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We introduce an efficient method for designing shell reinforcements of min-

imal weight. Inspired by classical Michell trusses, we create a reinforcement

layout whose members are aligned with optimal stress directions, then opti-

mize their shape minimizing the volume while keeping stresses bounded.

We exploit two predominant techniques for reinforcing shells: adding

ribs aligned with stress directions and using thicker walls on regions of high

stress. Most previous work can generate either only ribs or only variable-

thickness walls. However, in the general case, neither approach by itself will

provide optimal solutions.

By using amore precise volumemodel, ourmethod is capable of producing

optimized structures with the full range of qualitative behaviors: from ribs

to walls, and smoothly transitioning in between. Our method includes new

algorithms for determining the layout of reinforcement structure elements,

and an efficient algorithm to optimize their shape, minimizing a non-linear

non-convex functional at a fraction of the cost and with better optimality

compared to standard solvers.

We demonstrate the optimization results for a variety of shapes, and the

improvements it yields in the strength of 3D-printed objects.

CCS Concepts: • Computing methodologies→ Shape modeling; Mesh
geometry models; •Mathematics of computing→Mathematical optimiza-
tion; • Applied computing→ Computer-aided design.
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1 INTRODUCTION
In structural design, shells are considered to be one of the most

efficient structures because they can be simultaneously lightweight

and robust. Shells are common in additive fabrication applications

because using shells instead of solids reduces the cost of material

and decreases the fabrication time.

An optimally-shaped shell can carry its load relying only on

tensile/compression forces, with no bending involved, which is very

efficient in terms of the required material. These types of shells

are commonly found in architecture (domes). However, the shape

of the shell may be determined by considerations other than its
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Fig. 1. Stages of our pipeline for generating a shell reinforcement structure.

load-carrying properties. For example, the shape of the airplane is

determined by its aerodynamics; the shape of the car body both

by the aerodynamics and aesthetics; the top of a table or a shelf is

flat, as objects need to be placed on it; the artistic intent primarily

determines the shape of a lamp or a statue.

Shell structures with shapes fixed by considerations other than

loading are often reinforced by additional means, most commonly in-

creasing thickness in critical areas or adding ribs (Figure 2). Formally,

a common optimization goal for a shell reinforcement structure is

to minimize the weight of the added material while keeping the maxi-
mal stress of the structure bounded. The first ensures the structure
remains lightweight, while the second prevents structural failure.

This problem has been well studied for two dimensions in the

limit of low volumes. In 2D, the optimal layout forms a pattern of

orthogonal lines (Hencky-Prandtl net) and, for a given layout, the

minimum weight structure has all members fully stressed. These
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Fig. 2. Examples of shell structures showing variable thickness walls and
ribs: (a) The Armadillo Vault, Biennale d’architecture 2016, has thicknesses
varying from 5cm to 15cm (Image by Jean-Pierre Dalbéra [2016]); (b) Mactan
Cebu International Airport, Philippines (Image by Denzeldoorn [2019] );
(c) glass bottle of variable thickness (Image by Dmitry Makeev [2006]); (d)
plastic skateboard weights 1.75kg and supports 100kg (Image by MthwGlm
[2020] ); (e) plastic pails (Image by Davie Bicker [2019]); (f) plastic laundry
basket (Image by Dodger67 [2013]).

structures form, in the limit of low volumes, classical Michell struc-

tures and can be obtained by solving a convex optimization problem.

It is also well understood for pure bending problems for plates, i.e.,

the special case of flat shells with loads orthogonal to the surface;

in this case, it also reduces to a different convex problem.

The situation is far more complex for the reinforcement of shells

embedded in three dimensions. For these shells, the weight-optimal

structure may be locally either beam-like, forming ribs aligned
with stress directions, or membrane-like, forming variable-thickness

walls with no perforation [Sigmund et al. 2016]. The first case typi-

cally corresponds to bending-dominated regions while the second

to areas dominated by in-plane forces. The optimal local structure

is determined by the surface shape, the supports, and the loads.

In this general case, the problem is no longer convex and cannot

be optimally solved either by methods that assume that the result is

only a variable thickness shell or by Michell-truss type methods.

In this paper, we propose a novel efficient computational method

for constructing optimized reinforcement structures for shells, natu-

rally producing a full range of behaviors spanning the space between

variable-thickness shell and rib-type reinforcement. Our approach

can be applied to reinforcing any types of free-form manufactured

objects: 3D printed plastic or metal shapes, as well as structures

produced by casting.

We partition the problem into three steps (Figure 1): (1) determine

the field of (approximately) optimal stress directions; (2) construct

the skeleton of the reinforcement structure that follows these direc-

tions, forming polygonal (predominantly) quad cells aligned with

the field; (3) optimize how material is distributed inside the cells.

Main contributions.
• For computing the field of optimal stress directions, we de-

veloped a generalization of Hencky-Prandtl nets which takes

bending into account and can still be solved by minimizing a

convex energy.

• Formaterial distribution optimization, we use a low-parametric

structure model for cells to efficiently optimize the distribu-

tion of the material. As the global optimization problem is

fundamentally non-convex (we discuss the reasons on Sec-

tion 3), to solve it we propose an efficient global/local method

which shows stable and fast convergence behavior.

We validate our approach by optimizing several 3D shapes. This

evaluation shows that our method can handle shells with arbitrary

curvature, and successfully transitions between membrane- and

bending-dominated regions, obtaining the expected optimal sub-

structures. We demonstrate that, by optimizing jointly for bend-

ing and compression/tension dominated regimes, we obtain lighter

structures than previous work.

2 RELATED WORK
Our work builds on the ideas from classical structure design for

2D elasticity and plates, with the key ones originating the work of

Michell [1904].

We complement these fundamental ideas with quadrangulation

techniques which can be reinterpreted as a way to transition from

an infinite continuum of field-aligned beams to its discretization.

We use a variation of Bommes et al. [2009], but any conforming,

field-aligned method could be used (e.g., [Aigerman and Lipman

2015; Campen et al. 2015; Ebke et al. 2016; Kälberer et al. 2007; Myles

et al. 2014a]). The optimization method for computing the optimal

strain field can be viewed as a specialized cross-field optimization

method. Similarly to the recently proposed method of Knöppel et al.

[2015], it has the advantage of being convex.

We refer to Vaxman et al. [2016] for a complete overview of

the related work on field design and to Bommes et al. [2013] for

quadrangulation.

Shell Optimization. The closest works to ours are the recent works
Kilian et al. [2017] and Li et al. [2017], with which we share a num-

ber of ideas. The former describes an elegant connection between

curvature and Michell trusses and optimizes the surface shape so

principal stress and curvature directions coincide. Only membrane

forces are considered, and the volume approximation they use is

valid for narrow beams (see Section 3). Similar to our work, Li et al.

[2017] keeps the shell surface fixed. This work considers a network

of ribs, aligned with stress lines, and minimizes their volume; sim-

ilarly to Kilian et al. [2017], this work also uses a narrow-beam

approximation for the volume, and always produces a thin-beam

structure. The cross-section shape of individual beams is optimized,

which produces additional weight reduction. We discuss differences

to these works in more detail in Section 8.

On the other extreme, Zhao et al. [2017] considers the optimiza-

tion of variable shell thickness, while keeping the topology fixed,

which is suboptimal for bending reinforcement. Our work aims to

bridge the gap between these extremes.

The approach of Pietroni et al. [2015] aligns a network of beams to

an input stress field. Another recent related work, Jiang et al. [2017]

considers structures made out of beams with a small number of

distinct cross-sections. Both methods are suitable for architectural

design; instead, we focus on applications, like 3D printing, which

allow greater flexibility of structures.

Structural Optimization. The literature on structural optimization

is quite extensive, and there is no chance that we can do justice
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to all of it. The main types of approaches found in the literature

include topology optimization methods (homogenization, SIMP, or

ESO-based), analytic methods for optimal structures directly based

on Michell-type theories, and methods based on shape derivatives

(using an explicit or implicit evolving surface representation). Im-

portant books, which include reviews of many other works are

Rozvany [1976], Allaire [2002], Bendsøe and Sigmund [2004], as

well as recent reviews, Munk et al. [2015] and Sigmund and Maute

[2013].

The most prevalent methods in topology optimization of struc-

tures are based on SIMP-type methods (see Bendsøe and Sigmund

[2004] for a review), which relax the problem to optimizing a density

over a domain, which is then converted to a structure by thresh-

olding. This approach has many advantages, including simplicity

of implementation [Sigmund 2001], connection to homogenization

theory, flexibility in integrating functionals, and ease of scalable

implementation [Aage et al. 2015; Wu et al. 2016]. Nevertheless,

the result will typically depend on initialization: for the complex

topology to emerge, the domain needs to be discretized using a fine

grid. The parameters of the result (e.g., the sparsity of the structure,

or minimal thickness) need to be controlled indirectly through algo-

rithm parameters. Finally, the result is a voxelized structure, which

then needs to be converted in some way to a form more suitable

for manufacturing. In comparison, our method directly produces

solutions based on a globally optimal field (in low-volume limit)

and a beam skeleton for the optimized structure, which can be di-

rectly adjusted by the user in a variety of ways (e.g., converted to a

spline-based CAD model if desired). We compare in more detail in

Section 8.

Ground structure methods are among the oldest methods for op-

timizing the topology of truss/beam structures. These methods start

with a structure consisting of a large number of redundant beams

and optimize it to determine the cross-sections, which automati-

cally eliminates some of the beams. Recent examples of applying

these type of methods include Sokół [2011], and Zegard and Paulino

[2014, 2015]. Compared to our approach, ground structure meth-

ods have to restrict the directions of beams to a small set, which

affects both optimality and flexibility of the design. The larger the

initial set of beams, the closer they may approximate the optimal

result. In computer graphics, the ground structure method was used

early in Smith et al. [2002] for truss structure design. Panetta et al.

[2015] used a version of a ground structure method to obtain initial

topologies for computing microstructures with prescribed material

properties, followed by shape optimization.

To a great extent, our work was inspired by the beautiful struc-

tures explored in the literature on analytic or semi-analytic structure

design, e.g. Rozvany [2012], which includes many examples of exact

problem solutions, such as Hencky-Prandtl nets.

Our goal is to use this type of ideas in the general setting of

curved surface domains, taking advantage of the optimality criteria

and insights into the structure of the solutions. A concise exposi-

tion of the theory underlying Michell-type optimal layouts can be

found in Strang and Kohn [1983]. We note that the application of

Michell-type structures in 3D is only appropriate for certain problem

settings: e.g., Sigmund et al. [2016] observed that, with no lower-

bound constraints on shell thickness, variable thickness shells are

likely to emerge as a solution. While their analysis is limited to

compliance minimization, our experiments show it also applies to

weight minimization (see Figures 23, 24, and 25).

Shape-derivative based optimization techniques (e.g., Allaire and

Jouve [2008]) can obtain very good results when one needs to im-

prove an existing design, by evolving the shape to a local minimum.

However, while level-set methods of this type allow for topology

changes, the result does vary considerably depending on the start-

ing point. In contrast, our goal is to obtain a starting point that is

close to the global optimum, as long as the desired structure has a

relatively low volume.

More recently, homogenization-based topology optimization has

been used to create high-resolution manufacturable structures (e.g.
[Geoffroy-Donders et al. 2017, 2018; Groen and Sigmund 2017]).

Several fields corresponding to structure parameters are optimized

for a coarse mesh and later projected into a high-resolution mesh

creating complex microstructures. This approach was applied to

generate structures for 3D volumes [Geoffroy-Donders et al. 2018];

applying this technique to thin shells would require using a very

fine resolution, as the dimension in the normal direction of the

shell needs to be resolved, making the approach computationally

expensive. It may also create impossible to manufacture fine-scale

structures with void/solid alteration along the normal direction of

the shell.

Digital fabrication. The works closest to ours in this domain are Li

and Chen [2010], Tam et al. [2015], and Tam [2015]. These methods

are based on constructing structures from stress lines on surfaces

which, while different from the optimal fields we compute, are often

a close approximation. The overall pipeline of the method of Li and

Chen [2010] is similar to ours: this work starts with a field, and

construct trusses following the field by tracing lines from supports

to loads. The method is limited to planar elasticity and demonstrated

only for relatively simple structures.

Tam et al. [2015] uses FDM to add material directly along the

principal stress lines, on 2.5D surfaces. The main problems they

solve are stress line generation and selection. They minimize strain

energy subject to a maximal total print length (i.e max material)

and consistent maximum spacing between lines.

In 3D, Arora et al. [2019] builds volumetric Michell trusses by

creating a stress-aligned 3D texture parametrization and extract-

ing a truss structure from it. The stress field corresponds to the

deformation of the initial mesh filled with solid material, not taking

into account the redistribution of stress resulting from removing

material. The cross-section area of all trusses are assumed to be the

same; as a consequence, the volume of the resulting structure is

sub-optimal.

Applying topology optimization (SIMP and ground structure

methods) to 3D printing applications is discussed in Zegard and

Paulino [2016].

3 MOTIVATING EXAMPLES
To motivate our method, we start with simple examples of quali-

tatively different behavior of optimized structures. With these ex-

amples, we demonstrate that in general, for in-plane loading, using

a thicker surface is significantly more efficient than using narrow
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protruding ribs, and this solution cannot be obtained when using

the convex volume approximations used in previous work.

The two key behaviors of optimal shell-like structures, observed

in special-case analytic solutions and topology optimization (cf.

[Sigmund et al. 2016]), are the formation of discrete narrow ribs pro-
truding from the surface in bending-dominated cases (most forces

are perpendicular to the surface), and relatively smooth variation

in shell thickness in the pure tensile/compression case (in-plane

forces), as shown in Figure 3.

Fig. 3. (a) optimal structure for a standard cantilever test case with variable
thickness, cf. [Sigmund et al. 2016] (b) bending plate optimization, subject
to uniform vertical loads, resulting in a rib structure qualitatively consistent
with analytic results; (c) an optimized pipe structure, subject to internal
pressure, exhibiting a mix of behaviors.

These two behaviors are not observed in the simplified models

of beam networks approximating a surface: in a typical network,

beams do not expand in the direction parallel to the surface, to merge

into a variable-thickness shell optimal in such cases. It turns out

that this is due to the qualitatively inaccurate volume computation

with the volume of the beam network approximated by the sum of

individual beam volumes. We now consider two simple examples

showing why this is the case.

First, we consider optimization of a single horizontal beam of

widthw and height h, clamped at one end, and loaded at the other,

at an angle α to the beam direction (Figure 4, left). This example

clarifies optimal behavior when there is stress in only one direction,

both for bending (α = π/2) and tension (α = 0). The second example

involves two intersecting beams (Figure 4, right). It is a simple model

for a piece of a surface where there is stress in two directions.

For a single beam with an end load (F cosα , F sinα), the maximal

stress is proportional to F cosα/(wh) + F sinαl/(h2w), the sum of

the membrane stress along the beam and the bending stress. We op-

timize the beam volume V (w,h) = whl keeping this stress constant

σ0. Eliminatingw using the constraint, we get V = (lF/σ0)(cosα +
sinα/y), where y = h/l .
When sinα , 0, the optimal solution maximizes the relative

thickness y. In contrast, when forces act along the beam (α = 0), the

volume value is fixed by the constraint on stress and the choice of y
makes no difference.We conclude that, for single beams, the solution

can always be taken to be "thick and narrow" beams (we refer to

them as ribs), withmaximal possible thickness. The situation is more

Fig. 4. Left: beam loading and parameters; Right: surface approximated by
two intersecting beams loaded in plane.

complicated for surfaces. In the second example, we approximate

the surface locally by beams aligned with the perpendicular stress

directions (Figure 4, right). For simplicity, we assume the forces,

widthsw , lengths l , and thicknesses h to be the same for both beams.

If we view the intersecting beams individually and approximate

the total volume as V = 2whl = 2wyl2, then the reasoning above

applies to each beam: for in-plane forces (α = 0) we get wy = F ,
and the optimal volume isV = 2Fl2, independent of the choice ofw .

However, even a small bending component will prioritize maximal

h solutions, so both beams will be thick and narrow.

Considering beams in separation ignores the fact that the inter-
section area of the beams is counted twice: this part of material is

performing “double work”, supporting loads in two directions along

two beams. The correct combined volume of two beams is given by

V ′(w,y) = 2wyl2 −w2yl ,

assuming the same beamwidth and thickness for both. As before, for

in-plane forces (α = 0), we have the constraintwy = F . Replacing
y, the functional V ′

can be expressed then as V ′(w) = Fl(2l −w).

From this expression, it is clear the minimum volume is obtained

maximizing width, as opposed to thickness. For a maximal width l ,
the optimal volume is Fl2. In comparison, if we use a large relative

thickness y, then optimal w = F/y ≈ ϵ is close to zero, and the

volume V ′(ϵ) is close to 2Fl2, two times higher than optimal V ′(l).
More generally, a combination of bending and membrane forces

are required to keep an arbitrarily shape structurally stable (Figure 5).

In this case, two intersecting beams with an out-of-plane load in

addition to in-plane, there is an optimal trade-off betweenw and h
minimizing the volume.

Fig. 5. Loaded shells dominated by bending andmembrane forces, and amix
of these. Support nodes are highlighted in green while loads are shown in
red. Loads on (a) and (b) include, respectively, external and internal pressure.

If we further impose constraints on maximal and minimal surface

thickness, even in membrane-dominated areas, ribs would form,

because the optimal solid shell there would be too thin. A general
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optimization method should be able to smooth between grillage-

like structures for bending dominated areas and “thin and wide”

structures for the rest of the surface.

We conclude, from these examples, that to reinforce a shell in a
manner close to optimal for arbitrary loads and shell shape, both
solid variable-thickness and rib-like structures may be required in
different areas of the surface, and for these to emerge, in a beam-based
optimization problem, a non-convex volume function accounting for
beam intersection areas has to be used.

4 PROBLEM FORMULATION
We start with a description of the variable-thickness perforated

surface shell structure that we use to model surface reinforcement,

and the optimization problem we aim to solve.

4.1 Parameters for reinforced shell structure
Our input is an initial shell M of thickness hs ≥ 0 (constant per

triangle) represented by a triangle mesh, with a vector of external

forces f applied to its vertices, and a set of fixed vertices (supports).

We aim to compute a reinforcement structure, added to the ini-

tial shell, which we call a perforated shell of variable thickness Mp

(Figure 6). Mp
consists of a partition P of the input surface into

polygonal faces (typically quads), corresponding to 3D cells, and an

extruded shape for each cell, consisting of blocks as described below.
The blocks for sequences of cells may form rib-like structures, if

the blocks are tall and narrow, or can fill the cells completely which

corresponds to the variable-thickness solid shell case.

Given an approximate user target for cell size, our goal is to opti-

mize the edge orientation of the cell boundaries, and the thicknesses

and widths of blocks forming each cell to minimize the weight while

maintaining an upper bound on stresses (calculated using a beam

model).Mp
can be viewed as the reinforcement structure forM .

To simplify our problem, we split all polygonal cells into triangu-

lar subcells. We refer to the additional edges inserted in this way as

diagonals. We treat these in a special way in the optimization and,

in the end, ensure that the triangular sub-cells can be merged back

into the original polygonal cell (Section 7).

Fig. 6. Perforated variable thickness shell. (a) Input triangle mesh M with
boundary conditions; (b) Partition P of the input into polygonal faces; (c)
each triangular subcells comprises three trapezoidal blocks; (d) extruded
cells forming variable-thickness shell structure Mp ;

Fig. 7. Geometric parametrization of triangular cell. Left: perspective view
of the three blocks; Center: top view showing widths; Right: triangle sides
li and respective triangle heights ai .

Cell geometry parametrization. For each edge of a face ofMp
, we

introduce two parameters, width wi and thickness hi . With each

edge, we associate a hexahedron block constructed by creating a

strip inside the face at a distancewi from the edge and extruding

the resulting trapezoid along the triangle normal by hi (Figure 7).
We model each block as a beam including tension/compression and

bending forces. While this is a relatively coarse approximation of

the shape, it allows obtaining an approximation of the solution

robustly and quickly. These results can be further refined by shape

optimization methods (e.g. Panetta et al. [2015]).

Volume discretization. We consider triangular cells with sides li ,
i = 1, 2, 3, and blocks with rectangular cross-sections of width wi
and thickness hi along the edge li (Figure 7). The simplest approxi-

mation of the volume, which is typically used in low-volume truss

models, when applied to our system, would yield simply

∑
i wihi li .

However, as discussed in Section 3, this approximation of the volume

results in highly sub-optimal results for shells regions dominated

by membrane forces.

A more precise approximation is the volume of the extrusion of

three trapezoidal regions by different heights. Denote the normal-

ized width as yi = wi/ai , where ai is the height of the triangle with
base on side li , and the triangle area as A = 1

2
ai li for any i . Given a

permutation (i, j,k) of (1, 2, 3) for which hi ≥ hj ≥ hk , the volume

is given by the following simple expression:

V (y,h) =A
(
(2 − yi )yihi + (2 − 2yi − yj )yjhj

+(2 − 2yi − 2yj − yk )ykhk
)
.

(1)

This volume can be written as V (y,h) = max(i, j,k )Vi jk (y,h),
where Vi jk (y,h) is given by (1) for arbitrary permutation (i, j,k).
This expression for the volume is useful for the optimization method

in Section 7.

The out-of-plane heights hi can be constrained not to exceed a

user-defined value hmax , and the normalized widths yi are con-

strained so that the trapezoidal areas do not overlap:

y1 + y2 + y3 ≤ 1, yi ≥ 0, 0 ≤ hi ≤ hmax , for i = 1, 2, 3. (2)

4.2 Elastic deformation discretization
We model the perforated shell structure as a beam network: for each
interior edge, there are two beams, corresponding to the blocks of

incident cells along the edge.

Notation. The beam network consists of a set of beams E that are

joined together at nodes (Figure 8). For a node i , N (i) is the set of
indices of nodes connected to it, and the vector ei j connecting nodes
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i and j corresponds to the edge ei j . For each edge, êi j denotes the
unit vector along ei j . The edge ei j has length li j . We assume that all

cells are made of uniformmaterial with E as Young modulus. We use

σ [ij] and ε[ij] to denote one-dimensional (membrane or bending)

stresses and strains of beam connecting vertices i and j in a given

cell. From now on, we use (.)m and (.)b to denote membrane and

bending terms respectively.

Fig. 8. Beam bending discretization.

Beam linear elasticity discretization. The membrane strain along

each beam is the scalar εm [ij] = (uj − ui ) · êi j/li j , same for both

blocks at the edge ei j where ui is the displacement of a vertex i . It
is related to the stress by εm [ij] = σm [ij]/E.

For our problem, bending discretization is critical. We use a pure

displacement-based beam bending approximation, but a more stan-

dard beam element could be used. Our beams are clamped to a freely

rotating plane at each vertex, i.e., preserve the angle between the

beam and the (freely moving) normal to that plane. Each beam is

also connected to the original input shell, resulting in lower torsion.

We use a simple discrete beam model for bending, where we neglect

the torsion, and define the bending strain ei j , i.e., the change in the

curvature of a beam, as

εb [ij] = êTi j (∆n̂j − ∆n̂i )/li j , (3)

where n̂i and n̂j are the normals meeting at nodes i and j, and ∆n̂
denotes a linearized change of the normal. The normal change, in

turn, is expressed in terms of the displacements uiℓ , ℓ ∈ N (i) of the
incident vertices.

This leads to the expression for a scalar bending strain on beams:

ε[ij]b = (Db
i j )

Tu (4)

with the expressions for Db
i j given in Appendix D.

At a distance z from the middle surface of a beam, the strain

is given by εm + zεb , where we omit the beam index. Based on

the standard Bernoulli beam assumptions, after integration over

z ∈ [−h/2,h/2] the total beam energy can be expressed as

1

2

(wlhuT (Dm )(Dm )Tu +
1

6

wh3luT (Db )(Db )Tu),

which leads to the following expression for the stiffness matrix of

the beam system:

KB = wlh(Dm )(Dm )T +
1

6

wh3l(Db )(Db )T . (5)

Given the expression for strain εm + zεb , clearly both strain and

stress are maximal on one of the surfaces, i.e., for z = h for a given

beam. This leads to the following stress constraint:

|(Dm
ij + hi jD

b
i j )

Tu | < σ0. (6)

The stiffness of the reinforced system combines the stiffness of

the beams and shell. We form the shell stiffness matrix KS
using the

elastic discretization described in Section 6. The combined stiffness

matrix K is given by K = KB + KS
.

Optimization problem. We use index c for triangular cells. Let

w be the vector of width parameters of all cells, y the vector of

corresponding normalized widthswi/ai ,h the vector of all thickness
parameters,H the diagonal matrix with thicknesses on the diagonal,

u the displacements, f the forces, and 1 be the vector of all ones.
We now formulate our optimization problem:

min

h,y,P

∑
c ∈cells

V (hc ,yc ) s.t. K(h,y,P)u = f ,

|(Dm ± DbH )Tu | ≤ σ01, 0 ≤ hci ≤ hmax , yci ≥ 0,

yc
1
+ yc

2
+ yc

3
≤ 1, for all cells c , i = 1, 2, 3,

(7)

where the absolute value in the stress constraint is taken element-

wise, and the minimum is taken over all partitions P ofM . The cell

volume V is defined in (1), the stress constraint comes from (6), and

the last three constraints correspond to (2). Additionally, we enforce

the same thickness on two sides of all cell diagonals.

As optimization over all possible partitions into cells is an in-

tractable problem, combining combinatorial and continuous aspects,

we use an heuristics to decide the partition first using beam contin-
uum approximation (Section 6). Once P is fixed, we optimize with

respect tow and h only.

While the above formula volume differs only by a seemingly sim-

ple quadratic term from the simplest approximation, this completely

changes the behavior of the problems, and, in particular, the behav-

ior of the solvers. The problem no longer reduces to convex by a

change of variables as it is the case for the simplest formula (cf., e.g.,

Hemp [1973]), and a different type of solvers need to be applied.

In our experiments, commonly used general purpose non-convex

solvers converge very slowly and often fail to make progress. Our

solution is described in Section 7.

5 OVERVIEW OF THE APPROACH
Our pipeline for solving the optimization problem consists of the

steps listed below.

(1) Field optimization. Compute a per-triangle cross-field on

surface using stress-based optimization (Section 6). This field

corresponds to an idealized system of densely spaced thin

beams (beam continuum) with directions chosen to minimize

weight. The problem is formulated in terms of displacements

and the desired cross-field is obtained from the symmetric

strain tensors. This requires solving a convex optimization

problem with inequality constraints.

(2) Quadrangulation. Create a quad-dominant mesh aligned to

this cross-field with a user-controlled spacing of edges. This

step is done using a version of mixed-integer quadrangulation

[Bommes et al. 2009], although any quad layout method with

field alignment can be used instead (Section 7). The faces of

the mesh will correspond to the cells of the perforated shell

Mp
.
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(3) Cell optimization. Optimize shape parameters of the cells

(Section 7). We introduce a substructure for each cell, with a

small number of control parameters defining its shape (widths

w and thicknesses h of rectangular beams along each side).

We derive the optimal material distribution by efficiently

solving a nonlinear, non-convex problemminimizing the total

volume of all cells with respect to w and h, while keeping
stresses below a user-definedmaximum. Tomake the problem

tractable, we defined an efficient local-global optimization

method.

(4) Final geometry construction. Finally, we derive the final
geometry of Mp

according to optimized widths and thick-

ness. We obtain a triangle mesh by performing a sequence of

boolean operations between meshes representing the beams.

The final watertight and manifold mesh can be directly used

for 3D printing or decomposed into elements for FEM analy-

sis.

In the following sections, we describe the details of the steps,

in the order in which they are applied to produce the final result;

however, the key step is the third one (cell optimization), as it has
the most impact on the optimality of the result, as demonstrated in

the evaluation (Section 8).

6 WEIGHT-MINIMIZING FIELD OPTIMIZATION
In this section, we describe our method for constructing a field of

directions on the surface which approximates optimal directions

for weight minimization with bounded stress. The cells in our con-

struction will be aligned with these directions.

The key idea is to solve a version of the beamweight minimization

in the limit case. We assume that there is a continuum of infinitely

thin and infinitely close beams in two orthogonal directions forming

the surface. The density of the beams and their orientations are the

optimization variables. The idea of using this type of continua goes

back to Michell [1904]; in contrast to the standard Michell continua

formulations, which takes only tension into account, we use both

tension and bending. We describe first the classical theory of Michell

continua, leading to a convex problem, and then extend it to the

case of shells with bending forces, preserving convexity.

6.1 Michell continua
Here, we briefly review the classical solution, following Strang and

Kohn [1983]. The best directions are known to be the principal stress

directions of the optimized structure. (These are not the same as the

stress direction on the original input shell, although these fields are

often close.)

The force balance for a plate or a shell with no bending is given

by the standard equations in terms of in-plane stress tensor σ , strain
ε , possibly varying elasticity tensor E(p), and external force density

f :
divσ = f , σ = E(p) : ε ; ε =

1

2

(∇u + ∇T u), (8)

where A : B =
∑
Ai jklBkl for a 4-tensor and a 2-tensor.

AMichell continuum is an idealization of a beam network, charac-

terized, at every point, by beam densities ρ1 and ρ2 in two directions
(Figure 9). In other words, how many beams cross a unit-length seg-

ment along one of the coordinate directions. In the limit of small

thicknesses, the total fraction of a small area covered by trusses at a

point p is ρ1(p)+ρ2(p). The total volume of the trusses in the contin-

uum can be defined as

∫
Ω
ρ1 + ρ2dA. Note that this approximation

of area covered by trusses suffers from the same flaw pointed out in

Section 3.

Fig. 9. Michell continua example. In the limit of small thicknesses d , every
point is characterized by two orthogonal beam densities, ρ1 and ρ2.

The optimal trusses have to be oriented along stress directions,

and be critically stressed, i.e., all (non-averaged) stresses on the

trusses are equal to maximal stress σ0. This leads to the relationship
between ρi and corresponding averaged principal stress: λi (σ ) =
ρiσ0, i = 1, 2, where λi (·) denotes the i-th singular value.

Then, we obtain the following optimization problem for the vol-

ume, formulated entirely in terms of stresses:

minimize

∫
Ω
|λ1(σ )| + |λ2(σ )|dA, subject to divσ = f . (9)

This problem is known to be convex [Strang and Kohn 1983] (al-

though it is more difficult than the linear programming formulation

for a truss network). Note that principal stress directions are not

fixed and are determined by the optimization. We use these direc-

tions as the field for orienting beams inMp .

The problem (9) has a simple dual (Appendix B) of the form

maximize

∫
Ω
fT udA subject to |λi (ε)| ≤ ε0, i = 1, 2, (10)

where ε is the strain of the optimal solution (Figure 10). The dual

problem is significantly easier to deal with in the case of continua.

We note that here we neglect the overlap volume of trusses dis-

cussed in Section 3; while it could be included as −ρ1ρ2 term, this

would immediately make the problem non-convex, and the benefit

of more precise field optimization in terms of volume reduction is

minor (Section 8).

Fig. 10. Field optimization: (a) Design domain Ω and boundary conditions;
(b) Primal solution, squared densities

√
ρ1 + ρ2; (c,d) Dual solutions, dis-

placements u and strain ε eigen-values and -vectors.
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Fig. 11. Vertical strain distribution in a shell.

6.2 Continuum optimization with bending
Next we generalize problem (10) to include bending forces.

If the thickness of the shell remains fixed, one can add bending

to the functional with relative ease without changing the convexity

of the problem. We set the shell thickness in this case to half of the

maximal allowable thickness; while the resulting field is suboptimal,

as we show experimentally in Section 8, inaccuracy in the beam

direction has less effect on the overall weight reduction, compared

to width/thickness optimization of beams.

We make the standard assumption of planar stress for the shell,

i.e., no stresses are active in the direction perpendicular to the shell

surface. The strain at a distance z from the midline of the shell is

given by (Figure 11)

ε(z) = εm + zεb ,

where εb is the bending strain tensor, equal to the linearization of

the change in the shape operator ∇n̂.
Consistently with theMichell continuum,we seek tominimize the

total weight of a beam continuum, bounding the stress everywhere

by σ0. We observe that the eigenvalues of a 2 × 2 symmetric matrix

A, using the substitutions a = (A11 +A22)/2, b = (A11 −A22)/2, and

c = A12, are of the form a±
√
b2 + c2. Note that these are respectively

convex and concave functions of the argument, and, therefore, reach

their maxima (respectively minima) on the boundary of the shell,

for z = ±h/2. For this reason, it is sufficient to bound eigenvalues

of stress (or strain) only for z = h/2 and z = −h/2, to guarantee the

bounds elsewhere.

In the case of bending, the dual problem formulated in terms of

displacements has a simpler form relative to the primal problem:

maximize

∫
Ω
fT udA subject to |λi (ε

m ±
h

2

εb )| ≤ ε0, i = 1, 2. (11)

Note that now there are two sets of constraints, corresponding to

two surfaces of the shell.

The strain tensors ε(h/2) and ε(−h/2) can be interpreted as defin-

ing cross-fields on the surface. We use the angular average of these

fields to align the cells.

6.3 Field discretization and optimization
Finally, we describe a discretization of the convex problem defined

above, and how to use the resulting field to build a mesh.

As a first step, we solve a discrete version of the problem (11),

which yields displacements u at vertices. From these displacements,

we compute the per-triangle strain field eigenvectors, forming a

cross-field on the surface, i.e., an assignment of 4 unit vectors,

aligned with perpendicular principal strain directions, to each trian-

gle.

Fig. 12. Discretization of the bending field.

Discretization of the optimization problem. The optimization prob-

lem (11) has a relatively simple discretization that can be readily

plugged in into a cone program solver. e.g., MOSEK [ApS 2015].

We assume that the surface is given as triangle mesh, M =

(V ,E, F ), and the same notation is used for edge vectors and vertices

as we used for beam networks.

The variables in the problem are displacements, which we dis-

cretize using standard piecewise-linear functions on the surface,

with the vector of unknowns u (we use non-bold letters for high-

dimensional vectors including all components of corresponding

three-dimensional quantities).

The two quantities that need to be discretized are membrane and

bending strains; we define these per triangle.

If ei j are the vectors along triangle edges, for a triangleT , we have
the following expression for the strain, computed as

1

2
(∇u + ∇Tu):

εmT =
1

4AT
(
∑

i=1,2,3
e⊥jku

T
i + ue

T
jk ), (12)

where AT is the triangle area, j is the vertex after i in CCW order, k
is before i , and e⊥jk is the vector in the triangle plane perpendicular

to the side.

If, by abuse of notation, we use εmT to denote the vector of three

distinct components of the strain tensor, we can write the expression

in the form BmT u, where u is the vector of all displacement degrees

of freedom.

To discretize the bending strain, we use the triangle-based ap-

proximation of the shape operator, following the overall idea in

Oñate et al. [1994] and Grinspun et al. [2006], using vertices of the

edge-adjacent triangles to compute the changes of the average nor-

mals at edge midpoints, and computing the gradient of the normal

using the formulas (12).

This leads to the following expressions for the bending strain

on triangles, in which we neglect the triangle deformation: in the

deformation modes for which the bending strain is high (i.e., if the

curvature changes a lot, in-plane deformations are small). We use

the following formula from Grinspun et al. [2006], Figure 12:

εbT =
∑

i=1,2,3

θi
2Ali

e⊥i (e
⊥
i )

T
(13)

where θi are linearized changes in the angles between normals of

adjacent triangles.
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Similarly to εm , we canwrite εb = Bbu. Then the discrete problem
takes the form

maximize f Tu subject to, for all T, |λi (B
m
T ±hBbT )u)| ≤ ε0, i = 1, 2.

(14)

where f , similarly to the beam case, denotes the vector of per-

vertex forces, and u is the vector of all vertex displacements. We

use eigenvalue formulas defined in Appendix A for (19) to convert

the problem to a convex cone problem, which we solve using the

MOSEK solver [ApS 2015].

Detecting field zones. While the output of the previous step de-

fines a tensor for each triangle, not all of these are meaningful. In

some cases (if the triangle is not deformed at all, or deformed neg-

ligibly) the strain is zero. More generally, some points may have

isotropic strains of the form kI , where k is a nonzero constant, for

which all vectors are eigenvectors, so the cross-field is not defined

uniquely on this triangle. For general fields, such points are usually

isolated. However, for the fields corresponding to the solution of the

problem we are considering, the situation is different. There are four

possible regimes (see, e.g., Strang and Kohn [1983]). Specifically, the

possibilities include

(1) λi (ε) = −λj (ε) = ε0, principal strains are critical and have

opposite directions; this corresponds to well-defined two or-

thogonal beam families;

(2) λi (ε) = λj (ε)| = ±ε0, principal strain are critical and have the

same direction; in this case, stresses (which are dual variables

to the inequality constraints) are large but beam directions
are not well defined;

(3) |λi (ε)| < |λj (ε)| = ε0, only one strain is critical; this corre-

sponds to a single family of beams.

(4) |λi, j (ε)| < ε0, in this case, stresses are both zero, which means

there are no beams in this area.

Fig. 13. Zones of an optimal strain field. (1) Two orthogonal directions,
(2) no preferred direction, (3) one direction, (4) no beams. The crossfield
directions are well-defined only for regions 1, 3.

In cases 1 and 3, the crossfield directions are well-defined (purple

zones on Figure 13). In cases 2 and 4 these are either not defined or

are not relevant, due to the absence of structure. For this reason, for

our construction, we use only regions 1, and 3, which we detect by

requiring at least one eigenvalue to be close to ε0, and the difference
of eigenvalues to be more than a constant.

We call the resulting field salient. The situation is essentially

identical to the cross-fields used for constructing quadrangulations:

typically, a field aligned with curvature directions is used as a start-

ing point, and only in areas where the difference of two principal

curvatures is high.

Completing the field. To complete the field on the whole surface,

which is needed for a complete structure, we use cross-field con-

strained optimization procedure of Bommes et al. [2009]. In this

algorithm, the cross-field is encoded by a per-triangle angle, with

respect to a reference direction βi in each triangle. The angles on

salient triangles are fixed. On the remaining triangles, these are

found by a greedy solve of a mixed-integer problem minimizing the

energy

E =
∑

edges (i j)

(βi − βj + ki j
π

2

+ κi j )
2

where the summation is over all dual edges connecting triangles i
and j , κi j is the angle between reference directions in triangles, and

ki j is an integer unknown accounting for the fact that cross-field

values represented by angles β + kπ/2 are the same.

In the resulting field, defined by the angles βi for all triangles,
and integers ki j for all edges, one can easily compute per-vertex

field index and identify field singularities, which become irregular

(valence different from 4) vertices of the quad mesh at the next step.

We refer to Bommes et al. [2009] for details of the index computation.

6.4 Construction of the quad-dominant network
In general, theremay be no optimal beam spacing (in the low-volume

limit, the finer the structure, the lower the optimal volume can be for

a given stress). For this reason, the beam spacing is defined by a user-

specified parameter H . The most direct approach for constructing

a quad mesh aligned with a field would be to trace it. However,

while it was shown [Myles et al. 2014b; Ray and Sokolov 2014] that

this approach can be implemented robustly, in general it requires

T-joints (i.e. beams joining other beams in the middle), and it is

in general hard to ensure uniform spacing over the whole mesh.

We choose a more conservative approach based on constructing a

conforming quadrangulation, without T-joints, using a version of

the mixed-integer quadrangulation algorithm [Bommes et al. 2009]

at this step.

While the method does not guarantee perfect alignment of the

parametric lines to the input field, it minimizes the deviation in

least-squares sense. We refer to Bommes et al. [2009] for further

details.

7 OPTIMIZING CELL GEOMETRY
Given an input quad-dominant mesh, split into triangles, we aim

at deriving the optimal width and thickness for each edge. As we

previously stated, to obtain a structure close to optimal, the edges

need to follow the directions we derived in the field optimization

step. While our material distribution optimization method works

for any mesh, the further the edges deviate from their optimum

directions, the greater would be the total weight. The main idea of

our algorithm is to use a local-global iteration, solving per-triangle

concave problems for each cell, for which the solution is guaranteed

to be on the boundary on the constraint domain. This yields a rapidly

converging efficient algorithm.

7.1 Optimization algorithm
We introduce a domain-decomposition-style algorithm for solving

the problem (7). We observe that in the optimization problem (7),
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all constraints except Ku = f are localized, i.e., each constraint

uses variables related to one cell. Moreover, the functional itself

is a sum of local volume terms V c (wc ,hc ). Ku = f expresses the

equation of force balance, i.e., that the sum of beam forces at each

node is equal to the external force at this node. Our approach is

to fix individual beam forces to their values for current values of

geometry parameters w and h, and then solve for an update to w
and h as a set of local volume-minimization problems with variables

wc ,hc , replacing the global constraintKu = f with local constraints

requiring that individual beam forces remain the same.

We start with an outline and then elaborate on how the local step

optimization problems are solved.

Initially, we assign sufficiently high values tow and h, to ensure

that max stress constraints are satisfied.

• Global step. The global step is just the standard solution

of the elastic equilibrium problem, for fixed cell parameters:

Solve Ku = f , for fixed K defined byw and h. Compute beam
forces as described below.

• Local step. The local step is the key part of our algorithm.

Recall that an important feature of optimal structures is that

they are critically stressed, i.e., the maximal stress on any

element is equal to the maximum possible σ0. The reasons for
this are straightforward: if the stress on an element is below

σ0, one is free to remove some material, increasing the stress

on the remaining part, and decreasing the weight.

This motivates our approach. For the local step, we keep the

displacements computed at the global step fixed and solve for

widths and thicknesses, that would result in maximal stresses

on blocks reaching the critical value σ0 for given displace-

ments. Each system has 6 unknowns, with 3 constraints on

stresses.

Block forces. To formulate our local algorithm, we introduce block
forces, for individual blocks of each cell; we determine wc

and hc

for each cell by minimizing the cell volume, while keeping the

block critically stressed i.e., with maximal stress σ0 and block forces

constant.

Let K loc
be the element stiffness matrix corresponding to a block

B. The vector of forces corresponding to a beam is the vector∇uE
loc

,

i.e. the derivative of the block energy Eloc = 1

2
uTK locu with respect

to displacements. Most forces in this vector are zero.

We use lower-case, non-bold dm for the column vector of (Dm )T ,

and db for column vector of (Db )T , corresponding to the stresses on

block B. After some rearrangement, the force vector f loc = K locu
due to elastic forces produced by a block is

f loc = K locu = Ewhl

(
(dm )Tudm +

1

6

h2(db )Tudb
)
.

Note that this equation implies that f is in the span of vectors dm

and db .
Let

˜dm ,
˜db be the dual pair of vectors to dm , db . Let the mag-

nitudes of membrane and bending stresses be |E(dm )Tu | = σm ,

|E(db )Tu | = σb ; by taking dot products of both sides with the dual

vectors
˜dm ,

˜db , we arrive at the equation (dropping beam/cell sub-

sripts):

whσm = | fm/l | = дm ,
1

6

wh3σb = | f b/l | = дb . (15)

Local optimization problem. The stress in the block, under our

assumptions, reaches its maximal value at the top or bottom, where

its magnitude is equal to σm + hσb . This leads to the critical stress

constraint σm + hσb = σ0. Using expressions for дm and дb above,

which we keep fixed at the local step, this is equivalent to

дm

h
+
6дb

h3
= σ0ay,

where we have switched to the variable y = w/a introduced in (7),

where a is the corresponding cell triangle height. Without loss of

generality, we assume σ0 to be 1, which can be achieved by scaling

all forces. The complete local problem in variables hci ,w
c
i , i = 1, 2, 3

is:

min

yc ,hc
V (yc ,hc ) s.t.

дmi
hci
+

6дbi
(hci )

3
= σ0y

c
i ai

0 ≤ hci ≤ hmax , yci ≥ 0, for i = 1, 2, 3

yc
1
+ yc

2
+ yc

3
≤ 1,

(16)

where the volume V is given by (1), and the last three constraints

by (2).

By eliminating the stresses, we arrive at a single constraint per
block relatingw and h, which we express as follows:

y = (6дbz2 + дmz)/a, (17)

where z = h−1 is a new variable we introduce to simplify the ex-

pressions. This allows us to eliminate all variables wc
i from the

local optimization problem, leaving only three variables zci , with

constraints 0 ≤ zmin ≤ zci , i = 1, 2, 3, and zmin = (hmax )
−1
.

We say that a cell is filled if the equality yc
1
+ yc

2
+ yc

3
= 1 is

satisfied, i.e. the blocks completely fill the cell.

Without loss of generality, we assume that for the solution z1 ≤

z2 ≤ z3; in practice, six problems corresponding to six permutations

of (1, 2, 3) need to be solved and minimal solution picked.

Proposition 1. The function V (zc ) is a concave function of zi .
As a consequence, its minima are reached on the boundary of the
constraint domain; specifically, it is reached at one of the five types of
configurations:

(1) all three blocks have maximal thickness: zci = zmin , i = 1, 2, 3;
(2) the cell is filled, i.e.yc

1
+yc

2
+yc

3
= 1, and no inequality constraint

reaches equality;
(3) the cell is filled, and two thicker beams have equal thickness,

zc
1
= zc

2
;

(4) the cell is filled, and two thinner beams have equal thickness,
zc
2
= zc

3
;

(5) the cell is filled, and the thickest beam has maximal thickness
zc
1
= zmin .

In the first case, the solution is completely determined. In the

second case, there are four possibilities: no inequality constraint

is active (a 2-variable unconstrained optimization problem needs

to be solved, e.g., parametrized by zc
1
, zc

2
); the other three cases
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define one-parametric families of solutions, and one-dimensional

unconstrained optimization needs to be performed to find exact

values, as we explain below. These families can be parametrized

by, e.g., zc
3
= (hc

3
)−1, with the values of the remaining zci and yci

determined from the active constraints. The proposition is proved

in Appendix C.

This behavior of V is in stark contrast to the low-volume formu-

lation ignoring common areas of beam-like parts of the structure:

one can see that in three cases out of four, it creates a completely

filled cell.

Solving the optimization problem. Proposition 1 leads to an effi-

cient algorithm for the local step.

Observe that the constraint yc
1
+ yc

2
+ yc

3
= 1 has the form∑

i
дmi zci + 6д

b
i (z

c
i )

2 = 1, (18)

i.e., it is quadratic in zi . This allows us to reduce the problem to a

set of unconstrained optimization problems in one or two variables.

(1) Compute дbi , д
m
i , i = 1, 2, 3, from (15) for current displace-

ments.

(2) Evaluate V (z), for the case 1 solution with zci = zmin .

(3) For each permutation of (1, 2, 3) solve three one-dimensional

optimization problems, minimizing V (zc ), for each of the

cases 3-5, and the two-dimensional problem for case 2 of

proposition Prop 1. In each case 3-5, substitute the active

constraint for zci into (18), yielding a quadratic equation in

two remaining free variables, one of which is zc
3
. Solve it to

express the other variable in terms of zc
3
, and solve a one

dimensional optimization problem forV (zc
3
). This yields a set

of solution candidates; the minimal solution is guaranteed to

belong to it.

(4) Pick the minimal solution from the set of solutions obtained

for all possible permutations and cases on the previous step.

(5) Updatewc
i using formulawc

i = (6дbi z
c
i + д

m
i zci ), and recom-

pute the global stiffness matrix K .

The convergence behavior of the method is considered in Sec-

tion 8.

Handling polygonal cells and postprocessing. There are three fac-
tors not considered in the solution method above: (1) possible in-

consistency of thickness values across diagonal edges inside tri-

angulated polygonal cells; (2) the coherence of block widths and

thicknesses along the edge lines of the quadmesh, approximating the

optimized stress lines (Figure 14). While jumps in thickness/width

along these lines do not affect the stresses in our simplified model,

in practice, these are likely to lead to localized stress concentrations

close to jumps, and they are aesthetically objectionable. (3) stress

values may slightly exceed the maximal stress after a final global

step.

We experimentally observe that many of the candidate solutions

have close values, especially in areas with no predominant stress

direction.

We address (1) primarily in the process of optimization, at step 4,

we pick a minimal candidate solution with lowest block thickness

on the diagonal, which may not be the most optimal one, as long

as it does not deviate above a threshold. Once the optimization

is complete, for each subcell of a polygonal cell we increase the

lowest block thickness to the maximal minimal thickness over the

whole cell. In addition, for each cell, we store a number of candidate

solutions with the smallest volumes.

We address (2) in a post-processing step using stored candidate

solutions: for each non-diagonal edge of a cell, we find its contin-

uation edges along quad mesh edge line in both directions, and

choose the candidate solution closest in width to the average of the

previous and next edge widths along the edge line.

To address (3), we find all blocks with stress exceeding σ0 = 1, and

increase their thickness and width, while maintaining constraints, to

decrease the stress to the bound. This process is repeated iteratively

until convergence. We note that all additional steps are designed to

ensure that the final result satisfies stress constraints: in all cases, we

never decrease the amount of material in cells, so while the resulting

solution may be suboptimal, it always satisfies stress constraints.

In practice, the effect of these alterations on the resulting weight is

small.

Alternatively, to alleviate these issues, one could optimize for

the width and thickness per-vertex instead of per-edge. To be more

precise, we would require two widths/thicknesses per-vertex since

two beams crossing at a vertex may be different.While this approach

is, in principle, possible, in practice is much more expensive: for

vertex-based cells, the volume function is not likely to be concave,

so a general nonconvex solver needs to be used. Our experiments

showed that, as the number of variables and constraints increases,

a general solver is likely to get stuck in local minima (see Section 8

Figure 21).

Fig. 14. Inflation: (a) Each block is meshed independently, leading to visible
artifact; (b) An entire stream of edges is meshed to produce a smoother
result

Inflation. Once we have performed the weight optimization, we

have one value of thickness and one value of width for each half-

edge of the optimized polygonal mesh. If we simply extrude the

solid block that matches thickness and width for each half edge cell,

we end up in the situation illustrated in Figure 14.a, where there

are visible discontinuities between adjacent blocks, causing possible

structural discontinuities. Instead, for each continuous stream of

quad edges, we generate a unique solid block that interpolates thick-

ness and width along its length (Fig. 14.b). In detail, given a sequence

of aligned edges, we first derive a thickness value for each vertex

by averaging the thickness from its adjacent half edges. Similarly,

we interpolate widths, but this time we derive two different values

for each vertex, one for each side of the sequence. We then define

a tangent vector for each vertex as the cross product between its
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normal and its direction along the edge sequence (obtained by aver-

aging the direction of the two incident edges). Then, having defined

a proper reference frame, a thickness, and a width for each vertex,

we have all the information to extrude a proper volumetric block.

We perform a boolean operation to merge all the blocks together

to a manifold watertight mesh using the approach of Zhou et al.

[2016].

8 EVALUATION
Topology optimization. To validate our approach vs. a general-

purpose topology optimization method, we solve a similar problem

with topology optimization code [Aage et al. 2015] by restricting

the volume of the material to a cylinder of fixed small thickness h,
and choosing the volume grid resolution to be half of the cylinder

thickness, leaving little room for shell shape variation: with this

grid resolution, Aage et al. [2015] can only generate beams (or walls)

of thickness h and h/2. To make the comparison fair, we configure

our optimization to have a minimum thickness close to the maxi-

mum thickness (near-constant thickness). Default parameters were

used in Aage et al. [2015]. We observe that for small target volume

fractions, as expected, Aage et al. [2015] generates substructures

similar to the beam structures we construct (Figure 15). For large

volume fractions, both methods result in variable-thickness shells.

However, due to the limitations on the thickness mentioned above

(large minimum thickness), the thickness variation is minimal. We

note that topology optimization requires high resolution (with mul-

tiple cells fitting in the thickness direction of the shell) to achieve

more variation in shell-thickness.

Fig. 15. a) cylinder beam structure obtained using topology optimization
with a target volume of 0.375. The pixelated effect is caused by the voxel
grid; b) structure obtained using our method with a maximum thickness of
0.05, minimum thickness of 0.04, no support shell (hs = 0.00).

Figure 16 shows the results of SIMP topology optimization vs.

our method, with compliance as a function of the volume fraction.

While our algorithm does not have a target volume fraction, we

try to match these using different load magnitudes. To measure

compliance for our results, we use HyperWorks FEA analysis, with

a unit load. For SIMP, we use the code provided by Andreassen et al.

[2011] with a square grid of 200× 200 pixels, and the compliance re-

ported by this software. The main reason not to use HyperWorks for

SIMP is that it would require triangulating the result and smoothing

its sharp corners, so the result will be inaccurate. Instead, we veri-

fied that the compliance reported by both systems were the same

for various shapes and load cases. In the plot, we observe similar

behaviors for both methods. We note that in our case we need to

choose the beam spacing parameter: when this parameter is chosen

to be too coarse, the performance deteriorates.

Fig. 16. Volume fraction vs. compliance energy for a standard example, a
double truss, SIMP topology optimization vs. our method.

Fig. 17. Comparison of volumes obtained using different fields for the shell
structure. Images (a-d) show the quad-mesh obtained with the different
fields: (a) optimized stress directions from solving (14), (b) stress direc-
tions from solving elasticity, (c) MIQ field constructed using the smoothing
method of Bommes et al. [2009], and (d) constructed rotating (a) by 45
degrees.

The role of beam direction. In Figure 17, we explore the depen-

dence of the role of beam direction in structure optimality, by com-

paring structure volume for several fields, in addition to our opti-

mized field (Eq. 14). As a “worst-case” baseline we use the cross-field

at a maximal distance from the original field (d); as one can see,

the field makes a significant difference when it is very far away

from the optimal directions, i.e., the choice of directions matters.
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Fig. 18. Effects of the choice of diagonal directions: on the left, the original
diagonals computed by our method, choosing the shorter diagonal; on the
right, the diagonals of the first boundary ring are preserved and internal
ones are flipped.

Similarly, the curvature field (c), unrelated to stress directions, pro-

duces relatively high values of the volume. On the other hand, the

difference between the optimized field and the stress field (a and

b), while present, is not large in most cases. This experimentally

justifies using, e.g., Li et al. [2017], the elasticity stress field instead

of the optimized field; however, the additional expense of using an

optimized field is minimal, so there is effectively no penalty for this

improvement.

To evaluate the effect of the choice of diagonals in conversion

from a quad mesh to a triangle mesh, we compare the optimized

volumes for the shorter and longer diagonal choices. For the pipe

example (Figure 18-left), the volumes are equal to 14.6% and 16.9% of

the original volume, respectively. Choosing shorter diagonals (our

default) results in better-shaped triangles, which we have observed

to require less material to keep the stress low. If instead of flipping

all diagonals, we flip only interior diagonals, using the shortest-

diagonal on the ring near the boundary, we obtain a volume of

15.9% (Figure 18-right).

Convergence and dependence on the starting point. We have ob-

served that our algorithm almost invariably converges in several

iterations, and yields the expected behavior of solutions in the

extreme cases (ribs in the case of bending-dominant shells, and

wide-and-thin beams in high-tension/low-bending areas. The plots

in Figure 19 show the volumes at each iteration for a basic and

more complex problem. Note that sometimes the optimal value is

approached from below: the local step overshoots the volume reduc-

tion and the stress exceeds the maximal allowed level. Nevertheless,

the method recovers reliably.

Fig. 19. Left: Volume convergence for our method, for the boat model, using
different starting points. Right: similar plots for the bending plate.

Fig. 20. Convergence plots for the Pipe model (figure 29d). On the left, the
volume vs. iteration count; On the right, the evolution of the histogram of
the stress where volume percentage is measured with respect to the initial
volume. At iteration 81, we start the post-process that ensure stresses are
below σ0 = 1.

The plots on Figure 20 show the volume and stress histogram vs.

iteration count for a complex model. Using our default initialization,

all stresses start with values below σ0, by construction, and during

the optimization they converge to values near σ0. As mentioned on

Section 7.1, during the optimization some stress values may exceed

σ0. These are resolved during the post-process (after iteration 80 for

this example), without significantly increasing the total volume.

Comparison to other optimization methods. We also compare our

method to two general-purpose constrained optimization methods,

SLSQP [Kraft 1988] and Ipopt, a barrier interior point method [Byrd

et al. 2000]. In this setup, we used an approximation of the beams

volume that is smoother (it uses average instead ofmax) and simple

lower and upper bounds on the width and thickness. As a starting

point, we have used the solution of the convex problem with volume

ignoring the overlaps. Somewhat surprisingly, these methods were

not able to change this initial solution by much after a few hundred

iterations; although moving in the right direction, in terms of values,

it may differ by a factor up to two from the optimal solution.

Fig. 21. Volume vs. iteration step for a small cantilever example (408 beams)
using Ipopt vs. our method.

While the SLSQP solutions exhibited oscillatory behavior, alter-

nating decreasing the functional with decreasing constraints vio-

lations, the interior point method solutions mostly stayed close to

the initial values. Figure 21 shows comparative results with Ipopt

for a small cantilever test case. We observe that Ipopt converges

to a volume almost an order of magnitude larger. When Ipopt is

initialized with the solution of the convex problem with simplified
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volume functional (green), the optimization fails to find a better so-

lution. Using a different initialization (orange: maximum width and

thickness) does not provide better results. In contrast, our method

converges to a much better solution in only a few iterations.

Effects of constraints on structure parameters. Figure 22 shows the
effect of increasing maximal allowable thickness in a bending sce-

nario, with the structure moving from fully solid, to a structure of

narrow but tall beams (if the bound is increased to infinity, in prin-

ciple, any bending force can be realized by a zero-volume infinitely

thin rib).

Fig. 22. In a bending dominated structure, changing the maximal allowed
thickness from small to large causes the results to change from a solid plate
to a rib-like structure.

Similarly, Figure 23 shows the effect of increasing minimal thick-
ness in a tensile/compression scenario. In this case, tall beams appear

when increasing the lower bound because widths decrease to com-

pensate for the increase of thickness. The usage of beams in ten-

sile/compression scenarios, while common, is often a consequence

of constraints on minimum element size and are sub-optimal in the

absence of these constraints. On the torsion cylinder experiment,

the effect of using a minimal thickness of 0.04 vs. 0.00 increases the

volume by 60%.

Fig. 23. In a membrane dominated structure, changing the thickness lower
bound from small to large causes the results to change from a solid plate to
a rib-like structure. This example does not use a support shell (hs = 0.00).

Comparisons to related work. A direct apples-to-apples compar-

ison of different methods for optimization for shells is extremely

difficult for a number of reasons, most importantly, because of dif-

ferent models used (e.g., all approaches use a variation of a beam

model, and the specific choice has a significant impact on stress esti-

mation). Another important reason includes a strong dependence of

the results on the maximal width/thickness/aspect ratio constraints.

We summarize qualitative differences from the most closely related

works Kilian et al. [2017] and Li et al. [2017].

The key difference from Kilian et al. [2017] is that it changes the

shape of the surface, focuses on the case when bending forces can

be neglected, and uses the narrow-beam volume approximation.

Kilian et al. [2017] approach might be appropriate for the targeted

type of architectural applications, combining surface shape design

with structural constraints, but in many cases the surface cannot be

modified arbitrarily. Similarly, form-finding methods for structural

shape optimization [Veenendaal and Block 2012] apply a minimal

modification to the input shape such that the final form can transfer

their loads purely through axial or in-plane forces. In the optimal

case, no out-of-plane stress is present in the final shape, which may

require a significant change to the surface: e.g., for gravity loads,

resulting shapes need to have a very specific form for bending loads

to be eliminated. For most examples we consider, decreasing out-of-

plane forces, for given loads, without a drastic change on the input

shape is impossible: e.g., it would be impossible to keep the surface

of the shelf or the bottom of a boat flat.

In comparison, we deal with a shell of fixed surface shape, take

bending forces into account and use a more precise volume approx-

imation, which leads to a non-convex problem.

The method of Li et al. [2017] is closer to ours: they construct

a quadrangulation following a field to determine beam directions,

and also take bending into account in the elasticity model. However,

rather than using an optimized stress field as we do, they use the

stress field of the non-optimized shell. Although the fields are typi-

cally close, in some cases, the optimized field provides an advantage

(Figure 17).

More importantly, Li et al. [2017] uses a narrow-beam approxi-

mation for the volume which has a major effect on the efficiency

of the reinforced structure. To measure this effect, we compare the

results of our optimization using different volume formulas as func-

tional (Figure 24). The results show that using the simpler volume

approximation can increase the volume used by up to 44%.

Fig. 24. Optimization results using different volume formula: (a) exact vol-
ume, (b) approximate convex volume.

As explained on Section 3, the convex volume approximation bi-

ases the solution against using variable-thickness shells. To demon-

strate the effects of this, we compare the stiffness of two reinforce-

ments, obtained using different methods, with the same material

cost. The shell and rib-reinforcement structure (Figure 25b) where

provided by the authors of Li et al. [2017], while the second type of

reinforcement (Figure 25a) was generated with our algorithm.

To match the setup of Li et al. [2017], we set a minimum width

for the beams. In contrast to that work, for similar loads, our opti-

mization results in a lower-weight variable-thickness wall without

protruding ribs, due to our use of the exact volume formulation

(Section 3).

To compare the results fairly, with no dependence on the beam

model used, we post-process both results using TetWild meshing

software [Hu et al. 2018] to create tetrahedral meshes of similar
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Fig. 25. Finite Element Analysis of reinforced structures: (a) variable thick-
ness reinforcement generated by our system; (b) rib-reinforcement from Li
et al. [2017]; (c,d) simulated displacements on reinforced structures.

density, and then use Finite Element Analysis to solve for the dis-

placements with the loads and supports used in optimization (we

use the PolyFem implementation [Schneider et al. 2019]). We impose

zero-displacements on the nodes at floor level, a uniform vertical

load on the rest of the structure, a Young’s modulus E = 210000

and Poisson’s ratio ν = 0.3. The resulting displacements are shown

on Figure 25c, d. Our reinforced structure shows a maximum dis-

placement of 67.31, while the rib structure of Li et al. [2017] shows

a higher maximum of 97.16. Thus, under the same boundary condi-

tions, our result achieves 1.44 times higher stiffness compared to a

rib-reinforced structure of same weight.

This comparison does not include the I-beam profile optimization

of beam cross-sections introduced by Li et al. [2017] as I-beam

shapes were not included in the geometry provided by the authors

and relevant code is no longer available. However, in the case of

dominant tensile/compression loads along the beam, this technique

is not likely to yield significant improvement, as these forces depend

primarily on the cross-section area, not its shape.

A minor difference with Li et al. [2017] concerns the smoothing of

the final result. The approach of Li et al. [2017] is to add an additional

smoothing term in the function that optimizes the material distribu-

tion. This term smooths the volume along sequences of consecutive

aligned edges, classified into curved, circular, and tree-like rib ele-

ments. Our smoothing procedure is a part of the post-optimization

geometric process along consecutive aligned edges, that is easier

to control (see Figure 14.b). As a future improvement, we plan to

include a global smoothing term in the energy formulation.

Physical Experiments. We have printed several simple structures

to validate our optimization experimentally (Figures 26, 27, 28). Due

to the highly approximate nature of the physical model used, we did

not attempt a quantitative match to the simulated values, but we

did closely match the values of the printed models. The comparison

in all cases is between an optimized model and a uniform-thickness

model of the same weight. Observed displacements in all cases

differed by a factor more than 3, suggesting a similar difference in

stress.

The optimization of the shelf was done using distributed loads

(Figure 30, last row). However, when the shelf bends, the physical

load is applied in only two separate regions. Using properly dis-

tributed loads would, most likely, only increase the difference in

performance, as the structure was optimized for this case.

Fig. 26. (a) shelf of uniform thickness; (b) optimized shelf of same weight;
(c) model of optimized shelf.

Fig. 27. (a) spoon of uniform thickness; (b) optimized spoon of same weight;
(c) model of optimized spoon.

(a) (b)

6.86 N

8.82 N8.82 N

6.86 N

(d)

(c)

Fig. 28. (a) leaf of uniform thickness; (b) optimized leaf of same weight; (c)
we use a digital scale to measure the pulling force; (d) model of optimized
leaf.

Finally, Figures 29 and 30 show a set of optimized shells obtained

for a variety of shapes using our method; in all cases we have

preserved a minimal width/thickness beam to indicate the mesh

edges, but the load is carried by a relatively small number of beams;

we found that ribs tend to appear, even in tension areas, unless the

thickness bound is set to very low values. This is consistent with

the observation that with no thickness bound, the load carried by

bending forces is maximized, if the goal is to reduce the volume.
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h
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h

Fig. 29. Examples of consumer product objects. For each one, images show
loads and initial stress distribution, quadrangulation, cell optimization col-
ored by thickness, and final geometry

d(mm) |F | h hs k s t
solve

(s)

Aquadom 85.60 7742 0.5 0.005 100 0.2 72.330

Basket 127.56 10943 2.0 0.06 30 0.5 72.513

Beetle 169.01 7558 1.2 0.012 50 0.5 35.999

Boat 92.60 9084 1.0 0.05 100 0.2 33.067

Botanic 42.59 2152 0.5 0.01 100 0.5 35.586

Bowl 117.77 4779 2.0 0.0 32 0.2 12.354

Bucket 150.96 7860 2.1 0.21 50 0.5 45.744

Bunny 106.00 7471 2.0 0.9 100 0.25 22.291

Duct 460.58 6932 1.0 0.01 100 0.2 69.593

Leaf 99.24 2980 2.0 0.9 46 0.5 1.954

Neumunster 111.92 6072 2.0 1.2 63 0.2 6.959

Pipe 159.48 10409 2.0 0.0 82 0.2 80.226

Shelf 88.54 2400 4.0 0.5 60 0.5 1.663

Spoon 133.11 6528 4.0 0.9 29 0.5 4.129

Stevia 90.68 4840 2.0 0.9 50 0.5 23.941

Vase 69.64 4798 1.0 0.45 100 0.5 21.817

Table 1. Statistics for the 3D models in Figure 30 and Figure 1: the bounding
box diagonal d (mm), the number of triangles |F | in the input mesh, the
maximum thickness h (mm) of the beams, the constant shell thickness hs

(mm), the number of iterations k and step-size s of the optimization solve,
and the time tsolve it took to complete all iterations.

9 CONCLUSIONS AND FUTURE WORK
In this paper, we have described a way to approximate and effi-

ciently solve the problem of minimizing the weight of a support

structure for a shell. Our work focuses on choosing a simple, yet suf-

ficiently expressive, geometric description of the support structure,

V s (mm3) V b (mm3) heq (mm) ceq/c

Aquadom 16.989 90.335 0.032 1.601

Basket 1207.584 3392.022 0.229 7.983

Beetle 170.128 1287.227 0.103 5.739

Boat 189.997 418.539 0.160 7.099

Botanic 9.134 80.533 0.098 1.266

Bowl 0.000 4083.710 0.410 4.437

Bucket 105.195 58.274 0.326 26.924

Bunny 7270.428 1134.806 1.040 1.229

Duct 1075.645 19777.817 0.194 2.105

Leaf 2304.430 659.348 1.158 1.105

Neumunster 44378.721 3902.169 9.139 1.076

Pipe 0.000 45833.029 2.551 1.161

Shelf 1176.000 1386.550 1.090 7.252

Spoon 1544.960 326.733 1.090 18.621

Stevia 8329.664 2568.409 1.178 1.198

Vase 3505.556 492.212 1.026 1.953

Table 2. Performance for the 3D models in Figure 30. We show the ratio
ceq/c between the compliance c of our results and the compliance ceq of
a shell of constant thickness of the same weight. The fixed shell volume
V s , the support structure volume V b , the thickness heq of the equivalent-
weight constant thickness shell.

and an optimization algorithm capable of optimizing it. The pro-

posed method separates the construction into three stages, with the

first stage optimizing the field the beam directions must follow and

creating a corresponding quad-dominant mesh, the second stage

creating a cell structure with optimized shape parameters, and the

third stage creating an actual realization.

This makes our approach particularly flexible and allows us to

integrate a variety of additional user inputs and constraints, e.g.,

by modifying the field to change the truss directions, or by adding

beams in the second stage to support a connection to a separate

object. It is also very efficient, with optimization converging in a

few iterations, and quite consistently.

While we use a highly simplified model for cell mechanics, the

overall approach admits replacing this model with a more advanced

finite element formulation. In this case, the local step would likely

require numerical optimization; however, as long as the model for

a cell stays low-parametric, one is likely to be able to solve it effi-

ciently.

Future Work. In the future, we will study the effect of alternating

optimizing the cell mesh P, which defines the layout of the beams,

and optimizing beam parameters. While our evaluations on the role

of beam directions (Figure 17) suggest only an incremental benefit,

it might help regions with large stress concentrations. Multiple

loading scenarios can be optimized for simultaneously, following

the approach of [Sokół and Rozvany 2016]), i.e., computing stresses

for each load case and constraining them to be bounded.

Limitations. Our work has two main limitations: first, the for-

mulation for the field optimization still has restrictive low-volume

and fixed-thickness assumptions. Based on our evaluation of field

direction sensitivity of the final design, we do not view this as a

significant limitation. The second, more significant, limitation is the

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.



Reinforcement of General Shell Structures • 1:17

g

Aquadom

Beetle Botanic

g

Shelf

Pressure DuctBunny

Boat

g

Leaf

Spoon

Stevia

Vase

g

Neumunster

Fig. 30. Examples of structures obtained for a variety of shapes and loads. For each one, images show loads and initial stress distribution, quadrangulation,
cell optimization (colored by thickness in logarithmic scale) and final geometry.
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highly simplified model we used. If exact results are needed, this

model can be used to quickly obtain an initial result, which can then

be refined using a more advanced mechanical description of cells

and shape optimization.
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A CONVEXITY OF TRUSS CONTINUUM
OPTIMIZATION

Expressing the functional in terms of entries of the stress matrix,

using a = (σ11 + σ22)/2, b = (σ11 − σ22)/2, and c = σ12, we obtain

|λ1(σ )| + |λ2(σ )| = 2max(a,
√
b2 + c2) (19)

which verifies convexity of the energy.

B DUAL OF THE CONTINUUM SHELL PROBLEM
This derivation follows [Strang and Kohn 1983], which we include

here for completeness.

L(σ , u) =
E

σ0

∫
Ω
|λ1(σ )| + |λ2(σ )|dA +

∫
Ω
uT divσdA −

∫
Ω
fT µdA.

Integrating by parts, and assuming either free boundary ∂nu = 0 or

fixed boundary u = 0, we obtain

L(σ , u) =
E

σ0

∫
Ω
|λ1(σ )| + |λ2(σ )|dA −

∫
Ω
ε(u) : σdA −

∫
Ω
fT udA.

To obtain the dual we need to minimize over all possible σ in a

coordinate system aligned with ε the expression

E

σ0
(|λ1(σ )| + |λ2(σ )|) − λ1(ε)σ11 − λ2(ε)σ22.

The minimum of this expression is −∞, if |λi (ε)| > 1, for either i = 1

or i = 2; otherwise, it is zero; this leads to the dual problem (10).

C PROOF OF THE PROPERTIES OF V (z).
We drop the cell superscript c in this proof. We assume that z1 ≤

z2 ≤ z3. By the constraints of the problem, y1 + y2 + y3 ≤ 1,

0 < zmin ≤ zi .
V (y,h) (1) is a quadratic function of yi and linear in hi ; once we

express it in terms of zi , to eliminate the constraint between hi and
zi , it becomes a cubic function of zi , with Hessian

H (z) =


A −k1дb

2
−k1дb

3

−k1дb
2

B −k2дb
3

−k1дb
3

−k2дb
3

−1/2дb
3

(
дm
3
+ 3k3

)


whereki = д
m
i +2д

b
i zi = dwi/dzi ,B = −1/2дb

2

(
дm
2
+ 3k2 + 2д

m
3
+ 2k3

)
and A = −1/2дb

1

(
дm
1
+ 3k1 + 2д

m
2
+ 2k2 + 2д

m
3
+ 2k3

)
.

A direct evaluation shows thatvTH (z)v evaluated forv = [1, 0, 0]

is negative for positive zi and д
b
1
, 0. Similar is true for v = [0, 1, 0]

and v = [0, 0, 1]. We conclude if дbi , 0 for some i , any critical point

in the interior of the domain is a maximum or a saddle, so there are

no minima in the interior. If all дbi are zero, the volume is a linear

function of zi , and the optimum is also on the boundary.

The constraint y1 + y2 + y3 ≤ 1 defines, if дib , 0 for some i a
quadratic surface in zi coordinates, and the constraints z1 ≤ z2,
z2 ≤ z3, z1 ≥ zmin define 3 halfspaces. Their intersection is a

tetrahedron with a curved face on the ellipsoid. The faces of the

feasible domain correspond to one of the inequality constraints

becoming an equality. Similarly, by a direct calculation, substituting

either z1 = zmin , z2 = z1 or z2 = z3 into V (z) and computing 2

Hessians, we observe that these are not positive definite, hence there

can be no solution on faces corresponding to the linear constraint.

Finally, the same fact holds for pairs of constraints that define edges

of the constraint domain, e.g., z1 = zmin and z2 = z1. We conclude

that either the solution is on the face corresponding to the constraint

y1 +y2 +y3 = 1 or at the only vertex not on this face of the feasible

domain, zi = zmin , i = 1, 2, 3 (case 1 of the proposition). If the

minimum satisfies y1 + y2 + y3 = 1, it is either in the interior (case

2), or on one of the three edges of the boundary of that face (cases

3-5).

D DISCRETE BENDING STRAIN FOR BEAMS
The common normal ni at i is defined as

ni =
∑

ℓ∈N (i)

eiℓ × ei next (ℓ)

where next(ℓ) is the edge following ℓ in CCW order around i .
At each vertex, we define a normal ni , as the average of cross-

products of pairs of incident edges. For an edge eil , incident at a
vertex i , let eim be the next CCW edge, and eip be the previous

edge. We define

qlm = eil × eim
the (unscaled) normal to the triangle formed by i, l ,m. Then ni =∑
l,m∈N (i) qlm , and n̂i = ni/|ni |.
We express the bending strain in the form Db

i ju, where u is the

vector of all vertex displacements. Define ∆ei j = uj − ui . Then
∆qlm = ∆eil × eim + eil × ∆eim . The part of ∆qlm affecting ∆n̂i is
the part perpendicular to n̂i :

∆q⊥lm = (I − n̂i n̂Ti )∆qlm = Pi∆qlm , where Pi is the matrix (I −

n̂i n̂Ti ). By substitution into the expression for n we get:

∆n̂i =
1

|ni |
Pi

∑
l ∈N (i)

дl × (ul − ui )

where дl is defined as follows:

• gl = eip − eim , if both p,m are in N (i), i.e. eil is not on the

boundary.

• gl = eip , ifm < N (i).
• gl = −eim , if p < N (i).
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For a vector a = [ax ,ay ,az ], let R(a) be the infinitesimal rotation

matrix about a:
©«

0 −az ay
az 0 −ax

−ay ax 0

ª®¬.
Then

∆n̂i =
∑

l ∈N (i)

Mi
l (ul − ui )

whereMi
l =

1

|ni |
PiR(gl ) is a 3 × 3 matrix.

εb [ij] = h
©«

∑
l ∈N (j)

(dlji )
T (ul − uj ) +

∑
l ∈N (i)

(dli j )
T (ul − ui )

ª®¬
where dli j = −(Mi

l )
T êi j/li j , a vector of length 3. From this expres-

sion, we can immediately obtain Di j .

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.


	Abstract
	1 Introduction
	2 Related Work
	3 Motivating examples
	4 Problem formulation
	4.1 Parameters for reinforced shell structure
	4.2 Elastic deformation discretization

	5 Overview of the approach
	6 Weight-minimizing field optimization
	6.1 Michell continua
	6.2 Continuum optimization with bending
	6.3 Field discretization and optimization
	6.4 Construction of the quad-dominant network

	7 Optimizing cell geometry
	7.1 Optimization algorithm

	8 Evaluation
	9 Conclusions and Future Work
	References
	A Convexity of truss continuum optimization
	B Dual of the continuum shell problem
	C Proof of the properties of V(z).
	D Discrete bending strain for beams

