from a shape in iso-
lation, éstablishing whether the surface plane points outward or
inward is ambiguous (see Figure 2). Propagation techniques pro-
pose overcoming this ambiguity by starting with one correctly ori-
ented point normal and diffusing its orientation across the entire
shape [Hoppe et al. 1992]. However, such a propagation technique
assumes smoothness (i.e., that nearby normals are similar), leading
to undesirable solutions in the case of sharp features, nearby sur-
faces, and noise. Moreover, the orientation accuracy is sensitive to
the propagation neighborhood size; while a large neighborhood is
desirable to smooth out noise and outliers, it also risks erroneously
including nearby surfaces. A notably undesirable attribute of such
techniques is their greediness, since during iterative propagation
one incorrectly oriented patch degrades all subsequent propagation
steps.

Fig. 2. The global orientation from a local patch is ill-defined. The exact
same blue or purple regions in a patch can represent either inside or outside
information, depending on the global context.

In this work, we introduce a new approach for orienting point
clouds. We split the orientation problem into two sub-problems, local
and global, which are solved sequentially. We partition the point
cloud into local patches, and learn a coherent normal direction per
patch using a neural network, such that all normals are consistently
pointing either inside or outside the surface. Specifically, we aim to
detect and flip normals that do not agree with the majority direction
of all input point normals in the same patch. Note that locally there
is no sense of correctness, thus we only require patch consistency in
the majority direction of the input normals. Instead of propagating
the global orientation across individual points, we propagate across
coherent patches. We introduce a dipole propagation that solves
global orientation by iteratively placing electric dipoles across each
coherent patch. This incrementally builds a global electric field,
where each new patch is oriented using the electric field of all
previously oriented patches (see Figure 1).

In patches with nearby surfaces, non-convex structures, noise,
and cavities, calculating a coherent normal direction is challeng-
ing and usually requires pre-defined heuristics, e.g., for sharp fea-
tures [K6nig and Gumbhold 2009] or thin surfaces [Xu et al. 2018]
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(see Figure 3). Yet, this task is well suited for a neural network which
can automatically learn a data-driven prior. To this end, we train a
neural network to estimate a coherent normal direction using self-
supervision (points sampled from watertight meshes). Specifically,
the network learns to classify whether each input point normal
agrees with the majority direction of all input point normals in the
same patch. The network-predicted probabilities are used to flip
inconsistent normals within each patch, as well as guide the global
dipole propagation.

Our dipole propagation calculates a consistent global orientation
by iteratively propagating the correct orientation across all coherent
patches using a global objective. Notably, the entire set of previously
oriented patches are used to determine the orientation of the next
patch. Unlike MST-based propagation [Hoppe et al. 1992] which
only considers the previous (adjacent) orientation, our dipole prop-
agation considers the orientation of all previously oriented patches.
Specifically, we progressively build a global electric field, which
is used to orient each new patch based on the network-predicted
confidence scores as well as the interaction between the electric
field of all previously oriented patches. By visiting all patches (and
flipping them, where appropriate), we obtain a double layer poten-
tial [Folland 1995] whose scalar value at any point in space indicates
inside or outside the shape surface. This electric potential was also
referred to as the winding number for oriented point clouds [Barill
et al. 2018].

A few inconsistently oriented points only degrades the electric
field locally (also noted by [Barill et al. 2018]), leading to a dipole
propagation which is robust to noise and outliers. If small errors
exist (e.g., from the neural network), they do not accumulate, which
enables converging to a desirable solution in spite of the noise.
Moreover, after dipole propagation is complete, we leverage the
global electric field and diffuse it across all points to flip any normals
incorrectly estimated by the network. Another advantage of our
dipole formulation enables building an electric field from known
normal orientations, which is useful when part of the input point
cloud contains known normals (e.g., in point cloud upsampling).

We demonstrate the effectiveness of our technique on a variety of
different 3D point clouds. We show that our neural patch coherency
network can consistently orient unstructured point sets, even in
the presence of noise, nearby surfaces, sparsely sampled regions,
sharp features, and cavities. In our ablation studies, we show that
our neural network improves dipole propagation speed and also
accuracy. Moreover, we show the applicability of our approach to
clouds generated from neural networks for shape generation, shape
completion, and point cloud consolidation. Our strategy also scales
to large point clouds, and we show results on clouds with over one
million points. In our quantitative evaluations, we demonstrate on-
par or improved performance relative to state-of-the-art methods
for point cloud orientation.

2 RELATED WORK

We first discuss techniques for cloud orientation, which we cate-
gorize as either surficial or volumetric. Surficial methods generally
propagate the orientation information starting from a single point



Input Hoppe Konig Ours
Fig. 3. Starting with an input point cloud (left), the result of orientation
via tangent plane normal propagation [Hoppe et al. 1992], or an improved
version [K6nig and Gumbhold 2009], both converge to an undesirable solution.
Our dipole propagation is able to correctly orient each patch of coherently
directed points, resulting in a desirable dipole electric potential (where blue
is outside, and red is inside the surface).

across the entire sampled surface. Volumetric methods aim to par-
tition the space into inside/outside, where surface normals should
point from inside to outside the surface. Then we discuss deep learn-
ing techniques for generating point clouds (i.e., point locations), for
up-sampling/consolidation, shape generation, and shape comple-
tion. Indeed, using such synthesized clouds for downstream tasks
will also require estimating point normals, and by extension, their
orientation.

2.1 Normal Orientation Techniques

Surficial methods. The pioneering work of Hoppe et al. [1992], intro-
duced the paradigm of point normal orientation propagation via a
minimum spanning tree (MST). An MST graph is built on the point
cloud, where every edge between two points is assigned a weight
based on the (absolute) similarity between their respective normals
(later extended by Pauly et al. [2003] to weight distances based on
an exponentially decaying function [Levin 2004]). Starting with a
single correctly oriented point normal, the orientation is propagated
to nearby points across the MST graph. However, this technique is
known to be highly sensitive to the choice of neighborhood size [Mi-
tra and Nguyen 2003], since a large neighborhood irons out noise,
but risks including nearby surfaces. The MST paradigm is greedy
and one incorrect orientation step degrades all subsequent propaga-
tion, as we demonstrate in our comparisons (Section 5). In contrast,
our work uses a global criteria to robustly handle eventual incon-
sistencies by considering the orientation of all previously oriented
patches.

Subsequent works proposed handling unique failure cases of the
above paradigm [Guennebaud and Gross 2007; Huang et al. 2009;
Xu et al. 2018]. For example, in the case of sharp features, Xie et al.
[2003] propose a multi-seed propagation that initially avoids sharp
features, resulting in multiple oriented patches touching at sharp
corners, which are consistently oriented in a second phase. This was
later improved and extended by Kénig and Gumbhold [2009], to flip
normals based on the smoothness of a Hermite curve. However, our
experiments demonstrate that a single mistake during propagation
using Konig and Gumhold [2009] will result in a large incorrectly
oriented region due to the greediness of MSTs (see Figure 4).
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PCP-Net Ours

Konig
Fig. 4. Normal orientation estimation, where angle errors are visualized
in a heat map. The MST-based technique of [2009] fails at some point
in the propagation, which results in a large region of accumulated errors.
PCP-Net [2018] uses only local information, which leads to a sub-optimal
solution.

In order to mitigate errors from greedy MSTs, Schertler et al.
[2017] propose using a global optimization to fix errors, which can
also handle large point clouds. Our experiments show that Schertler
et al. [2017] struggles with noise and high-frequency details, and
is much slower to compute on large point clouds. For example, in
Figure 6 shows the favorable results of our method on a point cloud
of over 1 million points which took 13 minutes to run, compared to
90 minutes for Schertler et al. [2017]. Jakob et al. [2019] suggested
propagating the orientation through edge collapse operations, with
hand-crafted heuristics for each edge energy, as an alternative ap-
proach to MST propagation for approximating the global minimum.

To try and construct a more global criterion, Seversky et al. [2011]
introduces the use of harmonic functions (built from a predefined
point cloud laplacian) for propagating orientation over the MST.
Similar to the previous approaches, MST propagation suffers from
cumulative error, and in addition the Laplacian operator for point
clouds will inevitability be unstable when two surfaces are close,
due to lack of geodesic connectivity, and we show an example of
this problematic case in the supplementary material. We also show
that our approach can robustly handle the same case.

Signing Koénig Ours
Fig. 5. Reconstruction results directly estimated by signing [Mullen et al.
2010], where as the estimated normal orientation of Konig [Konig and
Gumbhold 2009] and our dipole-propagation are used as input to PSR [Kazh-
dan et al. 2006].

Volumetric methods. An alternative paradigm aims to partition the
3D space into inside/outside, where surface normals should point
from inside to outside the surface. Mello et al. [2003] propose an
adaptively subdivided tetrahedral volume to calculate the in/out
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function from an unoriented point set (see comparison in Figure 5,
where close surfaces of the index and middle finger are incorrectly
lumped together). Xie et al. [2004] grow active contours to carve
out inside/outside. Chen et al. [2010] use binary orientation trees
to determine inside/outside using point set visibility [Katz et al.
2007]. Some methods reconstruct a signed function from unoriented
points using a variational formulation [Walder et al. 2005; Huang
et al. 2019]; yet they are limited to small point clouds, since their
computational complexity does not scale well with resolution (see a
comparison on 500 points in Figure 16). Whereas we demonstrate
that our method scales point clouds with 10 million points. Generally,
volumetric methods struggle to deal with open surfaces and large
holes, whereas surficial methods can struggle on sharp features
and/or a greedy local objective (see Figures 3, 4, 6, and 17).

QPBO Hoppe Ours
Fig. 6. Consistent normal orientation results on a scanned point cloud
containing over 1 million points (errors visualized using a heat map).
QPBO [2017] contains the most error, and took 90 minutes. Hoppe [Hoppe
et al. 1992] contains less error, and took 2 minutes. Our method has fewest

errors and took 13 minutes to run.

In this work, unlike previous methods, we present a technique
for point cloud orientation that leverages the power of data-driven
learning with a proposed dipole propagation. Our dipole propaga-
tion defines a global objective function, and the propagation at each
iteration becomes significantly less greedy, as we consider all pre-
viously oriented points. Our approach can be viewed as taking the
best of the surficial approaches (operating directly on the surface
points) and volumetric approaches (providing an inside / outside
segmentation as a byproduct of the electric dipole field).

2.2 Neural Point Cloud Generation

There has been a rising interest in extending the success of deep
neural networks to irregular domains. Pointnet [Qi et al. 2017a]
pioneered the first neural network to directly consume point clouds
(followed by several improved architectures [Qi et al. 2017b; Wang
et al. 2019]), and demonstrated impressive results on discriminative
tasks. This sparked interest in applying pointnet-like architectures
to synthesize point clouds, for shape generation, shape comple-
tion, and up-sampling/consolidation. However, synthesizing a glob-
ally consistent normal orientation along with each point location
is non-trivial. Specifically, standard loss functions (e.g., adversarial
or Chamfer) do not provide point-to-point correspondence on the
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underlying surface, which prevents defining a ground-truth normal
orientation for any given synthesized point.

Consolidation. Deep learning techniques which generate point clouds
for a downstream task (e.g., surface reconstruction) require some
type of normal estimation / orientation on the synthesized point
cloud. For example, Deep Geometric Prior (DGP) [Williams et al.
2019] learns to consolidate point clouds, which when used in com-
bination with Poisson reconstruction [Kazhdan et al. 2006; Kazhdan
and Hoppe 2013], results in surface reconstruction. Yet, since DGP
does not regress oriented point normals, normal orientation must
be solved in a post-process before using Poisson reconstruction. EC-
Net [Yu et al. 2018a] consolidates point clouds, specifically on sharp
edges, and requires estimating the point normals for surface recon-
struction using PCA, which are indeed unoriented. Multi-step pro-
gressive upsampling (MPU) [Yifan et al. 2019b] upsample point sets
using a detail-driven deep neural network, which was demonstrated
to improve surface reconstruction, which also requires normal and
orientation estimation. Subsequently, PU-GAN [Li et al. 2019] pro-
posed a generative adversarial network for upsampling point clouds,
which also demonstrated improvement in surface reconstruction
quality in sparse and non-uniform inputs. Self-sampling [Metzer
et al. 2020] proposed consolidating point clouds using a single ex-
ample, and required estimating the point normals in a post-process.
Thus, employing deep learning based point consolidation / up-
sampling techniques [Yu et al. 2018b], requires normal estimation
and orientation estimation for downstream tasks. PCP-Net [Guer-
rero et al. 2018] proposed learning point properties (e.g., oriented
normals and curvature) from local patches. However, since normal
orientation is a global problem (i.e., Figure 2), using only local infor-
mation from patches leads to a sub-optimal solution (see Figure 4).

Denoising. Many deep learning techniques have been presented for
point cloud denoising [Hermosilla et al. 2019; Luo and Hu 2020;
Lang et al. 2020]. Indeed, using the denoised cloud requires esti-
mating normals based on the new point locations, necessitating
normal orientation. Learning-based surface splatting was presented
in [Yifan et al. 2019a], and when denoising clouds the normals were
computed using [Hoppe et al. 1992]. PointCleanNet [Rakotosaona
et al. 2020] trained a neural network to map noisy points to clean
ones and then demonstrated surface reconstruction using normals
estimated using Meshlab. Huang et al. [2020] proposed non-local
part-aware deep neural networks for denoising point locations, and
demonstrated applicability to surface reconstruction. Pistilli et al.
[2020] developed a graph-convolutional neural network for denois-
ing point clouds, which improved unoriented normal estimation
using off-the-shelf tools.

Synthesis. Deep learning has been used to synthesize point clouds
in a variety of generative tasks. For example, in shape completion,
neural networks are trained to synthesize points in missing re-
gions[Yuan et al. 2018; Gurumurthy and Agrawal 2019; Sarmad et al.
2019; Tchapmi et al. 2019; Wang et al. 2020; Wen et al. 2020; Liu
et al. 2020]. Another body of works generate 3D point clouds from
a single-view (i.e., RGB image) [Fan et al. 2017; Jiang et al. 2018].
A wealth of deep learning techniques for shape generation using
unstructured point clouds have been proposed [Achlioptas et al.
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Fig. 7. Coherent patch neural network. An input patch (point locations and estimated normals using Jets [Cazals and Pouget 2005]), is input to an ensemble
of individual point networks which predict and vote on the probability that each point normal in the patch should be flipped. Point probabilities colored
using a heat map, where high probabilities are red. The network is trained using supervised learning, where the network is encouraged to predict a high flip
probability for point normals which do not agree with the majority direction the input normals. After flipping the normals according to the network-predicted

probabilities, we obtain a coherent normal orientation per-patch.

2018; Yang et al. 2019; Cai et al. 2020]. A popular technique for gen-
erating point clouds is through auto-encoders [Li et al. 2018b; Yang
et al. 2018; Groueix et al. 2018; Liu et al. 2019; Zhao et al. 2019]. PC-
GAN [Li et al. 2018c] presented a technique for synthesizing point
clouds using generative adversarial networks. PointGrow [Sun et al.
2020] proposed an autoregressive framework for generating each
point recurrently. PointGMM [Hertz et al. 2020] predicts a mixture
of Gaussians which can be sampled to obtain point locations.

Point-based neural generation techniques have focused primar-
ily on regressing point locations, without normals. Yet, using syn-
thesized clouds for downstream tasks will also require estimating
point normals, and by extension, their orientation. Note that At-
lasNet [Groueix et al. 2018] observed a drop in reconstruction per-
formance when regressing point normals alongside locations, com-
pared to only regressing point locations. This empirically demon-
strates that using a Chamfer assignment for point normals does not
guarantee the correct normal correspondence.

2.2.1 Deep Surface Reconstruction. Another line of works propose

reconstructing 3D surfaces directly from point clouds. DeepSDF [Park
et al. 2019] learns to generate a signed distance function (SDF) from

an input point cloud. The zero level set of the SDF can be used to

reconstruct an oriented surface, as well as produce oriented normals

for the input points by back-propagating through the SDF network.
The authors describe that while training on meshes, they choose the

ground truth orientation of the normals based on cameras placed

around the object, and discarded shapes where the orientation was

ambiguous. Point2Mesh [Hanocka et al. 2020] reconstructs a water-
tight mesh from a point cloud by optimizing a MeshCNN [Hanocka

et al. 2019] network to deform an initial mesh to shrink wrap the

input point cloud. This work can utilize normal information if avail-
able, but also demonstrated results on point sets without normal

orientation.

3 OVERVIEW

Our technique consists of two parts, first a local and then a global
component. In the local phase, we partition the shape into local
patches and train a neural network to estimate a coherent normal

orientation per patch. In the second phase, we use the network
confidence scores to guide a dipole propagation to globally orient
normals across all coherent patches.

Coherent Neural Patch Orientation. In the first phase, we partition
the shape into non-overlapping patches and calculate the normal
for each point in the patch: using Jets [Cazals and Pouget 2005],
where the normal direction is initialized by pointing away from
center of mass. The network receives as input a list of point loca-
tions and normals, and learns to predict a flip probability per-point.
Specifically, we train an ensemble of networks to predict a value
between 0 (= should be flipped) and 1 per-point, which vote on the
final flip probability. During inference, we pass (unseen) patches
to the trained network and flip each normal according to network-
predicted probabilities, resulting in a coherently oriented patch. An
illustration of this system is shown in Figure 7.
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Fig. 8. Different normal orientations based on the reference (yellow) point.
The majority orientation is marked in blue, which is used to create the
ground-truth labels during training (red = flip).

As mentioned previously, the global orientation is ambiguous for
a single patch (see illustration in Figure 2). As such, the network
objective is to predict flip probabilities such that the point normals
in the input patch are coherently oriented, meaning that all normals
are consistently pointing either inside or outside the surface. Since
training on both possibilities is a non-smooth, ambiguous objective,
we prescribe the correct coherent orientation based on the direction
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of the majority of the estimated point normal directions which is
used as ground-truth (see Figures 8 and 12). The network estimated
flip probabilities are also used to guide the dipole propagation to a
desirable result.

Since calculating a consistent normal direction for flat or convex
patches is trivial, the central challenge is estimating a consistent
normal direction for patches with nearby surfaces, non-convex struc-
tures, sharp features and cavities. Yet, since these difficult cases occur
less frequently we only train on patches that contain the difficult
and ambiguous cases. This forces the network to focus on the rare
cases that would otherwise be ignored (due to their low prevalence
in the training data).

Dipole Propagation. We propagate the global normal orientation
to all the coherently oriented patches in the shape using dipole
propagation. We start by selecting a flat patch, and treat each point
in the patch as an electric dipole with polarization that points in
the normal direction, which generates an electric field. Then, we
find the patch with the strongest (absolute) mutual dipole inter-
action with the current field, weighted by the network-predicted
confidences. If the new patch interacts strongly in the opposite di-
rection, we flip its orientation. We add the effects of the new patch
to the total electric field by placing dipoles on each point in the new
patch. We progressively build a global electric field, which is used
to orient each new patch based on the electric field of all previously
oriented patches. Once we have visited all patches (and possibly
flipped them), we built an electric potential whose scalar value at
any point in space indicates inside/outside the shape surface (see
visualization in Figure 13). In the diffusion phase, we dissipate the
final electric potential to fix possible errors made by the network.
The neural network plays a crucial role, both in terms of generating
coherently oriented patches and in terms of the flip probabilities
which are used to correctly guide the propagation (see Figure 9.)
Note that the starting patching can have both possible orientations
(all normals pointing inside or outside the surface). Upon completing
propagation, we can flip the entire sign of the globally consistent
normal orientation given a single correct point normal.

4 METHOD
4.1 Input Patch Data

We used supervised learning to learn a mapping between input
patches (point locations and normal directions), to a flip probability
per point. We generate supervised pairs of input patches and ground-
truth flip labels for training. Training input patches are obtained by
sampling point clouds (augmented with various types of noise) from
watertight meshes, and then estimating the normals for each point
in the patch using an off-the-shelf tool (e.g., PCA or Jets [Cazals and
Pouget 2005]). The corresponding ground-truth label of whether to
flip each point’s normal is based on the majority normal orientation
direction in the patch (see Figure 8).

Each point cloud is scaled to a unit cube and partitioned into
patches corresponding to 3D cubical voxels (see Figure 10). After
discarding empty voxel regions and merging patches smaller than
100 points, we filter out planar patches (based on their smallest
eigenvalue) since they are trivial to coherently orient (i.e., via a
reference point on either side of the plane). We calculate normals
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w/o diffusion w/o network  network + diffusion
Fig. 9. Normal orientation results without using diffusion (left), without
using a neural network (middle), and both network and diffusion (right).
A desirable normal orientation result relies on both the network and the
diffusion phases. The neural network not only coherently orients each patch,
but also provides confidence scores that are used during dipole propagation.

for each point in the patch using an off-the-shelf algorithm and
place each patch in a canonical axis using PCA.

Fig. 10. Visualization of our patch partitioning.

We use several forms of data augmentation to enrich the training
set. During training, we flip each normal in the patch with prob-
ability p. This introduces uncorrelated local flip error that can be
induced by noisy points, for example. We initially orient the esti-
mated normals in each patch to point away from a single reference
point. During inference, the reference point is the center of mass.
However, to induce different types of training distributions, we ran-
domly select different reference points within the bounding box
containing the patch. This augmentation generates spatially cor-
related flip errors. For example, in a patch that contains a corner,
changing the reference point to be above or inside the corner results
in two different orientations for the perpendicular planes (see an
example in Figure 8).



A strict definition of a coherently oriented patch has two valid pos-
sibilities (all normals pointing inside or outside the surface, where
inside/outside cannot be defined at the patch-level). However, train-
ing on the best of the two options (i.e., min-distance) is non-smooth,
and can oscillate between optima. In addition, this would enable the
network to memorize spatial layouts of point patches (completely
ignoring the input normal information), and always predict in the
+z direction, for example. Therefore, during training, we define a
correct coherent orientation based on the direction of the majority
of the estimated point normal directions. Orienting point normals
in the same input patch using different reference points can lead
to different majority normal directions, which results in a different
ground-truth label (see Figure 8).
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Fig. 11. Several inconsistently oriented points within a patch (5 out of 15),
only degrades the electric potential locally. During dipole-propagation, if
such local errors exist, e.g., from the neural network, they will not accumulate
- which enables converging to a desirable solution (in spite of the noise).

4.2 Ensemble Training

We train an ensemble of point neural networks to coherently orient
the non-planar patches, which contain the challenging cases of cavi-
ties, non-convex, and sharp feature regions. We use a PointCNN [Li
et al. 2018a]-based network to predict a probability per point indi-
cating whether it should be flipped. Specifically, the input to the
network is a patch P € RN*®, represented as a collection of N
points containing the xyz positions and a normal direction for each
point. The output of the network € RN*? is two logits per point,
which when passed to Softmax result in the flip probability. The
network is trained using supervision: the cross-entropy between
the predicted probabilities and the ground-truth flip label.

Each neural network in the ensemble can be trained with different
network hyper-parameters and on different datasets. After training
is complete, we average the probabilities from the different networks
to obtain the final flip probability per-point. After flipping each
normal according to the network-predicted probabilities the result
is a coherently oriented patch.

Learning to predict a coherent normal orientation per point re-
quires considering both nearby and far away points in the patch,
which we address using an ensemble of multi-scale networks. The
receptive-field of the neural network naturally dictates the amount
of distant points. We obtain networks with a large receptive field by
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using an aggressive pooling strategy. Each network is composed of
PointCNN convolution layers, FPS (farthest-point sampling) pooling,
and feature interpolation unpooling [Qi et al. 2017b]. Our aggressive
pooling strategy uses four FPS pooling layers, where each layer re-
duces the number of points by 40%. More details about our network
architecture can be found in the supplementary material.

Despite the fact that the network may produce imperfect results,
our system is well equipped to handle and eventually correct such
errors. For example, during dipole propagation the electric potential
is robust and only degrades locally when several points are incon-
sistently oriented (see Figure 11). In addition, our network predicts
probabilities that we use to attenuate the effects of incorrect orien-
tations. Finally, these lingering errors will be corrected in a second
diffusion phase, which is explained in Section 4.3.4 (also visualized
in Figure 9).
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Fig. 12. The network learns to coherently orient the input patch based
on the direction of the majority of the input normals. When inverting the
normal orientation on the input patch, the majority direction changes and
the output orientation is similarly inverted.

4.3 Dipole Propagation

After the network has coherently oriented each patch in the input
shape, we use dipole propagation to calculate a consistent global
normal orientation across all the patches, iteratively. We progres-
sively build a harmonic potential (Section 4.3.1) from all previously
oriented patches, in order to infer the orientation of new patches.
Starting from a planar patch (likely to contain least amount of co-
herent normal errors), we treat each point in the patch as an electric
dipole with polarization that points in the normal direction 7. The
dipoles generate an electric field, which is used to orient a new
patch at each iteration. To choose which new patch to orient at each
iteration, we measure the absolute value of the potential energy
(Section 4.3.2) at each patch which has yet to be oriented, weighted
by the flip probability scores from the network. The patch with the
highest potential energy is chosen for orientation, and is flipped
if the energy is negative, or remains if the energy is positive. The
effect of the newly oriented patch is added to the current field, and
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Fig. 13. Iterative dipole propagation visualization. Starting with the first patch we place a dipole on every point in the patch. The electric potential dissipated
by the dipoles shown in blue/red. We measure the interaction between the electric field (i.e., the gradient of the potential) and the normal of each point left to
be oriented. The interaction is shown by a grey line with length proportional to the interaction value and direction of the unoriented normal. Note that the
electric potential is only calculated for visualization purposes, and not necessary to calculate in practice.

the new field (result of the previous field and with newly oriented Algorithm 1: Dipole Patch Propagation
patch), is used to orient the rest of the patches in the same iterative F  ON<3

manner. Our decision to treat points as electric dipoles is justified Ee
in the Poisson equation (Section 4.3.3), as well as the winding num-
ber [Barill et al. 2018], which we explain in more detail below. Finally,
after all the patches have been oriented by the dipole propagation,
we employ an extra diffusion step to fix small errors made by the
network (Section 4.3.4).

P « flattest patch

remaining < all patches except P

// The current field for all points not in P, denoted P
E[I_J] += DipoleField (sources=P, measurements=P)

while remaining not empty do
// Calculate interaction (Eq. (3)) for each patch

4.3.1 Electric Dipole. In electrostatics, an electric dipole arises i=argmax{ | V; | for j € remaining }
when two oppositely charged particles are brought close together. P = remaining.Remove (i)
In our scenario, each oriented point normal is treated as an elec- if V; < 0 then
tric dipole, with polarization in the direction of the normal 7i;. The | FlipPatch (P)// flips patch if interaction negative
electric potential u induced by such a dipole measured at point 7 is end
~ // add effect of new patch to the total field
o ci(fA -7 g i i -
u(r) = m, (1) E[P] +=DipoleField (sources=P, measurements=P)
end
where c; is the confidence score per point i estimated by the neural // Diffusion Step
network (proportional to the flip probability). This attenuates the for point k € point cloud do
effect of the points that the network is less confident about (flip 7/ calculate interaction for every point k in point cloud
probabilities close to 0.5). The electric field is the gradient of u: if iy - E [k] < 0 then
- = 3ci(Aj - F)F — ¢ - A | FlipPoint (i)
E=Vu@f) ="l 7 S0 2
® 4 |73 @) end

Note that this is the electric field in physics up to a sign (in physics end

E= —Vu(‘)) We drop the minus sign E= Vu(‘) since we want to
orient points towards where the potential rises, rather than falls.
Although this would imply that opposite charges repel (instead of
attract), it is desirable in our orientation problem formulation.

4.3.2 Potential Energy. The potential energy between a patch and
the currently dissipated field from previously oriented points is

Voatch = Z ci-nj-E. 3)

n;epatch
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The neural network confidence ¢; mitigates possible errors made
by the network, and encourages noisy patches to be oriented last.

4.3.3 Poisson Equation. The electric potential induced by such
dipole is a solution to the Poisson equation, and has two important
properties which are desirable for propagating normal orientation:

(1) decreases with distance, and
(2) negative on one side of the dipole and positive on the other.

While an electric dipole is not the only way to obtain the above
properties, its key justification lies in the Poisson equation:

V2u(F) = 4mp(P), ()
which characterizes the impact of the sources p(¥) (e.g., heat sources
or charged particles) on the potential u(7).

In our case, the sources are the oriented points and the potential
is the scalar function u(7). In this way, the electric potential from
all oriented points is used to orient new points.

Since Equation (4) is linear and shift invariant, the superposition
of sources p; (7) and solutions u; () is also a solution to the equations

Vzutotal(;) = Zivzui(;:) =247p;i(F) = 47ptoral (F)- (5)
In other words, we can obtain the total potential dissipated from all
the dipole sources by summing each dipole potential (with proper
coordinate shift). This leads to a closed form solution to our dipole
propagation at every iteration, enabling an incremental calculation
of the electric field at every time-step. This result can also be viewed
as setting the right hand side of Equation (4) to a single source,
solving for Green’s function, and convolving Green’s function with
a sum of delta functions shifted for each source.

In each step of our propagation, we use the orientation of all
previously oriented points to orient new points. The oriented points
are the boundary conditions, and we wish to create a smooth well-
behaved potential to decide the orientation of new points. The solu-
tion to a well-behaved functional that satisfies minimum oscillations
is the Poisson equation. Moreover, this formulation enables fast
computation of the potential and its gradient in every time-step.
Since the electric field is analytically defined at every point in space
(Equation (2)), there is no need to voxelize the space and calculate
the potential in every grid cell. Furthermore, Equation (5) allows
incrementally adding the effects of newly oriented points to the total
potential without reevaluating it at each step of the propagation.

Finally, Barill et al. [2018] recently showed that the potential
dissipated from the superposition of such dipoles is the winding
number function. For shapes with oriented normals, the winding
number indicates whether a point in space is inside or outside a
closed surface. Indeed, after dipole propagation is complete, the
final potential converges to the winding number solution.

4.3.4 Diffusion. After the patches have been oriented by the dipole
propagation, we can employ an extra diffusion step to fix small
patch coherency errors made by the network (see Figure 9). For
every patch, we evaluate the electric field of all the other oriented
patches, and flip any individual points that disagree with the field.
This step can be viewed as leveraging the power of the winding
number function [Barill et al. 2018], (which is stable even in the
presence of a small amount of incorrectly oriented points), to correct
any lingering errors.
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Fig. 14. Top: input, middle: [K6nig and Gumhold 2009], bottom: ours.

5 EXPERIMENTS

We evaluate our technique on a series of qualitative and quantitative
experiments on a range of different point clouds from a variety of
sources. First, we explain how our method can be used for orienta-
tion interpolation in Section 5.1. Then, in Section 5.2, we compare
to existing methods on different point cloud resolutions and neural
generated point clouds, from scanning devices, and provide runtime
evaluations.

The training dataset contains 60 watertight meshes, where some
are manufactured shapes (royalty free meshes collected from [Zhou
and Jacobson 2016], [Wang et al. 2012]), and others are non-rigid
shapes from [Romero et al. 2017]. This results in 1410 training
patches, where each patch is augmented many times with noise and
different reference points for the normal direction supervision.

5.1 Orientation Interpolation

There are a couple of scenarios where it may be desirable to use
a given orientation of a set of points to decide the orientation of
new points. In these scenarios, it will be convenient to build the
electric field E from the given orientations, instead of propagat-
ing from scratch. For example, in the case of point upsampling we
can interpolate the newly synthesized points using the input nor-
mal orientations (see Figure 15). Specifically, we calculate the field
generated by the given oriented point normals in the direction of
Equation (2), and then orient the remaining points.

In the case of very large point clouds (more than 500, 000 points),
we speed-up computation time by performing orientation on a sub-
sampled version of the point cloud patches. Then we can orient the
remaining points by calculating the field of the subset and using
that to orient the remaining point normals. We use this scenario
in a comparison to Schertler et al. [2017] in Section 5.2, which
focuses on orienting large point clouds. Our proposed speedup
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Input EC-Net Input Self-sample

Fig. 15. The input point cloud contains normals (visualized using shading),
which are consolidated using [Yu et al. 2018a] and [Metzer et al. 2020].
Given the input normals, we use our orientation interpolation to predict the
orientation of the newly synthesized points, resulting in accurate normal
preservation. Then we enable diffusion to use the estimated electric field to
re-correct the given input normals, which fixes errors (highlighted insets).
Note that we (correctly) see the red (interior) since the front facing part of
the surface is missing from the input point cloud scan.

results in improved normal orientation accuracy and a significant
computational speed up.

5.2 Comparisons

Low resolution point clouds. In order to compare to the variational
technique VIPSS [Huang et al. 2019], which is limited to a couple
thousand point clouds, we used a point cloud from their dataset
containing 500 points and ran PSR [Kazhdan et al. 2006] on the result
of three different normal orientation methods in Figure 16. Since
PCP-Net [Guerrero et al. 2018] predicts global orientation from
local patches, it struggles on concave parts, resulting in undesirable
reconstruction results. Our reconstruction result is on-par with
VIPSS. However, note that their method does not scale well beyond
what is presented.

PCP-Net VIPSS Ours

Fig. 16. Surface reconstruction from a small amount of unoriented points
(500) used with Poisson reconstruction [Kazhdan 2005]. VIPSS [Huang et al.
2019] is a recent variational approach which produces favorable results
for small point clouds, but does not scale to point clouds above a couple
thousand. PCP-Net struggles on shapes with concave parts.

Large scanned point clouds. We demonstrate the ability of our tech-
nique to handle very large point clouds obtained from scanners [Laric
2012], both in terms of accuracy and run-time. We ran a compar-
ison on a point cloud with over one million points (Figure 6) and
compared to QPBO [Schertler et al. 2017] with Xie et al. [2003] cri-
terion, and to Hoppe et al. [1992] (using CGAL [The CGAL Project
2020] implementation). Our normal orientation (and corresponding
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reconstruction) obtains the best accuracy and takes 13 minutes to
compute. The method of Hoppe et al. [1992] is fastest to compute
(2 minutes), but contains undesirable errors in the mouth region,
resulting in poor reconstruction results. QPBO took the longest to
compute (90 minutes), and contains the most error.

In Figure 17 we show another example of normal orientation for
over 700k points with the corresponding surface reconstruction
results. For more results on large point clouds from scanned data,

QPBO Hoppe Ours
Fig. 17. Normal orientation estimation and corresponding reconstruction
results on a large (700k) scanned point cloud.

including one with 10 million points, see the supplementary material.
A point cloud with 10 million points takes 40 minutes to calculate
normal orientation with our method (for reference, writing this
point cloud to disk takes 10 minutes).

Neural-generated point clouds. We evaluate our method on point
clouds generated using several different neural networks. Since there
is no ground-truth for these examples, we visualize the estimated
normal direction by shading each point with respect to the camera
view (where angles larger than 100° are highlighted in red).

In the case of neural point cloud consolidation, we generate con-
solidated clouds using EC-Net [Yu et al. 2018a] and Metzer et al.
[2020], and visualize the results of our normal orientation compared
against two other techniques in Figure 19 and and 18, respectively.
Since these techniques upsample / generate new points alongside
input points which contain oriented normals, we provide an addi-
tional visualization which uses our normal orientation interpolation
(shown in Figure 15) as a reference to compute the angle error colors.
Our visualization is useful in the case of the consolidated output of



EC-Net, which has an input with an interior surface sheet which
has an ambiguous orientation (see Figure 15).

Hoppe
Fig. 18. Consistent normal orientation results on a consolidated point cloud
generated from Metzer et al. [2020]. The top row contains the reconstruction
results for each of the methods, and the middle and bottom rows are different
visualizations (since there is no ground-truth) of the estimated normal
orientations. Middle row uses a normal to viewpoint shading, and the
bottom row uses a proxy to ground-truth using our interpolation propagation
(shown in Figure 15). The result of our method is by orientating the point
cloud from scratch (without using the input normals as a reference).

We also generate two different point clouds using a point com-
pletion network [Yuan et al. 2018], which synthesizes point clouds
without any input/given normal information. We compare the ori-
entation results in Figure 20. Note that this example is especially
challenging as it also contains points inside the shape (i.e, interior
points). More orientation results on point clouds generated from
scratch using neural networks [Cai et al. 2020] can be found in the
supplementary material.

Quantitative comparison and ablation. For quantitative evaluations,
we generated a collection of non-uniformly sampled and noisy
point clouds which are used as input for normal orientation. This
evaluation data contain two groups: (i) hands from MANO [Romero
et al. 2017] and aliens from COSEG [Sidi et al. 2011] with 5-15K
points each, and (ii) scanned cloud data from [Laric 2012] with 700k+
points each. We calculated the percentage of correctly oriented

Orienting Point Clouds with Dipole Propagation « 165:11

Hoppe QPBO Ours
Fig. 19. Consistent normal orientation results on a scanned point cloud
consolidated using EC-Net [Yu et al. 2018a]. Since there is no ground-
truth, we generated a proxy to ground-truth using the input point cloud
normals and our interpolation propagation (top), as well as with thresholded
viewpoint shading (bottom). The result of our method is by orientating the
point cloud from scratch (without using the input normals as a reference).

Hoppe Konig QPBO Ours

Fig. 20. Normal orientation results on two different point clouds generated
using a shape completion network [Yuan et al. 2018] (different viewpoint in
top and bottom row). Since there is no ground-truth normal orientation, we
visualize the estimated normal direction by shading each point. Note that
there are also interior points inside the shape, making normal orientation
particularly challenging and even ambiguous.

normals in Table 1. Several visual results are shown in Figures 5, 6,
and 17, as well as in the supplementary material.

We also ran an ablation where we do not use the network, in
order to highlight the effect of the neural network and presented the
results in the same table (denoted as No Net) as well as in Figure 9.
Instead of using the neural network to estimate coherent normal
directions per patch, we calculated the normal orientation of each
patch using Jets [Cazals and Pouget 2005] directed towards the
center of mass of each patch. Then we employ dipole propagation
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(without any network estimated probabilities), and then diffusion.
Indeed, the performance drops significantly without a network. In
addition, we ran another experiment on a point-based (instead of
patch-based) variant of the no-network ablation which results in
another performance drop, and does not scale well (computationally)
to large point clouds (see supplementary material).

Table 1. Quantitative comparison. Large point clouds (700k+) in the middle
two rows. The run-times for the medium sized point clouds are: 30 + 2
[seconds] for our method, 3, 4 [seconds] for Hoppe and Kénig respectively,
2 minutes for QPBO, and 5 minutes for PCP.

Shape | Hoppe | Kénig | PCP | QPBO II\\II; Ours
09-41r 90 99 86 99 74 99
50-501 92 97 90 95 74 95
09-391 89 95 81 96 75 95
17-421 93 93 89 99 63 99

37-31r 90 99 96 100 75 100
43-161 90 98 88 99 75 99
a-198 78 90 95 98 62 97
a-160 90 91 97 98 78 98
a-152 88 95 97 100 99 99
a-188 82 86 95 96 90 97
a-158 91 91 96 98 77 98
a-128 55 69 92 90 60 93
a-121 64 84 92 96 68 94
lion 84 78 - 53 - 89
dragon 52 50 - 60 - 95
avg 81 87 91 91 74 96

std 13.23 12.9 4.76 | 14.14 | 104 | 2.91

6 DISCUSSION AND FUTURE WORK

In this paper, we presented a novel technique for estimating a consis-
tent normal orientation for point clouds using a data-driven neural
network and dipole-propagation. Our experiments demonstrate that
the proposed technique is an effective tool for point cloud normal
orientation.

A notable and unique feature of the orientation problem is that it
is a global problem, which unlike many other consolidation prob-
lems, such as denoising or normal estimation, necessarily requires a
global solution. This suggests that a careful design is needed for the
solution to scale to a large number of points. Our solution tackles
this using a bottom-up approach, where at the bottom a network
solves the local high-frequency problems, and the global problem is
tackled by dissipating the electric field incrementally by propaga-
tion.

Locally, at the patch level, our solution is based on a unique
majority-based training technique, which works surprisingly well.
Training a network to predict and understand the majority is hard,
and it indeed limits the size of the local patch and its variation. On
the one hand, taking the patch size to the limit would allow an end-
to-end solution, but would be challenging to train and nearly impos-
sible to generalize to unseen shapes. On the other hand, overly small
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patches would reduce the problem to an unstable point-level solu-
tion. We believe that majority-based problems solved by networks
have more intriguing potential for additional geometric problems.

An important property of dipole propagation is that it leads to a
non-local traversal. This is notable in Figure 1 (and in the accom-
panying video), where the patch traversal has leaps, and non-local
steps. This implicitly suggests that the solution leads to a global one.
However, as we showed, there are still a small amount of sporadic
erroneous orientations. We recognize that some errors are unavoid-
able due to significant noise, yet, in the future we plan to investigate
randomization techniques. For example, we can train a number of
ensemble networks, where each is trained slightly differently with
varying patch sizes, and during inference we propagate the results
and consult them and vote. Another direction, is to remove outlier
points with unstable orientation. This can possibly be achieved by
coupling the orientation problem with an implicit function for re-
construction, and normal estimation. Indeed, we believe that the
orientation problem is tightly-coupled with surface reconstruction,
which is another interesting avenue for future work.

We are encouraged by the global nature of the dipole field, and
in the future we want to consider other harmonic functions with
minimum oscillations coupled with the power of neural networks.
We believe that this combination can be applied to other geometric
problems, to quickly infer a solution associated with an informative
confidence score. Our method is designed to orient point clouds

Input Output
Fig. 21. Our technique is designed to handle point clouds which represent
the exterior of an object. When using our technique to orient a general
polygon soup from shapes in Modelnet, our approach works on simple
models (top) with some interior protrusion from the legs, but fails to handle
the challenging soup (bottom) with complex interior surfaces.



which represent the exterior of an object. Although it may be natu-
ral to use the same approach to orient general polygon soups, for
example, to obtain consistent facet normals for models in Model-
net [Wu et al. 2015]. While our approach works on simple models,
it fails to handle challenging soups with multiple internal surfaces
(see Figure 21). Extending our approach to this case is an interesting
avenue for future work.

We believe that combining dipole proportion techniques with
visibility approaches has great potential in solving notoriously chal-
lenging problems in geometry processing.
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