
Supplemental Material for
A robust solver for elliptic PDEs in 3D complex geometries

Matthew J. Morsea, Abtin Rahimianb, Denis Zorina

aCourant Institute of Mathematical Sciences, New York University, New York, NY 10003
bDepartment of Computer Science, University of Colorado - Boulder, Boulder, CO 80309

1. Kernels

Here we list the elliptic PDE’s investigated in this work along with the associated kernels for their
single- and double-layer potentials. In this section, x and y are in R3, x is the point of evaluation and y
is a point on the boundary and r = x− y. Recall that n is the outward pointing unit normal at y to
the domain boundary Γ. We denote the single layer kernel, also known as the fundamental solution or
Green’s function of the PDE, by S and the double layer kernel by D.

1. Laplace equation:

∆u = 0

S(x, y) =
1

4π

1
‖r‖ , D(x, y) = − 1

4π

r · n
‖r‖3

2. Stokes equation:

µ∆u−∇p = 0, ∇ · u = 0

S(x, y) =
1

8πµ

(
1
‖r‖ +

r⊗ r
‖r‖3

)
, D(x, y) = − 3

4µπ

r⊗ r
‖r‖5 (r · n)

3. Elasticity equation:

µ∆u− µ

1− 2ν
∇(∇ · u) = 0

S(x, y) =
1

16πµ(1− ν)

(
3− 4ν

‖r‖ +
r⊗ r
‖r‖3

)
,

D(x, y) = − 1− 2ν

8µ(1− ν)

(
1
‖r‖3 (r⊗ n− (r · n)I − n⊗ r)− 3

1− 2ν

(r · n)(r⊗ r)
‖r‖5

)

2. Find the closest point on a patch

We include our algorithm to find the closest point y on a patch P to a point x ∈ R3 in the section
for completeness. For a surface or quadrature patch P and point x ∈ R3, we need to compute a point
y = P(s∗, t∗) such that

(s∗, t∗) = arg min
(s,t)∈[−1,1]2

‖x− P(s, t)‖2
2 = arg min

(s,t)∈[−1,1]2
r(s, t) · r(s, t) (1)

Email addresses: mmorse@cs.nyu.edu (Matthew J. Morse), arahimian@acm.org (Abtin Rahimian), dzorin@cs.nyu.edu (Denis
Zorin)

Preprint submitted to Elsevier December 2, 2020

where r = r(s, t) = x− P(s, t); let g(s, t) = r · r. We first consider the unconstrained problem

(s∗, t∗) = arg min
(s,t)∈R2

‖x− P(s, t)‖2
2 = arg min

(s,t)∈R2
ψ(s, t) (2)

We solve this optimization problem with Newton’s method. The first and second derivatives of ψ can
be evaluated efficiently, since they are polynomials of fixed order. The gradient and Hessian of the
objective function are:

∇ψ =

(
−Ps · r
−Pt · r

)
, ∇2ψ =

(
Ps · Ps − r · Pss Ps · Pt − r · Pst
Ps · Pt − r · Pst Pt · Pt − r · Ptt

)
. (3)

The optimality conditions are

P∗s · r∗ = 0, P∗t · r∗ = 0, (u, v) = (s∗, t∗). (4)

at a local optimum (s∗, t∗).
Let ψi = ψ(si, ti), where (si, ti) is the value of the solution during the ith iteration of Newton’s

method. To solve for the descent direction in Newton’s method, we need to solve

∇2ψi ηi = −∇ψi (5)

where ηi = (∆si, ∆ti) is the ith Newton update to (si, ti) such that

si+1 = αi∆si + si, ti+1 = αi∆ti + ti (6)

We use four iterations of a backtracking line search with an Armijo condition to compute the step
length αi to ensure an appropriate size step is taken in case the initial guess is outside the region of
quadratic convergence. We compute the solution (s∗, t∗) by iterating

(sn, tn) = (sn−1, tn−1) + αn−1ηn−1, while Ps · r > εopt, Pt · r > εopt, (7)

until convergence, i.e., ψi ≈ εopt, r ≈ n(y).
If (s∗, t∗) ∈ (−1, 1)2, then the solution to the unconstrained problem is also the solution to the

constrained problem. However, if the closest point lies in R \ [−1, 1]2, we need to ensure the inequality
constraints are satisfied. Additionally, if (s∗, t∗) is on the boundary of [−1, 1]2, either s∗ or t∗ should
be exactly zero; with the optimization scheme above, we can only claim that |s∗| < εopt (similarly for
t∗). To address both of these troubles, we can solve a one-dimensional projection of Eq. (5) on to the
boundary of [−1, 1]2. For example, to find the closest point along the edge v = 0, the Newton iteration
becomes

sn = sn−1 + αn−1
−Ps · r

Ps · Ps − r · Pss
, (8)

where Ps, Pss and r are evaluated at sn−1. Since the boundary is composed of [−1, t], [1, t], [s,−1], [s, 1]
for s, t ∈ [−1, 1], we solve Eq. (8) once for each interval.

This final algorithm to compute the closest point is as follows:

1. We solve Eq. (5) on an extended parameter domain [−1− c, 1 + c]2, and terminate the Newton
iteration if (si, ti) walks outside this boundary. If the Newton iteration terminates inside [−1, 1]2,
then we’ve found the closest point. We typically choose c = .2.

2. If the solution is outside [−1, 1]2, we solve Eq. (5) along each component of the boundary of
[−1, 1]2, also on an extended parameter domain [−1 − c, 1 + c], by choosing an initial guess
contained within the interval. The solution to these four problems that yields a minimal distance
to x to used as the closest point, if the solution is inside [−1, 1].

3. If the closest point on the boundary is still outside of [−1, 1]2, the closest point to x is chosen from
P(−1,−1), P(−1, 1), P(1,−1), and P(1, 1) closest to x.

This gives us an algorithm to compute the closest point on a quadrature patch P to x. The 1D and
2D Newton minimizations converge in ten iterations on average.

2

3. Complexity

The parameters that directly impact complexity are:

• The number of patches N after admissibility refinement. This is a function of Ninit, the geometry
of Γ, the definition of f , and the choices of parameters a and b in check point construction.

• Quadrature order q and the degree of smoothness k of Γ and f . We assume that k is sufficiently
high to obtain optimal error behavior for a given q by letting k = 2q in [MRZ20, Heuristic 1].

• hedgehog interpolation order p.

• The numbers of evaluation points in different zones Nfar, Ninter, and Nnear, with Ntot = Nfar +
Ninter +Nnear.

The complexity is also affected by the geometric characteristics of Γ. These include:

• The maximum patch length Lmax = maxP L(P)

• The relative minimal patch length Lmin = β0Lmax, β0 ≤ 1.

• The minimal feature size relative to Lmax, `min = α0Lmax, which is defined in terms of the local feature
size and the medial axis of Γ. The medial axis of Γ, denoted M(Γ), is the set of points in R3 with more
than one closest point on Γ. For y ∈ Γ, the local feature size `(y) is the distance from y to M(Γ).
We assume that the local feature size is bounded below by α0Lmax, i.e., `(y) ≥ α0Lmax = `min for
y ∈ Γ.

• The maximum variation of area distortion of the parametrization CJ . The variation of the area distor-
tion of a patch P is CJ(P) = max(s,t)

√
g(s, t)|/ min(s,t)

√
g(s, t), where g(s, t) is the determinant

of the metric tensor of P at the point (s, t). We define CJ = maxP∈Γ CJ(P). This value is an
indicator of how non-uniform the parametrization of P is and allows us to estimate how the patch
length decreases with refinement.

We assume that the α0, β0 and CJ are independent of Ninit. We also assume that principal curvatures
are bounded globally on Γ and independent of Ninit.

3.1. Admissibility

The patch refinement procedure in [MRZ20, Section 3.2.1] to enforce [MRZ20, Section 3.2.1,Criteria
1 and 2] of admissibility and achieve given approximation errors of the geometry εg and boundary data
εf is a local operation on each patch. If we assume that Lmin, Lmax, the partial derivatives of all patches
composing Γ̂, and the partial derivatives of f are bounded, then errors εg and εf can always be achieved
after a fixed number of refinement steps. As a consequence, this stage must have complexity O(Ninit).

We focus on the additional refinement needed to satisfy [MRZ20, Section 3.2.1,Criteria 3]: ensuring
that each check center ĉ is closest to its corresponding quadrature point y. This can be restated in
terms of local feature size: for a quadrature patch P ∈ Γ̂ and quadrature node x ∈ P with check center
ĉ, ‖x− ĉ‖2 ≤ `(x) ≤ α0L0. We will first relate the number of required refinement steps η to satisfy
[MRZ20, Section 3.2.1,Criteria 3] to the shape parameters α0 and CJ , then we will show that this number
does not depend on N under our assumptions.

Recall that the distance from a check center to the surface for a patch P is given by R + r(p + 1)/2 =
(a + (p + 1)b/2)L(P) = KL(P). After η refinement steps, the area of each child of P relative to P itself
will have decreased by at least by CJ(P)(1/4)η . Since the distance from ĉ to the surface is proportional to
L(P), we can estimate the required level of uniform refinement to satisfy [MRZ20, Section 3.2.1,Criteria

3

3] by requiring that the check center distance is less than the minimal local feature size, then taking the
maximum value of L(P) over all patches:

KLmax

√
CJ(1/2)η ≤ `min = α0Lmax

This yields

η = d− log2
α0

K
√

CJ
e, (9)

which we note depends only on nondimensional quantities α0, K and CJ characterizing the shape of
the surface and its parametrization. If we assume these to be independent of N, then the number of
required levels of refinement η are also independent of N. This means that the number of patches N
generated [MRZ20, Algorithm 2] is a linear function of Ninit, bounded by 4η Ninit.

Next, we estimate the complexity of work per patch in [MRZ20, Algorithm 2] to determine if a given
patch requires refinement. As described in [MRZ20, Section 3.4], for each patch, we query the AABB tree
TB for patches that are at the distance R + r(p + 1)/2 = KL(P) from a check center ĉ. The cost of the
query is logarithmic in the number of patches Ninit and proportional to the number of patches N(ĉ)
returned. This means that we need to estimate the number of patches that can be within the distance
KL(P) from ĉ.

Consider an area element dA of Γ̂ at a point x0. The parallel surface of dA, given by x0 + hn(x0)
does not have self-intersections when |h| ≤ `min and has a corresponding area element given by
dAh = (1 + hκ1)(1 + hκ2)dA [Kre99, Section 6.2], where κ1 and κ2 are the principal curvatures of Γ̂ at
x0. The volume of the truncated cone bounded by dA and dAh of height `min can be computed directly
from the integral

∫ `min
0 dAhdh:

dV = dA`min(1 +
1
2
(κ1 + κ2)`min +

1
3

κ1κ2`
2
min) = dA`min(1 +

1
2

H`min +
1
3

K`2
min)

where K and H are Gaussian and mean curvatures respectively. As principal curvatures satisfy κi ≥
−1/`min, this expression has minimal value for κ1 = κ2 = −1/`min:

dV ≥ 1
3
`mindA (10)

In other words, each surface element dA has (at least) a volume 1
3 `mindA with no other surface

elements inside associated with it. From this, we can estimate the total area of surface contained within
distance KL(P) from ĉ by equating Eq. (10) with the volume of a sphere of raidus KL(P), producing
4πK3L(P)3/`min. Since the area of each patch is at least L2

min, the number of patches KL(P) from ĉ is
bounded by

N(ĉ) ≤ 4πK3 L(P)3

`minL2
min
≤ 4πK3 L3

max

`minL2
min

=
4πK3

α0β2
0

(11)

This is independent of Ninit, which means that the complexity of nearest patch retrieval is O(Ninit log Ninit),
with constant given by the product of (11) and 4η , with η given by (9).

To complete the complexity estimate of the admissibility refinement, we need to estimate the cost of
computing the closest point on each patch. The complexity of the Newton’s method for finding roots
of polynomials in Section 2 depends only on the polynomial degree and the desired accuracy of the
optimization, which we can assume to be bounded by floating-point precision [SS17]. We conclude that
the overall complexity of admissibility refinement is O(Ninit log Ninit) with constants proportional to
the patch degree and optimization accuracy.

4

3.2. Upsampling

We estimate the complexity of the upsampling algorithm in [MRZ20, Section 3.5] in terms of N,
the number of patches produced by admissibility refinement, and a parameter ε, which is the desired
accuracy achieved by the final upsampled patches at the check points. As the distance from the surface
to the check points ci is bounded from below by aLmin, the Ṽ term in [MRZ20, Heuristic 1] is bounded
from above by CL−2q−1

min , for a constant C independent of q. Furthermore, since Γ̂ and f are assumed to
be smooth, the density and its derivatives can also be assumed to be bounded. The overall form of the
estimate in [MRZ20, Heuristic 1] can then be bounded and written as C̃(q)L−2q−1

min L̃2q for some constant
C̃(q). The maximum patch length obtained by refinement L̃ is

L̃ = Lfine
max ≤ Lmax2−η̃ , (12)

where η̃ is the maximum amount of required patch refinement. By setting C(q)L−2q−1
min L̃2q ≤ ε and using

Eq. (12), we can obtain an upper bound for η̃ as a function of Lmin, Lmax, and ε:

η̃ ≤ − 1
2q

log2

(
ε

L−2q−1
min L2q

maxC(q)

)
= log2 ε−1/(2q) + C̄(q, Lmin, Lmax), (13)

for some constant C̄(q, Lmin, Lmax).
The number of points generated by upsampling is O(4η̃ N). Taking powers of both sides of Eq. (13)

yields an estimate in terms of εtarget: O((2η̃)2N) ≤ O(ε−2/(2q)N) = O(ε−1/qN). As discussed in
Section 3.1, the closest point computation needed to determine if a checkpoint is in ΩI has log(N) cost
per point, leading to O(ε−1/qN log(N)) overall complexity and an upsampling factor of ε−1/q. Since
we desire upsampled quadrature with an accuracy of 10−12, we set ε as such to arrive at the desired
complexity.

3.3. Point marking

In the point marking algorithm of [MRZ20, Section 3.6], we first use the Laplace FMM to cull points
far from Γ, which requires O(N +Ntot) time. Let L̄ = 1

M ∑P∈vPcoarse L(P) be the average patch length.
After FMM culling, the remaining unmarked evaluation points are those whose distances from Γ are
approximately L̄ or less. For each unmarked point x, we query the AABB tree TT for the nearest triangle
in the linear approximation of Pcoarse.

Since there are O(N) such triangles in TT , we can perform this query in O(log N) time [Sam06].
This triangle provides a candidate closest patch that is distance d0 from x. We then use to query TB for
all bounding boxes at distance d0 from x. This query too can be performed in O(log N) time [Sam06]
and returns a bounded number of boxes and that each is processed in constant time, as discussed in
Section 3.1. As the number of unmarked points after culling is bounded above by Ntot, the overall
complexity of our marking scheme is O(Ntot log N).

3.4. Integral evaluation complexity

We assume that geometric admissibility criteria are already satisfied. All integral evaluation is
accelerated using an FMM with complexity O(N +Ntot).

Far zone. The complexity of far evaluation is just the complexity of computing the integrals on Pcoarse
using standard quadrature and FMM acceleration, i.e., O(q2N +Nfar).

5

Intermediate zone. The complexity of the intermediate zone evaluation is similar to that of the far zone.
However the computation is performed on Pfine rather than Pcoarse, which is up to m times finer than
Pcoarse, with m = O(ε−1/q) and ε = 10−12. The density values must be interpolated from points in
Pcoarse to points in Pfine: this can be computed in O(mq4N) time using a 2D version of the barycentric
interpolation formula [BT04]. This yields an overall complexity of O(mq4N + mq2N +Ninter). Although
not asymptotically dominant, for all practical target errors, the quadrature evaluation is the dominant
cost in practice due to suppressed FMM -related constants, as demonstrated in Section 4.

Near zone. [MRZ20, Section 3.1] requires a closest point computation, an intermediate-zone evaluation
at p check points and an extrapolation for each target point in ΩN . The intermediate zone calculation is
the dominant cost, resulting in a complexity of O(mq4N + mq2N + pNnear).

GMRES solve. As a result of the second-kind integral formulation in [MRZ20, Section 2] the cost of
solving [MRZ20, Equation 5] via GMRES is asymptotically equal to the cost of a single singular integral
evaluation, since the low number of iterations are independent of N. In our algorithm, this is a special
case of near-zone evaluation with Nnear = q2N, producing a complexity of O(mq4N + mq2N + pq2N) =
O((m + p + mq2)q2N).

Overall complexity for uniform point distribution. We now suppose that we wish to evaluate the solution
u determined by a density φ at a set of uniformly distributed points throughout Ω. We also assume
that Γ̂ is discretized uniformly by N patches, i.e., Lmax = O(N−1/2) and that the distances between
samples in Ω and from samples to Γ̂ are also O(N−1/2). Since the total number of evaluation points is
proportional to 1/L3

max, this implies that Ntot = O(N3/2).
The size of the intermediate zone ΩI is bounded by the estimate discussed in Section 3.2. Letting dI

be the shortest distance along a normal vector of Γ̂ which is contained in ΩI , following the discussion
in Section 3.2 yields the following relation:

C̃(n)d−2q−1
I L2q

max ≤ ε. (14)

Solving for dI gives us

dI ≤
(

ε

C(n)

)− 1
2q−1

(Lmax)
2q

2q−1 . (15)

We are interested in the regime as N → ∞, or Lmax → 0. Since L
2q

2q−1
max ≤

√
Lmax = O(N−1/4), this gives

us

dI ≤
(

ε

C(n)

)− 1
2q−1

N−1/4 = O(ε−1/2qN−1/4) = O(
√

mN−1/4), (16)

after recalling from above that m = O(ε−1/q) is the average upsampling rate to produce Pfine from
Pcoarse. The size of the near zone is, by construction, of the order Lmax. It follows that Ninter =
O(
√

mN5/4), and Nnear = O(N).
The overall complexity for this evaluation is the sum of the cost of each separate evaluation:

O(q2N +Nfar + mq4N + mq2N +Ninter + mq4N + mq2N + pNnear)

= O
(
(m + mq2)q2N +Ntot + (p− 1)Nnear

)
Using the estimates for Ntot and Nnear and dropping dominated terms, we obtain O((m + mq2)q2N +
N3/2) for the overall complexity. This suggests that for a given q and ε, the minimal cost is obtained
from choosing the number of discretization points N = O(m2), i.e., N = O(ε−2/q).

6

4. Comparison with [YBZ06]

To understand the performance of [YBZ06] and hedgehog and see the implications of this complexity
difference in practice, we now compare the performance of hedgehogwith that of [YBZ06] on several
concrete numerical examples. The metric we are interested is cost for a given relative error. Assuming the
surface discretization is O(N), we measure the cost of a method as its total wall time during execution
T divided by the total wall time of an FMM evaluation on the same O(N) discretization, TFMM. By
normalizing by the FMM evaluation cost, we minimize the dependence of the cost on machine- and
implementation-dependent machine-dependent parameters, such as clock speed, cache size, perfor-
mance optimizations, etc. We run the tests in this section on the sphere geometry shown in [MRZ20,
Figure 8-left] and continue to focus on the singular quadrature scheme of [YBZ06] as described in
[MRZ20, Section 6.2].

4.1. Complexity comparison
The algorithm of [YBZ06] substantially differs from hedgehog in two main ways. First, on-surface

singular integral evaluation is computed in [YBZ06] by subtracting the inaccurate part of the FMM -
accelerated smooth quadrature rule using a partition-of-unity (POU) function, then adding an accurately
computed part singular integral close to singularity via polar quadrature. Second, [YBZ06] sets more
algorithms parameters a priori rather than determining them adaptively. Specific choices used in [YBZ06]
may be considered optimal for the uniform volume point distribution described in Section 3.4, but need
to be adjusted based on additional analysis for other distribution types. Additionally, [YBZ06] has a
trade-off between accuracy and complexity proportional to the POU radius dP, which hedgehogdoes not
have.

The intermediate and far zone complexity estimates are similar for both hedgehog and [YBZ06]. The
near-zone complexity for the algorithm of [YBZ06] has an additional term of the form O(Nd2

P/L2
max),

where dP is the radius of the POU function. For simplicity, we use Lmax as a measure of surface sampling
density as in Sections 3.1 and 3.2, since Lmax and the h from [YBZ06] differ by a constant.

The error of [YBZ06]’s singular evaluation is O(d−2q−1
P L2q

max), for an optimally chosen local quadra-
ture rule. We note that the factor d−2q−1

P is entirely an artifact of using a compactly supported
POU function to localize the singular integral computation. As observed in [YBZ06], to achieve optimal
convergence as the surface is refined, dP needs to decrease slower than Lmax, i.e., slower than N−1/2,
under the assumptions on point distribution in Ω from Section 3.4. In [YBZ06], dP = O(N−1/2(1+γ)) is
suggested. As a result, the overall complexity is O(N1+γ) and grows faster than N.

By choosing γ = 1
2 , [YBZ06]’s final complexity becomes O(N3/2) in order to produce an error

proportional to N(−2q+1)/4. In other words, the work needed for an error ε is proportional to ε−6/(2q−1),
which is asymptotically higher than hedgehog (with ε from Section 3.2). On the other hand, our method
has the disadvantage of requiring p check point evaluations for every sample point in Nnear. This
requires an FMM call that is (m + p)-times larger than [YBZ06]. In common use cases, such as solving
[MRZ20, Equation 5] via GMRES, repeated hedgehog evaluations through a more expensive FMM can
require more work in practice for lower accuracy than [YBZ06].

4.2. Experimental comparison.
To understand the performance of these two methods and see the implications of this complexity

difference in practice, we now compare the performance of hedgehogwith that of [YBZ06] on several
concrete numerical examples. The metric we are interested is cost for a given relative error. Assuming the
surface discretization is O(N), we measure the cost of a method as its total wall time during execution
T divided by the total wall time of an FMM evaluation on the same O(N) discretization, TFMM. By
normalizing by the FMM evaluation cost, we minimize the dependence of the cost on machine- and
implementation-dependent machine-dependent parameters, such as clock speed, cache size, perfor-
mance optimizations, etc.

7

Comparison on C∞ surface of [YZ04]. An important contribution of [YBZ06] was the use of a C∞ surface
representation, first introduced in [YZ04], allowing for exponential accuracy via the trapezoidal rule,
and easy resampling for singular quadrature. To fairly compare the two quadrature methods, we have
implemented a modified version of hedgehog on the surface representation of [YZ04]. The algorithm
of [MRZ20, Section 3.1] has the following modifications: (i) we discretize the vertex-centered patches
of [YZ04] with the tensor-product trapezoidal rule for compactly supported functions with spacing
parameter h, as in [YBZ06]; (ii) the upsampled quadrature rule uses a trapezoidal rule with spacing
h/4; (iii) density interpolation is computed with FFT ’s, as in [YBZ06]; the rest of the algorithm proceeds
unchanged. This essentially matches [MRZ20, Section 3.1] but uses the discretization scheme of [YBZ06]
instead of Clenshaw-Curtis.

For each of the tests in this section, we choose some initial spacing parameter h0 to discretize the
surface of [YZ04] as in [YBZ06] and use the same 16× upsampled grid to evaluate both hedgehog and
[YBZ06]. We apply the modified hedgehog algorithm and the scheme of [YBZ06] with spacing h0 and
compute the relative error and collect timing statistics. We repeat this test with h0/2i for i = 1, . . . 4 and
plot the results. This ensures that the smooth quadrature rule used by both methods have the same
resolution.

We choose the floating partition of unity size in [YBZ06] to be
√

h as in the original work. As in
the previous section, we choose the parameters r and R of hedgehog to be O(

√
h) to observe standard

convergence behavior. For both quadrature methods, we use a multipole order of 16 for PVFMM with at
most 250 points in each leaf box and with the same initial spacing.

In Figs. 1 and 2, we summarize our results for two test cases. In Fig. 1, we evaluate [MRZ20, Equation
8] using one-sided hedgehog and the singular quadrature method of [YBZ06] with the density φ = 1, in
order to demonstrate their behavior without interaction with GMRES. In Fig. 2, we construct a boundary
condition using [MRZ20, Equation 25] with random charge values and solve [MRZ20, Equation 5] using
two-sided hedgehog and with the singular quadrature method of [YBZ06] inside of GMRES. We then
evaluate the singular integral at a finer discretization of the surface using either one-sided hedgehog or
[YBZ06], respectively. From left to right, each plot details the total cost of each scheme, the cost of each
subroutine for hedgehog (denoted HH) and the singular quadrature scheme of [YBZ06] (denoted POU),
and the relative error as a function of h. Each data point in the plots, from right to left, is the result
of running the method on a discretization with spacing h0/2i for i = 0, . . . , 4. We plot the cost of both
schemes the cost of each algorithmic step as a function of their computed relative error. In each figure,
we present results for a Laplace problem (top) and an elasticity problem (bottom), to highlight the
difference in performance between scalar and vector kernels.

As expected, the hedgehog total cost curves lie somewhere between 1 and 10, since the required
FMM evaluation is (m + p)-times larger than N. This step is the dominant cost: the next most expensive
step is density interpolation, which is two orders of magnitude faster. Initially, the main cost of [YBZ06]
is FMM evaluation time, but eventually the local correction cost begins to dominant. Note that the
hedgehog and [YBZ06]-FMM curves are not quite flat, due to the initial quadratic complexity of a shallow
FMM tree.

From Figs. 1 and 2, we observe a higher convergence rate for hedgehog than [YBZ06], except for
the elasticity solve in Fig. 2-bottom where the methods perform about equally. This allows the cost of
hedgehog to decrease below [YBZ06] for errors less than 10−7 for Laplace problems. More importantly,
however, [YBZ06] outperforms hedgehog for elasticity problems for all tested discretizations, and also for
low and moderate accuracy Laplace problems. This is due to the greater cost of a vector FMM evaluation
compared to a scalar one: the m + p factor saved in the FMM evaluation of [YBZ06] can be accelerated
more efficiently with the method’s small dense linear algebra computations. This means that a local
singular quadrature method of worse complexity can beat a global method, simply by virtue of reducing
the FMM size. Moreover, our implementation of [YBZ06] is not highly optimized, so we can expect a
well-engineered POU singular quadrature implementation such as [MCIGO19] to widen this gap. By
noting the large difference between the hedgehog FMM cost and the hedgehogdensity interpolation, we

8

10 8 10 7 10 6 10 5 10 4 10 3 10 2

10 2

10 1

100

101

T/
T F

M
M

10 8 10 7 10 6 10 5 10 4 10 3 10 2

log|u u| /|u|

HH FMM
HH extrapolation

HH density interpolation
HH total

POU FMM
POU subtraction

POU polar quadrature
POU FFT interpolation

POU total
HH rel. error

h6.4

POU rel. error
h4.3

10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1

h

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

lo
g|

u
u|

/|u
|

10 7 10 6 10 5 10 4 10 3 10 2

10 3

10 2

10 1

100

101

T/
T F

M
M

10 7 10 6 10 5 10 4 10 3 10 2

log|u u| /|u|

HH FMM
HH extrapolation

HH density interpolation
HH total

POU FMM
POU subtraction

POU polar quadrature
POU FFT interpolation

POU total
HH rel. error

h6.6

POU rel. error
h4.0

10 7 10 6 10 5 10 4 10 3 10 2 10 1

h

10 8

10 7

10 6

10 5

10 4

10 3

10 2

lo
g|

u
u|

/|u
|

Figure 1: Comparison of hedgehog (HH) versus [YBZ06] (POU) on the surface representation of [YZ04]
evaluating double-layer potential with φ = 1. Laplace (top) and elasticity (bottom) problems solved on the
sphere shown in [MRZ20, Figure 8-left]. From left to right, we plot the total cost of each scheme, the cost of each
subroutine for hedgehog (blue) and the singular quadrature scheme of [YBZ06] (red), and the relative error as a function
of h. The plots show the cost and relative error for h0 = .3 representing the right-most data point and each point to the
left corresponding to a spacing of hi = h0/2i. For the Laplace problem, we choose r = .186

√
h, R = 1.12

√
h and p = 6

for hedgehog parameters; for the elasticity problem, we choose r = .133
√

h, R = .8
√

h and p = 6. The initial spacing
parameter is h0 = .3.

can reasonably infer that a local hedgehog scheme should narrow this gap and outperform [YBZ06],
assuming that this transition does not dramatically affect error convergence.

5. Comparison with [WK19a, WK19b]

Our work most closely resembles the advancements presented in [WK19a, WK19b]. We have
presented a global singular/near-singular quadrature method, i.e., the potential values at the check
points are computed with a quadrature rule from the entire boundary. [WK19a] proposed a global
QBX method that computes QBX expansion coefficients via FMM translation operators from within an
FMM tree. Our method is target-specific as in [ST18], creating one set of check points for each target point.
[WK19a] was further refined to include target-specific QBX expansions in [WK19b].

9

10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2

10 2

10 1

100

101

T/
T F

M
M

10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2

log|u u| /|u|

HH FMM
HH extrapolation

HH density interpolation
HH total

POU FMM
POU subtraction

POU polar quadrature
POU FFT interpolation

POU total
HH rel. error

h6.0

POU rel. error
h4.3

10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1

h

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

lo
g|

u
u|

/|u
|

10 7 10 6 10 5 10 4 10 3 10 2

10 3

10 2

10 1

100

101

T/
T F

M
M

10 7 10 6 10 5 10 4 10 3 10 2

log|u u| /|u|

HH FMM
HH extrapolation

HH density interpolation
HH total

POU FMM
POU subtraction

POU polar quadrature
POU FFT interpolation

POU total
HH rel. error

h4.0

POU rel. error
h4.5

10 7 10 6 10 5 10 4 10 3 10 2 10 1

h

10 8

10 7

10 6

10 5

10 4

10 3

10 2

lo
g|

u
u|

/|u
|

Figure 2: Comparison of hedgehog versus [YBZ06] on the surface representation of [YZ04] solving via

GMRES for uc. This figure’s format is similar to Fig. 1. For the Laplace problem, we choose r = .028
√

h, R = .172
√

h
and p = 6 for hedgehog parameters; for the elasticity problem, we choose r = .042

√
h, R = .253

√
h and p = 6. The

initial spacing parameter is h0 = .3.

Our admissibility algorithm is similar to the Stage-1 refinement of [WK19a]. Both approaches first
resolve the boundary data and input geometry, then enforce a criteria that will guarantee accurate
smooth quadrature rules at prescribed point locations. The improvement in our approach is the
decoupling of the spatial data structure for the required geometry queries to enforce admissibility
and the data structure for FMM acceleration. This allows for less memory overhead and faster spatial
queries and FMM evaluations by leveraging existing software packages. Additionally, our algorithm is
formulated in terms of patches and bounding boxes rather than in terms of quadrature point locations.
This allows us to perform fewer spatial queries on a smaller data structure to enforce our criteria and
make guarantees about the proximity of a patch to a check point that is independent of the quadrature
order. As in [WK19a], we also fix the check point location before upsampling, which decouples the
coarse and upsampled discretization. We both compute upsampled discretizations based on empirical
heuristics to approximate quadrature error behavior.

However, the primary improvement of hedgehogover [WK19a] is algorithmic simplicity. Our only
requirement is a standard point FMM without modifications. This allows us to utilize existing optimized

10

algorithms for spatial queries and fast summation, which have been extensively optimized. Most
importantly, it prevents the QBX -FMM error coupling handled carefully in [WK19a, WK19b]. The price
we must pay for this simplicity is a larger point FMM evaluation, since we are using the discretization of
Pfine as source points. Since we are using the kernel-independent FMM , we must use a higher multipole
order to counteract the accumulation of translation operator error inherent in this approach [YBZ04].
A standard FMM method would not have this downside, but we believe that PVFMM ’s impressive
performance optimizations make this is reasonable trade-off.

6. Geometry approximation error

Let θ be a scalar function defined on the surface of ∂Ω with |θ| ≤ 1 and let δ be a small real constant.
Suppose the boundary of the domain Ω is perturbed by δ along the normal field of ∂Ω, scaled by θ,
to produce the perturbed domain Ωδ with boundary ∂Ωδ. More concretely, for y ∈ ∂Ω and yδ ∈ ∂Ωδ,
yδ = y + δθn(y). We can define the Eulerian shape derivative of u with respect to θ, denoted uθ , at a
point x ∈ Ωδ ∩Ω as the rate of change in u at x as δ → 0. This quantity is of interest to us because
the solution to [MRZ20, Equation 2] on Ωδ ∩Ω can be written as u + δuθ , where u is the solution
to [MRZ20, Equation 2] on Ω. Moreover, we can compute the shape derivative by solving a Laplace
problem on the unperturbed domain [Pir82]:

∆uθ = 0 in Ω, uθ = −θ
∂u
∂n

on ∂Ω. (17)

where u is the solution of the [MRZ20, Equation 2] on Ω. For small δ, this means that the error in the
solution introduced by a boundary perturbation along the field θ can be estimated by δ supΩ ‖uθ‖.
Assuming the boundary is smooth and the gradient of the solution u is bounded, then

‖uθ‖ ≤ Cg sup
∂Ω

∣∣∣∣θ ∂u
∂n

∣∣∣∣ ≤ Cg sup
∂Ω

∣∣∣∣∂u
∂n

∣∣∣∣ (18)

for some real constant Cg. The right-hand side of Eq. (18) yields a constant C′g, such that if εg <

ζεtarget/C′g for some ζ < 1, the change in the solution is less than εtarget for a sufficiently small εg. The
constant depends implicitly on the surface geometry: for example, if an area element of ∂Ω is close to a
sharp, concave corner, then ∂u

∂n can be arbitrarily large.

[BT04] Jean-Paul Berrut and Lloyd N Trefethen. Barycentric lagrange interpolation. Siam Review,
46(3):501–517, 2004.

[Kre99] Rainer Kress. Linear integral equations, volume 82 of applied mathematical sciences, 1999.

[MCIGO19] Dhairya Malhotra, Antoine Cerfon, Lise-Marie Imbert-Gérard, and Michael O’Neil. Tay-
lor states in stellarators: A fast high-order boundary integral solver. arXiv preprint
arXiv:1902.01205, 2019.

[MRZ20] Matthew J Morse, Abtin Rahimian, and Denis Zorin. A robust solver for elliptic pdes in
3d complex geometries. arXiv preprint arXiv:2002.04143, 2020.

[Pir82] Olivier Pironneau. Optimal shape design for elliptic systems. In System Modeling and
Optimization, pages 42–66. Springer, 1982.

[Sam06] Hanan Samet. Foundations of multidimensional and metric data structures. Morgan Kaufmann,
2006.

[SS17] Dierk Schleicher and Robin Stoll. Newton’s method in practice: Finding all roots of
polynomials of degree one million efficiently. Theoretical Computer Science, 681:146–166,
2017.

11

[ST18] Michael Siegel and Anna-Karin Tornberg. A local target specific quadrature by expansion
method for evaluation of layer potentials in 3D. Journal of Computational Physics, 364:365–392,
2018.

[WK19a] Matt Wala and Andreas Klöckner. A fast algorithm for Quadrature by Expansion in three
dimensions. Journal of Computational Physics, 388:655–689, 2019.

[WK19b] Matt Wala and Andreas Klöckner. Optimization of fast algorithms for global Quadrature by
Expansion using target-specific expansions. Journal of Computational Physics, page 108976,
2019.

[YBZ04] Lexing Ying, George Biros, and Denis Zorin. A kernel-independent adaptive fast multipole
algorithm in two and three dimensions. Journal of Computational Physics, 196(2):591–626,
2004.

[YBZ06] Lexing Ying, George Biros, and Denis Zorin. A high-order 3D boundary integral equation
solver for elliptic PDEs in smooth domains. Journal of Computational Physics, 219(1):247–275,
2006.

[YZ04] Lexing Ying and Denis Zorin. A simple manifold-based construction of surfaces of arbitrary
smoothness. In ACM Transactions on Graphics (TOG), volume 23, pages 271–275. ACM,
2004.

12

	Kernels
	Find the closest point on a patch
	Complexity
	Admissibility
	Upsampling
	Point marking
	Integral evaluation complexity

	Comparison with YBZ
	Complexity comparison
	Experimental comparison.

	Comparison with wala20193d,wala2019optimization
	Geometry approximation error

