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We introduce a new technique to check containment of a triangle within an

envelope built around a given triangle mesh. While existing methods con-

servatively check containment within a Euclidean envelope, our approach

makes use of a non-Euclidean envelope where containment can be checked

both exactly and efficiently. Exactness is crucial to address major robustness

issues in existing geometry processing algorithms, which we demonstrate

by integrating our technique in two surface triangle remeshing algorithms

and a volumetric tetrahedral meshing algorithm. We provide a quantitative

comparison of our method and alternative algorithms, showing that our

solution, in addition to being exact, is also more efficient. Indeed, while

containment within large envelopes can be checked in a comparable time,

we show that our algorithm outperforms alternative methods when the

envelope becomes thin.
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1 INTRODUCTION
The computation of distances between surfaces is a basic building

block in geometry processing. In particular, the computation of the

Hausdorff distance between an individual triangle T and a triangle

mesh M is often used by meshing and remeshing algorithms (e.g.,

[Cheng et al. 2019; Hu et al. 2020, 2018]) to ensure geometric preser-

vation up to a small distance ϵ . This distance allows algorithms to

smooth out small details, fill small gaps, remove noise, and perform

other operations to generate a high quality mesh, while at the same

time bounding the geometrical approximation error. This bound

is used, for example, in graphics applications to ensure sub pixels

accuracy, or in finite element analysis to bound the error on the

solution.

The Euclidean ϵ-envelope is the space of all points whose L2

distance from a reference surface is less than ϵ (Figure 2). While

checking if a point is contained within the envelope is a simple task,
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Fig. 1. Our method exactly detects if a triangle is inside (green) or outside
(red) of an envelope (glass shell) of a bunny model (bronze).

checking if an edge or triangle is contained within the envelope is a

challenging problem, despite its apparent simplicity.

Many existing algorithms in the literature perform this operation

inexactly (e.g. by sampling the triangles), whereas just a few can be

implemented exactly. A major limitation of inexact checks is that the

running time (and memory usage) depends on ϵ : a thinner envelope
will require more computations (e.g., more sampling points, larger

number of refinements) to compensate for inaccuracy. This fact

makes inexact checks impracticable (in terms of both memory and

running time) for thin envelopes (Figure 23).

Additionally, while an inexact check is sufficient for certain appli-

cations, we discovered that it is problematic when used for remesh-

ing. Remeshing algorithms use the envelope check during local

operations, preventing any operation that will move the tracked

surface outside of the envelope. Thus, these algorithms are based

on a strong invariant as they assume that all the triangles remain

inside the envelope. An inexact check leads to a subtle, yet major,

problem: a valid triangle, “completely contained” within the enve-

lope according to the inaccurate check, might be subdivided during

the remeshing and, while its subtriangles are supposed to be in

the envelope by construction, an actual check could reveal them

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392426
https://doi.org/10.1145/3386569.3392426
https://doi.org/10.1145/3386569.3392426


1:2 • Wang, B. et al

ε

Fig. 2. A 2D curve in black (kangaroo shape) and its ϵ -envelope in blue.
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Fig. 3. Inexact checks may break algorithmic invariants in remeshing al-
gorithms (e.g. triangles are inside the envelope at any stage). In this 2D
example, a segment is declared to be inside if, after having sampled it, all
its sample points are inside. This inexact check states that segment [p, q]
is inside (left), and the algorithm assumes that any of its sub-segments is
also inside. For example, the algorithm may split [p, q] at its midpoint s
(right) with no need to further check. However, the subsegment [s, q] is now
outside even according to the inexact check, and this puts the algorithm
in an inconsistent state as its invariant is violated. In the best case the
algorithm may detect it, but the the [s, q] would remain locked and cause
over-refinement.

as outside. In the best case, if the algorithm does not crash due to

a violation of its invariant, these triangles are locked in place and

practically block mesh optimization in its surroundings, typically

leading to over-refinement (Figure 22). We refer to Figure 3 and

Appendix A for more details.

We note that it would be possible to adapt existing meshing algo-

rithms to be robust with a non-exact envelope, but this will require

changes on the application side, increasing the implementation com-

plexity of the application. For instance, one can modify remeshing

algorithms to unlock problematic triangles using heuristics. Tackling

the low-level problem of envelope checking exactly concentrates the

critical code in one place, which is easier to verify, thus downstream

applications will not have to handle inconsistencies in the check,

making them simpler to implement and more robust. While we see

benefits in both approaches (the former one might lead to higher

efficiency for a specific application, while the latter is more widely

usable), we favor the second one since our long term goals is to

have a broad range of robust geometric algorithms directly usable

in different applications, without having to adapt the applications

to handle special cases. Section 6 shows several applications of our

method, where the integration is seamless.

Though a few methods exist that can be implemented exactly,

such an exact implementation would require the use of arbitrary

precision arithmetic that makes these methods too slow for most

practical applications.

P

Fig. 4. 2D example of Minkowski polyhedral envelope P (in blue, right)
of a 2D curve (in black, left) constructed by sweeping a square along the
boundary of the curve.
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Fig. 5. Memory (left) and time (right) required to build a Minkowsky poly-
hedral envelope using CGAL. We start from a simple mesh with 78 triangles
and refine it using Loop subdivision to create a sequence of increasingly
dense meshes (top).

To avoid inaccuracy and performance loss at thin envelopes, we

propose to design a predicate to check exactly if a triangle is con-

tained within a polyhedral envelope P, that is by itself contained

within the ϵ-envelope. In this way, we obtain a conservative check

ensuring the desired geometric tolerance, but we avoid the perfor-

mance and locking problems.

This formulation has a simple, but impractical, exact solution: we

can build the polyhedral envelope as the Minkowsky sum of a cube

and the given triangle mesh using rational coordinates [Hachen-

berger 2009] (Figure 4), and check containment by computing inter-

sections of the triangles with the discrete envelope. Unfortunately

this approach does not scale well with the size of the mesh, and be-

comes unpractical (Figure 5) in terms of both construction time and

memory usage for meshes with a few tens of thousand of triangles.

Our approach (Section 3) represents the polyhedral envelope P

implicitly, sidestepping the onerous explicit construction, while still

providing an exact evaluation using novel and efficient geometric

predicates implemented using arithmetic filtering and floating point

expansions to provide high performances. More precisely, P is rep-

resented as the union of a set of convex polyhedra, one for each

triangle ofM, defined implicitly by a collection of half-spaces. To

check for containment of the query triangle T , we first check for

intersections with each individual polyhedron, and then efficiently

compute the union by implicitly checking for containment of the

intersections. The resulting algorithm is exact, enabling us to de-

sign different polyhedral envelopes depending on the application,
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and it is efficient, being comparable (and even much faster for thin

envelopes) with inexact state of the art methods.

We quantitatively evaluate our algorithm and compare it with

alternatives on a large set of benchmark problems (Section 5). We

also integrate it with two surface remeshing algorithms [Cheng

et al. 2019] and QSlim [Garland and Heckbert 1997] (Section 6.1)

and a tetrahedral meshing algorithm [Hu et al. 2020] (Section 6.2),

to show how it performs in real applications, and to demonstrate

the benefits of replacing a conservative envelope check with our

exact version. The reference implementation, the data, and the

scripts to reproduce the results in the paper are provided in the

additional material and are released as an open-source project

https://github.com/wangbolun300/fast-envelope.

2 RELATED WORK
We first review the state of the art algorithms for envelope con-

tainment checks (Section 2.1). We then briefly summarize methods

solving a closely related task, the minimization of the distance be-

tween two meshes (Section 2.2). Finally, we review applications

requiring envelopes (Section 2.3) and the geometric predicate con-

structions used in our algorithm (Section 2.4).

2.1 Envelope for Geometric Error Checks
Previous works use an implicit or explicit envelope for geometry

preservation during the shape approximation process.

Implicit Envelope. Implicit methods compute and bound the Haus-

dorff distance [Atallah 1983] from the output boundary to the input

boundary to be smaller than a certain threshold. However, directly

computing the exact Hausdorff distance is expensive [Barton et al.

2010]. To improve efficiency, some methods compute approxima-

tions using surface sampling [Cheng et al. 2019; Cignoni et al. 1996;

Hu et al. 2017]. Those methods sample the surfaces and use point-

to-surface distances to approximate the surface-to-surface distance;

while efficient and simple, this method introduces an approximation

error. Based on this strategy, Hu et al. [2019, 2018] then proposed

a conservative way to check if a triangle is contained within an

envelope with the sampling error compensated. The drawback of

sampling-based methods is that a smaller envelope requires a higher

density of sampling, making them unpractical for small envelopes

(Figure 14). An alternative to the sampling is the derivation of upper

bounds on the Hausdorff distance: Borouchaki and Frey [2005] con-

trols the upper bound of Hausdorff distance in a local region, which

is specifically designed to support local remeshing operations. Tang

et al. [2009] compute both the lower bound and upper bound of

Hausdorff distance between a triangle and a surface and tighten

the bounds by subdividing the query triangle. When a small enve-

lope requires tight bounds, the algorithm needs excessive levels of

subdivision and thus becomes slow.

Explicit Envelope. Explicit envelopes methods compute an enve-

lope shell, a discrete representation of the boundary of the envelope

around the input boundary, and use it to test containment of other

primitives. The envelope shells can be constructed using Minkowski

sums [Kaul and Rossignac 1992], or offsetting [Jung et al. 2003] as a

special case. Cohen et al. [1996] proposed to use the generalization

of surface offset as envelope shell. But this method does not work for

boundaries with self-intersections. Minkowski sums use a solid to

sweep along the boundary of another solid and the occupied volume

of the sweeping path is called swept volume that can be used as an

envelope shell. The swept volume of Minkowski sums can be either

a polygonal superset that is a set of intersected geometries [Ghosh

1993; Kaul and Rossignac 1992], or a Boolean union of the super-

set [Campen and Kobbelt 2010b; Hachenberger 2009]. Building a

polygonal superset only is pretty fast but computing its union could

be several orders of magnitude slower [Campen and Kobbelt 2010b].

The method in [Hachenberger 2009] is costly because it compute the

union of the superset and requires arbitrary precision arithmetics.

Campen and Kobbelt [2010b] proposed a more efficient, but still

exact, algorithm that improves the running time considerably, but

still does not scale to large models. Actually, when using Minkowski

sums for envelope shell, it is not necessary to compute the union of

the supersets.

2.2 Optimization-Based Geometric Error
Some variational methods incorporate geometric errors in their

energies. For example, Frey and Borouchaki [2003] discussed an

a posteriori interpolation error estimate based on the Hessian of

the surface and proposed a new geometric error estimate related to

the local deformation of the surface. Hoppe [1996] evaluates and

minimizes an error involving the distance of each point to the input

boundary when optimizing the vertex positions for a surface mesh

with fixed connectivity. Instead of using point-to-boundary distance,

Garland and Heckbert [1997] proposed plane-based error quadrics

for estimating the geometric error of a processed surface mesh based

on the sum of squared distances of a vertex to its associated planes

(in a mesh a vertex can be seen as the intersection of a set of planes).

Our algorithm can be used as a filtering criterion in the line search

of these methods to ensure a bounded geometric error.

2.3 Applications
Themain application of a geometric envelope is bounding geometric

error. Since envelopes can be defined around both 2D curves or 3D

surfaces, they can be used both in 2D and 3D meshing algorithms.

Implicit envelope checks are widely used in surface mesh simplifica-

tion [Borouchaki and Frey 2005; Cignoni et al. 1996], surface mesh

refinement and optimization [Cheng et al. 2019; Hu et al. 2017],

and mesh generation [Fu et al. 2014; Hu et al. 2019, 2018]. Explicit

envelope, while usually more expensive, can be used in the same

application as implicit envelopes [Cohen et al. 1996]. Besides, they

can also be used in applications like [Mandad et al. 2015] that takes

an envelope-shell-like tolerance volume as input and generates an

approximated shape inside this tolerance volume.

2.4 Geometric Predicates
Typical geometric predicates evaluate the sign of a homogeneous

polynomial and give information about the configuration of their

input. E.g., given three points a, b, and c on the Euclidean plane, the

sign of the 2× 2 determinant |b − a; c − a | tells us whether the three
points are collinear or if they form a left or a right turn. Calculating a

determinant using floating point arithmetic may lead to an incorrect
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Fig. 6. Overview of our algorithm: starting from the input triangles soup M, we build our polyhedra envelope PS (first stage), which we use to check if a
query triangle T is inside using three checks between vertices, edges, and planes.

sign that, in turn, may easily put an algorithm in an inconsistent

state, cause infinite loops, or even lead to a crash [Li et al. 2005].

Replacing floating point with arbitrary precision numbers [Fousse

et al. 2007] solves the problem, but the slowdown is often unaccept-

able in downstream applications. That is why efficient predicate

implementations use arithmetic filtering [Devillers and Pion 2003]:

the polynomial is evaluated using floating point arithmetic, but we

also estimate a bound for the rounding error. If the magnitude of the

evaluated polynomial is smaller than the error bound, then its sign

is uncertain (i.e. the filter fails), and the predicate is re-evaluated

using arbitrary precision. The idea is that the failure rate is low

enough to make the impact of arbitrary precision acceptable.

The error may be bounded based on the polynomial expression

only (static filtering [Fortune and Van Wyk 1996]), or it may use the

actual values of the input variables (dynamic filtering [Brönnimann

et al. 1998]). For static filters, the error is pre-calculated and the

runtime overhead is extremely low, but the failure rate is relatively

high. Conversely, the error in dynamic filters is computed at each

predicate call, thus leading to a higher overhead, but also to less

failures. In an attempt to couple the advantages of both approaches,

semi-static filtering splits the error in one static component to be

pre-calculated, and one dynamic component that can be quickly

computed at each call [Meyer and Pion 2008]. The approach in

[Shewchuk 1997] falls in this latter category, though its floating

point filtering is adaptively refined before reverting to arbitrary

precision.

Though these approaches are both efficient and exact, correctness

guarantees are lost if the predicate input is affected by an error. Thus,

if intermediate constructions are used by a predicate, state of the

art solutions rely on lazy exact evaluation [Pion and Fabri 2011].

Unfortunately, these solutions are far too slow when compared with

floating point implementations.

Instead of relying on lazy exact evaluation, in this paper we re-

write standard predicates so that, if one of the input points needs

to be derived as a composition of other values, such a derivation

is included in the predicate itself. This allows to keep track of the

roundoff and hence to implement filters enabling an efficient float-

ing point calculation with guarantees. If the floating point filters

fail, we do not directly switch to arbitrary precision (as done, e.g.

in [Shewchuk 1997]). Instead, we re-evaluate the predicate using

interval arithmetic, which reduces the overall need for arbitrary

precision and thus improves performances.

Fig. 7. Example of input triangles (blue) and their corresponding polyhedral
envelope (pink).

3 METHOD
Our algorithm is composed of two stages (Figure 6): (1) convex

polyhedral envelope construction (Section 3.1), and (2) containment

check (Section 3.2). The first stage takes as input a 3D triangle

soup M (i.e., a set of arbitrarily connected, potentially intersecting

triangles with potentially shared vertices), and a user-controlled

envelope size ϵ . It outputs a polyhedral envelope set PS, containing

convex polyhedral cells, one for each input triangle. The second

stage takes as input the set PS and a query triangle T , and cal-

culates whether T is completely contained in PS exactly. More

precisely, we check if all the points of T are in the interior of the

polyhedra, and consider T to be outside if it has points outside or
on the boundary of PS.

The second stage could be realized by explicitly computing the

union of all the convex polyhedra in PS. However this is prohib-

itively costly and unnecessary; our algorithm is able to check for

containment indirectly, without realizing the union of the polyhe-

dra.

The shape of the convex polyhedral envelopes can be changed

depending on the application. For instance, we can generate convex

polyhedra to better approximate the L2 envelope (Figure 18) or

have polyhedra with different sizes, leading to adaptive envelopes

(figures 16 and 17), depending on the application requirements.

3.1 Stage 1: Convex Polyhedron Creation
There exist several different ways to construct a convex polyhedron

P containing an input triangle while being contained in an L2-
distance envelope. An easy construction is to use a Minkowsky sum

on every input triangle with a approximation of a sphere (Section 5.3

shows an example), however it is slow andmight lead to a potentially

high number of faces, depending on the tessellation of the sphere.

We propose a different construction that strives to minimize the

construction cost and the number of faces, since this will reduce
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2δ

P

Fig. 8. 3D example of a convex polyhedron P (left) for a single triangle and
its construction on the plane of the triangle. Middle, the case where two
angles are less than 90 degree and one is 90 degree; right, the case that
maximal angle is more than 90 degree.

the complexity of the next phase of the algorithm (Figure 7). Given

a triangle T and a distance δ , we construct a plane T
floor

below

T and a plane T
ceil

above it, so that both the planes are parallel

to T and have distance δ from it. Also, we construct three planes

T i
side

, i ∈ {1, 2, 3}, each orthogonal to T and parallel at distance δ
to one of its edges. T

floor
, T

ceil
and the T

side
’s collectively bound a

triangular prism containing T . Though the prism contains T , some

of its points may be arbitrarily far from the triangle (e.g., when

one of the angles of T may become acute). To avoid this problem

and ensure a distance bound, for any acute vertex of T we cut the

prism using an additional plane at distance δ from the vertex and

orthogonal to the line ℓ connecting the vertex and the triangle’s

barycenter (Figure 8). This construction can be avoided when the

angle becomes obtuse, since the distance is bounded in any case.

Proposition 3.1. The polyhedron P obtained by offsetting a tri-
angle T by δ = ϵ/

√
3 is convex and the distance between any point in

P and the triangle is at most ϵ .

Proof. P is convex because it is the intersection of half-spaces.

To show that the distance is bounded, we define ω to be the

maximum distance between the triangle and P in the plane of the

triangle; then the actual maximum distance (in 3D) is d =
√
ω2 + δ2

(Figure 9, left) which we will show that, for δ = ϵ/
√
3, is smaller

than ϵ .
The maximum distance ω is attained from the vertices of T and

P. For every vertex we have two cases: the angle acute or right, or

obtuse.

When the angle is acute (or right), the position of the orthogonal

plane to ℓ depends on the barycenter of the triangle. The position

of ℓ that maximizes ω is obtained in the limit when the barycenter

is on one of the edges, that is when the line ℓ is one of the two

edges (Figure 9, right). In this case ω =
√
2δ which implies that

d =
√
2δ2 + δ2 = ϵ (Figure 9 middle).

For any angle larger than 90 degrees, the intersection point be-

comes closer (and δ in the limit) and therefore the distance shorter.

□

Note that, while this construction ensures that a query triangle

is within an ϵ-distance from the triangle soup M, for large “flat”

regions the check is conservative and the query triangle will leave

the envelope for any distance greater than δ . For the example in

Figure 18 the ratio between the volume of our envelope and the

volume of an Euclidean L2 envelope is approximately

√
3.

P
δ

ω

d

δω
δ

δ

Fig. 9. Illustration for the bound on maximum distance. The dashed circle
are at δ from the input triangle (in gray) creating the blue envelope. The
red lines represent the maximum distance in the plane.

Q
u
e
r
y
t
i
m
e
(
s
)

10 2 10 3 10 4 10 5 

0

0.001

0.002

0.003

0.004

Ours
Boolean

Number of triangles

Fig. 10. Plot of query time versus number of faces for the model in Figure 5
using an envelope realized with the Boolean union of polyhedra and our
method. Note that the explicit construction of the envelope is very expensive:
3 hours for 312 faces, 14 hours for 1248 faces faces. Our method avoids the
explicit construction and it is faster at query time.

3.2 Stage 2: Envelope Check
Equipped with the envelope PS, composed of the union of open

convex polyhedra, one for each triangle of the input mesh, we can

now present the algorithm to check for containment. We first de-

scribe our method assuming the use of exact arithmetic, then discuss

the challenges of implementing it using floating point arithmetic,

and finally we illustrate our efficient exact solution. Our algorithm

requires two novel geometric predicates, which we detail in Sec-

tion 4.

Algorithm Overview. Since our envelope PS is defined as the

Boolean union of individual convex polyhedra P, a triangle T is

contained within PS if the Boolean subtraction of PS from T is

empty:

T \ (P1 ∪ P2 ∪ . . . ∪ Pn ) = ∅.

This remark leads to a possible simple solution of our problem:

compute the union of Pi as a valid mesh and check if T is contained

within. This naive approach suffers from similar limitations as an

explicit Minkowsky sum (Figure 5): the construction of the envelope

is extremely slow and computing containement in an exact Boolean

union is also expensive (Figure 10).

To avoid the computation of the explicit union, we can rewrite

this expression as

T \ P1 \ P2 \ . . . \ Pn = ∅, (1)

which leads to a simple algorithm. Starting from T , sequentially

carve out the parts overlapping with any polyhedron Pi until you

either have the empty set (and thus T is contained in PS) or you

“run out” of polyhedra (and thus T is not contained in PS).

Floating Point Challenges. Implementing this algorithm using

rational numbers (or infinite precision arithmetic) is straightforward
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but has impractical runtime since every subtraction might double

the size of the rational numbers used to store the coordinates, since

the output of an operation is the input of the next (see inset).

We thus design an equivalent version of

this algorithm tailored to avoiding cascading

operations and implementable exactly using

floating point arithmetic. While some of our

algorithmic choices in the following section

might seem exotic at a first glance, they are

actually necessary to ensure both efficiency and exactness. In par-

ticular there are two tasks in the algorithm that are challenging to

solve with floating point computations:

• If a polyhedron P has a facet with more than three vertices

represented in floating-point coordinates, they will likely

not be exactly coplanar, which might make the polyhedra

concave [Si and Shewchuk 2014]. To avoid this problem, we

propose to never realize P explicitly. Instead, we represent

P as an intersection of half-spaces, each defined by three

non-collinear points.

• The intersection between a triangle T and the boundary ∂P

of a convex polyhedron P will usually not lie on ∂P or T

because of rounding (Appendix B). This is problematic, since

the intersection might be randomly either inside or outside

P. To prevent this problem, we introduce a custom predicate

that avoids representing the intersection explicitly, exploiting

the fact that P is defined as an intersection of half-spaces

(sections 3.2.2 and 3.2.3).

Efficient Implementation. Our algorithm is summarized in List-

ing 1 and Figure 6 (Stage 2), and is based on the following theorem:

Theorem 3.2. A triangleT is containedwithinPS (or equivalently
Equation (1) holds) if and only if the following three conditions are
true:
C1 the vertices vi of T are inside PS,
C2 the intersection point of the edges ei of T with any facet of any

polyhedron P ∈ PS is contained in at least another polyhedron
P⋆ , P, with P⋆ ∈ PS,

C3 for any pair of facets F l
Pi
, Fm

Pj
(Pi and Pj might be the same)

the intersection point T ∩ F l
Pi

∩ Fm
Pj

is contained in at least

another polyhedron P⋆ with P⋆ , Pi ,P
⋆ , Pj , and P⋆ ∈

PS.

Proof. One direction of the implication is trivial, if T is inside

the envelope, any pointp ∈ T is also inside. In particular its vertices

(C1), the intersections of its edges with the facets of P (C2), or its
intersections with two facets (C3).

The second direction can be proven by contradiction; let C1, C2,
and C3 be true and assume that T is outside the envelope, that is

there exists a point q ∈ T not in PS.

Let us assume that q is one of the three verticesv1,v2,v3 of T ;

this contradicts C1.
We now assume that q ∈ e1 (the other edges follow by re-

enumeration), where e1 is the open edge connecting v1 and v2.

Because of C1, there exists a polyhedron P⋆
that contains v1. If

P⋆
contains also v2 (Figure 11 (a)), since P

⋆
is convex, the whole

P ′

q

(d)

v2

v1

v�

P��

P� qe1

(c)

v2

v1

v�P�

q

e1

(b)

v2

v1

P�

q

e1

(a)

T

Fig. 11. Explanation of the different stages of the proof of Theorem 3.2

edge e1 is contained in P⋆
which contradicts the assumption. In

the other case, v2 < P⋆
, there exists a point v⋆ , v1 (since P⋆

is an open polyhedron) which is the intersection between e1 and
P⋆

. If q ∈ (v1,v
⋆), it contradicts the assumption (Figure 11 (b)).

In the other case, q ∈ [v⋆,v2), because of C2 there exists another

polyhedron P⋆⋆
that containsv⋆

and, since P⋆⋆
is open, the in-

tersectionv⋆⋆
between P⋆⋆

and e1 is different fromv⋆
Figure 11

(c)). In other words q ∈ (v⋆⋆,v2); we now repeat the reasoning

for this new interval and shows that q < e1 since the number of

polyhedra in PS is finite, which contradicts q ∈ e1.
The last case is that q is in the open triangle. We first remark that

the result of the previous proof is a set S (blue in Figure 11 (d)) of

polyhedra covering the edges of T and if q ∈ S it contradicts the

assumption. Thus, let q ∈ T \ S; the boundary of S is a polygon

(highlighted in Figure 11 (d)) whose vertices results as the inter-

section between two faces of polyhedra in P. Any vertex of this

polygon, from C3, is strictly inside another polyhedron P ′
. If P ′

covers the whole polyhedron it contradicts the assumption. In the

other case, it will shrink the area of T \ S since it is open and will

generate new points. We repeat this reasoning a finite number of

time (since the set PS is finite) which implies that the area of the

polygon can only be zero and therefore q < T , which contradicts

the assumption. □

The algorithm and corresponding theorem have been designed

to enable efficient verification using floating point predicates. We

describe the algorithm first, and postpone the details of the imple-

mentation of the predicates to Section 4, but it is important to note

now that this algorithm never explicitly requires divisions in the

constructions, which is a mandatory requirement to derive filters

using [Meyer and Pion 2008] and to exactly evaluate the predicates

using floating point expansions.

Our algorithm requires checking the three conditions in Theorem

3.2 (sections 3.2.1, 3.2.2, and 3.2.3), the first can be realized using

standard orientation predicates, while the other two will require cus-

tom predicates to guarantee correctness. We propose two versions

of the algorithm. The first is a direct implementation of Theorem

3.2 (Listing 1), which is simple but computes many unnecessary

implicit intersection points. The second is an accelerated version

that discards unnecessary intersection tests (Section 3.2.4). Both

algorithms are exact and they rely on three subroutines to verify if

the three conditions of Theorem 3.2 hold for a given triangle and

envelope, which we describe in the next section. We will discuss

timings in more details in Section 5 but, as a reference, a naive im-

plementation of the first algorithm using rational numbers is 100x

slower than using our predicates, and it is 10 000x slower than the

second version of our algorithm.
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Listing 1. Overview of the three stages of our envelope check algorithm.
enve lope_check ( T , PS )

/ / ( 1 ) vi i s c on t a i n ed in one o f the PS , Section 3.2.1

for ( i = 1 , 2 , 3 )

out = point_out (vi , PS )

i f ( out == OUT) return OUT

/ / ( 2 ) t r i a n g l e edge i n t e r s e c t i o n with FP , Section 3.2.2

for ( P ∈ PS )

for ( FP ∈ P )

for ( i = 1 , 2 , 3 )

out = edge_plane_out ( ei , FP , PS \ P )

i f ( out == OUT) return OUT

/ / ( 3 ) i n t e r s e c t i o n o f T , F l
Pi

, and Fm
Pj

, Section 3.2.3

for ( Pi , Pj ∈ PS )

for ( F l
Pi

∈ Pi , Fm
Pj

∈ Pj )

out = plane_plane_tr i_out ( T , F l
Pi

, Fm
Pj

, PS \ (Pi ∪ Pj ) )

i f ( out == OUT) return OUT

return IN

3.2.1 C1: Point in Polyhedra. A vertexvi of T is inside P ∈ PS if

vi is inside all the halfspaces that define P or, equivalently, ifvi is

below all the oriented planes FP that define these halfspaces. Since

the planes FP are encoded as a triplet of points (aF , bF , cF ), deter-
mining whethervi is in P reduces to evaluating a orient3d(vi , aF ,
bF , cF ) predicate for each plane. Standard efficient implementations

exist to exactly evaluate this predicate [Lévy 2019; Shewchuk 1997],

and are sufficient to evaluate condition C1 (see Listing 2).

Listing 2. Overview of our point check, condition C1.
point_out (vi , PS )

for ( P ∈ PS )

c oun t e r = 0

for ( FP ∈ P )

o r i = o r i e n t 3 d (vi , FP )

i f ( o r i == IN ) c oun t e r ++

/ / i f the po i n t i s i n s i d e f o r a l l f a c e s o f P

/ / we found i t

i f ( c oun t e r == ∥P ∥ ) return IN
return OUT

3.2.2 C2: Implicit Edge Facet Check. A trivial way to evaluate our

second condition could be explicitly computing the intersection

point p and then using the approach described in Section 3.2.1.

Unfortunately, this approach is not exact: the coordinates of p are

not necessarily representable using floating point numbers, and the

rounding error may be sufficiently large to make standard predicates

return a wrong result (Appendix B).

We thus propose, instead of computing p as an explicit intersec-

tion of an edge and a facet, to represent it implicitly as a set of

five points, r and s defining the edge, and t , u,v defining the facet.

We call such an implicit point an LPI point, short for Line-Plane
Intersection.

This change in perspective requires implementing a new 3D

orientation predicate. Instead of using the coordinates of p to define

it, we use the coordinates of the five points generating it. Thus, the

input to our custom orient3d_LPI predicate (Section 4.1) is made

of eight points, five defining the LPI point plus three defining the

reference plane. To check for condition C2, we iterate over all the
polyhedra and check the orientation of their planes with respect to

the implicit intersection, Listing 3. Note that orient3d_LPI does

not enforce that the point p is between r and s . This additional
check may be simply implemented using traditional orientation

predicates: p is in the segment if r and s lie on opposite sides of the

plane spanned by t , u,v .

Listing 3. Overview of our implicit edge facet check, condition C2.
edge_plane_out ( ei , FP , PS′

)

/ / check i f the endpo in t s a r e on oppo s i t e s i d e s

/ / o f p l ane FP and not on the p l ane

o r i 1 = o r i e n t 3 d (ve1i
, FP )

o r i 2 = o r i e n t 3 d (ve2i
, FP )

i f ( o r i 1 == o r i 2 or o r i 1 == ON or o r i 2 == ON)

return SKIP

for ( P′ ∈ PS′
)

c oun t e r = 0

for ( FP′ ∈ P′
)

o r i = orient3d_LPI ( ei , FP , FP′ )

i f ( o r i == IN ) c oun t e r ++

/ / i f the po i n t i s i n s i d e f o r a l l f a c e s o f P′

/ / we found i t

i f ( c oun t e r == ∥P′ ∥ ) return IN

/ / i n the o the r c a s e

/ / we con t i nue s e a r c h i n g f o r ano the r po lyhedron

return OUT

Evaluating our custom predicates amounts to calculate the sign

of homogeneous polynomials, where we exploit state of the art tools

to derive tight semi-static filters [Meyer and Pion 2008] for their

floating point evaluation. When the semi-static filter fails, we re-

evaluate the polynomial using interval arithmetic [Brönnimann et al.

1998]. If the resulting interval contains the zero (i.e., the dynamic

filter fails) we evaluate the polynomial exactly using floating point

expansions [Joldes et al. 2016]. For the sake of clarity, we postpone

the description of these steps to Section 4.

3.2.3 C3 Implicit Triangle Facet-Facet Check. This algorithm is sim-

ilar to the segment plane intersection, but a Three-Planes Inter-

section (TPI) point is defined by three triplets of points, one for

each plane. Our orient3d_TPI predicate uses the coordinates of

twelve points, nine defining the TPI points (i.e., the three triplets)

plus three defining the reference plane (Section 4.2). As for the line

case, the predicate does not check for the intersection point p being

inside the triangle. These check can be easily done with a series of

orient3d_TPI with planes passing trough the edges of T , Listing 4.

We use this new predicate to check for condition C3. As for the line
case, we implement semi-static filters with interval arithmetic and

floating point expansions (Section 4).

Listing 4. Overview of our implicit facet facet triangle check, condition C3.
plane_plane_tr i_out ( T , F l

Pi
, Fm

Pj
, PS′

)

q = a po i n t not on the p l ane o f T

coun t e r = 0

for ( i = 1 , 2 , 3 )

Fi = p lane pa s s i n g t rough vi , vi+1 , and q
o r i = orient3d_TPI ( T , F l

Pi
, Fm

Pj
, Fi )
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i f ( o r i == IN ) c oun t e r ++

i f ( c oun t e r , 3 ) return SKIP

for ( P′ ∈ PS′
)

c oun t e r = 0

for ( FP′ ∈ P′
)

o r i = orient3d_TPI ( T , F l
Pi

, Fm
Pj

, FP′ )

i f ( o r i == IN ) c oun t e r ++

/ / i f the po i n t i s i n s i d e f o r a l l f a c e s o f P′

/ / we found i t

i f ( c oun t e r == ∥P′ ∥ ) return IN

/ / i n the o the r c a s e

/ / we con t i nue s e a r c h i n g f o r ano the r po lyhedron

return OUT

3.2.4 Acceleration. To reduce the running time of our algorithm

we designed three strategies to limit the number of intersection

calculations to only those which are really necessary. On average

the three strategies give us 100x speedup.

In the first strategy, we filter the polyhedra intersecting triangle

T using a conservative axis aligned bounding box tree [Lévy 2019].

This simple pass is extremely cheap and allows to prune unnecessary

computations.

The second strategy consists of further removing unnecessary

polyhedra using floating point arithmetic only, with no switch to

interval or expansion arithmetic. After having checked condition

C1 for the three vertices of the triangle, we may have three possi-

ble cases: (1) at least one vertex is not in PS; (2) there exists one

P ∈ PS that contains all the three vertices; (3) the three vertices

are all in PS, but in different Ps. In the first (resp. second) case,

we simply stop the algorithm as the triangle is outside (resp. in-

side) the envelope. In the third case, the triangle must necessarily

intersect the facets of polyhedra in PS. All the polyhedra that do

not have intersecting facets can be safely rejected. When checking

for intersections, we use our predicates and reject polyhedra only

if all the filters provide a guaranteed answer, that is we conserva-

tively keep the pair in case of doubt.. This conservative filtering

reduces the number of polyhedra by 30% from the rough selection

coming from the bounding boxes, with negligible cost, since all the

checks are done in floating-point only. In addition of reducing the

number of polyhedra to be checked, it also provides with the list of

possibly intersected facets for every polyhedron, which we use in

our algorithm. Specifically, when computing C2 and C3, we only
iterate over possibly intersecting facets instead of all facets. We also

observe that the intersecting facets are the ones “deciding” if the

triangle is outside. In other words, when the triangle leaves the

envelope it intersects one of the facets of a polyhedron. Using this

observation, we change the order in which we check for orientation

in the inner loop. That is, we compute the orientation of the implicit

intersection point first against intersecting faces since they are the

more likely to decide that the point is outside.

The third strategy is inspired from the proof of Theorem 3.2: we

use a covering strategy to reduce the number of points generated

and checked (Figure 12). We incrementally construct a covering set
C. We start from a polyhedron PC containing one of the vertices of

Edge Covering

Triangle Covering

Fig. 12. Covering of a triangle by incrementally constructing the covering
C (in blue), represented by the gray triangle. We start by selecting one poly-
hedron (in red), and generate its intersection points with T . We classify the
points into covered in C (red) and new points (yellow). For every uncovered
point (yellow) we search for a polyhedron in PS (red in the second image)
that covers it and insert it into C. We proceed until all edges are covered
(top row), that is all new intersection points are covered in C (gray or red).
We follow the same strategy for covering the interior, bottom row.

T , which we obtain from the check of C1, and add it to C. Then,

we proceed by looking for a polyhedron P⋆ , PC containing the

intersection points qi between PC and the triangle’s edges. The

key ingredient is to first search for P⋆
in C and then search in

PS. If P⋆ ∈ C, it means that qi is already covered and there is no

need for generating new intersection points (between P⋆
and the

edge of T ). In the other case (P⋆ < C), qi is a new intersection,

therefore we add P⋆
to C and proceed with the new intersection

points between P⋆
and the edge. The algorithm terminates when

either one of the intersections is outside or when any new point is

contained in C. This strategy incrementally builds a covering of the

edges of T while limiting the number of new intersection points,

since any polyhedron in C never generates new points. Once the

edges are covered, we follow a similar strategy for covering the

interior of T .

4 PREDICATES
To simplify the notations, we assume that the vectors are row vectors.

We denote by the subscript x , y, and z the three components of

vectors. We denote by × the cross product between two vectors and

by · the dot product.

4.1 orient3d_LPI
To be able to build the predicates we first observe that the point p is

the result of the intersection of a plane and a line (i.e., a facet against

a triangle edge), whose numerical error cannot be bounded when

computed using floating point arithmetic. However for building the

predicate we are only interested to evaluate the sign of a polynomial,

and its numerical inaccuracy can be bounded. Note, to be able to

bound the inaccuracy we need to reformulate the predicate avoiding

divisions.

Let r and s be two points defining a straight line L. Also, let t ,
u,v be three points defining a plane P, and a, b, c be three points

defining a reference plane. Assuming that L and P intersect at a

single point p, orient3d_LPI(r , s, t ,u,v,a,b,c) is the sign of the

volume of tetrahedron (p,a,b,c).
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The intersection point p is

p = r +
α

β
(s − r ), where α =

������r − t
u − t
v − t

������ and β =

������r − s
u − t
v − t

������ .
If β = 0, p is undefined (i.e., L and P do not intersect at a single

point). Otherwise, orient3d(p,a,b,c) is:

O(p,a,b,c) =

������p − c
a − c
b − c

������ = 1

β3

������βp − βc
βa − βc
βb − βc

������ = 1

β3

������βr + αs − αr − βc
βa − βc
βb − βc

������ .
Note that this expression uses input values only (i.e., the inter-

mediate construction p is not part of the expression). Furthermore,

its sign can be obtained by composing the sign of β , which is a

homogeneous polynomial, with the sign of

O∗(p,a,b,c) = β3O(p,a,b,c) =

������βr + αs − αr − βc
βa − βc
βb − βc

������
which is another homogeneous polynomial. To summarize, the sign

(and therefore the result) of our predicate is

sign(O) =

{
− sign(O∗) for β < 0

sign(O∗) otherwise

.

The semi-static filter, as calculated by [Meyer and Pion 2008], for

the polynomial expression of β is

εβ = 5.1107127829973299 10−15δ1δ2δ3

δ1 = max{ |rx − sx |, |ux − tx |, |vx − tx | }

δ2 = max{ |ry − sy |, |uy − ty |, |vy − ty | }

δ3 = max{ |rz − sz |, |uz − tz |, |vz − tz | }.

This means that, if β is calculated using default floating point

arithmetic, its sign is guaranteed to be correct if its absolute value

is greater than εβ . Otherwise the filter fails.
Similarly, the semi-static filter for O∗

is

εO = 1.3865993466947057 10−13δ1δ2δ3δ4δ5δ6

δ1 = max{ |rx − sx |, |ux − tx |, |vx − tx |, |rx − tx | }

δ2 = max{ |ry − sy |, |uy − ty |, |vy − ty |, |ry − ty | }

δ3 = max{ |rz − sz |, |uz − tz |, |vz − tz |, |rz − tz | }

δ4 = max{ |rx − sx |, |bx − cx |, |ax − cx |, |rx − cx | }

δ5 = max{ |ry − sy |, |by − cy |, |ay − cy |, |ry − cy | }

δ6 = max{ |rz − sz |, |bz − cz |, |az − cz |, |rz − cz | }.

If both the filters succeed, we simply compose the sign of β
and O∗

to return the value of the predicate. If any of them fails,

we re-evaluate the expression using interval arithmetic. To keep

our code self-contained, we implemented our custom interval
number type, but any interval type provided by existing libraries

(e.g., Boost [Schling 2011] or CGAL [Hemmer et al. 2019]) can be

used.

When using interval arithmetic, both β and O∗
will be computed

and represented as intervals. If any of them contains the zero, their

sign is ambiguous (i.e., the filter fails) and we re-evaluate the ex-

pression using floating point expansions. Even in this case, we

implemented our own custom expansion number type, but any ex-

isting implementations can be used (e.g., the expansion_nt type

provided by Geogram [Lévy 2019]). Since precision is arbitrary, this

last evaluation is error free and the sign is guaranteed to be correct.

4.2 orient3d_TPI
Letvi ,wi , andui , i = 1, 2, 3 be three triplets of non-collinear points

that define three planes Pv ,Pw ,Pu respectively. As for the line

case let qi , i = 1, 2, 3, be three points defining a reference plane. Let

us assume that Pv ,Pw ,Pu intersect at a single point p then

orient3D_TPI(v1,v2,v3,w1,w2,w3,u1,u2,u3,q1,q2,q3)

is the sign of the volume of tetrahedron (p,q
1
,q

2
,q

3
).

Let

nv = (v2 −v1) × (v3 −v2)

nw = (w2 −w1) × (w3 −w2)

nu = (u2 −u1) × (u3 −u2)

and

nx =

����pv nvy nvz
pw nwy nwz
pu nuy nuz

���� , ny = ����nvx pv nvz
nwx pw nwz
nux pu nuz

���� , nz = ����nvx nvy pv
nwx nwy pw
nux nuy pu

����
with

pv = nv · v1, pw = nw ·w1, and pu = nu · u1.

Then

p =
1

β
n with n =

©«
nx
ny
nz

ª®¬
T

and β =

������nvnwnu
������ .

If β = 0, p is undefined. Otherwise, orient3d(p,q
1
,q

2
,q

3
) is:

O(p,q
1
,q

2
,q

3
) =

������ p − q
3

q
1
− q

3

q
2
− q3

������ = 1

β3

������ βp − βq
3

βq
1
− βq

3

βq
2
− βq

3

������ = 1

β3

������ n − βq
3

βq
1
− βq

3

βq
2
− βq

3

������
As for the LPI case, this expression uses input values only and its

sign can be obtained by composing the sign of β with the sign of

O∗(p,q
1
,q

2
,q

3
) = β3O(p,q

1
,q

2
,q

3
) =

������ n − βq
βq

1
− βq

3

βq
2
− βq

3

������
Again, the final answer follows from

sign(O) =

{
− sign(O∗) for β < 0

sign(O∗) otherwise

.

The semi-static filter, as calculated by [Meyer and Pion 2008], for

the polynomial expression of β is

εβ = 8.8881169117764924 10−14δ1δ2δ3δ4δ5δ6

δ1 = max{ |v2x − v1x |, |v3x − v2x |, |w2x −w1x |, |w3x −w2x | }

δ2 = max{ |v2y − v1y |, |v3y − v2y |, |w2y −w1y |, |w3y −w2y | }

δ3 = max{ |v2z − v1z |, |v3z − v2z |, |w2z −w1z |, |w3z −w2z | }

δ4 = max{ |u2x − u1x |, |u3x − u2x |, |w2x −w1x |, |w3x −w2x | }

δ5 = max{ |u2y − u1y |, |u3y − u2y |, |w2y −w1y |, |w3y −w2y | }

δ6 = max{ |u2z − u1z |, |u3z − u2z |, |w2z −w1z |, |w3z −w2z | }
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while the semi-static filter for the polynomial expression of O∗
is

εO = 3.4025182954957945 10−12δ1δ2δ3δ4δ5δ6δ7δ8

δ1 = max{ |v2x − v1x |, |v3x − v2x |, λx }

δ2 = max{ |v2y − v1y |, |v3y − v2y |, λy }

δ3 = max{ |v2z − v1z |, |v3z − v2z |, λz }

δ4 = max{δ1, δ2 }

δ5 = max{δ2, δ3 }

δ6 = max{λx , |q1x − q3x |, |q2x − q3x | }

δ7 = max{λx , λy , λz , |q1y − q3y |, |q2y − q3y | }

δ8 = max{ |q1y − q3y |, |q2y − q3y |, |q1z − q3z |, |q2z − q3z | }

λx = max{ |w2x −w1x |, |w3x −w2x |, |u2x − u1x |, |u3x − u2x | }

λy = max{ |w2y −w1y |, |w3y −w2y |, |u2y − u1y |, |u3y − u2y | }

λz = max{ |w2z −w1z |, |w3z −w2z |, |u2z − u1z |, |u3z − u2z | }.

We observe that Campen and Kobbelt [Campen and Kobbelt

2010a] use the filtered predicates proposed in [Bernstein and Fussell

2009] to exactly determine the position of a TPI point with respect

to a reference plane. This is similar to what we do, but with a fun-

damental difference: in their approach, each plane is represented by

the four coefficients of its implicit equation, while we use a vertex

triplet. This requires a conversion, which in [Bernstein and Fussell

2009] is not exact and requires repairing, whereas in [Campen and

Kobbelt 2010a] is made exact by first splitting long edges. The latter

approach has a twofold disadvantage as it introduces new construc-

tions (the splitting points must be calculated, with potential inaccu-

racy) and increases the size of the input (in particular for models

with large edge length variation). In contrast, our orient3d_TPI
operates directly on the input values, and it guarantees exactness

without requiring any modification.

5 RESULTS
Our algorithm is implemented in C++ and uses Eigen [Guennebaud

et al. 2010] for the linear algebra routines and Geogram [Lévy 2019]

for the standard orientation predicates. We run our experiments

on cluster nodes with a Xeon E5-2690v4 2.6GHz, limiting every

job running time to 24 hours and maximum memory to 8GB. The

reference implementation is open-source and available on GitHub:

https://github.com/wangbolun300/fast-envelope.

5.1 Comparison with Inexact Methods
We perform a large-scale comparison of our method with two inex-
act methods: the sampling approach used in [Hu et al. 2020, 2018]

and the Hausdorff bound (abbreviated as HB from now on) proposed

in [Tang et al. 2009]. While the sampling approach is inherently

approximate, the latter could be made exact by using rational num-

bers, but with an impractical running time. For this comparison we

used a floating point reimplementation [Martin Skrodzki 2019].

Datasets. We run our algorithm on the Thingi10k dataset [Zhou

and Jacobson 2016], which contains 10 000 real-world surface trian-

gle meshes, and generated two sets of queries for each model. While

our algorithm processed our benchmark on all models in less than

24 hours, there are 205 models where either HB or sampling run out

of time. For fairness, we present all the statistics excluding them.

(1) QSlim. We modify the QSlim [Garland and Heckbert 1997]

algorithm to stay within an envelope: we prevent any collapse
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Fig. 13. Log histogram of the the average query time and peak memory
of sampling, HB, and our method over the Thingi10k dataset for different
envelope sizes and different dataset.

that move the mesh outside the envelope and recorded all

queries (Section 6.1).

(2) TetWild. We run the Tetwild [Hu et al. 2020, 2018] meshing

algorithm and recorded the first 100k queries.

In both cases, the queries are used to validate the local operations

inside the algorithm, to ensure that the output surface does not

leave the envelope.

Envelope Size. For every method we use an envelope size ϵ pro-
portional to the diagonal of the bounding box of the model and one

that ensures (up to floating point arithmetic for the other two meth-

ods) that the query triangles are inside the L2 envelope. Differently
from using an explicit Minkowsky envelope (Figure 5), these three

methods have a fast initialization (which is also amortized by the

query time): Our average initialization time is 0.03 seconds, 0.004s

for sampling, and 0.04s for HB, respectively. For large models our

initialization can go up to 1.2s, compared to 3s and 0.2s for HB and

sampling.

Large Dataset. In Figure 13 top, we compare the running time on

both datasets for the three methods. For large envelopes, sampling

is the fastest method, while both our algorithm and HB have similar

performance. As the envelope shrinks, the performances of our

method remains similar, while sampling and HB become slower.

In Figure 13, bottom shows the peak memory comparison. Our

method has the overhead of storing the polyhedra and some local

result to improve efficiency in addition to the search tree. There-

fore our memory consumption is similar to the other two methods

(maximum on the dataset of 1.44Gb versus 0.46Gb for sampling and
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Fig. 14. Average query time and peak memory on one model (rendered)
for increasingly smaller envelope for the sampling, HB, and our method, in
log-log.

1.91Gb for HB) and the trend is the same. As for the other method,

the memory consumption depends only on the input mesh and not

on the actual envelope size.

Small Envelope. Traditional envelope checks suffer in presence of

thin envelopes. To measure this effect we consider a single model

and vary the envelope size: in the experiment in Figure 14 we gen-

erated queries using TetWild with increasingly smaller envelope.

Our method has similar running time independently from ϵ ; the
sampling method increases exponentially making it impossible to

use for ϵ < 10
−6
; the HB method performs better than sampling but

it also slows down for small envelopes.

We report the maximal memory usage for all methods in Figure 14.

We observe that ourmethod and sampling have similar requirements

since they both store a spatial index of the input mesh, making the

memory independent from the envelope size. In contrast HB requires

more memory as the envelope shrinks since a smaller envelope leads

to additional refinement steps.

Hausdorff. One of the limitations of the HB method is that the

running time depends on the relative position of the query triangle

and of the envelope. If its vertices are close to the envelope it would

require several levels of refinement to sufficiently shrink the lower

and upper bound. Figure 15 shows the average query time for differ-

ent queries computed for two similar models. We see that the query

time of our method is stable, leading to timings mostly independent

from the query, while the HB method has large variation.

Summary. Overall, our approach has similar performances (in

terms of both running time and memory consumption) as sampling

and HB for large envelopes, while it is superior in the other cases.

In addition to the performance benefits (and their invariance to

envelope size), the exactness of our method is an important property

in applications, as we will demonstrate in Section 6.

5.2 Adaptive Envelope
An additional feature of our approach, is that it is straightforward

to have an envelope of varying size. This is a useful feature for

HB Ours Ratio

max HB 2.58e-1 3.68e-3 70

max Ours 7.76e-2 2.39e-2 3

min HB 7.26e-6 7.65e-6 1

min Ours 1.06e-3 3.93e-6 269

avg 8.52e-3 4.56e-4 19

std 1.48e-2 6.01e-4 25
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max HB 2.20e-2 6.59e-4 33

max Ours 4.44e-3 2.50e-3 2

min HB 6.55e-6 7.92e-6 1

min Ours 1.29e-5 3.24e-6 4

avg 4.15e-4 1.90e-4 2

std 6.28e-4 1.44e-4 4
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Fig. 15. Average over 100 runs of the query time for two similar models.
The table shows the statistics for 30 000 queries. The first 4 rows shows the
performances for the slowest/fastest query for the two different methods;
for instance the first row shows the time for the slowest query for HB (2.58e-
1) versus ours (3.68e-3). The histograms show the distribution of query time
for the two methods. The #F of the top model is 3404, the #F of the bottom
model is 3430.

ϵ = 10
−3

time = 28.17s

#T =13 219

ϵ = 10
−7

time = 119.12s

#T =187 187

adaptive ϵ
time = 50.00s

#T =24 605

Fig. 16. Example of a model where the default envelope merges two input
spheres, left. This can be fixed by globally shrinking the envelope (middle),
or using an adaptive envelope, right.

controlling the deviation from the input surface during meshing.

For instance, if two features are close, the remeshing algorithm could

merge them (Figure 16, left) changing the number of component or

topology of the output mesh. An easy solution would be to globally

shrink the envelope, however this leads to higher running times

and creates an unnecessarily fine surface everywhere (Figure 16,

middle). Using an adaptive envelope one can have both: coarse mesh

far from critical areas, and finer mesh where feature preservation is

required (Figure 16, right), while keeping a reasonable running time.

An adaptive envelope allows also to selectively preserve different

features (Figure 17). On the top part of the rocket we can shrink the

envelope to maintain the sharp features, while allowing the bottom

part to be coarser.

5.3 Different Polyhedra
As mentioned in Section 3 our method requires only a set of convex

polyhedra. For efficiency reasons we propose to use seven/eight
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ϵ = 10
−3

time = 1hr 55min

#T =133 206

adaptive envelope

time = 2hr 6min

#T =177 176

ϵ = 3 10
−4

time = 7hr 50min

#T =651 939

Fig. 17. Left: example of a model meshed using uniform ϵ = 10
−3. Middle:

using an adaptive envelope with ϵ = 3 10
−4 for the top part of the rocket

to preserve the features, while on the bottom part uses ϵ = 10
−3 to remove

them. Right: meshing everything with ϵ = 3 10
−4 still preserves the features,

but requires ∼ 4x more faces.
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Fig. 18. Example of a simple mesh with different approximation of the true
L2 envelope. As we increase the number of facets of every polyhedron, the
approximation becomes better at the expense of running time. The dashed
line shows the query time using our polyhedral envelope.

planes (Section 3.1) with the downside of having a “rough” approx-

imation of an Euclidean L2 envelope. We can lift this limitation,

at the expense of running time, by constructing a polyhedron per

triangle which is closer and closer to the Euclidean envelope. In

Figure 18 we use the Minkowsky sum between every triangle and

differently dense approximations of a sphere. This produces, in the

limit, an Euclidean envelope, however the cost per query increases

as the polyhedra have more faces.

6 APPLICATIONS
We selected two testbed geometry processing applications to evalu-

ate the performance of our algorithm in practical scenarios: surface

remeshing (Section 6.1) and tetrahedralization (Section 6.2). We se-

lected these two applications since they heavily rely on the envelope

Input mesh

#F = 8 618

#F = 101 024

Hausdorff

sampling

119.28s

#F = 115 106

Ours 169.91s

#F = 271 258

Hausdorff

sampling

535.47s

#F = 258 784

Ours 395.90s

Fig. 19. Example of usage of our envelope in the method in [Cheng et al.
2019]. For two envelopes: 3e-3 (2nd and 3rd) and 2e-3 (4th and 5th).

Input mesh

#F = 11 652

#F = 1 560

Sampling 2.78s

#F = 1 542

HB 46.45s

#F = 2 680

Ours 13.02s

#F = 8 622

Sampling 64.17s

#F = 8 652

HB 100.82s

#F = 9 850

Ours 5.84s

Fig. 20. Example of usage of our envelope in the method in [Garland and
Heckbert 1997]. For two envelopes: 1e-3 (up) and 1e-4 (down).

check and provide open-source implementations, which allowed

us to keep the original algorithm untouched and only replace the

envelope containment check.

6.1 Surface Remeshing
We use two surface remeshing algorithms to test our envelope

and compare it with alternatives: the remeshing method proposed

in [Cheng et al. 2019] and a modified version of the QSlim [Garland

and Heckbert 1997] algorithm.

[Cheng et al. 2019]. For the algorithm proposed in [Cheng et al.

2019] we use an envelope of 3e-3 and 2e-3 (Figure 19). The original

implementation of [Cheng et al. 2019] uses a different sampling

strategy based onMetro [Cignoni et al. 1998], which we replace with

ours. For the larger envelope, our method has similar performance as

Metro (which uses sampling) but provides guarantees that the final

surface stays inside the envelope. When we shrink it, our method

becomes faster since it avoids “locking” artefacts. We observed that

the high running time for the sampling is caused by an additional

remeshing step required to “push back” the mesh in the envelope.

We note that both methods produce surfaces with similar quality.

QSlim. The QSlim algorithm is modified to guarantee an output

within the envelope by: (1) rejecting operations moving triangles

outside of the envelope, (2) always collapsing edges to one of their

endpoints, and (3) stopping the algorithm when no valid edge col-

lapse operation is left. We compare three ways of envelope contain-

ment check (Figure 20): the sampling method in [Hu et al. 2018],

HB method in [Tang et al. 2009] and our envelope check, both us-

ing different envelope thickness of 10
−3

and 10
−4
. We note that, as

visible in Figure 20, our method generates slightly denser meshes

than HB or sampling since our envelope is thinner (due to the more

conservative check).
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Fig. 21. Log plot of tetrahedralization of 2 000 models using our method
compared with sampling for with two stages for different envelopes.

Input Surface Sampling #T =895 518 Ours #T =50 781

Fig. 22. Example a model (left) tetrahedralized where the inexact envelope
(middle) triggers overrefinement (this effect can be removed using an inexact
3-stage envelope check). The problems completely disappears by using our
envelope check.

6.2 Volumetric Meshing
Wealso integrated our envelope check in the fTetWild algorithm [Hu

et al. 2020] and compared the running time on the dataset used in

Section 5 (Figure 21). We note that fTetWild uses the multi-stage

envelope check introduced in [Hu et al. 2018, Section 3.4] to com-

pensate for the inexactness of the containment check. This proce-

dure mitigates the locking effect but could still trigger unnecessary

mesh refinements (Figure 22). Using our exact envelope check this

heuristic becomes unnecessary (Figure 22) providing robustness

and improving the output quality.

There is no algorithmic limitation in using small envelope sizes

with fTetWild, which would be actually desirable to reproduce the

input boundary with high geometric fidelity. However, the envelope

check done with sampling becomes prohibitively expensive when

the envelope thickness is thinner than 10
−4
, making the algorithm

impractical. Our approach solves this problem, having a running

time mostly invariant to the envelope thickness (Figure 14). We

show a series of tetrahedral meshes in Figure 23, using envelope of

thickness varying from 10
−2

to 10
−8
. While the cost of the queries

stays constant, the running time of the algorithm changes due to

the different density of the result. The denser results obtained with

a thinner envelope ensure that the final meshes preserve accurately

the geometric details of the input.
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Fig. 23. Example of tetrahedral mesh for increasingly smaller envelope. The
plots show the running time (left) and the number of tetrahedra (right) of
our output meshes.

7 CONCLUDING REMARKS
We introduced a novel algorithm to exactly check for containment of

a triangle inside the union of convex polyhedra. We integrated our

algorithm in two remeshing applications and demonstrated that it

avoids overrefinement, while at the same time allowing to use much

smaller envelope sizes which lead to more geometrically accurate

outputs.

While not important for remeshing applications, a limitation of

our method is that it cannot directly check for containment in a L2

envelope. While we can approximate the L2 envelope with denser

polyhedral approximations to increase accuracy, this negatively

affects the runtime.

We believe that our contribution will become a useful tool in

many geometry processing applications, and that our LPI and TPI

predicates might find applications in other domains such as exact

continuous collision detection. We plan to release an open-source

reference implementation of both the predicates and our algorithm

to foster adoption of our technique.
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A EXAMPLE OF REMESHING OPERATIONS LOCKED BY
SAMPLING

During a remeshing process, both geometry and local connectivity

may change to reach the objective of the algorithm.While doing this,

keeping the triangle count as low as possible is a desirable feature.

With reference to the 2D example in Figure 3: imagine that segment

[p,q] was introduced by previous remeshing steps while verifying

that is contained within the envelope. This check was performed

using the sampling approach: since its two vertices (black) and

sample points (red) are all inside the envelope (blue), the segment

was declared to be inside. At this point, the objective function of the

remeshing algorithm requires that the segment [p,q] is refined. To
do so, the segment is split at its midpoint s . Since this operation does

not change the geometry of [p,q], the two resulting subsegments

are assumed to be in the envelope without check. Now, imagine

that the remeshing objective can be reached by slightly moving

point q to a different position. Unfortunately, after such a move the

check reveals that [s,q] is outside the envelope because the yellow
point is outside. Thus, the movement is prevented and replaced by a

refinement. The segment is split again, another movement may not

take place for the same reason, and another split occurs, and so on.

B EXAMPLE OF A NUMERICAL ISSUE IN LINE-PLANE
INTERSECTION

Consider the following five points defined by their Cartesian coor-

dinates:

a = (0, 0, 0), b = (1, 1, 1),

r = (1, 0, 0), s = (0, 1, 0), and t = (0, 0, 1).

LetL be the straight line passing bya andb, and letP be the plane

spanned by r , s and t . The Cartesian coordinates of the intersection

point p = L ∩ P are (1/3, 1/3, 1/3). The value 1/3 has a repeating

binary representation hence, when encoded as a floating point num-

ber, it must be necessarily truncated. Even if the truncation error is

extremely small, the resulting value 0.333333... is smaller than the

actual value. That is why the predicate orient3d(p,r , s, t ) returns 1
instead of 0. Conversely, our predicate orient3d_LPI(a,b,r , s, t ) re-
turns zero, which is correct because the intersection point is exactly

on the plane.
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