
Optimal Control for
Electromagnetic Haptic Guidance Systems

Thomas Langerak1, Juan José Zárate1, Velko Vechev1, David Lindlbauer1,
Daniele Panozzo2, Otmar Hilliges1

1 Department of Computer Science, ETH Zurich, Zurich, Switzerland
2 Courant Institute of Mathematical Sciences, New York University, New York, USA

Hardware prototype
running optimization

Target trajectory
as input for

optimization

User draws target
guided by 

optimization

User adjusts path
and speed, magnet 

adapts guidance

Optimization guides
user back to 
target path

Final drawing.
Target trajectory

with user adaptions

Magnetic force

Figure 1. We propose an optimal control scheme for electromagnetic guidance systems (left). A target trajectory is provided, on which users are guided.
They can always adapt the trajectory, our optimization then guides users back to the target (offset between target and drawing for illustration purposes).

ABSTRACT
We introduce an optimal control method for electromagnetic
haptic guidance systems. Our real-time approach assists users
in pen-based tasks such as drawing, sketching or designing.
The key to our control method is that it guides users, yet does
not take away agency. Existing approaches force the stylus to
a continuously advancing setpoint on a target trajectory, lead-
ing to undesirable behavior such as loss of haptic guidance
or unintended snapping. Our control approach, in contrast,
gently pulls users towards the target trajectory, allowing them
to always easily override the system to adapt their input spon-
taneously and draw at their own speed. To achieve this flexible
guidance, our optimization iteratively predicts the motion of
an input device such as a pen, and adjusts the position and
strength of an underlying dynamic electromagnetic actuator
accordingly. To enable real-time computation, we additionally
introduce a novel and fast approximate model of an electro-
magnet. We demonstrate the applicability of our approach by
implementing it on a prototypical hardware platform based on
an electromagnet moving on a bi-axial linear stage, as well
as a set of applications. Experimental results show that our
approach is more accurate and preferred by users compared to
open-loop and time-dependent closed-loop approaches.
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CCS Concepts
•Human-centered computing → Haptic devices;
•Hardware→ Haptic devices;

INTRODUCTION
Pen-based interactive systems that feature haptic guidance
support users in a variety of applications such as drawing,
sketching, writing or CAD design. The goal of such systems
is to enable users to draw higher-complexity shapes with less
effort and higher accuracy, or to support users through virtual
haptic tools such as rulers or guides. Crucially, such systems
aim to strike a balance between giving users a strong sense of
control and agency, while providing feedback unobtrusively.
This is enabled through embedding controllable electromag-
nets in the system, for example, which can then guide input
devices such as a pen, or provide feedback to users about the
positions and boundaries of virtual objects.

Existing systems such as dePenD [39] typically employ an
open-loop control approach. The magnet that drives the pen
is set to a predefined trajectory, and users then must closely
follow the movement of the system. In this case, it is not pos-
sible for users to adjust the trajectory, since it would lead to
a loss of haptic guidance. This effectively leads to a decrease
in control of users, and arguably a loss of user agency. Alter-
natively, it is possible to extend haptic guidance systems with
traditional closed-loop approaches, e. g. by implementing a
proportional–integral–derivative (PID) controller [4] or based
on heuristics [21]. Such systems adjust to users’ movement but
are, usually, based on a timed reference, effectively dictating
users’ drawing speed. This can lead to unintended behavior
such as snapping whenever the pen is too close to the actuator,
a problem that is exacerbated for magnetic systems due to the
non-linear nature of the magnetic force over distance.



We propose a real-time closed-loop control approach that al-
lows users to retain agency and control while being assisted by
an electromagnetic haptic guidance system. Our approach en-
ables users to draw at their desired speed and adjust their target
trajectory continuously. It then adapts and complies to such
modifications while giving corrective feedback. Our algorithm
then positions and regulates a variable-strength electromagnet
such that it provides dynamically adjustable in-plane magnetic
forces to the pen tip.

We contribute a novel optimization scheme for
electromagnetic-based haptic guidance system, i. e. models
and control algorithm, that enables formalizing this problem
in the established Model Predictive Contour Control (MPCC)
framework [16], which has previously only been employed
in context such as RC-racing [20] or drone cinematography
[26]. We provide an accurate system model, parameters,
and an appropriate cost function alongside a method to
optimize the model parameters given user inputs. Modeling
the non-linear interaction of an electromagnetic force field
typically makes use of the finite element method (FEM),
which is not applicable for real-time scenarios. To overcome
this challenge, we additionally contribute a novel approximate
yet accurate model of the electromagnetic force field that can
be evaluated analytically in real time.

Compared to simpler control schemes such as Model Predic-
tive Control (MPC) [8] and many implementations of PID
control, our approach does not require a timed reference and
hence allows users to draw at their desired speed. Further-
more, our optimization scheme allows for error-correcting
force feedback, gently pulling the user back to the desired tra-
jectory rather than pushing or pulling the pen to a continuously
advancing setpoint on the trajectory. With our approach, the
reference path can be updated at every timestep, thus allowing
users to continuously change their desired trajectories. This
enables applying the algorithm to fully dynamic references, for
example virtual tools such as rulers or programmable french
curves.

To assess the proposed control algorithm, we developed a
proof-of-concept hardware implementation (see Figure 2),
leveraging an electromagnet that moves underneath the draw-
ing surface or display on a bi-axial linear stage. The magnet
provides variable strength guidance onto the tip of a minimally
instrumented pen or stylus via an electromagnet positioned
directly below a drawing surface, guided by our proposed ap-
proach. We demonstrate the feasibility of our approach with a
set of applications, specifically drawing guidance on conven-
tional paper for sketching and writing, and a digital sketching
application that features virtual haptic guides and rulers.

To evaluate our approach, we performed two experiments
with twelve participants each. We first compared free-hand
drawing of shapes with varying complexity with and without
our feedback system. Results showed that the haptic guidance
using our approach improved the accuracy across shapes by
up to 50% to 1.87 mm. We then compared our approach to our
implementation of dePENd (open-loop) and a simple MPC-
based closed-loop control scheme. Our approach showed
significantly higher accuracy, and was preferred by users.

In summary, we contribute

• A novel MPCC-based optimization scheme for electromag-
netic haptic guidance systems including models, parameters,
cost function and control algorithm.
• A novel real-time approximate model for electromagnets

that generalizes beyond our hardware implementation.
• Evaluations showing the improved accuracy of our method.
• A prototypical software and hardware implementation avail-

able as open source at https://ait.ethz.ch/projects/2020/
magpen/.

Figure 2. We implement our proposed guidance system using a two-
axis linear stage equipped with an electromagnet. All technical and user
evaluations were completed using the Pressure Sensitive Tablet (right).
We additionally developed an all-digital implementation using a multi-
touch tablet with display (left).

RELATED WORK

Haptic guidance
Providing haptic guidance to users can provide benefits
for learning [36] and short-term performance (cf. Abbink
et al. [1]). Teranishi et al. [36] demonstrate that participants
showed improved learning for handwriting skills when receiv-
ing guidance through a 3-DOF Phantom Omni device. Mullin
et al. [25] use a similar device as handwriting aid for rehabili-
tation. Forsynth and MacLean [10] show that force cues are
beneficial in navigation tasks. The focus of these works is that
users receive tight guidance (i. e. they are supposed to follow
the system as closely as possible). Our work aims at providing
a control strategy that allows users to deviate from predefined
trajectories while still receiving guidance.

There exists a large range of devices and systems that aim at
providing guidance to users. Comp*Pass [27] uses pantograph-
like devices to assist users in drawing, while I-Draw [9] is a
motorized drawing assistant. Lin et al. [19] use a magnet
mounted on a small robotic arm to retain the correspondence
between the pen and a portable base. Digital rubbing employs
a comparable system using a solenoid for tracing over digital
images on real paper [14]. While users handle larger-scale mo-
tions of the devices, they generally aim at having full control
over the resulting drawing. Users can take back this control,
however these system do not provide a way to guide users
back to the target trajectory. Besides aforementioned systems,

https://ait.ethz.ch/projects/2020/magpen/
https://ait.ethz.ch/projects/2020/magpen/


several works aid users in the process of crafting and manu-
facturing (cf. Zoran et al. [44]). Free-D [43] and D-Coil [29]
assist users in sculpting of physical artefacts by guiding them
on a predefined 3D shape. Shilkrot et al. [31] proposes an
augmented paint brush to assist users in painting. While users
can override these systems to deviate from the target shape,
they have no mechanism that guides users back to the target.

Closest to our work in terms of hardware is dePENd by Ya-
maoka et al. [39]. They move a permanent neodymium magnet
on a two-axis setup to control the metal tip of a ballpoint pen.
The neodymium magnet “drags” the input pen around a prede-
fined path, similar to a plotter. dePENd employs an open-loop
strategy to control the magnet, which means users cannot de-
viate from the predefined path without risking to lose haptic
guidance. We propose a mathematical model and optimal
control strategy that allows users to move at their own pace
through a drawing, for example, and reacts in real-time to user
input by altering the position and strength of the magnet. We
show that our approach provides better results than their open-
loop approach, as well as existing closed-loop approaches.

Kianzad et al. [13] use a ballpoint drive to assist users in
sketching. They employ a proportional-derivative (PD) con-
trol loop, which allows users to deviate from the target to a
certain extend. We show in our experiments that our optimiza-
tion scheme outperforms such existing closed-loop approaches.
Muscle-Plotter [21] proposes active guidance for users based
on electrical muscle stimulation. Their control strategy is
based on heuristics for users to share control with the system.
Our approach could be applied to their work if the electromag-
netic force model is replaced by a model of the interaction
between the muscle stimulation and the force users produce.

Magnetic Actuation
Providing magnetically-driven haptic feedback on tabletops
is desirable as the force can be exerted through the surface
without affecting the display. A common approach is using
arrays of controllable electromagnets, combined with perma-
nent magnets embedded in objects on the surface. McIntosh
et al. [22] show how a permanent magnet attached to a finger
can be used for tracking and haptic feedback for mobile inter-
actions. Fingerflux by Weiss et al. [37] provide near-surface
haptic feedback before the finger touches the screen to guide
users to appropriate screen locations. Pangaro et al. [28] model
the force-field of each electromagnet and combine these using
standard aliasing techniques, allowing directed movement of
multiple objects on the surface. Similarly, Yoshida et al. [40]
use linear induction motors to control objects on a tabletop.
Strasnick et al. [34] use electromagnets to control an object
on a mobile phone case. Suzuki et al. [35] combine these two
works and use a grid of electromagnetic cores to move objects
on a tabletop. While our optimization scheme could be applied
to such devices as well, smooth motion is problematic due to
the low resolution of the grid, and the interaction of forces
between multiple electromagnets. Furthermore, magnets are
modeled using a simplification of the magnetic pole model
(known as Gilbert model), considering only attraction between
single point poles, leading to undesirable snapping behavior.

Online Path Following
Optimal reference following given real world influences is
studied in depth in the control theory literature. Methods like
Model Predictive Control (MPC) [8] optimize the reference
path and the actuator inputs simultaneously based on the sys-
tem state. MPC is widely applied in many robotics (e. g. to
control quadrocopters, Mueller et al. [24]) and graphics appli-
cations (e. g. for human motion prediction, Da Silva et al. [6]).
However, Aguiar et al. [2] show that the tracking error for
following timed-trajectories can be larger than if following a
geometric path only.

To address this issue, Lam et al. propose Model Predictive Con-
touring Control (MPCC) [17] to follow a time-free reference,
optimizing system control inputs for time-optimal progress.
MPCC has been successfully applied in industrial contouring
[17], RC racing [20] and in drone cinematography [26]. We
also pose our optimization problem in this well established
framework. However, to the best of our knowledge, we are the
first to apply it for haptic guidance systems where one has to
consider both a controllable (i. e. the electromagnetic force)
and non-controllable (i. e. the user) system. We contribute
a formulation of the problem including models and control
algorithms to enable employing MPCC in this context.

OPTIMAL CONTROL FOR EM HAPTIC GUIDANCE
The goal of our online optimal control scheme is to allow
users to maintain control and agency over the input device
(e. g. pen, stylus), while experiencing dynamic guidance from
the system. Importantly, it leverages time-free references and
thus the dynamics are entirely driven by the pen position over
time, which is different from approaches such as MPC.

Overview
The proposed optimization scheme allows us to adjust the
magnet position and strength such that it gently pulls the pen
tip towards a desired stroke, while allowing users to draw at
their desired speed and without fully taking over control. The
algorithm is generally hardware agnostic and works for de-
vices with electromagnetic actuators underneath an interaction
surface. This can be implemented via bi-axial linear stage as
in our prototype (see Figure 2) or via a matrix of electromag-
nets which would lend itself better towards miniaturization.
Furthermore, the algorithm requires a reference trajectory over
the optimization horizon. This can be defined a-priori, such as
a known shape to be traced, or may be provided dynamically,
e. g. the output of a predictive model (e. g. Aksan et al. [3]).

At each time step, we minimize a cost functional over a reced-
ing time horizon to find optimized values for system states x
and inputs u. As a high-level abstraction, the cost function

minimize
x,u

∑
Cforce(x,u)︸      ︷︷      ︸
Eq. 3, 4 & 5

+Cpath(x,u)︸      ︷︷      ︸
Eq. 6

+Cprogress(x,u)︸          ︷︷          ︸
Eq. 7

, (1)

serves three main purposes: 1) ensuring that the user perceives
haptic feedback of dynamically adjustable force (Cforce), 2)
stays close to the desired path but does not rigidly prescribe
it (Cpath), and 3) makes progress along it (Cprogress) but allows
the user to vary drawing speed freely.
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Figure 3. Overview of different control strategies on a target trajectory
(green), with constant pen position. For open-loop, the position of the
electromagnet is identical to the constantly advancing setpoint, leading
to loss of haptic guidance. For MPC, although the pen is static, the guid-
ance changes at every timestep since the setpoint advances. In our ap-
proach, the setpoint is also based on the pen position, therefore remains
stationary in this case and guides the user towards the target trajectory.

CLOSED-LOOP CONTROL
Our main contributions are models and a control strategy that
enables using the MPCC framework [17] for electromagnetic
haptic guidance. MPCC is a closed-loop time-independent
control strategy that minimizes a cost function over a fixed
receding horizon. There are several advantages in using our
formulation over open-loop (as used in dePENd [39]) or time-
dependent strategies (e. g. MPC). First, closed-loop control
allows to react to user-input, whereas open-loop control re-
moves all user agency. Both MPC and MPCC are closed-loop
control strategies. However, MPC tracks a timed reference,
requiring a fixed velocity by users. MPCC follows a time-
free trajectory, which allows the user to progress at their own
speed. Figure 3 illustrates the expected behavior for the differ-
ent strategies, given that the user slows down or stops moving
the pen. The desired behavior here would be that the algorithm
essentially “waits”, i. e. provides guidances towards a slowly
or no-longer advancing setpoint. In this situation, open-loop
approaches would lead to lost haptic guidance. Closed-loop
time-dependent approaches would guide the pen towards a
constantly advancing setpoint (although users do no longer
move), which can lead to problems such as the user being
guided backwards (e. g. timestep t = 3 is in front of t = 2).

Our method is designed to exert a force Fθ of desired strength
onto the pen to guide the user towards the target trajectory s.
The path s of length L is parametrized by θ ∈ [0, L]. Note that
we do not prescribe how fast users draw and hence for each
given pen position pp we first need to establish the closest po-
sition on the path parameterized by s(θ). The vector between
the pen position and s(θ) is defined as rθ. We leverage a reced-
ing horizon optimization strategy and the global reference can
hence be adjusted or replaced entirely at every iteration. The
path s is then a local fit to the global reference. Furthermore,

Table 1. Overview control parameters and values

Name Range / Value Description

pp R2 Position of pen
pm R2 Position of electromagnet
Fa R3 Electromagnetic force vector
α [0, 1] Electromagnetic intensity
s θ ∈ [0, L] Target trajectory of length L
x [pm, ṗm, α, θ] System states
u [p̈m, α̇, θ̇] System inputs

we seek to find optimized values for the electromagnet inten-
sity α and the in-plane electromagnet position pm. Solving
the error functional given in Eq. (10) at each timestep yields
optimized values for system states x and inputs u.

As common in MPC(C), the system is initialized from mea-
surements at t = 0. The system state is then propagated over
the horizon with the dynamics model f (x,u). The system state
vector x contains variables that are controlled by the algorithm
(magnet intensity and position, current path progress). The
first of the optimized inputs (u0) is then applied to the physical
system, transitioning the system state to x1, before iteratively
repeating the process to allow for correcting modeling errors.

desired force
spring-like
behavior

current
actuation force

Figure 4. Illustration of actuation force Fa, desired force Fθ, and the
force cost-term C f associate with the difference between those two forces.

Haptics model: controlling the force of the electromagnet
The main goals of our approach is that users can move freely in
terms of position and speed, and that the actuator continuously
pulls them towards an advancing setpoint s(θ) on the target
trajectory s. At any time, the magnet exhibits an actuation
force Fa on the pen, given by our electromagnetic force model
(see Implementation section). Therein lies the challenge, il-
lustrated in Figure 4. The setpoint is continuously advancing
based on the movement of the pen to ensure progress. The ac-
tuator needs to pull the pen towards the setpoint by exhibiting
force Fθ, but currently exhibits Fa. The two forces only align
if the pen is exactly at the setpoint, which is rarely the case. To
overcome this challenge, we propose modeling this interaction
by a spring-like behavior that “pulls” Fa towards Fθ. In this
way, the magnet continuously guides the pen towards the set-
point, and the force linearly increases with distance between
the pen and the target setpoint denoted as:

Fθ(rθ) = c F0 rθ erθ . (2)

Here erθ is a unit vector in the direction of rθ, c is a scalar that
regulates the stiffness of the spring (in our case c = 5/h), F0
a scaling of the EM force (i. e. the force felt by users) and
h the distance between dipoles in z (see Fig. 4). Although
simple, this formulation ensures that the haptic guidance is
strong under large deviation from the path while vanishing as
the user approaches the target path (rθ → 0). Note that Eq. 2 is
a design choice. Different formulations can be used to achieve
different user experiences. Furthermore, replacing our hard-
ware prototype and force-model would allow for adaptation of
the remainder of the method to different actuation principles.

The above haptics model serves as basis for our problem for-
mulation of electromagnetic guidance in the MPCC frame-
work. Using the vectors of the current actuation force Fa and



desired force Fθ, we formulate a quadratic cost term to pe-
nalize the difference between desired force and actual force
as:

C f (pm,pp, α) = ‖ Fθ(rθ) − Fa(d) ‖2. (3)

where d is the in-plane vector between the magnet and the pen.
Since the actuation force Fa declines rapidly with distance d,
the gradient of C f goes to 0 for large values of d causing the
optimization to become unstable. To counterbalance this issue
we encourage the electromagnet to stay close to the pen:

Cd(pm,pp) = d2. (4)

Finally, we prioritize proximity between the magnet and the
pen rather than increasing its force by penalizing excessive
use of magnetic intensity α:

Cα(α) = α2. (5)

Controlling the position of the electromagnet
We continuously optimize the position of the electromagnet
with the goal of keeping the distance between the desired path
and the pen minimal. To give the user freedom in deciding
their drawing speed we first need to find the reference point
s(θ) on the target trajectory s. Finding the closest point on the
path is an optimization problem itself and hence can not be
used within our optimization. Similar to recent work in robot
trajectory generation [26, 11], we decompose the distance to
the closest point into a contouring and lag error, as shown in
Figure 5. rθ is the vector between the pen pp and a point s(θ)
on the spline, and n as the normalized tangent vector to the
spline at that point, which is defined as n =

∂s(θ)
∂θ

. The vector
rθ can now be decomposed into a lag error and a contour error
(Figure 5). The lag-error Cl is computed as the projection of
rθ. The contour-error Cc is the component of rθ orthogonal to
the normal:

Cl(pp, θ) = ‖〈rθ,n〉‖2,
Cc(pp, θ) = ‖rθ − (〈rθ,n〉) n‖2.

(6)

Separating lag from contouring error allows us, for example,
to differentiate how we penalize a deviation from the path (Cc),
versus encouraging the user to progress (Cl). We furthermore
include cost terms to ensure that the magnet stays ahead of the
pen (Cθ) and to encourage smooth progress (Cθ̇) computed as

Cθ(θ) = −θ,

Cθ̇(θ̇) = (θ̇t − θ̇t−1)2.
(7)

Dynamics model
To phrase electromagnetic haptic guidance in the MPCC frame-
work, we contribute a a dynamics model f (x,u) describing
the system dynamics given its states x and inputs u.

ẋ = f (x,u) with

x = [pm, ṗm, α, θ] ∈ R6 and u = [p̈m, α̇, θ̇] ∈ R4.
(8)

The system state x consists of the position of the electromagnet
pm ∈ R

2 and its velocity ṗm, the magnet intensity α and the
current path progress θ. The inputs to the system u consist of

Figure 5. Illustration of lag- and contouring error decomposition.

the in-plane electromagnet accelerations p̈m, and velocities α̇
and θ̇ for magnet intensity and the spline progress respectively.
Note that we empirically found that magnet accelerations yield
smoother motion than using velocities. The system model is
given by the non-linear ordinary differential equations using
first and second derivatives as inputs:

p̈m = vm, α̇ = vα and θ̇ = vθ, (9)

where v(·) are the external inputs. The continuous dynamics
model ẋ = f (x,u) is discretized using a standard forward
Euler approach: xt+1 = f (xt,ut) [12].

In our hardware implementation, we derive the sets of ad-
missible states χ and inputs ζ empirically to conform to the
physical hardware constraints of the linear stage (e. g. max x,y-
position) and EM specifications (e. g. max voltage). These are
used in the constrained optimization problem solved in Eq. 11.
The pen position is propagated via a standard linear Kalman
filter [12]. While not an accurate user model, it works well in
practice since the states are recalculated at every timestep.

Term Description of cost Eq.

C f Decreases difference in magnetic force 3
Cd Decreases distance between magnet and pen 4
Cα Encourages close distance over large force 5
Cl Decreases lag to path contour 6
Cc Decreases distance to path contour 6
Cθ Magnet stays ahead of pen 7
Cθ̇ Ensures smooth progress 7

Table 2. Summary of costs terms used in optimization.

Optimization
We combine the cost terms (Table 2) to control the force and
position of the actuator to form the final stage cost:

Jk = w fC f (pm,k,pp,k, αk, θk)+
wdCd(pm,k,pp,k) + wαCα(αk)+
wlCl(pp,k, θk) + wcCc(pp,k, θk)+

wθCθ(θk) + wθ̇Cθ̇(θ̇k), (10)

where the scalar weights wl,wc,wθ,wθ̇,w f ,wd,wα > 0 control
the influence of the different cost terms. The values used in
our experiments and applications can be found in the Imple-
mentation section. The system states and inputs are computed
by solving the N-step finite horizon constrained non-linear
optimization problem at time instance t.



The final objective therefore is:

minimize
x,u,θ

N∑
k=0

wk

(
Jk + uT

k Ruk
)

(11)

Subject to: xk+1 = f (xk,uk) (System Model)
x0 = x̂(t) (Initial State)

θ0 = θ̂(t) (Initial Progress)

θk+1 = θk + θ̇kdt (Progress along path)
0 ≤ θk ≤ L (Path Length)
xk ∈ χ (State Constraints)
uk ∈ ζ (Input Constraints)

Here k indicates the horizon stage and the additional weight wk
reduces over the horizon, so that the current timestep has more
importance than later timesteps. R ∈ Snu

+ is a positive definite
penalty matrix avoiding excessive use of the control inputs.
In our implementation we use a horizon length of N = 10.
Experimentally we found that this is sufficient to yield robust
solutions to problem instances and longer horizons did not
improve results, yet linearly increases computation time. The
algorithm is summarized in Appendix A Alg. 1.

IMPLEMENTATION
In this section, we detail our electromagnetic force model used
in our optimal control scheme as well as the implementation
of our hardware prototype.

Electromagnetic force model
Our approach requires a model of the interaction between
a variable-strength electromagnet (EM) and the permanent
magnet in the stylus that is sufficiently accurate and can be
evaluated in real time. Accurately modeling the non-linear
EM field of the electromagnet’s core is typically done through
finite element analysis (FEA), which cannot be performed in
real time. Similarly, precomputing the volumetric map of the
EM field Bm via FEA for all levels of electrical current is not
computationally feasible. We therefore contribute a novel fast
approximate yet accurate electromagnetic model that provides
a good balance between speed and accuracy to enable haptic
guidance in applications such as writing or sketching.

In general, we aim at finding the actuation force on the pen Fp,
which is given by integrating over the volume of the permanent
magnet in the pen:

Fp =

$
∇

(
Mp · Bm(·)

)
dxdydz, (12)

where Mp is the magnetization of pen magnet and Bm(·) is the
EM field evaluated at the pen position, which is too costly to
evaluate in real time. Our model approximates this underlying
physical phenomena, can be efficiently evaluated at every
iteration of our optimization procedure and provides a very
good fit to empirical data. In this section, we briefly discuss
the most important aspects of our model, for a full derivation
and analysis we refer readers to the Appendix B.

Figure 6. Illustration of the model to compute the force Fp on dipole mp
due to dipole mm.

We make the following two assumptions in our derivation:
1) the electromagnet and the permanent magnet can be approx-
imated as dipoles (i. e. oriented point magnets), and 2) for
the smaller dipole (the permanent magnet in the pen) the out-
of-plane vector component is much larger than the in-plane
counterpart. This allows us to use only the vertical component
in the calculation of the force.

The first assumptions allows us to use the standard model by
Yung et al. [41] to compute the force exerted by the electro-
magnet mm onto the pen mp (see Figure 6) as:

Fp =
3µ0

4πr5
mp

[(
〈mp, rmp〉

)
mm +

(
〈mm, rmp〉

)
mp +

(
〈mp,mm〉

)
rmp −

5
(
〈mp, rmp〉

) (
〈mm, rmp〉

)
r2

mp
rmp

 , (13)

where µ0 is a constant (vacuum permeability 4π 10−7 [H/m])
and rmp is the 3D vector between the centers of the electro-
magnet and pen dipoles. In contrast to FEA, this expression is
analytic and differentiable, thus suited for iterative optimiza-
tion. Figure 6 shows all quantities needed to compute the
total magnetic force exerted on the pen. The expression does,
however, lead to an actuation force Fp that depends on the tilt
of the pen. In pre-tests, we found that users can not perceive a
difference in strength when tilting the pen in-place. We there-
fore leverage our second assumption, which reduces the EM
model from 6 DOF to 3 DOF, to avoid this computation.

Based on the second assumption, we can retrieve the two
vertical force vectors of the electromagnet mm and the pen m̃p.
The vector between the two centers can now be computed as
rmp. We then project this vector onto the plane, yielding the
final vector d between the pen tip and the in-plane projection
of the actuator dipole. The total force acting on the pen (Eq.
13) can now be decomposed as:

Fp = Fa ed + Fz ez . (14)

Here Fa = Fa ed represents the in-plane quantity we seek to
control, as it is the magnitude Fa of the force vector Fa in
the direction of a unit vector ed along d. Fz is the vertical
force components which pulls the pen downwards. During
our experiments there was no significant change in perceived



friction when comparing the drawings with and without elec-
tromagnet (i. e. with or without Fz). For this reason we do not
actively account for Fz in our optimization and only maintain
the in-plane force contribution (ed direction). The actuation
force as function of pen-magnet separation is obtained as:

Fa = α F0

 d
(
4 − d2

h2

)
h
(
1 + d2

h2

) 7
2

 ed, (15)

where α ∈ [0, 1] is a dimensionless scalar to control the desired
strength of the force that should be felt by users, h is the center-
to-center distance between both magnets projected on to the
z-axis (Figure 4) and F0 is a constant force parameter given
by the expression,

F0 =
3 µ0 mp mm

4 π h4 . (16)

The actuation force Fa is zero if the two magnets are aligned
with one another (d = 0), it has a maximum Fmax

a = 0.9 F0 at
d = 0.39h, and we can assume there is no more attraction for
distances d > 2h. Note that the second assumption (only use
in-plane component) lead only to a small approximation error
Compared to an angle dependent formulation (see Appendix
B.2), a tilt of up to β = 30◦ leads to a max error in our
model (Equation 30) equivalent to shifting the distance d by ±
3 mm. This uncertainty in d is comparable with the in-plane
positioning error (dispersion) of our hardware prototype. An
angle dependent formulation of our model (i. e. 6 DOF) can be
found in Appendix B.2 for future use in cases where the pen
angle is tracked. This model remains valid for other hardware
implementations involving a single moving electromagnet or
can be easily extended onto a grid of fix electromagnets.

Hardware prototype
We have developed one possible hardware instance that uti-
lizes our optimization scheme for an in-plane haptic guidance
system (see Figure 2). Our system consists of 3 main compo-
nents: 1) a moving platform that controls the 2D location of
the electromagnetic actuator, 2) an input device such as a sty-
lus, and 3) an output device such as a digital tablet or digitizer
used in combination with a non-digital drawing surface.

Motion platform
The motion platform consists of a controllable electromagnet
on a bi-axial linear stage directly underneath the drawing
plane. The linear stage has two orthogonal 12 mm lead screws,
which are driven by two 24 V, 4.0 A NEMA23 high-torque
stepper motors. We control the motors with a DQ542MA
stepper driver and an Arduino UNO. As electromagnet, we
use an Intertec ITS-MS-5030-12VDC magnet (5 cm diameter,
3 cm height, 12 V), controlled via pulse-width modulation.
It can deliver up to 488 mN of lateral force at 11 W. We
used FEM analysis to select this magnet from a range of
commercially available magnets [5]. It provides a balance
between power consumption, size, and force, i. e. it delivers a
strong perceivable force while having a small footprint relative
to our hardware.

To measure the positional dispersion of the motion platform,
we moved the electromagnet at full strength (α = 1) to 300

random locations and then always back to the center of the
drawing surface. During theses trials, a user held the pen up-
right and followed the magnet passively. By measuring the
difference in target and actual position, we found that our sys-
tem yields 2.8 mm (± 0.8 mm) of point dispersion. We believe
this is sufficient for most applications and our experiments.
One of the factors that contribute to this dispersion is the van-
ishing of the actuation force Fa as d → 0. This can lead to the
pen motion stopping slightly before it reaches the target.

Software
Our software runs on a standard PC (Intel Core i7-4770 CPU
4 cores at 3.40 GHz) in all our experiments. The solver is
implemented in FORCES Pro [7], which produces efficient
C-code. The following weight values are used for our control
scheme (Equation 10):

wl wc wθ wθ̇ w f wd wα wv wm

1.5 1.5 10. 0.1 10. 0.05 7. 1. 1.

Due to the steepness of the electromagnetic force Fp and the
potentially fast pen motion, runtime and latency are crucial
performance metrics. The optimization algorithm contributes
to both, whereas latency is dominated by the hardware and
I/O. The mean solve time for a problem instance is 7.4 ms (±
3.0 ms). This can be expected to be mostly constant since we
do not manipulate the system state space and the only mea-
sured input comes from the pen. The hardware and overall sys-
tem latency adds to the solve time. We use a high-speed cam-
era (1000 fps) to establish the motion (pen) to motion (magnet)
latency. This yields an approximate latency of ~10 ms. Given
the combined latency envelope of ~20 ms, we did not experi-
ence any abrupt pen snapping in our experiments.

Input and Output Devices
Our primary input and output devices for our user experiments
consist of a 3D printed ballpoint pen with a permanent ring
magnet mounted in the shaft (see Figure 2) and a piece of paper.
The strokes are recorded by a Sensel Morph pressure sensitive
touch pad [23]. If the system cannot locate the pen (e. g. when
it is lifted) the last known position is used. We chose the
Sensel for its high spatial resolution (6502 DPI), high speed
(500 Hz) and low latency (2 ms), according to specification,
and since the sketching surface does not interfere with the
input recognition. Additionally, we developed an all digital
input/output system with a multi-touch tablet + stylus. We
use a Galaxy Tab A tablet with capacitive input and an off-
the-shelf stylus with a permanent magnet placed near the tip.
This magnet is slightly bigger (12 mm radius, 12 mm height)
to compensate for the increase in tablet thickness.

EVALUATION
We first evaluated if our optimization scheme is beneficial for
users in providing haptic guidance compared to a no-feedback
baseline. In a second experiment, we compared our method
with an open-loop and a closed-loop approach.

Experiment 1 - Haptic feedback
We compared our MPCC formulation with a no-feedback base-
line to gather insights on task performance and user perception.
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Figure 7. Shapes of our user tests. The drawing surface only contained
sparse visual references (shown in blue) and starting positions (orange).

Users were asked to draw several shapes (see Figure 7) and
we evaluated accuracy and subjective feedback.

Procedure and tasks
We recruited 12 participants from the local university, all with-
out professional drawing experience. Users were given an
introduction to the system functionality and got to experience
the system in a self-timed training phase. During the experi-
ment we asked each participant to draw six basic shapes, each
with and without haptic feedback. The presentation order
of shapes and interface condition was counterbalanced. The
drawing surface (white piece of paper) only contained a start-
ing point and, in the case of more complex shapes, limited
additional visual guidance (see Figure 7). Furthermore, the
participants were shown a scaled version during task execu-
tion (scaled to prevent 1:1 copying). After the full experiment,
users completed a questionnaire on their preference.

Quantitative Results
We compute the Hausdorff-like distance [30] between the
drawn path and the reference path as error metric. To make
the metric robust to drawing speed, we re-sample both paths
equidistantly. To ensure fairness we also compute the inverse
distance (reference to drawn path). A Kolmogorov-Smirnov
test [15] indicated that the set of uni-directional distances is
not significantly different from the set of inverse distances.
We therefore only report uni-directional distances. The quan-
titative results for each target averaged over all participants
are summarized in Table 3. Our method on average resulted
in a 66% (± 24.5%) lower error, i. e. it improve the average
point-to-path difference by 1.54 mm. A two-way ANOVA on
the mean error revealed a main effect for the feedback type
(F=46.187, p<.001) and for the shapes (F=11.771, p < .001).
Post-hoc analysis revealed that the line was statistically signif-
icantly different from all other shapes. This indicates that our
method is beneficial for non-trivial shapes.

Qualitative Results
A brief exit interview shows that users subjectively rate the
system favorably, on a 5-point Likert scale (5 is best), in
terms of accuracy (4.33 ± 0.62), speed (4.00 ± 0.91), force
(3.50 ± 0.86) and overall performance (4.50 ± 0.9). While we
acknowledge that this might be in part due to novelty effects,
we believe that the quantitative results indicate that our system
is beneficial for users in general. The ratings indicate that
participants generally see benefit in our approach and are not
disturbed or hindered when using our approach.

Table 3. Mean accuracy (mm). * indicates statistical significance (α.05).

With Without

Scenario Mean SD Mean SD Err %

Circle* 2.19 0.90 4.26 2.39 0.51
Line 1.18 0.80 1.03 0.84 1.15
Spiral* 2.55 0.75 4.38 1.64 0.58
Sinus* 2.53 0.70 5.08 2.19 0.50
Dog* 2.31 0.54 3.81 1.32 0.60
Ellipse* 2.40 0.56 3.84 1.22 0.62

Experiment 2: Comparison of control strategies
In this second experiment, we compared our time-free closed-
loop optimization strategy to a simpler MPC variant and our
implementation of dePENd [39], denoted as dePENd∗.

Procedure and tasks
We asked twelve new participants (students and staff from a
local university) to draw one complex shape (dog in Figure 7)
in three different conditions: dePENd∗, time-dependent closed
loop (MPC), and time-free closed loop (Ours), counterbal-
anced using a latin square. The speed of the system in the
time-dependent cases was decided empirically based on pre-
tests to work well at regular drawing speeds. After receiving
instructions and a brief training, participants completed the
three drawings. Participants were also encouraged to provide
comments during the individual conditions.

Data collection
We analyze three measures: 1) the mean distance from the
pen to the path, 2) the mean distance from the pen position
projected onto the path and the setpoint along the path, denoted
as d(pen, s(θ)), and 3) the mean distance from the pen to the
electromagnet. By taking the mean of the error terms over
subjects we ensured equal numbers of datapoints, accounting
for differences in speed. Participants were instructed to draw
at roughly constant speed. This was done to ensure fairness in
comparing our approach with the open-loop approach, which
would deteriorate if the variability of the drawing speed were
to high. Note that our approach does generally not require this
assumption.

Quantitative results
Table 4 summarizes our quantitative findings. Not surprisingly,
the distance from the electromagnet to the pen and d(pen, s(θ))
for dePENd∗ is quite large. Since the force exerted on the pen
falls-off quadratically with distance, participants often lost any
haptic guidance early on, confirmed via user comments such
as “I don’t feel anything” (P3) and “Is the system on?” (P6).

A Kruskal-Wallis test revealed that our approach has the high-
est accuracy compared to dePENd∗ and MPC (H(2)=20.76,
p<.001). Furthermore, the setpoint s(θ) (H(2)=7.362, p<.05)

Table 4. Mean distances in mm for Experiment 2).
|pen-path| d(pen, s(θ)) |pen-em|

dePENd∗ 4.1(±0.7) 38.0(±56.9) 38.2(±25.1)
MPC 3.9(±1.3) 45.0(±50.8) 8.6(±1.6)
Ours 2.0(±0.6) 6.2(±0.8) 4.6(±0.9)
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Figure 8. Comparison of error (path distance pen-s(θ)) over time for a
single participant (P1). The inverse u-shape illustrates that the setpoint
s(θ) moves at a different speed than the user for dePENd∗ and MPC. The
data is smoothed to increase readability.

and the electromagnet (H(2)=27.12, p <.001) are closest to
the pen using our approach. Thus our time-free formulation
overcomes both problems of wrong setpoints (MPC) and a
run-away electromagnet (dePENd∗). Figure 8 shows one typ-
ical example of a user. Both the distance along the path and
the pen-magnet distance fluctuate strongly for dePENd∗ and
MPC control strategies. Our approach yielded a continuously
low error.

While MPC reduces the distance from the pen to the magnet,
it does not optimize for the progress along the path and hence
may pull the pen into undesired directions. Furthermore, we
saw that MPC produced extreme corner cutting behavior to
catch up to the advancing setpoint. Both dePENd∗ and MPC
also produce results with high standard deviations. This is
likely due to the absence of direct coupling between user
feedback and path progress, which makes it possible for the
user to lag behind the setpoint significantly (albeit at the cost
of reduced force feedback). In our approach, the path progress
is adjusted to the user’s drawing speed, drastically reducing
the standard deviation and in consequence ensuring delivery
of force feedback throughout the drawn path.

Qualitative results
From our observations we saw that s(θ) was either in front
or behind the user for MPC. This was also confirmed in our
interview, where people especially commented on the MPC
strategy: “The system tries to push me in the wrong direction”
(P2) and “It is counteracting me” (P11). In contrast with our
formulation the magnet remains always slightly ahead of the
pen, resulting in users commenting on our approach as the
most preferred condition. In the words of one subject this is:
“since I still had control” (P9).

In summary, theses initial results indicate that our approach
outperforms existing open-loop and time-dependent closed-
loop approaches. dePENd∗ causes numerous problems, in-
cluding users not perceiving any haptic feedback. This is
especially troublesome in settings where autonomy is desired.
In MPC the haptic feedback is perceived, but can be erroneous.
This is especially evident when users do not conform to the
expected behavior. We plan to perform more in-depth experi-
ments to investigate, for which applications our approach can
be especially beneficial, and for which levels of autonomy.

APPLICATIONS
To further demonstrate the potential of our approach we illus-
trate possible usage-scenarios including calligraphy, outlining
and inking. Finally, we combine the haptic feedback mech-
anism with a simple digital drawing application to initially
explore the possibility of dynamic references.

Calligraphy
Figure 9 illustrates writing of flourished characters, with only
minimal visual guidance (single starting point). Our system
takes the character as input, users can then draw at their desired
speed. Although an offset from the reference path remains, the
lines are smooth and the overall shape is close to the desired
characters.

Figure 9. Our approach can be used as a guidance system for calligraphy,
where users either follow a target path very closely, or deviate if desired.

Outlining & inking
Figure 10 illustrates the effect of two core capabilities of the
proposed approach. Here we first outline the proportions of
the dragon head (gray guidance lines) and then use different
pens to ink-in the details. Note that the system provides haptic
guidance but allows the user to draw the shape in different
styles (e. g. the ears of the two upper dragons) and with vary-
ing high-frequency detail, while maintaining similarity to the
reference shape. This is a direct consequence of using time-
free closed loop control approach. In this case, all four variants
were drawn without changes to the system or desired path.

Figure 10. Different variants of the same dragon, drawn with identical
system settings by a novice. Each pair of drawings used with different
tools. First a pencil for proportions and a fine-liner (top) or pencil (bot-
tom) to ink-in details. Multi-stroke lines are achieved by approaching
each separate instance as a new drawing.



Virtual tools
Using a digital tablet with capacitive display (Figure 11) we
explore integrating dynamically changing references. In a
sketching application, artist select different virtual tools, and
position and configure these anywhere. The canvas and the
haptic feedback system then pull the stylus towards these
virtual guides. In Figure 11, the user has selected a tool that
helps them when drawing an ellipse that snaps to a previous
part of the drawing, both visually and in terms of haptics.

Figure 11. Virtual tools can be used to dynamically construct a refer-
ence path combining haptic and visual feedback. Here a simple drawing
application combines freeform sketching with different virtual rules and
guides that can be felt by the user.

DISCUSSION
Our experiments indicate that the proposed approach indeed
increases accuracy in drawing tasks and that users perceive the
system favorably. While our system increased users’ accuracy
for complex shapes, it did not yield any improvements for the
straight line. This may be explained by user feedback, that
the maximum speed of the linear stage is a limiting factor in
the current implementation. In our interviews, some users
indicated that they had the feeling that their drawings without
feedback were more accurate once they experienced the haptic
guidance. This hints at the possibility of short-term muscle
memory when using our haptic guidance approach. Long-term
learning is a very interesting area to explore for our approach
and haptic guidance systems in general. We plan to conduct
such experiments in the future.

Our experiments currently focused on drawing and sketching
applications. We believe that our control strategy will be
beneficial for a broad set of applications. We started exploring
the usage of our approach with a tablet and digital stylus.
More experiments, however, are needed to find out at which
level of complexity our approach becomes the most beneficial.
Allowing users to adjust their input on-demand is crucial for
most applications, especially since systems most often do not
have complete knowledge of users’ target path. Our approach
is a first step in the direction of balancing user input and system
control for haptic guidance systems, and can be extended to
other devices beyond electromagnetic systems if appropriate
force models are provided.

In terms of hardware, the speed of the employed linear stage
was a limiting factor, without which users would have been
able to complete drawings and general inputs faster. We plan
to implement advances in that direction in the future. This may
include faster and smaller form-factor linear stages or a matrix
of stationary electromagnets. The former would require no
changes to our formulation, whereas the latter would require
changes to the EM model and the dynamics model. An EM
matrix opens-up the path towards a thin form-factor design
and is a particularly interesting research direction.

Once the hardware-induced speed limitation is overcome, ef-
ficient closed-loop control approaches become an interesting
direction for future work, since faster pen motion would also
tighten the latency and accuracy budget. In the context of
sensing it would be interesting to incorporate a mechanism
to reconstruct the tilt of the pen. This could be achieved for
example via an accelerometer built into the pen or via a grid of
hall-sensors underneath the surface. Information on the pen tilt
could then be combined with the angle dependent formulation
of our EM model (see Appendix C). Furthermore, we believe
there are many research opportunities in combining our ap-
proach with ink beautification approaches (e. g. [33, 32, 38]).
Particularly interesting would be to leverage fully predictive
models for non-drawing applications (e. g. DeepWriting [3]).

We believe that it could be an interesting direction for future
work to combine our approach with different types of hap-
tic feedback, either environment mounted or body-worn, and
different form factors such as spherical electromagnets [18,
42]. Electromagnetic feedback in combination with spatial
actuation maybe interesting in other settings. For example, a
magnet mounted to a robotic arm could deliver contact-less
feedback in VR scenarios. It would also be interesting to inves-
tigate how to best exploit the system capabilities in the context
of motor memory and learning. All these scenarios make it
necessary that a system interactively reacts to user input. Our
approach enables such applications, and can generalize to such
systems that go beyond 2D haptic guidance systems.

CONCLUSION
We have proposed a novel optimization scheme for electromag-
netic haptic guidance systems based on the MPCC framework.
Our approach balances user input and system control so that
users can adjust their trajectory and speed on-demand. It
optimizes the system states and its inputs over a receding hori-
zon via solving a stochastic optimal control problem at each
timestep. Our formulation has been designed to provide dy-
namically adjustable forces and automatically adjusts magnet
position and strength. It can be evaluated analytically and is
hence suitable for iterative, real-time optimization approaches.
We implemented our approach on a prototypical hardware
platform and showed experimentally that the feedback is well
receive by users, and provides higher accuracy than open-
loop and time-dependent closed-loop approaches. We believe
that our approach provides a principled way towards haptic
guidance where users retain agency while being unobtrusively
assisted, and is applicable broadly in applications such as draw-
ing, sketching, writing or guidance via virtual haptic tools.
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APPENDIX
CONTROL ALGORITHM

Algorithm 1: Closed Loop Haptic Feedback Control.
Function MPCC(x0,w,pp,parameters)

[Cl,Cc,Cθ,Cθ̇]←compute lag and contour error
[C f ,Cd,Cα]←compute force error
Jk ← sum(Cl,Cc,Cθ,Cθ̇,C f ,Cd,Cα)
[x,u]←minimize(Jk)

return [x,u]

x0, w← initialize
while drawing not finished do

pp ←Measure pen position
pp,k ← KalmanFilter(pp)
x0 ← update system states, from sensor data
parameters← update MPCC parameters
[xt=1..n,ut=1...n]← MPCC(x0,w,p,params)
x0 ← x1
apply(u0)

end

DIPOLE-DIPOLE MODEL
In this section we describe the derivation of the dipole-dipole
model for the in-plane actuation force, as well as the case of
considering a pen tilt β of the pen. Please refer to the schematic
Figure 6 for vector notations we use in this section.
The coordinate system is given by,

ed =
pm − pp

||pm − pp||
(17)

ez = [0, 0, 1]T (18)
et = ed × ez (19)

with ed the in-paper-plane distance from the pen contact point
to the electromagnet center projection, ez the vertical out-of-
plane direction and et the orthogonal vector to the former
two.

The dipole-dipole expression for the force acting on mp due to
mm and separated by rmp is given by Eq. 13), repeated here:

Fp =
3µ0

4πr5
mp

[(
〈mp, rmp〉

)
mm +

(
〈mm, rmp〉

)
mp +

(
〈mp,mm〉

)
rmp −

5
(
〈mp, rmp〉

) (
〈mm, rmp〉

)
r2

mp
rmp

 , (20)

The two dipoles and the vector distance between them can be
expressed in the proposed coordinate system as,

mm = α mm ez (21)
mp = −(mp sin β cos γ) ed

+(mp sin β sin γ) et

+(mp cos β) ez (22)
rmp = −(d + hp sin β cos γ) ed

+(hp sin β sin γ) et

+(h − (1 − cos β)hp) ez (23)

and the three scalar products of equation 20,

〈mm, rmp〉 = α mm[h − (1 − cos β)hp] (24)
〈mp, rmp〉 = mp [− sin β cos γ(d + hp sin β cos γ)

+ sin β2 sin γ2hp +

cos β(h − hp(1 − cos β))] (25)
〈mm,mp〉 = αmmmp cos β (26)

Position-aware dipole-dipole model
We first derive the position-aware dipole-dipole model, before
continuing to the full position-aware and angle-aware model.
We rewrite Eq. 20 with an equivalent pen dipole m̃p, obtained
by applying the small tilting angle approximation (cos β ' 1
and sin β ' 0) to Eq. 22,

m̃p = mp ez , (27)

where the scalar magnetization is given by mp = BrV/µ0. Br is
the residual magnetization of the permanent magnet and V its
volume and ez is the z-unit vector. This approximation removes
the requirement for tracking the pen tilt. More importantly it
drastically simplifies the force equation since both dipoles now
only have a z component and thus the actuation only depends
on the distance d between pen and magnet (not on β nor γ).
This provides a simplified version of the 3D distance vector,

r̃mp = −d ed + h ez, (28)

where the vertical distance, h = hm + hp, is constant. Note that
the in-plane distance d = ‖pp − pm‖ is one of the variables we
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Figure 12. In-plane magnetic force as function of position. The hori-
zontal displacement between curves (each denoting a different pen-tilt)
is the approximation error induced by the upright pen (purple) assump-
tion (angles defined in Figure 6).

Table 5. List of electromagnet model and hardware parameters

Name Value Description

µ0 4π 10−7 [H/m] Vacuum permeability
Br 1.3 [T] Pen magnet type (NIB N42)
V 0.66 [cm3] Pen magnet volume
mp 0.683 [A m2] pen dipole (= BrV/µ0)
mm 1.286 [A m2] electromagnet dipole
h 2.71 [cm] z-distance mm to mp
hp 1.40 [cm] height pen-tip to magnet
hm 1.31 [cm] z-distance from plane to mm.
F0 0.488 [N] force factor in Eq. 30

seek to control, given the projections of the pen position (pm)
and the electromagnet position (pp) onto the sketching plane.

The electromagnet dipole (mm) is mounted in a fixed upright
position. Therefore it can be expressed via Eq. 21, without
incurring any approximation error. The magnetization value
of the full-strength dipole mm, which approximates the elec-
tromagnet, can be derived experimentally. For this purpose
we scan the magnetic field generated by the electromagnet,
setting α = 1 and using a hall sensor and adjust the parameters
of EM field equation to give a good fit, as explained below in
section Electromagnet dipole equivalent. Table 5 reports the
values of mm, mp and h that were used in our experiments.

The total force acting on the pen (Eq. 20) can now be decom-
posed into the in-plane and vertical force components:

Fp = Fa ed + Fz ez . (29)

Here Fa = Fa ed represents the quantity we seek to control.
By substituting the results form Eq. 21, 27 and 28 into Eq. 20
and maintaining only the in-plane contributions (ed direction),
we obtain the expression for the actuation force as function of
pen-magnet separation:

Fa = α F0

 d
(
4 − d2

h2

)
h
(
1 + d2

h2

) 7
2

 ed, (30)

where F0 is a constant force parameter given by the expression,

F0 =
3 µ0 mp mm

4 π h4 . (31)

Fig. 12 illustrates how the dimensionless ratio within paren-
theses in Eq. 30 governs the force strength as function of
distance d = ‖rd‖. The actuation force Fa is zero if the two
magnets are aligned with one another (d = 0), it has a maxi-
mum Fmax

a = 0.9F0 at d = 0.39h, and we can assume there is
no more attraction for distances d > 2h. In Table 5 we report
the value of F0 we obtained for our prototype.

Note that these simplifications lead only to a small approxima-
tion error. Compared to an angle dependent formulation, a tilt
of up to β = 30◦ leads to a max error in our model (Eq. 30)
equivalent to shifting the distance d by ±3 [mm] (Figure 12).

Angle-aware dipole-dipole model
In this section, we derive the complete EM model, using both,
the pen position and its tilting angle as free variables. We
continue the deduction of Fp by substituting Eq. 21—26 into
the main expression Eq. 20. However, by following that path
we wouldn’t necessarily attain information on how strong the
actuation force depends on the tilting angles β and γ. Here we
take a different path. Based on the geometry of our system, we
consider the cases where the pen is tilted by only a small angle.
We introduce this small-angle approximation by keeping only
the first order terms in β,

sin β ≈ β (with β in radians) (32)
cos β ≈ 1 (33)

As an indication of what this approximation means, for an
angle β = 30◦, the difference between using sin β or cos β or
their approximations forms (Eq. 32 and 33) is 5% and 15 %,
respectively. Under the small-β approximation, the dipoles’
vectors are,

mm = α mm ez (34)
mp ' −mpβ cos γed + mpβ sin γet + mp ez (35)

and the distance between dipoles,

rmp ' −(d + hpβ cos γ) ed + hpβ sin γ et + h ez (36)

with the length of that distance, at first order on β,

rmp ' d2 + h2 + 2dhpβ cos γ (37)

In turn, the scalar products (Eq. 24—26) can be written as,

〈mm, rmp〉 ' α mmh (38)
〈mp, rmp〉 ' mp [−β cos γd + h] (39)
〈mm,mp〉 ' α mmmp (40)

We can now substitute these expressions into the main force
equation 20. As we do in previous section, we consider only
the terms that contribute to the component ed of the force.



Keeping only these terms that contain β up to the first order,

F(d)
p =

3µ0αmmmp

4πr5
mp

−d +
5dh2

r2
mp
− hβ cos γ − hpβ cos γ+

+
5h2hpβ cos γ

r2
mp

−
5hd2β cos γ

r2
mp

 ed (41)

=
3µ0αmmmp

4π(h2 + d2)5/2

[
−d(d2 + h2) + 5dh2

(h2 + d2)
+

β cos γ
(
−h − hp +

5(h2hp − hd2)
(h2 + d2)

−
5d2h2hp

(h2 + d2)2

)]
ed

(42)

F(d)
p = α F0

[
f0(d) + β cos γ f1(d)

]
ed (43)

where we define,

F0 =
3 µ0 mp mem

4 π h4 . (44)

f0(d) =
d
(
4 − d2

h2

)
h
(
1 + d2

h2

) 7
2

(45)

f1(d) =
1 +

hp

h(
1 + d2

h2

) 5
2

+
5
( hp

h + d2

h2

)
(
1 + d2

h2

) 7
2

−
5
( hp

h

) (
d2

h2

)
(
1 + d2

h2

) 9
2

(46)

Note that by considering the case β = 0 in Eq. 43, we recover
what we obtain for Fa as calculated in Eq. 30. That means
that the equation for F(d)

p subsumes the cases of the pen being
tilted by a small angles, and it can be used in future EM
actuated systems which may be able to track β and γ.

ELECTROMAGNET DIPOLE EQUIVALENT
Here we describe the experimental validation of the dipole
model for our electromagnet, that allows us to compute the
force that the electromagnet exerts onto the permanent magnet
on the pen. . The magnetic field generated by a dipole mm
(electromagnet) at the position of dipole mp (pen) can be
written as,

Bm(rmp,mm) =
µ0

4π

3rmp
(
mm · rmp

)
r5

mp
−

mm

r3
mp

 (47)

where the vector rmp is the vector that goes from mm to mp
(see Figure 6). The magnetic field Bm is well described in a
cylindrical system centered on the dipole and with the z-axis
aligned on the direction of mm. Taking only the z component
on Eq. 47 and using the definitions of rmp (Eq. 28) and mm
(Eq. 21) we arrive at,

Bm,z(d) =
µ0αmm

4π

 2h2 − d2(
d2 + h2) 5 2

 (48)

We measure the z-component of the magnetic field generated
by the electromagnet to compare it with the dipole prediction
of Eq. 48. We use a hall sensor (Allegro A1324, sensitivity is 5
mV/G) to measure the z-magnetic flux at a fix height hm, where

the magnet of the pen would be. Setting the electromagnet to
α = 1 and moving it in a grid we attain multiple readings of
the hall sensor for different electromagnet positions pm. We
present the obtained magnetic field plotted in Figure 13, top.

Due to symmetry over the z-axis we expect for Bm,z, we re-
plot all points as a function of distance ds = ‖ps − pm‖, with
ps = (0, 0) the in-plane position of the hall sensor. In turn, Eq.
48 can be expressed in the form,

Bm,z(ds) = C1
2C2

2 − d2
s(

d2
s + C2

2

)5/2 (49)

where we have defined two parameters used for the fitting,

C1 =
µ0αmm

4π
(50)

C2 = h (51)

The bottom plot of Figure 13 shows the measured data for
magnetic flux Bm,z(ds) and the fitting to Eq. 49, from which
we obtained C1 = −1.276 10−07 and C2 = 2.713 10−02. By
replacing these values in equations 50 and 51, we observe that
our system can be described by the values mm = 1.286 [A
m2] and h = 2.71 [cm]. We want to emphasize the excellent
agreement in Figure 13 between the experimental values and
the proposed dipole model for the electromagnet. However,
we should note that the experimental points show a flattening
of Bm,z(x) for values of x < 3 [mm], that translates into smaller
values of forces in that region, as Fa ∝ ∇Bm,z.
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