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1 Contact

Consider the region on the boundary, I'c, representing the contact region of the main object with a rigid
body. The PDE could be then summarized as following:

—V -0 =0 (external force)
such that:

u=u onlp

First equation on I'c says that displacement should be (if existent) on opposite direction of the normal.
The second equation says that the normal force on this boundary should be 0 or on the opposite direction
of the normal. And finally, the last one guarantees that there is nonzero force if and only if the bodies
are touching (considering the displacement).

This problem has the following weak form:
/5(u) :C i e(w)dV > / f-de—l—/ g-wdS for any w € K(Q)
Q Q I'n

where K(Q) = {v € (H}(Q)4L,v=0onTpandv-n < 0onl¢}and u € K(Q). Also, g here is the
traction (force per area) on the boundary and f represents the forcing function (which we consider non
existing, for this work). The problem can also be thought as an optimization problem with the following
energy:

1
argminf/s(v):C’:e(v)de/f~vdV*/ g-vdS
2 Ja Q I'n

veK ()

The work from Maury et al. [2] shows that the solution v admits at most a conical derivative and argues
that it is difficult to use the concept in numerical practice, since it requires a subgradient optimization
method. The idea then is to remove u from its convex set K (£2) by penalizing the inequality u-n < 0.
We end up with the following formula approximating the normal contact effect:

argminé/{zs(v):C’:s(v)dV/Qf-vdV/FNg-vdS + %jN(v) (1)

v

where jy(v) penalizes penetration. This problem can then be rewritten in the weak form as:

[ ctwy: € ctwav+ gt = |

w-f+/ w-gdS
Q T'n

where

jf\,a(u,w):l/ hy(u-n) w-ndS
: o Jrg



and

0 y<—n
ho(y) = Qa9 +3y+1 —n<y<ny
Yy y=n

1.1 Deformable-deformable (DD) contact

Another case of contact is considered when dealing with other non-rigid objects, like an object with same
material. The constraints are very similar to the one presented before, with the main difference that
displacements and stress measurements on both sides of the contact region are considered. Region I'g
defines the region of contact between two objects @~ and QF. We refer to I's on 2~ (Q71) side as T's_

(Ts+)-

The term Jg ,(u, w) in this case is defined as:

8.0 (u, w) = o hy([u] - n™) [w]-n~dS

where

We can rewrite this using two separate terms, one for each side of the contact region.

75,0 (1, w) / hy([u] -n™) w-ndS +

+ 04/1“5+ hy([u] -n™) w-ndS

where we assume that ¢ and n correspond to the side being integrated. Notice that the argument for h,,
is always the same and contains n~. We could rewrite the argument as:
[u] - n~ =u"-n" —ut-n”

=u"-n" +ut-nt

1.2 FEM formulation

With the consideration of contact and neglecting the forcing function we obtain the equation:

[ ew) € et av + il w) + s aluw) = [ w-gas @
Q —_———r —— I'n
Tc Ts
Tg TN

When constructing the finite dimensional approximation, the first term Tr becomes:

Tp=> > > w} (/ L) O e(y? ) =SSN wik AP

e AB i,j e AB i,j

where i, j are representing the coordinates of each vector variable, A, B represents the local nodes in each
element e of 2. Also, I; corresponds to the j column of a identity matrix of size equal to the number of
dimensions we are working with.

In matrix vector form, we have

TE:ZZ(w TKAB B z:wTKue

e AB



where both w4 and u? are vectors of size equal to N. Also, K% € GL(2). On the final per element
form, all vectors and matrices have size N % n,. The global form can be rewritten as follows:

Te = w! K

Let’s now talk about Ty that also appears in the linear elasticity formulation. Using the piecewise finite
dimensional approximation:

Tn=> > w (/ saAgidS>

e€EE, A

Z ZwiA(FN)f‘

ecEN Ayi

=2 2w

eeEnN

= Z (we) FNe

eeEn
= U)TFN

RD Term.

Similar to the Ty term, T can be obtained:

Te = Z Zw ( / o, hn(uh-n)ds>

e€cEc A

= > > wi(Neo)i (@)

ecEc A,i

= 2 2w (e @

ecEc

= Y w!/'Nee(n)

eeEc
= w" Ne ()

DD Term. Finally, we can look at the DD term Tg:

Ts = / ) (wT —wt)-n"dS
ecEgs I's
= Z f/ hy([u] -n™) w™ -n~dS
e~ €FEs @ Is
- Z l/ hy(fu] -n™) wt -n~dS
eteE @ Jrs
s+



Because n~ = —nt, we can rewrite Ts as:

-y (L]

e~ €Eg_ N

+ > Dw ( /Fem“nrhnaurn)w)

eteEsy Atji

DD ITENSSIERES Db ENC I

o™ 0y hy(u]-n7) dS)

S

e~ €Es_ A—,i et€Egy At,i
+
= > YN @+ > Yt NG @)
e~ €FEs_ A— €+€Es+ A+
= Z (we*)TNSe*(a)_F Z (we+)TNSe+(a)
e~ €Eg_ eteFBsy
=" Ns_(a) +@" N (a)
U_JT( — (@) + Ns ()

1.3 Complete discretization
Putting all terms together from section 1.2 together:
Tp+Tc+Ts=1Tn
@7 Kt + @7 No (@) + @7 (Ns_ (@) + Ngy (7)) = @7 Fy
o' (K — Fy + Ne(t) + Ns— (@) + Ns (@) =0
F(u)= Ku—Fn +Nc(u)+ Ns_(u)+ Nsy(u) =0

linear elasticity

Notice that F'(@) is nonlinear, because term N (%) and DD terms are not linear in u. To solve F(u) = 0,
we can use methods for solving nonlinear equations, such as Newton Method:

Uitr1 = Uip + DF (i) ™ (F (@i1) — F ()
where DF (@) is the Jacobian of F(@) and index it refers to the iteration number.
But we want F'(@;.+1) to be zero! So,
Aty = DF ()" (= F ()
DF(u;) Aty = —F ()

F(u) is known. Now we compute the Jacobian DF(u).
DF(u) = K+ DN¢(u) + DNg_(a) + DNg4 ()

Jacobian of contact term. We can compute each element [DN¢(w)]; ; individually. Notice that ¢ and
j corresponds each to a coordinate of a node. So, we can write
O(No)i

_ _\14,B c
[DNe(u)li,; = [DNe()ly,;” = SuP .

1

where A, B are global node indices and k,I = 1,2 (,3 in 3D) are the coordinate indices.
Then,
O(Ne)i _ 3 d(Noe)i

ouP B
l ecFEaB aul



where E4p contains all elements with nodes A and B. Moreover, A and B correspond to the local indices
of global nodes A and B in element e.

y
Using chain rule:
Ohy, % dy
ouf Oy ouP
Where we know
0 < -
ohy _J, o T
En amta TNSYSN
1 y=n
And
Oy _ B,
au{; ¥ l
Finally, B
d(Neeo)y 1 / i Ohy 4 B
L — -1 . ds 3
il R GROIEY 3)

Notice that ¢, n and u” depend on x, so they cannot leave the integral.

Jacobian of DD terms. When computing the jacobian of the DD terms, we notice many similarities
with the normal contact term. One difference is on the derivative of h,([u"] - n™), which appears on both
positive and negative terms.

ho([W"]-n7) = hy((w™ —ut)-n7)

| S ——
Yy*

Ohn(yx) _ Ohy(y*) dyx

ouP dy*x  OuP

Ohy (y*)

We already know By

, SO:

Oyx 9 - c-,Cc ct, ct
8uf§_8uf§ an (;gp " ;Lﬂ Y

J

B @an if B on S—
B —@an if B on S+
B @an if B on S—
e n if B on S+



Using this information, we can build the full formula for the individual terms for 8(1\(;565 )i and 8(%565 )i .
u U
O(Ns.- )it 1 / i Ohy, w . g
ouP o By ([u"]-n7)p"m (4)
O(Nge+ )it 1 / A Ohy o . g
M oe k- - . ds 5
ouP 5 Fngcp ng oy ([u"] - n7)p"mn (5)

Notice that the normal direction is implied (where possible) from the element we are integrating. By
looking closely to the previous equations, we can conclude that formulas for both Ng.- and Ng.+ are
exactly the same, noting that the argument of h,, is always n~. The same also happens with the Jacobian
individual terms.

Linear system. In the original linear elasticity formulation, an SPSD (symmetric positive semi-definite)
solver is used, since K is SPSD. The matrix is symmetric by exchanging nodes and indices given formula 5.
Also, since the energy minimization problem in Equation 1 is convex, we can conclude that our jacobian
is also SPSD. Note that this is only true if we don’t consider friction forces, which is presented in the
following sections.

2 Shape Optimization With Contact

The process of obtaining the shape derivative when dealing with linear elasticity is well explained in
literature. We used here a similar approach to Panetta et al. work [3]. The details on how to compute
the derivative can be found in [3] and its supplemental material.

The formula for the discrete shape derivative of a function J(@) = [, e(t, z)dz, considering only linear
elasticity, is shown below:

Srlu, pl = (/Q le —e(p) : o]VAm + [VAm - (0pn + (e(p) : C — T)un)]dV>+

Gl o) (T ) (], ooy )

We focus here on how to obtain the shape derivative related to the new contact terms, since adding new terms to
the elasticity problem leads to a change in the shape optimization.

(6)

2.1 Derivative of contact term in PDE

We need to add the following to the weak form:

,_ d y
TC - dt t:O(]N,a(uaw))
d 1
== t:o(a o hoy(u - n) w-ndS)

By assuming the contact shape does not change during optimization, we can pass the derivative inside integral:
1 d

-1 4

a Jr, dt

_l/ 4
« re dt

t:o(hn (u-n) w-n)dS

(hn(u-n)) w-n + hy(u-n)

d
° n)d
t=0 dt lt=0 (w-n)dS




But because D[w] = 0 in our discretization (and shape of I'c does not change), we can keep only the first term.
We need to compute the following:

d _ dhydy
dt t:o(h"(u n) = dy dt
_ Ohy d(u-n)
Oy dt

— Hy(u-n) (Dfu] - n)

So, T, term corresponds to:

Complete derivative (contact shape may not be fixed). If we consider the more interesting case where
shape on contact region is allowed to be perturbed during optimization, we have the following.

Consider the mapping f:(X) = X + tv(X) that represents the perturbation with velocity v of a point X in the
original shape to its new position « in the perturbed shape. (The inverse of f; is then f; '(z) =  — tv). The
jacobian of the map is then Vf; and equals F; = I +tVv. (As we know, the jacobian of f; corresponds to Ffl).

Then,
! % d ’
Tc = —
C dt t:O(‘]N’a(u’ w))
d 1
=5 t—o<a /WC hy(u-n) w ndS)

t=0

(w - n)det(Fo) + hp(u-n) w- ni

(hy(u-n)) w-n det(Fo) + hy(u - n) i t=0 dt

t=0 dt

(det(F)) ds

t=
Note that Fj is the identity and that D[w] = 0. We arrive at the following equation:

T = é[/rc W, (u-n)(n - Dlu] +u.D[n])w-nds+/

hy(u - n)(w - Dn])dS +/ hy(u-n)(w-n)V - vdS]

e T'c I'c
where
H = fé [/FC Ry (u-n)(u- Dn))w - ndS + /Fc hy(u - n)(w - D[n])dS + /FC hy(u-n)(w-n)V - vdS}

2.2 Derivative of the DD term in PDE
In a similar way, we can also compute the derivative of the DD term Ts in Equation (2) with respect to time.
Without considering the shape moving on the DD boundary, we obtain:
1 _ -
T6 = —/ (h;([u] -n" ) (D]u]] - n )) w-ndS
Ts

«@
where I's =g+ Ul'g-.

Complete derivative ( DD regions may not be fixed). If we decide to consider the DD region moving, we
have:

Ti =+ {/F (hoy(fu] - n7) (D[[wl] - 0™ + [u] - D[n7])) (w-n)dS

+/F h,,([u]«Tf)(w»D[rLDdS’Jr/F hy([u] - n” ) (w-n)V-vdS

S

—TL - HY



where
[/ Hy(lul - n”) (- D7) (w - n) dS+
—|—/F h,,([u]~n*)(w-D[n])dS—|—/F ho([u] -n™)(w-n)V -vdS

S

2.3 Final derivative including RD and DD terms
The complete derivative of the PDE is then:

/Qs(w) :C:e(D[u))dV + T + Ts = H + Hg + /Q(VwVv) co+e(w): C: (VuVu) — (e(w) : 0)(V - v)dX —

—(/FNW.U)drN)(/FNw-gdrN)+(/FN<w-g><v-v>drN) )

2.4 The adjoint PDE
Without contact, we have equation below define the adjoint equation.
/ T:e(Y)dV = / e(p): C:e(y)dV (8)
Q Q
where 7 = 2¢’0 : C.

For the new weak form derivative we need to add in the T, term. As derived in [2], the T¢ term should be in
form of:

9j
—(u, p,n) - dS
/rcau( pyn) -1

where, in our case, j corresponds to the integrand of j% , which equals %hn(u ‘m) w-n.

In fact, we can modify and reorder our derivative in the previous subsection in the following way:

Te :/F éh;(u-n) (p-n)n - D[u] dS

-/
9N o

integrand of -

Thus, we can write the new adjoint problem as the following:

Ly -n ‘n)n- = T:€
Le(p>.o.e<w>dV+/Fcahn<u Jpemymeids = [ icw)ds

AT¢

Notice that, in our FEM discretization, in each element we have 3" , ¥*¢®(z) and 3° , p? ¢ (2). Then, discretizing
the new term ATc:

ATe = Z /FE éh;(uh ) < ) pB@B n) (n.gq/)A@A) ds

ecEcx

Z/ éh%(uh-n) <prw3nj> (me:‘w) ds
't B A

ecEc

Z Z Z%A [/re éh;(uh -n)e?oPn;n, dS] p¥

e€Ec A,B i,j

=" [ANG]p



where [AN¢] is a matrix with same size as K. Note that this corresponds exactly to the Jacobian formulation,
which means that the matrix we should use in the adjoint PDE resolution is the same as the result of the last
iteration Newton’s method for the original PDE.

This means we still have a linear equation to solve as adjoint problem. However, the stiffness matrix K is not the
only term on the left hand side. Instead, we have:

T Kp+ ¢ [ANc]p =" D

where D is a vector corresponding to the "forcing function" —V -7 (or fQ 7 : €(1) dS in the weak form). Rewriting
the equation above we have:

Y (K +[ANc))p—D) =0

This is the same as solving a linear system:
(K +[ANc]) p= D
Notice that we do not need to consider fixed terms due to Dirichlet values being all zeros for the adjoint problem.

So, directly eliminating rows and columns suffices. Similar terms are added to the system for DD contact and
both friction types (to be presented in Section 3).

2.5 Final Discrete Shape Derivative

If we assume that the area of contact is not optimized, meaning it is fixed from the beginning, we can compute
the shape derivative the same way we did before, by just replacing p with the one obtained with the new adjoint
system.

On the other hand, if the contact area is not fixed, we need to add terms related to H¢ (as well as Hg) to the
formula in Equation 6. To produce the final version, we use the following:

Dn](v) = =V¢(v-n) on 990
where V.0 = VO — (V0 - n)n

So,

By discretizing v(z) = Y, Am () 0¢m, we can obtain:

D[n](v) = =VAm (1 6¢m) + 1 (VAm - n) (- 5gm)

m

With this, we can compute (6 - D[n]) (needed on H¢ formula), for any vector 6:

6 - D[n](v) = Z[—(G -VAm)n+ (0 -n)(VAm -n)n] - dgm
Then, adding this to the discretized terms in Hj and H§, we obtain:

Hbalv] :Z—é

m

/ ho(u-n) (w-n) (—(u- V) + (w-n)(VAm - n)) dS n +

+ ho(u-n) (=(w-VAn) + (w-n)(VAm - n)) dS n +

[N¥e]

|Ne]

+ hy(u-n) (w-n)dS V)\m:| - 0qm

Hialo) =3~ / B[] -n7) (wen) | = (] - VAn) + ([u] -0 )(VAm -n7)| dS 0™ +

+/F h([u] =17 (=(w - Vm) + (w - 1) (VAm - n)) dS 1 +

+/F hy([u] - n7) (w-n)dS V)\m:| “Oqm



By switching w to p, after solving the adjoint PDE, we reach the formulations presented in the appendix of the
paper, described as Sc (from H{,) and Ss (from Hgy).

3 Adding Friction to Contact

Although we include normal contact force in previous sections, we still need to add friction, which is an important
force to keep objects in place or to reduce their movement in the presence of significantly small forces. In the case
of contact with a rigid surface, we add the following constraints:

II(
II(
II(

Q

n)t|| < p|(on)n| on T
n)e|| < p|(on)n] = ur=0o0nT'¢

)

q

n)ell = pl(on)n| = w = =Aon).

where A > 0.

The first inequality says that the tangent force should be always less than or equal to the normal force multiplied
by friction coefficient u. The second equation represents the case where, if the force is lower than the normal force
term (multiplied by u), the object does not move in the tangential direction of the surface. Consider the example
of a box on a rigid surface. A minimum force is required to move box to counteract the static friction. The last
equation describes scenarios after this minimum force is applied. The box starts to move in the opposite direction
of the friction force. Notice that the force is constant after the object starts moving in the tangential direction.

Adding these constraints to the elasticity problem makes the problem much more difficult since friction is dissipative
and the physical problem cannot be represented as a minimization of potential energy anymore. We have to work
directly with the variational inequality form (since there is also no corresponding variational equality):

/Qs(u) : Ce(w)dV +/ wl(on)n| ||we||dS — /1"0 wl(on)nl |lue||dS > /Qf -wdV +/F g-wdS

e N

new friction terms
for any ¢ € K(2). Here, 0; corresponds to the tangential component of a vector 6; = 6 — (6 - n)n.

Approximating the norm function by a smooth function N,(v) and using the previous penalization on penetration,
we arrive at a variational equality, as shown in [1]. The final variational equality (which also includes the case of
DD contact) is shown below:

/ e(w) : Ot e(u) AV + jna(u, w) + js.a(,w) + jora(u,w) + Jspa(u,w) =/ w-gdS (9)
Q —_——— — 'y
Tc Ts Tcp: RD friction Tgp: DD friction N———
Tg Tn

And here are the formulas for both the DD and the RD terms:

j/CF,a(u,w):/F oy m) N - e dS (10)
oratuw) = [ Byl ) V(@) -l dS ()

where N, (x) is an approximation of the L2 norm function:

llll lyll =
Ny(y) = (12)
! —sslyll* + Syl + 50 Nyl <n
and, therefore,
, Y Iyl = n
Nn(y) = Hy‘\‘l 2 (13)
Syt oy Iyl <
syt oy lyl <n

Now, we can work on discretizing the new friction terms (Tcr and Tsr) for FEM.

10



3.1 FEM Formulation
First, consider the RD term:

Tor =) wa@/r o™ hy(u-n) [N} (ur)] ) Z“’J (/ 07 hy(u-n) (N;(ut).n)njds>

e€cEc A

= > w < / " hy(un) [N;m)]idS) - <Z / 9" ha(usm) (N,;wt)-n)mds)

ecEc Aji

2
Fc FZ,

But notice that the second term F2 contains a multiplication with N (ut) n. As shown in N{] formula, it keeps
the direction of its argument. Thus, N »(ue) = Aug and, consequently, N, (ut) n=Au¢-n)=0. So

Ter=Y w;*(g [ & atun) [Né(ut)kd5>
e€cEc A,i c

Then, we can apply similar operations to find the FEM formulation term for the DD friction term:

Tse= 3 Zw"“( / " hnw-n-nN;uu}tnids}

ecEg— A—i

- > >owit / ™t hn<[u1-n>[N;<[u1t>]ids>+

ecEg+ A+,i sy

- Z Z wf_ <5/ ‘PB_ hy([u] -n7) (Né([u]t) ‘) n; dS)—I—

e€cEg— B—,j £

3 St / " (] ) (N;uu]t)m)nde)

e€Eg+ B+,j

But notice that Ny ([u]:) = N)(u; —uf) = =N, (uf —u;) = —N/,(—[u]¢). This makes it possible to reduce to
only two sums, hke the RD term.

Tsr = Z Zw, (Z/ o hn([u]'”_)[Né(ut—u?)]id5>+
ecEg Ai r's
- (g/ % hlu] - n7) (Nj(us — ) - m) mg dS>
> > wd (Z [ " hallul 0 ™) —u?)]ids)+
e€Eg A,i I's
_— (g [ bl n) (Nt = ) oy dS)

11



Again, the second term can be eliminated due to (N (us — u?) -n) =0

> S (g [ hatt)n ) ¥ e uz’)]ids)

ecEg A,i

Do > wi(Fse)i(w)

ecEc A

D> @) (Fso) (@)

e€Ec A
= 3wl Fe(a)
ecEc

=" Fs(a)

Tsr

where u° is the displacement on the opposite edge of each e (boundary element).

3.2 Jacobian of RD term

We can compute each [DF¢(@)]s,; individually. Notice that ¢ and j corresponds to a different coordinate of a
node respectively. So, we can write

DFe@); = DRG] = P4

where A, B are global node indices and k,l = 1,2 (,3 in 3D) are the coordinate indices.

Then,

d(Fo)it _ Z d(Fee)it

oup duP

ecEAB

where Fap contains all elements with nodes A and B. Moreover, A and B correspond to the local indices of
global nodes A and B in element e.

We can develop it:

d(Fee)i 0 u/ a /
—_— — — h * N dS
P ouP Fgw n(w - n) [Ny (ue)]

«

=5/ ¢ (af;amn(w)) [N () + o) a“Né(“t”’“vdS

B
a Jre, ou|

We know from the normal contact force that

Yy
9 (h (@) = Ohy dy

Bulé Oy auF
Where we know
0 y<—n
O _ )y o1 e
ay =932y 3 nyYxn
1 y=zn
And
Jy B
— = n
ouP v

We also need to compute %([N,’I(ut)]k):

0Nyl = Aale O

— ([N ("u =
ouP ' ow  ouf

n

12



We can compute the term 2 ([N (w)]) from symmetric matrix -2 ([N;,(w)]).
9 1y Tt L~ g ww”
o= ([Ny (w)]) = e
ow [Ny (w)] —“’;‘gT _ HQW\L\% I+ %]
And
ow 0
ouB = gp5 (W (e mn) = 97 (I —mn)
1 1
Finally,

! T

A o
Aok _ ﬁ/ﬁ oo (%(u-n) [Ny (ue)lkma + hy(u - n) {aN" (uz)}

auF « ow

(I; — nyn) >d5’ (14)

k

Using Equation 14 we can build the full Jacobian related to friction DF¢ (@).

3.3 Jacobian of the DD term

Now, let’s do the same for the DD term of friction.

A(Fs)i
ouP

[DFs(a))i; = [DFs(a)]i)” =

where A, B are global node indices and k,l = 1,2 (,3 in 3D) are the coordinate indices.

Then,

(Fs)it _ $ (Fse)p

2 = o 2elk

8ul ecEAp a’LLF

where Fap contains all elements with nodes A and B. Moreover, A and B correspond to the local indices of
global nodes A and B in element e.

For the first part we have:

A —
OFse)i _ 0 (“/ o m([u]-n‘)[Néwt—u?)]de)

ouP ouP

:H/ oA
a Jre

S

( 0 (] -n 7)) [N (e = u)k + Py ([u] - ™) = ([N7 (ue — U?)]k)>d5

ouP

To compute this, we need the answer to

9 ., ~——. ON} ow
s (Ny(we —uf)) = 5 ——
uf ow Juf
where
O(ut —uy) ©P(I, —mun) if B is on e (current edge) side
8ulB B —®(I; —mn) if B is on side opposite to e
Also,

13



O[u]-n7) Ou-n  Ou’-n _ ©Pn; if B is on e (current edge) side
oup Oy dy

—¢pPn; if B is on side opposite to e

So, summarizing

O(Fse)ie o M i B[ 0Ohy - / 0 - [oN o]
B —ope.B) & [ oo (Gl n7) N = (] -7 | G (e — )
S

8ulB «

L — nm))dS

k

where

1 if node A is on e (current edge) side

—1 if node A is on opposite side of e

op(e, A) = {

Note that the Jacobian with respect to friction is not SPSD anymore, and not even symmetric.

4 Shape Optimization With Friction

The addition of friction terms to our elasticity problem with contact adds complexity to the shape optimization.

4.1 Derivative of contact term in PDE

First, consider the case of contact with a rigid body, represented by the term Tcr.

o o) Ny e as)

Passing the derivative inside the integral:
. d
Tge=£ / -

a Jp, dt

:H/ a
a Jp, dt

d
+hn(u-n)N,/](ut)-wt—‘ (det(F,)) dS
dt lt=0
d

-4/ (ot ) DLl + L - ) - Dl ) ) -+

«

o (hn(u-n) Np(ue) - we det(Fy)) dS

(gl ) N i det(F) + () %

t=0 (N7/7 (ut) ' wt) det(Ft) +

) (G (N3 0) (D] = (Dl -+ - D = (- m)Dla) - i+ Ny () - Dl ) +

+hy(u-n) Ny(ue) -we Vv dS

Let’s work on some individual terms of our derivative:

d . d(un) N
@(hn(u'”))—hn(“'n) du = hyu-n)n
d . d(un) N
Ui m)) = B (- n) =2 = iy (um) u
And
W) (D) — (D) -+ - Dial)n -+ (u-m)Dln)) =

= N/ (ur) ((1 - nnT)D[u] — (u- D[n))n — (u- n)D[n])
= Ny (us) (I = nn")D[u] — Ny (u)((u - Dln])n + (w - n)Dln))
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So, going back to our derivative:
Té*F = g / ho(uw-n)(n- Dlu] +u- Dln]) Ny (uy) - w+
T

+ hyp(u-n) N:{(ut)(l — nnT> Dlu] - w—+

= hay(u - n) Ny (u)((w - D[n])n + (w-n)D[n]) - w +
+ hn(u-n) Nj(u) - we Vv dS

We can split it in two parts:

! % / ’
Tecr =Tcr — Her

where
/F hy(u-n)(n- Du]) Ny(ue) - w+

+ hy(u-n) N,’,'(ut)(l - nnT) Dlu]-w dS

Her =2 [ Ky m)(u- Dlnl) Nyfun) -+

(u-n) N/ (ue)((u - Dn])n + (u-n)Dln]) - w+
n(u-n) (Ny(ue)-w) V-v dS

If we do the same with the term related to soft body contact, we have:
! d ./
T = 7‘ [eY )
SE= gl (]SF, (u w))

-~ 4 (/ 2 (] ) Ny(ul) -l s )

- % t=0 </Fs ghn([u} 'ni) N:]((u7 7U+)t) cw dS )

d s = nrt oy —
t_o</rs+ahn<[u1‘n ) Ny((u™ —ut)e) - w” ds )

-
] (/ E (] n”) Ny (G~ ) - w dS )
t=0\Jrs_ Ursy &

Passing the derivative inside the integral:

d

- o M d — ’ o
Tsp = E/FS_ Ure. pr tzo(hn([u} n7) (Ny((uw—u®)) - w) det(Fy)) dS

:ﬁ/ da
« FS*UFS«#dt

+hy([u] - n7) %lt:o (N ((u = u®)¢) - w) det(Fy) +

(hn([u] - 7)) (Ny((w—u®)e) - w) det(Fy) +

t=0

(] 07) (Np(w = u)) -w) | (det(F) ds

_ M d -n- . u i ul-n” . n_ ! u_uo w
_E/FS UFS+(d[u](hn([u] )) - Dllul] + 5= (b ([u] - 7)) - DI ]) (N (( )e) - w) +

-4 o (Bl w7y Dl =) b (- 07 =) - D) (Np((a =)o) ) +
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We can split it in two parts:
Tsr = Tsp — Hsp

where

T =8 [ ) e D) ({0 )

+ by (] -7 ) N2 ((u — u)e) (1 - nnT) Dlu—u°]-w dS

Hyp = [ ) ) Dlnl) (Vi —)) )+

ul - n”) Ny ((u = u?)) (((w = u?) - D[n])n + ((w — u”) - n)Dln]) - w+
]-n7) (Ny((uw—u)e) - w) Vv dS

S

4.2 Final derivative including RD and DD contact
The complete derivative of the PDE is then:

/ e(w): C:e(Du))dV +Te +Ts +Tep +Tsp = He + Hg + Heop + Hgp+
Q

—l—/(VwVv) to+e(w): C: (VuVo) — (e(w) : 0)(V - v)dX —
Q

_ﬁ(/m(v-v)dm) (/FNw-TdFN) + (/FN(w-T)(Vm)dFN) (15)

After computing the PDE derivative with our new friction terms, we can again use the left side (T, Top) to
compute the adjoint PDE solution and the right side terms (H¢p, Hgp) to compute the discrete shape derivatives,
presented in Appendix of the paper as Scr and Ssp.
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