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Fig. 1. Our optimization procedure enables the control of a texture’s tactile roughness while maintaining its visual appearance. Starting with a target texture
(left), the procedure optimizes toward a desired tactile roughness while preserving the visual appearance (center). The resulting textures can be used to
fabricate visually similar but tactually different objects, such as these 3D-printed starfish (right, photographed).

Textures are encountered often on various common objects and surfaces.
Many textures combine visual and tactile aspects, each serving important
purposes; most obviously, a texture alters the object’s appearance or tactile
feeling as well as serving for visual or tactile identification and improving
usability. The tactile feel and visual appearance of objects are often linked,
but they may interact in unpredictable ways. Advances in high-resolution 3D
printing enable highly flexible control of geometry to permit manipulation
of both visual appearance and tactile properties. In this paper, we propose
an optimization method to independently control the tactile properties
and visual appearance of a texture. Our optimization is enabled by neural
network-based models, and allows the creation of textures with a desired
tactile feeling while preserving a desired visual appearance at a relatively
low computational cost, for use in a variety of applications.
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1 INTRODUCTION
Tactile textures are ubiquitous in everyday life. We encounter tactile
textures on the surfaces of fruits and plants, skin, woven fabrics, and
many manufactured surfaces. Tactile texture often serves a specific
purpose, practical or aesthetic (an object should feel good, not just
look good). Creating a particular tactile feeling is a common task
which receives less attention than visual appearance, although is
often just as important. Tactile feeling plays a particularly important
role for people who are visually impaired, who rely on the sense of
touch much more.
The tactile feeling and visual appearance of objects can interact

in unpredictable ways; for example, the tactile texture may be a
byproduct of creating a particular appearance (e.g., an etched pat-
tern), or vice-versa (e.g., knurled grips have a particular look). The
goals of achieving particular visual and tactile appearances may be
conflicting: e.g., one may want a particular visual pattern on a tool
handle, while achieving specific tactile properties optimal for usabil-
ity. While in many cases, little can be done about the interaction of
visual and tactile properties, advanced fabrication technologies like
high-resolution 3D printing enable highly flexible control of both
visual and tactile texture.

A characteristic feature of both visual and tactile textures is their
statistical nature: that many distinct patterns and geometries may
look or feel the same. We refer to distinct (in the sense of per-point
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equality) textures that are perceived in a similar way as perceptu-
ally equivalent. The large space of perceptually equivalent textures
makes it possible to adjust one aspect of a texture (e.g., tactile) with-
out affecting the other (visual). This type of adaptation makes it
possible to separate the process of visual and tactile design.
In this paper, we propose an efficient optimization method for

independent control of tactile feeling and visual appearance of a
surface. More precisely, the problems we solve can be formulated
as follows: given input texture geometry, how can we modify it to
achieve certain target tactile properties while minimizing changes
to its visual appearance? And conversely, how can we achieve spe-
cific visual appearance by modifying geometry, while preserving
tactile properties? Our method builds on the previous work on
quantitative modeling of perceptual roughness, as well as visual
appearance perception. One of the main drawbacks of the highly
accurate roughness model we use is the relative expense of its eval-
uation and the lack of differentiability, making it difficult to apply
in the optimization context. One of the main contributions of our
work is efficient neural network-based differentiable versions of
models for tactile roughness, visual appearance and contact area.
The roughness model is in close agreement with an accurate but
expensive-to-evaluate model while it also does not require expen-
sive 3D meshing and FEM simulation and can be evaluated directly
on the input texture geometry. The speedups we obtain are on the
order of 10,000 times for roughness evaluation (although the origi-
nal FEM model we compare to was not fully optimized), making it
possible to use this model in the inner optimization loop. In addition,
the resulting neural-network model provides gradients, making it
trivial to plug it into an efficient optimizer.
Using the same basic approach, we also constructed a similar

neural network model for contact area and for a visual similarity
measure for geometric textures involving advanced lighting effects,
both with multiple-orders-of magnitude speedups.
Using these models, we developed an optimization method that

allows for controlling the changes in visual appearance and tactile
roughness. With the same approach, it can also control another
aspect of tactile perception, temperature sensation. We demonstrate
the behavior of our system for a variety of examples in different
contexts and validate our approach with several visual and tactile
experimental studies on flat and curved surfaces.

2 RELATED WORK
Our work is related to previous work in several domains. Two of
the most important works we build on are [Tymms et al. 2018] (we
use the roughness model described in that paper as a starting point),
and [Isola et al. 2017], which describes an image-to-image CNN that
we adapt to our purposes. Our work is connected to a spectrum of
work in visual and tactile perception modeling, texture synthesis
and applications of CNN to optimization.

Tactile perception. Research on the sense of touch has found that
tactile perception consists of 4-5 dimensions ([Tiest 2010]), includ-
ing large-scale and small-scale roughness; compliance; friction; and
temperature. Here we focus on large-scale roughness, elicited by
features larger than 0.1 mm in size and detected through strain;
we also consider temperature, controlled here by mediating the

area of contact between the skin and a surface. Most previous re-
search in roughness perception has used different types of natural
or artificial stimuli that are difficult to control, e.g. [Manfredi et al.
2014], [Connor et al. 1990]. We use 3D printing to allow creation
of higher-resolution, more precisely controllable surfaces. We also
gain insights from [Tiest and Kappers 2009], who performed experi-
ments on temperature perception based on the thermal diffusivity
and found a relative threshold of discrimination of 43%.

Tactile fabrication. [Piovarči et al. 2016] developed a quantitative
model for tactile compliance perception using stimuli fabricated from
materials with different perceived tactile compliance, and demon-
strated its applications to fabricating shapes with variable properties.
Compared to roughness, compliance rarely affects the visual appear-
ance of an object, so combining the two is relatively straightforward.
In [Elkharraz et al. 2014] a roughness model was obtained using
tactile textures fabricated from a set of visual textures converted to
shallow height maps, implicitly creating a close connection between
visual and tactile appearance. In our work, we aim to decouple these.

Other recent work in the fabrication domain has aimed to facil-
itate the incorporation of tactile properties in 3D printed models.
[Torres et al. 2015] provides an interface to fabricate objects with
a user-specified weight, compliant infill, and rough displacement
map. However, their roughness metric relies on texture feature size,
which is not always definable and does not provide a comprehen-
sive model for all textures. [Chen et al. 2013] develops methods to
fabricate objects with specified deformation behavior and textured
surface displacement, but does not allow direct perceptual control.
[Degraen et al. 2019] addresses a more specific question using 3D-
printed hair structures to adequately simulate material roughness
and softness for use in immersive virtual reality.

Thermal conductivity is of interest in fabrication but is typically
controlled by altering the base material or creating a composite;
[Wang et al. 2017] reviews several options to vary thermal conduc-
tivity and other material properties. We aim to control conductivity
for tactile contexts by altering geometry. In a related application,
[Zhang et al. 2017] optimizes the tessellation pattern of 3D-printed
orthopedic casts for thermal comfort.

Texture synthesis. [Portilla and Simoncelli 2000] created a model
for texture synthesis based on a set of image statistics. Their method
performs well on some natural and artificial textures, but fails for
others; it also requires a significant amount of time and is therefore
poorly suited to optimization. [Wallis et al. 2017] is based on CNN
feature-based model (VGG-19) but similarly does not provide a close
match for many textures. Classical non-parametric texture synthesis
work, e.g. [Efros and Leung 1999];[Wei and Levoy 2000], yield high-
quality results for many textures, but are not readily adaptable for
our optimization purposes. A recent survey of synthesis methods
can be found in [Barnes and Zhang 2016]. Works such as [Gatys et al.
2015] and [Ulyanov et al. 2016] present synthesis methods based
on CNNs but are not robust enough for our optimization purposes.
[Zhou et al. 2018] presents a recent GAN-based texture synthesis
method with impressive results, but it requires several hours of
training for each image, and similarly [Yu et al. 2019] provides
perceptually-based texture synthesis but requires days of training
for a set of similar textures; neither is suitable for optimization in
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its current form. In contrast, we seek a method that is robust for
all textures, and whose loss computation does not require a large
amount of time.

Optimizing fabricated visual appearance. Several works use opti-
mization to accomplish a similar goal of appearance preservation
for 3D printing. [Schüller et al. 2014] uses optimization to alter the
geometry of 3D objects to maintain visual appearance subject to
other geometric constraints, to produce bas-reliefs for fabrication.
[Rouiller et al. 2013] designed a pipeline to optimize a 3D printed
surface’s microgeometry to replicate a desired BRDF. [Elek et al.
2017] employs optimization to correct for light scatter to more ac-
curately reproduce color in 3D printing, and [Shi et al. 2018] uses
optimization of the internal layer structure of color multimaterial
3D-printing to replicate the full spectrum of color of 2D art, invariant
to illumination, more accurately than traditional 2D printing.

Visual similarity of images and textures. Visual similarity metrics
are designed to quantify perceptual similarity, with consistency
with perception measured by pairwise or three-way comparisons:
if the numerical indicator of similarity for one pair of images is
higher than for another, then we expect the first pair to be perceived
as more different. Well-established visual metrics include those
based on structural similarity: SSIM [Wang et al. 2004], FSIM [Zhang
et al. 2011], MSSIM [Wang et al. 2003]. A different metric designed
primarily for evaluation of image compression quality, and based
on a complex visual system model, is found in [Mantiuk et al. 2011].
[Zhang et al. 2018] presents a metric based on deep features learned
for, e.g., a classification task and combined with a simple metric in
the feature space. These metrics were demonstrated to be closer
(on relevant datasets) to human perception compared to SSIM. We
use a simple, tighter metric based on surface normals discussed in
Section 3. We discuss our experiments with other measures there.
This is consistent with some of the work on depth images, e.g.,
[Haefner et al. 2018] a method for increasing resolution of depth
images using an additional color channel, uses a metric including
estimation of the normal difference. [Martín et al. 2019] develops a
procedure to measure texture similarity by matching a localization
task to texture statistics; but the current implementation was not
shown successful for diverse textures.

Neural networks in model reduction. Model reduction is a well-
established area which was using a variety of machine learning-
related techniques to decrease the number of parameters needed to
simulate a physical model, with the goal of reducing the cost of the
simulation, which is particularly important in optimization context.
We share this motivation, although we do not aim to achieve this
goal through explicitly reducing the number of parameters of the
model. Older methods are relatively well-covered in the survey
[Forrester and Keane 2009]. Very recently, and concurrently to this
work, neural networks were applied for reduced-order modeling of
Poisson and fluids in 2D [Hesthaven and Ubbiali 2018]. Other model
examples are considered in [Raissi et al. 2019].

Steganography. Steganography algorithms aim to hide water-
marking or other types of information in data, with a few papers
focusing on 3D data; see e.g., [Wang et al. 2008] for a survey, and

more recently [Yang et al. 2017]. As we do in our work, these meth-
ods aim to preserve visual appearance, but the goal is to conceal the
hidden information from the naive observer; in our case, we do not
want to make the modification of tactile properties apparent.

3 OVERVIEW
The main goal of this work is to develop a process to allow the
control of a texture’s tactile roughness or tactile temperature while
maintaining its visual appearance, which can produce a range of
effects.

Summary. Given an input 2D height field and a desired tactile
roughness value or contact area, the model uses learned functions –
one for appearance based on rendered shading, and one either for
tactile roughness, based on variation of strain in simulated skin,
or for tactile temperature, based on a simulated skin contact area
– to perform an optimization for roughness or contact area while
minimizing visual distortion. We use psychophysical experiments
to validate the results. A general overview of the process is shown
in Figure 1.
The development of our optimization process consists of the

following steps:
• We create a set of 6300 height maps comprising a variety of
textures and grayscale images. We run simulations estimating
the human finger contacting these heightmaps, and find the
resulting field of maximum compressive strain.

• We use a convolutional neural network to learn a function
taking the input heightmap and outputting the maximum
compressive strain field, and we compute tactile roughness
on this field.

• We use a similar neural network to learn a function taking
the input heightmap and outputting the contact area between
the skin and the texture.

• We learn a function for the height field’s visual appearance
using a CNN to learn the rendering with shadow and lighting.

• We develop an optimization procedure taking the losses from
the learned roughness or contact function and the learned
rendering function to optimize for a target tactile roughness
or temperature while minimizing change in appearance.

• We validate this procedure by testing several textures both
as renderings and as 3D-printed textures and running human
psychophysical experiments. We compare against the simpler
method of altering tactile feeling using linear scaling.

4 OPTIMIZATION
The optimization procedure acts to alter the geometry of the input
texture height field, in order to modify the tactile feeling of the input
while minimizing its change in visual appearance.

4.1 Optimization Overview
We use three functions in our optimization process to compute
tactile and visual difference estimates:

• Roughness: ϕr : Rn → Rn , where n is the number of pixels in
the height and stress maps, mapping the height field to stress
magnitudes at a plane inside the skin where tactile sensors
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are located. The stresses are sampled at the same resolution
as the input height field.

• Visual appearance: ϕv : Rn → Rkn , mapping the height
field to the pixel values of k rendered images with different
lighting.

• Contact area:ϕc : R2n → Rn , wheren is the number of pixels
in the height and contact maps, mapping the height field and
corresponding strain field to the distance between the skin
and the surface at each point.

In addition, we use a function V : Rn → R, to evaluate the percep-
tual roughness estimate from the stress field σ = ϕr (H ) of height
field H .

Using these functions, which we define precisely below, our target
functional is defined as follows. For a given input texture height field
H0, and target perceptual roughness rtrд , target contact area ctrд
and target height range [0,Htrд] we define the following energy
terms:

(1) Erouдh (H ) = |rtrд − V (ϕr (H ))|: the difference between the
current roughness and the target roughness, with the strain
variation function V defined in Section 4.2.

(2) Econtact (H ) = |ctrд −A(H ))|: the difference between the cur-
rent contact and the target contact, where A is the weighted
contact distance function defined in section 4.3.

(3) Evis (H ,H0) =
∑ 1

n ∥ϕv (H0) − ϕvk (H )∥2: the visual differ-
ence, computed as the L2-norm of the pixel-wise difference
between the current rendered image and target rendered im-
age, summed over the three different rendering conditions
used.

(4) Er eд(H ,H0) =
∑ 1

n (∥∆x (ϕv (H0)−ϕvk (H ))∥2+∥∆y (ϕv (H0)−
ϕvk (H ))∥2): the sum of difference variation regularization en-
ergies for all rendering conditions, where ∆x and ∆y are finite
difference matrix operators for horizontal and vertical direc-
tions; i.e., an approximation of

∫
∥∇(ϕv (H0) − ϕv (H )∥2dA.

(5) Eclamp (H ) = ∥H − clamp[0,Htrд ]
(H )∥22 : the clamping energy

to keep the result in the [0,Htrд] range.

The total energy we minimize is defined as

E(H ,H0) =Erouдh (H ) +w1Evis (H ,H0) +w2Er eд(H ,H0)

+w3Eclamp (H )
(1)

To make the optimization of this function practical, we need to com-
pute E(H ,H0) as well as ∇HE(H ,H0) efficiently. However, compu-
tation of Erouдh involves a 3D finite element simulation, including
3D domain meshing and contact resolution; computation of Evis
requires rendering of textures with some global illumination effects.

We address both of these problems by approximating ϕr , ϕc and
ϕv using neural networks, as these provide (a) fast evaluation of
function values (b) evaluation of derivatives with respect to the
input parameters. The details of the approximations are discussed
below.

Convergence criteria and weight choices. The main parameter of
the optimization is w1, controlled by the user, which represents
the trade-off between visual fidelity and closeness to the target
roughness.

Fig. 2. Parameter convergence during optimization for roughness and visual
appearance. The goal is to alter the roughness of the input texture (iteration
0) while preserving its visual appearance, which is done by the final iteration.

The weightw3 is chosen to be relatively high, 105, so that the last
term operates as constraint. The weight w2 is chosen to be lower
compared to w1, as Er eд acts as a regularizing term, minimizing
small-scale noise by picking smoother solutions among those with
low values of the first two terms. We usew2 = 0.06.
For contact area, which has values on the order of 100mm2, ap-

proximately 1000 times the typical roughness values, these weights
were scaled up by 1000.

We use a stopping criteria for optimization that places bounds on
three of the energy components: For roughness, Erouдh < εr rtrд ,
with εr = 0.1, about half of the 19% threshold for tactile rough-
ness discrimination described in [Tymms et al. 2018]. For visual
difference, Evis < εv ∥ϕv (H0)∥2, with εv = 8; this is proportional to
image resolution, and was experimentally found as a conservative
goal to avoid visible changes, corresponding to a 2% change in pixel
values.

The height constraint is expected to be satisfied nearly precisely:
Eclamp < εc , with εc = 10−4. We used Htrд = 3, to ensure the
height remain below 3 mm, selected as a reasonable maximum
height for a fabricable tactile texture.

An example of the optimization process for a texture is shown in
2. The effect on convergence of using altering the weights is shown
in Figure 3.
The Adam optimizer ([Kingma and Ba 2014]) implemented in

Pytorch is used for optimization. A learning rate of 0.027 was cho-
sen through trials with single parameters to permit convergence
of the parameters but avoid excessive oscillation. In the next sec-
tions, we explain how the roughness, contact and visual functions,
respectively ϕr , ϕc and ϕv , are defined.
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Fig. 3. a)When a significantly (10x) lower weight is used forw1, convergence
of roughness to the target may not occur. b) A significantly higher (10x)
weight for w1 causes the visual energy to converge more slowly, and it may
not reach the target threshold.

Fig. 4. In the original roughness model, a 3D FEM simulation was used to
simulate the skin touching a textured surface, and the maximum compres-
sive strain field was sampled from a depth of 0.75 mm.

4.2 Tactile roughness
We use a modified version of the model developed in [Tymms et al.
2018], which computes the tactile roughness of a surface by simu-
lating the strain variation field resulting from skin contact on the
surface. The computation of the model is relatively expensive; we
briefly summarize the model here for completeness. The main step
of the model is a finite element method simulation of the contact
of the skin with the tactile texture defined by H (x ,y), to obtain
a corresponding displacement field uH (u,v,w), where u,v,w are
3D coordinates in the undeformed layer of skin, with w = 0 cor-
responding to the surface, and w0 = 0.75mm corresponds to the
approximate depth of the tactile receptors.

To approximate the skin, we use the same two-layer block model
as [Tymms et al. 2018]. The block is 1cm2 in surface area and 0.5cm
in height, with a rigid upper half and soft lower half, and a force of
10 N is used. A model of the simulation is shown in Figure 4.

For a displacement field u, ϵ[u] = 1
2 (∇u+∇

T u) is small-deformation
strain tensor. If λ3(ϵ) is the largest-magnitude negative (compres-
sive) eigenvalue of the strain tensor, our perceptual roughness esti-
mate f (H ) can be written as

f (H ) = V(λ3(ϵ(uH (·, ·,w0))))

where V is the strain variation function on the plane w = w0. We
replace a stochastic function defined in the original model with a
deterministic function described in more detail below.

The expensive step is the computation of displacements uH for a
givenH : it requires sufficiently fine 3D meshing to resolve the detail
at the scale of smaller texture features, and solving a nonlinear (due
to contact) constrained elastic deformation problem, which in our
current implementation has a computation time of 20-40 minutes

Fig. 5. a) Stochastic sampling; b) Equivalent deterministic sampling

and uses 15GB of memory when using the required highly-refined
mesh. In addition to the cost of evaluation, it is difficult to obtain
an approximation of the derivative of this function other than by
extremely expensive finite differences, so optimizing a functional
depending on the uH can only be done with gradient-free methods.

This is the step that we replace with a direct map

ϕr (H )(u,v) ≈ λ3(ϵ(uH (u,v,w0))),

represented with a neural network.

Strain variation function. In [Tymms et al. 2018], the strain varia-
tion function V (σ ) was computed using a large set S of N random-
ized pairs of samples (p1,p2), pi = (ui ,vi ), separated, on average, by
a distance d , are computed. Denoting σ (u,v) = λ3(ϵ[uH ](u,v,w0)),

V (H ) =
1
N

∑
(p1,p2)∈S

|σ (u1,v1) − σ (u2,v2)|

N = 8000 sample pairs were used, sampled from disks of radius
0.8 mm placed at the endpoints of randomly selected segments of
length 2.2 mm.
Instead of using a random sampling of points, here we use a

deterministic evaluation of variation between each point and its
neighbors within the desired distance, in order to derive a strain
variation field (Figure 5):

V (H ) =
1
2rl

∫ l

x=0

∫ l

y=0

∫ d+r

∆=d−r

∫ π

θ=0
|σ (x ,y)

−σ (x + ∆ cosθ ,y + ∆ cosθ )|dxdyd∆dθ
(2)

This function is smooth, so the gradient of the complete roughness
estimates can be computed.

Learning the strain field. The FEM simulation used to compute
σ (u,v) in [Tymms et al. 2018] is used solely to find a single 2D
strain field; that is, the simulation takes as input a 2D grid (the
heightmap defining the boundary conditions for the contact area),
and returns as output a 2D grid (the maximum compressive strain
at a depth of 0.75 mm). Image-to-image translation problems have
been studied extensively in machine learning, and here we adapt
a convolutional neural network described in [Isola et al. 2017] to
learn a relationship ϕr between the input height map and the output
maximum compressive strain.
To acquire ground truth simulation data, we ran the FEM sim-

ulation for the 3D skin model using a heightmap dataset of with
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Fig. 6. Two examples from the learned CNN test set show the learned and
ground-truthmaximum compressive strain fields from the input heightmaps.
Strain fields are shown with increased contrast for visual clarity.

Fig. 7. The difference in computed roughness between the learned strain
field and the real strain field is typically very low, with a median of 5.3%.

6307 image pairs, similar to the size of several datasets success-
fully trained with this neural network structure. We use a set of
black and white images and textures (including the Describable
Textures Dataset [Cimpoi et al. 2014], VisTeX [MITMediaLab 1995],
and Brodatz texture database [Brodatz 1966]) and procedural tex-
tures to enrich the dataset. In some cases, images were randomly
cropped and/or scaled, and in some cases procedural noise was
added. Heightmaps had a maximum vertical height of 3mm and rep-
resented a texture of size 100mm2. As suggested in [Tymms et al.
2018], for each simulation we found the maximum compressive
strain field at a depth 0.75 mm, and the strain field of a flat texture
simulation was subtracted to discount any effect from edges.

Inputs and outputs were scaled to 128×128px images. The set was
split randomly into three sets: testing (312 images); training (4918),
and validation (1077). We used the convolutional neural network
used as the generator in [Isola et al. 2017], with no dropout and
using BCE loss, and trained for 200 epochs with batch size 1.
The learned strain field and its resulting tactile roughness value

were computed from an unseen testing set, and the learned valuewas
compared against the actual value. The median error in roughness
was 5.3%, and the average error was 8.0%, well below the perceptual
threshold of 19%. These values are well below the threshold of
discrimination of 19% described in [Tymms et al. 2018]. The error
distribution is shown in Figure 7.

Fig. 8. The contact area function takes as input the input heightmap (left, red
channel) and the strain field (left, green channel) and outputs the distance
field (center, where black indicates a distance of 0). The distance field can
be used to compute the contact area (right, where the contact area is black)

.

Fig. 9. The learned contact area matches the actual contact area very closely,
with an error of 2.7%.

.

The network allows the roughness to be computed in an average
of 0.05 seconds, a significant speedup compared to the 20-40 minutes
required to run the full FEM simulation.

The learned function and its gradient are used in optimization for
a texture to converge toward a desired tactile roughness, as shown
in Figure 2.

4.3 Contact area
Computing the contact area requires the same time-intensive FEM
simulation as computing the roughness field. To compute the con-
tact area, we use a function taking as input the height field and
outputting the field of distances between the surface and the simu-
lated skin at each point. The computation of this distance field is
expensive and requires an FEM simulation as described in section
4.2. Therefore, we replace this step with a neural network.

Learning the contact distance field. The FEM simulation takes in
the input height field H and outputs a mesh displacement field uH
describing the displacement of the skin when in contact with height
field H . From this displacement field and the height field, we can
acquire the field of the distance d between the skin and the input
texture at each point, where a distance of 0 indicates skin contact
with the texture surface.

We adapt a similar convolutional neural network to learn the
relationship between the input heightmapH and the output distance
field d = ϕc (H ). We used the same height field training set as used
previously in Section 4.2, which had about 6300 pairs. To improve
the accuracy of the learned function, we also provided the strain field
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as input, so that the input to the function has 2 channels of input:
the height field and the strain field. An example of the function’s
input and output is shown in Figure 8.

To compute the error for the testing set of size 250, the learned dis-
tance field was computed for each input heightmap with its learned
strain fields, and the contact area was computed and compared
to the actual contact area derived from simulation. The errors in
computed contact area for this set had a mean of 2.7%, as shown in
Figure 9.

Contact optimization. The optimization aims to modify a texture
so that its total contact area moves to a particular target. Because
contact area itself is a discontinuous function, the optimization
process was often unable to converge. Therefore, we use a smooth
function weighting the contact area at each point proportionally
to the inverse of its distance. That is, for contact distance field d,
contact area is approximated by:

A(H ) =

∫ l

x=0

∫ l

y=0

1
1 + 80 ∗ d(x ,y)

(3)

This function provides a smooth weighted contact distance, so
that a distance of 0 has a weight of 1; weights decay rapidly so that
a distance of 0.01 mm has a weight of 0.5 and a distance of 0.1 mm
has a weight of 0.1.

4.4 Visual appearance
To preserve a texture’s visual appearance during optimization, we
use a custom function based on visual similarity of the original
height field and the optimized one. Ideally, to measure visual sim-
ilarity, we would consider all possible views of a pair of textures
under different lighting conditions, apply a visual difference metric
between each pair, and compute an aggregate metric. We follow
these steps, but use a restricted set of lighting conditions and use the
simplest visual metric to compare the images. In Section 5, we vali-
date the setup we use comparing it with a more expensive multiview
optimization.

We found that to ensure realistic results some features of images
used to evaluate visual similarity are critical. Specifically, we have
observed that shadows, ambient occlusion and gloss affect visual tex-
ture perception in a critical way (Figure 10), as a texture comprises
many small elements that cast shadows over the surface. For this rea-
son, we must opt for a rendering pipeline supporting these features
to generate views of the texture, rather than, e.g., approximating
the texture image with the dot products of the normal with the light
direction.
As discussed in Section 2, a variety of measures of visual simi-

larity exist and are widely used. Most could be used in our context
in a way similar to the function V above used for roughness; e.g.,
[Zhang et al. 2018] describes a perceptual measure of visual similar-
ity represented with a neural network, that can be easily applied in
our context. However, we found that in the optimization context,
these measures tend to be too "permissive": while these metrics are
good for measuring distance between real images, synthetic images
can be far from a given image perceptually, but close in the sense of
these metrics. For this reason, we opt for a relatively conservative

Fig. 10. A texture heightmap rendered with (center) or without (right) shad-
owing and ambient occlusion. Shadowing in small regions of lowered height
is critical to a texture’s visual appearance.
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Fig. 11. Plot showing render DSSIM and L2 difference errors for a set of
textures in optimization steps.

L2 norm of the difference between images. Figure 11 shows a scatter
plot exhibiting that L2 has a correlation with DSSIM.

Rendering. Heightmaps were rendered in a gray material with low
specularity, similar to matte plastic, using a Phong shader. Objects
were rendered with three different lighting conditions, with a single
constant-direction parallel-ray light sources at an angle of 35°from
the x-y plane and rotated on the z-axis 10°, 130°, or 250°. Images
were rendered at 128 × 128px using Blender.

While differentiable renders have recently appeared [Li et al.
2018], given the highly restricted nature of the renderings that we
need to compute (square texture samples), we opted for a similar
approach as we use for the stress maps for the roughness measure.
As an additional benefit, this approach also provides a gradient of
the rendered image with respect to the heightfield.

For each lighting condition, we trained the generative adversarial
network of [Isola et al. 2017] on a set of 4764 images, with a vali-
dation set of size 1059. The network was trained for 200 iterations.
Results showed high accuracy, as seen in Figures 12 and 13. All three
lighting conditions had similarly high accuracy (with mean pixel
errors of 2.2%, 2.3%, and 2.4%).
The neural network offers a significant speedup to rendering:

the neural network render computation time is only 0.05 seconds
after the network is loaded; while traditional rendering time is
approximately 15 seconds with ray-tracing shadows using Adaptive

ACM Trans. Graph., Vol. 39, No. 6, Article 212. Publication date: December 2020.



212:8 • Chelsea Tymms, Siqi Wang, and Denis Zorin

Fig. 12. Two examples from the test set for visual rendering. The learned
function for the rendering of heightmaps was learned with high accuracy:
in most cases generated and real renderings are visually indistinguishable.

Fig. 13. Left: L1 loss convergence of the generator during training of the
GAN on texture rendering for one lighting condition. Right: Histogram
of the percent differences of all rendered pixel values across 300 real and
generated texture pairs in the test set. Real pixel values are approximated
very closely by the network, with most pixels changing by less than 5%. The
mean difference is 2.3%.

Fig. 14. Renderings of two textures optimized for different contact areas.

QMC and 20 samples for the lighting source, and ambient lighting
and occlusion.

5 RESULTS

5.1 Optimization results
Figure 15 shows the results of altering the roughness of a selection
of textures using our optimization for a desired tactile roughness

maintaining visual appearance. Textures are rendered here using a
different lighting setup than the ones used for learning. Textures
shown represent 10 × 10mm2 in size.
Choosing a ground truth to compare to in our experiments is

somewhat difficult, as we are not aware of any previous work on
optimizing tactile properties for complex textures. We have chosen
linear scaling as one obvious way to change geometry to increase
texture roughness, while maintaining similarity to the original tex-
ture; this method was used in [Tymms et al. 2018].

On the righthand side of Figure 15, we show the results of using
linear scaling of textures to achieve the desired roughness. Textures
are first scaled in height up to a limit of 3 mm; then, if necessary,
they are scaled in the x-y direction. The optimization-generated
textures are nearly indistinguishable from the original textures,
while the textures modified with linear scaling are almost always
noticeably different, except in cases where the desired roughness is
very close to the original roughness. Making the texture flatter or
scaling it upwards results in obvious differences. Additionally, for
some textures, a sufficient change in roughness is not achievable
through linear scaling alone.

5.1.1 Errors.

Roughness. To ensure that the learned functions were robust to
the types of textures generated with optimization, the errors in
computed roughness were also computed for a set of 150 optimized
textures, with three different target roughness values. The average
error between the simulated and learning-computed roughness for
the optimized texture was 8.4% with a median of 6.4%, compared to
an average of 8.0% and mean of 5.3% for the overall test set.

Contact area. The same test was performed for a set of 100 tex-
tures optimized to have significantly different target contact area.
Here the average error in contact area between the simulation and
the learned data was 9% with a median of 4.1%. The average error
for the non-optimized input set was 7.9%, with a median of 2.4%.

5.2 Evaluation and comparisons
The relationship between a surface’s geometry and its tactile prop-
erties is intricate, as it depends on the difficult-to-predict way the
elastic skin contacts the texture geometry. The tactile roughness is
dependent on the uneven distribution of pressure resulting from
that contact area. Optimization for these tactile properties while
maintaining a similar appearance results in subtle changes to the
texture geometry, as shown in Figure 16. It typically is not as simple
as, for example, using height modification or frequency filtering:
the target may be impossible to achieve, and the visual appearance
may not be preserved well, as discussed below.

5.2.1 Comparison with other methods.

Height modification. Linear scaling is a simple method of altering
a texture’s roughness or contact area. If a texture is scaled up verti-
cally, the contact area will decrease and the roughness will increase.
The relative geometry is preserved, which suggests the appearance
is also preserved to an extent. However, as seen in Figures 17 and 15,
the appearance often cannot be preserved. In contrast, our contact
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Fig. 15. Seven example textures optimized for a desired roughness. The leftmost column shows the original, target visual texture; the next three columns show
the results when the roughness is achieved through our optimization process; the final three columns show the results when the same roughness is achieved
through linear scaling in the z and/or xy directions. The optimization process achieves the desired roughness with nearly-imperceptible changes to the visual
appearance.
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Fig. 16. Example of a texture cross-section for textures optimized for rough-
ness. Changes to peaks and troughs are not easily predictable.

Fig. 17. Comparison of textures optimized or vertically scaled to alter con-
tact area. The optimization results in smaller changes to the geometry and
better preservation of visual appearance.

Fig. 18. Comparison of modifying a texture’s roughness by modifying the
dominant frequency of the texture, and using the optimization process.
Modifying the frequency adds large-scale noise to the geometry, which is
clearly visible on the texture.

and roughness optimizations alter the geometry in precise and small
ways to change the contact while preserving appearance.

Frequency modification. Another intuitive method of altering a
texture’s roughness is to use bandpass filtering, altering the texture

Fig. 19. Top: We tested the optimization with the addition of more points
of view, 45° from vertical on the yz and xz planes, along with the original
single top point of view. Bottom: The table shows the percent pixel difference
between the optimization height map results, for the original top point of
view, one additional point of view, or all five points of view. Only small
changes occur when one or more additional points of view are added.

in the frequency domain to reduce or amplify certain frequencies.
Literature and psychophysics studies suggest that roughness per-
ception is highest when features are spaced at a wavelength of 2-3
mm apart [Hollins and Bensmaïa 2007].

However, we have observed that modifying a texture to alter the
frequencies in that range does not alter the roughness is a reliable
manner for all textures. For example, if the frequency is increased
but the amplified areas are not contacted by the skin, the roughness
will not be affected. More importantly, modifying the frequencies
does not guarantee preservation of visual appearance. Figure 18
shows an example of modifying a texture’s roughness by 4 just-
noticeable-difference (JND) thresholds by increasing the geometry’s
frequencies in the 2.5mm wavelength range. The large-scale noise
added to the geometry to achieve the target roughness is visible
in the texture. Our optimization produces smaller changes in the
geometry that are not easily apparent.

Other filtering methods. Contact area and tactile roughness de-
pend on the way the elastic skin conforms around the geome-
try, which changes in nontrivial ways when the geometry is e.g.
smoothed using a filter. For example, smoothing a sharp peak results
in increased contact area and decreased height, which decreases
roughness; but smoothing a round peak results in decreased contact
area and therefore may increase perceived roughness.

5.2.2 Alternate points of view. Our visual optimization used a single,
top point of view and multiple lighting conditions. To determine the
value of utilizing additional view directions, we ran the optimization
with four additional points of view, 45° from the vertical direction
at four angles (Figure 19, top) and with the same three lighting
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conditions. Aswith the top view, additional neural networks (one per
view) were successfully trained to produce the rendered image from
the specified angle and light source. Rendered images were rescaled
to 128x128 pixels. The roughness optimization was run with visual
weight assigned to the new points of view: the single additional
point of view was weighted 40%; and when using all five points of
view, 40% was given to the four new points of view. The remainder
of the visual weight was given to the top view direction. We choose
a higher weight for the top view to reflect higher importance of
direct viewing in surface perception. As the sensitivity of the results
to the addition of new points of view was shown to be low, we did
not explore other options for weight allocation further.
We evaluated the results of the new optimizations against each

other and the results from the previous optimization, using pairwise
comparisons. As shown in the table in Figure 19, the optimized
heightmap did not change significantly when new points of view
were incorporated: the image pixel difference between the results
differed by less than 2.1%. For this reason, we determined that using
a single top viewpoint in the visual difference functional is an ade-
quate choice: this agrees with the intuition that views of a texture
from different directions are highly correlated from a broad range
of angles.

5.3 Visual Experiments
In a set of visual psychophysics user studies, we tested the accuracy
of our visual optimization by comparing the source texture appear-
ance to the optimized texture appearance and a simple baseline
method. For the baseline, we used a version of the texture scaled
linearly in the direction perpendicular to the surface to achieve
the same roughness. We also tested the validity of our single-view
formulation by comparing it with a more expensive multiple-view
formulation.

5.3.1 Stimuli. Six source textures were tested (shown in Figure 20).
Source textures comprised different types of natural and manufac-
tured textures and had different base tactile roughness values.
For each source texture, four target roughness values were se-

lected, and textures were optimized to achieve those four roughness
values. Additionally, successive linear scaling was used to create
alternate textures with the same four target roughnesses.
For each source textures, a set of eleven 25mm square textured

stimuli plates were 3D-printed using a B9Creator DLP stereolithog-
raphy printer, at 50 µm resolution. Three of the textures were de-
rived from different patches of the source textures; four were the
optimized textures; and four were linearly scaled textures.
As we have used B9 Black resin to yield the most accurate geo-

metric results, to improve visibility, textures were spray-painted
with matte gray primer (Rust-Oleum Flat Gray Primer) and a coat
of clear matte varnish.

5.3.2 Experiments. In each trial, two textures were placed in a case
that slides beneath a circular window, through which one of the
textures could be seen. Observers viewed the textures overhead at a
distance of 40 cm, viewing through a mirror placed at an angle of
45° as seen in Figure 21.

Fig. 20. Heightmaps of the six textures used in visual experiments.

Fig. 21. The experimental setup for visual experiments, which allows the
subject to comfortably view the three trial textures from an overhead view.

During each trial, observers were presented with two different
textured surfaces sequentially. One of the pair was derived from the
original source texture, and the other could be either another patch
of the source texture; a version scaled to a different roughness using
linear scaling; or a version scaled to a different roughness using our
optimization process. Observers were tasked to choose whether the
two textures appeared the same (i.e., derived from the same texture
source) or different. Locations of the pair of textures were switched
with equal probability. Observers were given 4 seconds to view the
textures two times each.

Trials were presented in a pseudorandom ordering, with the con-
straint that trials using the same source texture were separated by
at least two trials.
Six subjects took part in the experiments and performed four

repetitions per texture pair. Experiments took place in an office
setting with ambient fluorescent lighting.

Experiment results. Our experiment results showed that the opti-
mization process performed substantially better than linear scaling.
Figure 22 shows the proportions for the 48 test textures. The dotted
black line on each graph shows the threshold at which subjects
judged the reference textures from the same patch as similar to each
other. Of the 24 optimized textures tested, 20 of them were judged
the same as the source at least 50% of the time. In contrast, only 4
of the linearly scaled textures were judged the same as the source
at least 50% of the time. In fact, half of the linearly scaled textures
were judged different from the reference textures over 90% of the
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Fig. 22. Top panel: results from the experiments for each of our six textures.
Bottom panel: Proportions for all textures accumulated by JND distance
from the reference texture. The x-axis for each graph shows the distance
in just-noticeable-differences in roughness values between the test texture
and the reference, and the y-axis shows the proportion judged the same.
The dotted black line shows the reference threshold at which the reference
textures were judged the same as each other.

time throughout all trials. 23 of 24 of the optimized textures were
judged more similar than the non-optimized version. The other one
was derived from T1, a texture which was had high sensitivity to
small changes, as shown by the fact that only 50% of textures from
the same source were judged the same.
The bottom panel of Figure 22 shows textures accumulated by

JND threshold distance from the reference texture, according to the
difference threshold of 19% found in [Tymms et al. 2017]. In all cases,
the optimized textures match the references better than the linearly
scaled textures. In general, linear scaling tends to perform more
successfully for small decreases in roughness, but performs poorly
for larger decreases or increases in roughness. Optimization creates
textures that appear very similar for small differences in roughness;
the visual difference is only visible when the target roughness is
much larger.

5.3.3 Alternate points of view. To validate the visual similarity for
different points of view and complex geometry, a subset of three tex-
tures was chosen for a less restricted version of the experiments. In
these experiments, three texture heightmaps (T4, T5, T6) were used
to fabricate a new set of textured objects, whose curved geometry
includes a local maximum and saddle (Figure 23). As in the previous
experiment, the reference stimulus was the source texture, and the

Fig. 23. A shape with curvature, including a local maximum and a saddle,
was used for a less-restricted visual experiment. A rendering of the textured
shape with the T5 input texture and a two-JND rougher optimized output
texture is shown here.

test stimuli included a source texture along with three optimized
textures and three linearly-scaled textures of different roughness
values. The textures on the test stimuli were shifted by 50% so as to
not appear identical to the reference source texture. Protocols were
similar to the previous experiment: the reference and test stimulus
were displayed sequentially for one second each, and the participant
was asked whether the two plates had the same or different textures.
The participant sat around 30 cm from the textures on the table, and
was free to move their head and rotate the textures; in combination
with the shape’s curvature, the viewer was able to see the texture
geometry from many directions.
Eight people participated in the study, and each performed two

evaluations of each texture against the source. As shown in the
results in Figure 24, participants judged the optimized textures the
same as the reference a majority of the time, but the linearly-scaled
textures were almost never judged the same. The linearly-scaled
textures were judged the same as the reference at a lower rate than
the previous experiment as a result of the new viewing angles, sug-
gesting differences are more apparent when many view directions
are allowed; in contrast, the optimized textures were judged the
same at a rate similar to the previous experiments, showing that
our optimization is robust to different viewing directions.
The bottom panel of Figure 22 shows textures accumulated by

just-noticeable-difference (JND) threshold distance from the refer-
ence texture, according to the difference threshold of 19% found in
[Tymms et al. 2017]. In all cases, the optimized textures match the
references better than the linearly scaled textures. In general, linear
scaling tends to perform more successfully for small decreases in
roughness, but performs poorly for larger decreases or increases
in roughness. Optimization creates textures that appear very simi-
lar for small differences in roughness; the visual difference is only
visible when the target roughness is much larger.

5.4 Tactile roughness experiments
Tactile roughness experiments were used to validate the tactile
roughness optimization. Stimuli for this experiment were the same
six sets of five 3D-printed texture plates used in the first visual
experiments.
In the tactile experiments, ten participants were asked to sort

groups of five texture plates by touch from smoothest to roughest.
In each trial, the five plates were placed in a random order beneath a
translucent panel that obscured the textures’ fine-scale appearance.
Participants used their dominant index finger to press each plate and

ACM Trans. Graph., Vol. 39, No. 6, Article 212. Publication date: December 2020.



Appearance-Preserving Tactile Optimization • 212:13

Fig. 24. Texture similarity results from the experiments on a subset of three
textured shapes with curved geometry. The x-axis shows the difference in
roughness just-noticeable-difference intervals between the test texture and
the reference, and the y-axis shows the proportion judged the same. The
dotted line shows the reference threshold a which the reference textures
were judged the same as each other.

Fig. 25. This map shows the average proportion of trials in which each
texture (vertical) was sorted as tactually rougher than each other texture
(horizontal). Almost all discrepancies were between textures designed to
differ by one threshold, and the error rate is close to the expected 84%.

determine a sorted order. They were free to feel the plates multiple
times and to use as much time as needed.

5.4.1 Results. The heat map in Figure 25 shows the mean propor-
tion with which each texture plate was judged rougher than each
other of the same texture source. Textures are numbered from 1 to
5 according to the designed JND level from smoothest to roughest.
Participants were able to reliably sort the plates, including pairs
differing by only one threshold, a majority of the time. Participants
sorted these most-similar pairs according to the designed ordering
85% of the time (across-subject standard deviation 4%), which is
nearly the expected threshold of 84% with which consecutive plates
were designed. Only three of the 60 total comparisons resulted in an
ordering discrepancy between a pair of textures differing by more
than one threshold step.

5.5 Contact area experiments
Twelve textures were fabricated to experimentally verify the change
in contact area. For each texture, three versions were fabricated:
the original texture, a texture optimized to have 70% the contact

Fig. 26. The results of one texture optimized for a lower (top) or higher (bot-
tom) contact area. From left to right: texture rendering, texture fingerprint,
thresholded finger contact, and simulated contact.

Fig. 27. Comparison of the experimental and simulated contact area of 36
textures.

area, and a texture optimized to 140% the contact area. These 36
textures were fabricated as 10mm squares, using B9Creator V1.2
with a resolution of 50 µm in B9 black resin.

To compute the contact area, the fabricated texture surfaces were
coated in ink using a compliant sponge and an ink-pad. The thumb
or second finger of each participant was covered with Tegaderm
(3M), a thin layer of transparent plastic with a thickness of 0.1 mm.
The tegaderm was used to avoid discrepancies due to the fingerprint
ridges, and to provide easier cleaning of the finger surface between
trials to avoid ink residue. The finger was pressed against the texture
with a weight of 8.8 N placed on the finger to ensure uniform force.
Then the finger was pressed to a sheet of paper to derive an inkprint
of the contact surface.
Nine participants provided texture finger prints in this manner.

The prints were scanned at 600dpi in 8-bit grayscale, and the contact
areas were computed and averaged over all subjects. The pipeline is
shown in Figure 26. All optimized contact surfaces fell within 20%
of their target contact area, with an average difference of 9.2%. Addi-
tionally, the contact areas of the 36 printed textures were compared
against the simulated contact areas. Figure 27, shows the result of
this comparison, with a close linear correlation with an approximate
slope of 1.
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Fig. 28. Photograph of sets of bronze-cast textures used for tactile tempera-
ture experiments (T3 and T5). Textures are ordered from less to more contact
area. Inconsistencies in appearance may be due to the manufacturing pro-
cess and polishing.

5.5.1 Temperature Experiments. An additional set of experiments
was used to determine whether the printed textures felt different
from one another in tactile temperature.

Stimuli. The stimuli for this experiment were twelve textures:
four base textures (T2, T3, T4, T5) each optimized with three differ-
ent contact areas differing by 40%. Each texture surface was applied
to the top of a flat plate 1.2mm in height. To enable tactile discrim-
inability at room temperature for the purposes of the experiment,
we used metal rather than plastic, due to its higher thermal con-
ductivity: texture models were 3D printed and cast in bronze. A
photograph is shown in Figure 28.

Setup and protocols. In the experiments, textures placed on a flat
cast-iron plate over ice, which maintained a temperature at the top
surface of approximately 16°C as measured by a laser thermometer.
In each trial, the participant was presented with two textures

of the same class with different optimized contact area (either 40%
smaller or 40% greater, where 40% is approximately the JND thresh-
old for thermal discrimination described by [Tiest and Kappers
2009]). A cover was placed over the experiment area to hide the
textures from view.
In experiments, eight participants were asked to feel the two

textures using static pressure with the index finger and to answer
which texture felt colder. Participants were allowed as much time
as needed to feel the textures, and were given time between trials
to ensure the finger itself was not too cold.

Results. Throughout the trials, participants responded that the
texture with more contact area felt colder 83.1% of the time, which
suggests that the threshold of discrimination is indeed approxi-
mately 40%, as found by previous research. For pairs that differed by
two JND, the texture with more contact area was judged as colder
91% of the time.

6 APPLICATIONS
Applying tactile textures to fabricated objects is useful for both aes-
thetic and practical purposes. We have formulated several examples
and have fabricated a subset as textured 3D models (Figure 29).

Modeling. Often, one might prefer a particular visual texture for
an object while preferring a distinct tactile feeling. For example,
imitation plastics are often used to match a specific material’s ap-
pearance, and our model could help match the material’s desired
feeling. Our model could enable the creation of multiple surfaces
that look similar but feel different, either for aesthetic purposes or
to serve as a tactile signifier of another characteristic. It could also
be used to make surfaces that feel similar but look different, which
could be combined in a visual pattern or logo, for example on a mat,
that feels uniform when touched.

We manufactured two different animal models as examples. First,
a starfish model was textured with a relatively smooth surface tex-
ture (roughness 0.05). The texture was altered to feel rougher (rough-
ness 0.092), and was applied to produce another, rougher fabricated
starfish with the same appearance (shown in Figure 1). We also fab-
ricated a textured model of a tree frog with a keeled wood pattern.
The initial texture had a roughness of 0.045, and was modified to
produce a smoother texture of roughness 0.03 and used to fabricate
a smoother frog with the same appearance (Figure 29a).

Wearables. Tactile and visual aesthetics are common to clothing,
jewelry, and other wearables, which often touch the skin. Tactile
properties may also serve as functional. Some wearable devices,
such as headphones with buttons, have areas that the user finds
and uses by touch rather than sight; these areas could be hidden
visually for aesthetic appearance or for more discreet use. Wearables
could also use roughness actively to convey haptic signals that
are unobtrusive to the user and invisible to others: a watchband
with a high-resolution pin array could produce different tactile
textures that could be felt by the user to convey different signals;
similarly, altering the contact area could allow different rates of
thermal transfer between a wearable and the user’s skin.

As an example of a wearable with tactile aesthetics, we fabricated
a bracelet band with links having the same texture appearance,
but alternating smoother and rougher tactile feelings (Figure 29b).
Smoother links had a roughness of 0.06, and the rougher links had
roughness 0.09.

Accessibility. Tactile items and textures are particularly useful for
people with visual impairments. If a designer creates two objects
that look different, our model could be used to tune the textures so
that they also feel different, while preserving the designed visual
appearance. Visual textured objects are commonly used in pieces
for board games, puzzles, and household items, where colors or
visual labels are often used to distinguish between otherwise similar
objects or regions. A variation in tactile feeling can provide similar
cues for a person unable to see the differences. As an example, we
produced a model for a dimmer light switch slider. The texture
gradient looks the same throughout, but the roughness increases
such that it will correspond with the light intensity as the slider is
moved (Figure 29c).

7 CONCLUSION
We have presented an optimization procedure to preserve texture
appearance while altering tactile roughness or temperature.We used
neural networks to enable computation of tactile roughness, contact
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Fig. 29. From left to right: textured models; models colored by roughness;
photographs of 3D-printed models. a) Two frogs textured with a tactile wood
texture optimized for different roughnesses. (Modified from [YahooJAPAN
2013]). b) A bracelet with textured links that have the same visual texture
but have alternating roughnesses. c) A procedural texture slider for a light
switch, where the tactile roughness corresponds to light intensity.

area, and visual appearance at speeds several orders of magnitude
faster than the standard methods, providing differentiable func-
tions usable in optimization for a target appearance and feeling. We
used psychophysical experiments to demonstrate that our method
provides a significant improvement over simple linear scaling in
controlling tactile roughness, and we provided several examples of
how our procedure can be used to produce interesting and useful
textured objects.

7.1 Limitations and Future Work
While the tactile model has been tested on objects withmoderate cur-
vature ([Tymms et al. 2018]), it may not be usable for high-curvature
3D objects. Furthermore it was tuned for hard materials, and it has
a minimum feature resolution; using it for soft or fine materials
may require changes. Our static touch simulation is adequate for
dynamic touch up to a certain resolution, as static touch receptors
dominate perception for features over 100µm ([Hollins and Risner
2000]); nevertheless it may be improved by dynamic simulation. The
model is also based on a simulation of a simplified model of human
skin, which, while found to be robust, may be improved by a more
complex model. Our procedure could used for a different material
or more physically complex skin structure by retraining the neural
network on a new set of simulation field outputs.

Similarly, our procedure describing visual appearance was tuned
for the shading of the our material (diffuse plastic resin) and may not
be directly usable for surfaces that are much more glossy, translu-
cent, or non-smooth. In these cases, our method could be modified
to learn the rendered appearance for a particular desired material
given a suitable training set. However, as seen in Figure 28, our
current visual model can still work to preserve visual appearance
fairly well even for non-matte materials.
Our model presents a tradeoff between preserving exact visual

appearance and achieving an exact tactile roughness. Very high
changes in tactile roughness may not be achievable while fully
preserving visual appearance. We found that similarly-appearing
textures can typically be produced within a range of 3-4 JND thresh-
olds in each direction. Our metric for visual appearance similarity is
likely a lower bound for perceptual similarity, so a fast perceptually-
based method for texture similarity could be used instead in the
optimization and could improve texture generation. Our model was
evaluated to target either a tactile roughness or contact area; optimiz-
ing for both or more quantities is future work. Other optimization
parameters could also be used: for example, we could enforce print-
ability constraints depending on the printer used to manufacture a
model.
Our visual model uses shading from an overhead view with am-

bient lighting. At severe angles or severe lighting conditions, the
differences may be more apparent. Our model could be tuned to
a particular lighting condition or viewpoint if it were used in the
training set, but any optimized texture likely will not appear exactly
the same under all lighting and viewing conditions, as some geo-
metric changes will always be present near the surface. However,
as we found in both optimization tests and human user studies with
curved objects, our optimization using a single viewpoint is robust,
and the results look similar to the target even when viewed at other
angles.

Our model limits texture height to 3mm as a manufacturing con-
straint. We have observed that due to the limited elasticity of the
finger, textures deeper than this are not different tactually from
those with the lower-depth truncated to 3mm. However, we could
easily optimize a taller texture by optimizing the top 3mm of it, and
preserving the remainder.

To aid in the fabrication process, our method could be integrated
into a 3D modeling tool to provide precise control of tactile feeling
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when modeling a textured fabricable object. Using our model and
existing models for compliance using compliant microstructures,
it would be possible to control three of major dimensions of touch:
compliance, temperature, and roughness, and to study the unknown
interactions between these properties. Creating objects with differ-
ing tactile properties as separate from appearance may also be of
interest to the fields of neuroscience and neurophysiology in future
studies of psychophysics and multi-modal perception.
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