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We introduce an algorithm to convert a self-intersection free, orientable,

and manifold triangle mesh T into a generalized prismatic shell equipped

with a bijective projection operator to map T to a class of discrete surface

contained within the shell whose normals satisfy a simple local condition.

Properties can be robustly and efficiently transferred between these surfaces

using the prismatic layer as a common parametrization domain.

The combination of the prismatic shell construction and corresponding

projection operator is a robust building block readily usable in many down-

stream applications, including the solution of PDEs, displacement maps

synthesis, Boolean operations, tetrahedral meshing, geometric textures, and

nested cages.
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1 INTRODUCTION

Triangular meshes are the most popular representation for discrete

surfaces, due to their flexibility, efficiency, and direct support in

rasterization hardware. Different applications demand different

meshes, ranging from extremely coarse for collision proxies, to

high-resolution and high-quality for accurate physical simulation.

For this reason, the adaptation of a triangle mesh to a specific set

of criteria (surface remeshing) is a core building block in geometry

processing, graphics, physical simulation, and scientific computing.

In most applications, the triangular mesh is equipped with at-

tributes, such as textures, displacements, physical properties, and

boundary conditions (Figure 1). Whenever remeshing is needed,

these properties must be transferred on the new mesh, a task which

has been extensively studied in the literature and for which robust

and generic solutions are still lacking (Section 2). Defining a con-

tinuous bijective map, more precisely, a homeomorphism where

the inverse is also continuous, between two geometrically close

piecewise-linear meshes of the same topology is a difficult prob-

lem, even in its basic form, when one of these meshes is obtained

by adapting the other in some way (e.g., coarsening, refining, or

improving triangle shape).a Common approaches to this problem

are Euclidean projection [Jiao and Heath 2004], parametrization
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Fig. 1. A low-quality mesh with boundary conditions (a) is remeshed using

our shell (b) to maintain a bijection between the input and the remeshed

output. The boundary conditions (arrows in (a)) are then transferred to the

high-quality surface (c), and a non-linear elastic deformation is computed on

a volumetric mesh created with TetGen (e). The solution is finally transferred

back to the original geometry (d). Note that in this application setting both

surface and volumetric meshing can be hidden from the user, who directly

specifies boundary conditions and analyses the result on the input geometry.

on a common domain [Kraevoy and Sheffer 2004; Lee et al. 1998;

Praun et al. 2001], functional maps [Ovsjanikov et al. 2012], and

generalized barycentric coordinates [Hormann and Sukumar 2017].

However, the problem is not fully solved, as all existing methods, as

we discuss in greater detail in Section 2, often fail to achieve bijec-

tivity and/or sufficient quality of the resulting maps when applied

to complex geometries. Our focus is on correspondences between

meshes obtained during a remeshing procedure, instead of solving

the more general problem of processing arbitrary mesh pairs.

In this work, we propose a general construction designed to

enable attribute mapping between geometrically close (in a well-

defined sense) meshes by jointly constructing: (1) a shell S around

triangle mesh T spanned by a set of prisms, inducing a volumetric

vector field V in its interior and (2) a projection operator P that

bijectively maps surfaces inside the shell to T , as long as the dot

product of the surface face normals andV is positive (we call such a

surface a section of S). Given a surface mesh T and its shell S, it is

now possible to exploit the bijection induced by P in many existing

remeshing algorithms by adding to them an additional constraint

ensuring that the generated surface is a section of a given shell.
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As long as the generated mesh is a section, the projection oper-

ator P can be used to transfer application-specific attributes. At a

higher level, the middle surface of our shell can be seen as a com-

mon parametrization domain shared by sections within the shell:

differently from other methods that map the triangle meshes to a

disk, region of a plane, a canonical polyhedron, or orbifolds, our

construction uses an explicit triangle mesh embedded in ambient

space as the common parametrization domain. This provides addi-

tional flexibility since it is adaptive to the density of the mesh and

naturally handles models with high genus, while being numerically

stable under floating-point representation (and exact if evaluated

with rational arithmetic). The downside is that it is defined only

for sections contained within the shell. The construction and op-

timization of our shell, and corresponding bijective mapping, is

computationally more expensive than remeshing-only methods: our

algorithms takes seconds to minutes on small and medium sized

models, and might take hours on the large models in our tests.

We evaluate the robustness of the proposed approach by con-

structing shells for a subset of the models in Thingi10k [Zhou and

Jacobson 2016] and in ABC [Koch et al. 2019] (Section 4). We also in-

tegrate it in six common geometry processing algorithms to demon-

strate its practical applicability (Section 5):

(1) Proxy. The creation of a proxy, high-quality remeshed sur-

face to solve PDEs (e.g., to compute geodesic distances or

deformations), avoiding the numerical problems caused by

a low-quality input in commonly used codes. Bijective pro-

jection operators associated with a shell enable us to transfer

boundary conditions to the proxy mesh, compute the solu-

tion on the proxy, and then transfer the solution back to the

original geometry.

(2) Boolean operations. The remeshing of intermediate results

of Boolean operations, to ensure high-quality intermediate

meshes while preserving a bijection to transfer properties

between them.

(3) Displacement Mapping. The automatic conversion of a dense

mesh into a coarse approximation and a regularly sampled

displacement height map. Our method generates a bijection

that allows us to bake the geometric details in a displacement

map.

(4) Tetrahedral Meshing. The conversion of a surface mesh of low

quality into a high-quality tetrahedral mesh, with bijective

correspondence.

(5) Geometric Textures. Generation of complex topological struc-

tures using volumetric textures mapped to the volumetric

parametrization of a simplified shell defined by P. Our anal-

ysis on the initial shell also complements the literature on

shell maps.

(6) Nested Cages. A robust approach to generate a coarse ap-

proximation of a surface for collision checking, cage-based

deformation, or multigrid approaches.

Our contributions are:

(1) An algorithm to build a prismatic shell and the correspond-

ing projection operator around an orientable, manifold, self-

intersection free triangle mesh with arbitrary quality;

(2) A new definition of bijective maps between close-by discrete

surfaces;

(3) A reusable, reference implementation provided at https://

github.com/jiangzhongshi/bijective-projection-shell.

2 RELATED WORKS

We review works in computer graphics spanning both the realiza-

tion of maps for attribute transfer (Section 2.1), and the explicit

generation of boundary cages (Section 2.2), which are closest to our

work.

2.1 Attribute Transfer

Transferring attributes is a common task in computer graphics to

map colors, normals, or displacements on discrete geometries. The

problem is deeply connected with the generation of UVmaps, which

are piecewise maps that allow to transfer attributes from the planes

to surfaces (and composition of a UVmap with an inverse may allow

transfer between surfaces). We refer to [Floater and Hormann 2005;

Hormann et al. 2007; Sheffer et al. 2006] for a complete overview,

and we review here only the most relevant works.

Projection. Modifying the normal field of a surface has roots in

computer graphics for Phong illumination [Phong 1975], and tes-

sellation [Boubekeur and Alexa 2008]. Orthographic, spherical, and

cage based projections are commonly used to transfer attributes,

even if they often leads to artifacts, due to their simplicity [Commu-

nity 2018; Nguyen 2007]. Projections along a continuously-varying

normal field has been used to define correspondences between

neighbouring surfaces [Ezuz et al. 2019; Kobbelt et al. 1998; Lee

et al. 2000; Panozzo et al. 2013], but it is often discontinuous and

non-bijective. While the discontinuities are tolerable for certain

graphics applications (and they can be reduced by manually edit-

ing the cage), these approaches are not usable in cases where the

procedure needs to be automated (batch processing of datasets) or

when bijectivity is required (e.g., transfer of boundary conditions

for finite element simulation). These types of projection may be

useful for some remeshing applications to eliminate surface details

[Ebke et al. 2014], but it makes these approaches not practical for

reliably transferring attributes. Our shell construction, algorithms,

and associated projection operator, can be viewed as guaranteed

continuous bijective projection along a field.

Common Domains. A different approach to transfer attributes is

to map both the source and the target to a common parametrization

domain, and to compose the parametrization of the source domain

with the inverse parametrization of the target domain to define a

map from source to target. In the literature, there are methods that

map triangular meshes to disks [Floater 1997; Tutte 1963], region of

a plane [Aigerman et al. 2014, 2015; Campen et al. 2016; Fu and Liu

2016; Gotsman and Surazhsky 2001; Jiang et al. 2017; Litke et al. 2005;

Maron et al. 2017; Müller et al. 2015; Rabinovich et al. 2017; Schmidt

et al. 2019; Schüller et al. 2013; Smith and Schaefer 2015; Surazhsky

and Gotsman 2001; Weber and Zorin 2014; Zhang et al. 2005], a

canonical coarse polyhedra [Kraevoy and Sheffer 2004; Praun et al.

2001], orbifolds [Aigerman et al. 2017; Aigerman and Lipman 2015,
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2016], Poincare disk [Jin et al. 2008; Kharevych et al. 2006; Spring-

born et al. 2008; Stephenson 2005], spectral basis [Ovsjanikov et al.

2012, 2017; Shoham et al. 2019], and abstract domains [Kraevoy and

Sheffer 2004; Pietroni et al. 2010; Schreiner et al. 2004]. While these

approaches allow mappings between completely different surfaces,

this is a hard problem to tackle in full generality fully automatically,

with guarantees on the output (even some instances of the problem

of global parametrization, i.e. maps from a specific type of almost

everywhere flat domains to surfaces, lack a fully robust automatic

solution).

Our approach uses a coarse triangular domain embedded in am-

bient space as the parametrization domain, and uses a vector field-

aligned projection within an envelope to parametrize close-by sur-

faces bijectively to the coarse triangular domain. Compared to the

methods listed above, our approach has both pros and cons. Its

limitation is that it can only bijectively map surfaces that are sim-

ilar to the domain, but on the positive side, it: (1) is efficient to

evaluate, (2) guarantees an exact bijection (it is closed under ratio-

nal computation), (3) works on complex, high-genus models, even

with low-quality triangulations, (4) less likely to suffer from high

distortion (and the related numerical problems associated with it),

often introduced by the above methods. We see our method not as

a replacement for the fully general surface-to-surface maps (since

it cannot map surfaces with large geometric differences), but as a

complement designed to work robustly and automatically for the

specific case of close surfaces, which is common in many geometry

processing algorithms, as well as serve as a foundation for generat-

ing such close surfaces (e.g., surface simplification and improvement,

see Section 5)

Attribute Tracking. In the specific context of remeshing or mesh

optimization, algorithms have been proposed to explicitly track

properties defined on the surface [Cohen et al. 1997; Dunyach et al.

2013; Garland and Heckbert 1997] after every local operation. By

following the operations in reverse order, it is possible to resam-

ple the attributes defined on the input surface. These methods are

algorithm specific, and provide limited control over the distortion

introduced in the mapping. Our algorithm provides a generic tool

that enables any remeshing technique to obtain such a map with

minimal modifications.

2.2 Shell Generation

The generation of shells (boundary layer meshes) around triangle

meshes has been studied in graphics and scientific computing.

Envelopes. Explicit [Cohen et al. 1997, 1996] or implicit [Hu et al.

2016] envelopes have been used to control geometric error in planar

[Hu et al. 2019a], surface [Cheng et al. 2019; Guéziec 1996; Hu et al.

2017], and volumetric [Hu et al. 2019b, 2018] remeshing algorithms.

Our shells can be similarly used to control the geometric error intro-

duced during remeshing, but they offer the advantage of providing

a bijection between the two surfaces, enabling to transfer attributes

between them without explicit tracking [Cohen et al. 1997]. We

show examples of both surface and volumetric remeshing in Sec-

tion 5. Also, [Bajaj et al. 2002; Barnhill et al. 1992] utilize envelopes

for function interpolation and reconstruction, where our optimized

shells can be used for similar purposes.

Shell Maps. 2.5D geometric textures, defined around a surface,

are commonly used in rendering applications [Chen et al. 2004;

Huang et al. 2007; Jin et al. 2019; Lengyel et al. 2001; Peng et al. 2004;

Porumbescu et al. 2005; Wang et al. 2003, 2004]. The requirement is

to have a thin shell around the surface that can be used to map an

explicit mesh copied from a texture, or a volumetric density field

used for ray marching. Our shells are naturally equipped with a

2.5D parametrization that can be used for these purposes, and have

the advantage of allowing users to generate coarse shells which

are efficient to evaluate in real-time. The bijectivity of our map

ensures that the volumetric texture is mapped in the shell without

discontinuities. We show one example in Section 5.

Boundary Layer. Boundary layers are commonly used in com-

putational fluid dynamics simulations requiring highly anisotropic

meshing close to the boundary of objects. Their generation is consid-

ered challenging [Aubry et al. 2017, 2015; Garimella and Shephard

2000]. These methods generate shells around a given surface, but

do not provide a bijective map suitable for attribute transfer.

Collision and Animation . Converting triangle meshes into coarse

cages is useful for many applications in graphics [Sacht et al. 2015],

including proxies for collision detection [Calderon and Boubekeur

2017] and animation cages [Thiery et al. 2012]. While not designed

for this application, our shells can be computed recursively to create

increasingly coarse nested cages. We hypothesize that a bijective

map defined between all surfaces of the nested cages could be used

to transfer forces from the cages to the object (for collision proxies),

or to transfer handle selections (for animation cages). [Botsch and

Kobbelt 2003; Botsch et al. 2006] uses a prismatic layer to define vol-

umetric deformation energy, however their prisms are disconnected

and only used to measure distortion. Our prisms could be used for

a similar purpose since they explicitly tesselate a shell around the

input surface.

2.3 Robust Geometry Processing

The closest works, in terms of applications, to our contribution

are the recent algorithms enabling black-box geometry processing

pipelines to solve PDEs on meshes in the wild.

[Dyer et al. 2007; Liu et al. 2015] refines arbitrary triangle meshes

to satisfy the Delaunay mesh condition, benefiting the numerical

stability of some surface based geometry processing algorithms.

These algorithms are orders of magnitude faster than our pipeline,

but, since they are refinement methods, cannot coarsen dense input

models. While targeting a different application, [Sharp et al. 2019]

offers an alternative solution, which is more efficient than the ex-

trinsic techniques [Liu et al. 2015] since it avoids the realization

of the extrinsic mesh (thus naturally maintaining the correspon-

dence to the input, but limiting its applicability to non-volumetric

problems) and it alleviates the introduction of additional degrees of

freedom. [Sharp and Crane 2020] further generalizes [Sharp et al.

2019] to handle non-manifold and non-orientable inputs, which our

approach currently does not support.
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Fig. 2. Overview of our algorithm. We start from a triangle mesh, find

directions of extrusion, build the shell, and optimize to simplify it.

TetWild [Hu et al. 2019b, 2018] can robustly convert triangle

soups into high-quality tetrahedral meshes, suitable for FEM anal-

ysis. Their approach does not provide a way to transfer boundary

conditions from the input surface to the boundary of the tetrahedral

mesh. Our approach, when combined with a tetrahedral mesher

that does not modify the boundary, enables to remesh low-quality

surface, create a tetrahedral mesh, solve a PDE, and transfer back the

solution (Figure 1). However, our method does not support triangle

soups, and it is limited to manifold and orientable surfaces.

2.4 Isotopy between surfaces

[Chazal and Cohen-Steiner 2005; Chazal et al. 2010] presents condi-

tions for two sufficiently smooth surfaces to be isotopic. Specifically,

the projection operator is a homeomorphism. [Mandad et al. 2015]

extends this idea to make an approximationmesh that is isotopic to a

region. However, they did not realize a map suitable for transferring

attributes.

3 METHOD

Our algorithm (Figure 2) converts a self-intersection free, orientable,

manifold triangle mesh T = {VT , FT }, where VT are the vertex

coordinates and FT the connectivity of the mesh, into a shell com-

posed of generalized prisms S = {(BS ,MS ,TS ), FS }, where BS ,

MS ,TS are bottom, middle, and top surfaces of the shell, consisting

of bottom, middle, and top triangles of the prisms, and FS is the

connectivity of the prisms (Figure 3). The algorithm initially gener-

ates a shell S whose middle surfaceMS has the same geometry as

the input surface T (possibly with refined connectivity), and then

optimizes it while ensuring that T is contained inside and projects

bijectively toMS . The shell induces a volumetric vector fieldV and

a projection operator P in the interior of each of its prisms (Section

3.1). This output can be used directly in many geometry processing

tasks, as we discuss in detail in Section 5.

We first introduce the definition of our projection operator P and

the conditions required for bijectivity of its restrictions to sections

of the shell (Section 3.1). We then define shell validity (Section 3.2),

present our algorithm for creating an initial shell (Section 3.3) and

optimizing it to decrease the number of prisms (Section 3.4). To

simplify the exposition, we initially assume that our input triangle

mesh does not contain singular points (defined in Section 3.3) and

boundary vertices, and we explain how to modify the algorithm to

account for these cases in sections 3.5 and 3.6.

Top Surface (Outer)

Input Surface (Inner)

Input Surface (Outer)

Bottom Surface (Inner)
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Fig. 3. Example of the top (left, outer) and bottom (right, inner) surface of

the prismatic shell.
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Fig. 4. A prism ∆ (left) is decomposed into 6 tetrahedra (middle, for clarity,

we only draw the 3 tetrahedra of the top slab). Each tetrahedron has a

constant vector field in its interior (pointing toward the top surface), which

is parallel to the only pillar of the prism that contains the point.

3.1 Shell and Projection

Let us consider a single generalized prism ∆ in a prismatic layer S

(Figure 4 left). The generalized prism ∆ is defined by the position

of the vertices of three triangles, one at the top, with coordinates

t1, t2, t3, one at the bottom, with coordinates b1,b2,b3, and one in

the middle, implicitly defined by a per-vertex parameter αi ∈ [0, 1],

with coordinates mi = αi ti + (1 − αi )bi , i = 1, 2, 3. We will call

the top (bottom) łhalfž of the prism top (bottom) slab (we refer to

Appendix E for an explanation on why we need two slabs). For

brevity, we will refer to a generalized prism as a prism.

Decomposition in Tetrahedra. We decompose each prism ∆ into 6

tetrahedra (3 in the top slab and 3 in the bottom one, Figure 4middle),

using one of the patterns in [Dompierre et al. 1999, Figure 4]. The

patterns are identified by the orientation (rising/falling) of the two

edges cutting the side faces of the prism. While, for a single prism,

any decomposition would be sufficient for our purposes, we need a

consistent tetrahedralization between neighboring prisms to avoid

inconsistencies in the projection operator. To resolve this ambiguity,

we use the technique proposed in [Garimella and Shephard 2000]:

we define a total ordering over the vertices of the middle surface

of ∆ (naturally, we use the vertex id) and split (for each half of the

prism) the face connecting vertices v1 and v2 with a rising edge if

v1 < v2 and a falling edge otherwise.
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Fig. 5. A point p (left) is traced through V inside the top part of the shell. A

ray with p as origin and V as direction is cast inside the orange tetrahedron

(middle). The procedure is repeated (on the blue tetrahedron) until the ray

hits a point in the middle surface (right).

Top

Mid
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Section

Not Section

Fig. 6. A 2D illustration for the normal dot product condition. The blue

arrows agrees with the background vector field (white arrows), while the

red arrows do not agree.

Forward and Inverse Projection. We define a piecewise constant

vector fieldV inside the decomposed prism, by assigning to each

tetrahedronT∆
j , j = 1, . . . , 6, the constant vector field defined by the

only edge ofT∆
j which is a oriented pillar of ∆ connecting the bottom

surface to the top surface passing through the middle surface). That

is, for any p ∈ T∆
j

V (p) = ti − bi , (1)

where i is the index of the vertex corresponding to the pillar edge

ofT∆
j . Note thatV is constant on each tetrahedron and might be

discontinuous on the boundary: we formally define the value of

V on the boundary as any of the values of the incident tetrahedra.

This choice does not affect our construction. There is exactly one

integral (poly-)line passing through each point of the prism if all

the decomposed tetrahedra have positive volumes (Theorem 3.2).

This allows us to define the projection operator P (p) for a point

p ∈ ∆ as the intersection of the integral line fp (t ) of the vector

fieldV passing through p, with the middle surface of ∆ (Figure 5).

Intuitively, we can project any mesh that does not fold in each prism

(Figure 6) to themiddle surface. Formally, we introduce the following

definition, to describe this property in terms of the triangle normals

of the mesh.

With a slight abuse of the notation, for meshes and collections

of prisms A and B, we use A ∩ B to denote the intersection of their

corresponding geometry.

Definition 3.1. A section T̂ of a prism ∆ is a manifold triangle

mesh whose intersection with ∆ is a simply connected submesh

T̂ ∩ ∆ whose single boundary loop is contained in the boundary

of ∆, excluding its top and bottom surface, and such that for every

point p ∈ T̂ ∩ ∆ the dot product between the face normal n(p) and

the vector fieldV (p) is strictly positive. Similarly, a triangle mesh

T̂ is a section of a shell S, if it is a section of all the prisms of S.

Fig. 7. The composition P−1
S2

(PS1 (x )) with x ∈ S1, of a direct and an

inverse projection operator defines a bijection between two sections S1 and

S2.

Note that this definition implies that all sections are contained

inside the shell. Additionally, the definition implies that the section

does not intersect with either bottom or top surface. However, our

definition allows for the bottom or top surface to self-intersect.

The intersection of the shell does not invalidate the local definition

of projection since it is defined per prism. Allowing intersections

is crucial to an efficient implementation of our algorithm since it

allows us to take advantage of a static spatial data structure in later

stages of the algorithm (Section 3.4).

Theorem 3.2. If all 6 tetrahedraT∆
j in a decomposition of a prism ∆

have positive volume, then the projection operator P defines a bijection

between any section T̂ of ∆ and the middle triangle of the prism (M

in Figure 7).

Proof. We prove this theorem in Appendix A.1. □

The inverse projection operator P−1 is defined for a section T̂ as

the inverse of the forward projection restricted to T̂ . It can be simi-

larly computed by tracing the vector field in the opposite direction,

starting from a point in the middle surface of the prism. Note that,

differently from the inverse Phong projection [Kobbelt et al. 1998;

Panozzo et al. 2013], whose solution depends on the root-finding

of a quadric surface, our shell has an explicit form for the inverse

and does not require a numerical solve. The combination of forward

and inverse projection operators allows to bijectively map between

any pair of sections, independently of their connectivity (Figure

7). An interesting property of our forward and inverse projection

algorithm, which might be useful for applications requiring a prov-

ably bijective map, is that our projection could be evaluated exactly

using rational arithmetic.

3.2 Validity Condition

Shell, projection operator, section definitions, and the bijectivity

condition (Theorem 3.2) are dependent on a specific tetrahedral

decomposition, which depends on vertex numbering.

To ensure that our shell construction is independent from the

vertex and face order, we define the validity of a shell by accounting

for all 6 possible tetrahedral decompositions [Dompierre et al. 1999,

Figure 4].

Definition 3.3. We say that a prismatic shell S is valid with respect

to a mesh T̂ if it satisfies two conditions for each prism.
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I1 Positivity. The volumes of 24 tetrahedra (Appendix A.2) cor-

responding to 6 tetrahedral decompositions are positive.

I2 Section. T̂ is a section of S for all 6 decompositions.

If a shell is valid, from I1, I2, then by Theorem 3.2, it follows that

any map between sections induced by the projection operator P is

bijective.

I2 ensures that the input mesh is a valid section independently from

the decomposition, that is, we require the dot product to be positive

with respect to all three pillars of a prism inside the convex hull. An

interesting and useful side effect of this validity condition is that it

ensures the bijectivity of a natural nonlinear parametrization of the

prism interior (Appendix D, Figure 25).

3.3 Shell Initialization

We now introduce an algorithm to compute a valid prismatic shell

S = {(BS ,MS ,TS ), FS } with respect to a given triangle mesh

T = {VT , FT } such that T is geometrically identical to the middle

surface of S. We assume that the faces of the triangle mesh are

consistently oriented.

Extrusion Direction. The first step of the algorithm is the com-

putation of an extrusion direction for every vertex of T . These

directions are optimized to be pointing towards the outside of the

triangle mesh (which we assume to be orientable), that is, they must

have a positive dot product with the normals of all incident faces.

More precisely, for a vertexv , we are looking for a direction dv such

that dv · nf > 0 for each adjacent face f with normal nf . We can

formulate this as the optimization problem

max
dv

min
f ∈Nv

nf · dv ,

s.t. nf · dv ≥ ϵ, ∀f ∈ Nv

∥dv ∥
2
= 1.

(2)

A solution, if it exists, can be found solving the following qua-

dratic programming problem (Appendix C)

min ∥x ∥2

s.t. Cx ≥ 1,
(3)

with dv = x/∥x ∥ and C the matrix whose rows are the normals nf
of the faces in the 1-ring Nv of vertex v . Solutions not satisfying

∥x ∥ ≤ 1/ϵ needs to be discarded (Appendix C). The QP can be solved

with an off-the-shelf solver[Cheshmi et al. 2020; Stellato et al. 2017],

and in particular it can be solved exactly [Gärtner and Schönherr

2000] to avoid numerical problems. Note that the Problem (2) is

studied in a similar formulation in [Aubry and Löhner 2008] but

their solution requires tolerances in multiple stages of the algorithm

to handle cospherical point configurations.

The admissible set of (2) might be empty for a vertexv , that is, no

vector dv satisfies Cdv ≥ ϵ . In this case we call v a singularity. For

example, Figure 12 shows a triangle mesh containing a singularity:

there exist no direction whose dot product with the adjacent face

normals is positive. To simplify the explanation, we assume for the

remainder of this section that T does not contain singularities and

also that it does not contain boundaries: we postpone their handling

to sections 3.5 and 3.6.

Proposition 3.4. Let T be a closed (without boundary) triangle

mesh without singularities and N be a per-vertex displacement field

satisfying CNi > 0 for every vertexvi of T . Then there exist a strictly

positive per-vertex thickness δi such that vertices ti andbi obtained by

displacing vi by δi in the direction ofNi and in the opposite direction,

define a shell that satisfies invariant I1.

Proof. We provide a proof in Appendix A.2. □

Initial Thickness. We first show that a strictly positive per-vertex

thickness δ exists for a shell S with T as its middle surface, and

then discuss a practical algorithm to realize it.

Theorem 3.5. Given a closed, orientable, self-intersection free tri-

angle mesh T such that for all its vertices Problem (2) has a solution,

a shell S exists such that T is the middle surface and there exist a

strictly positive per-vertex thickness δ .

Proof. We provide a proof in Appendix A.3. □

To find a valid per-vertex thickness δi to construct the top surface,

we initially cast a ray in the direction of N for each vertex and

measure the distance to the first collision with T (and cap it to a

user-defined parameter δmax if no collision is found). An initial top

mesh is built with this extrusion thickness; then we test whether any

triangle in the top surface intersects T , through triangle-triangle

overlap test [Guigue and Devillers 2003], and iteratively shrink

δi in this triangle by 20% until we find a thickness that prevents

intersections between the input and the top surface. Analogously,

we build the bottom shell along the opposite direction. Note that the

thickness of a vertex for the top and bottom surface can be different.

Validity of the Initial Shell. Proposition 3.4 and Theorem 3.5 en-

sure that the initial shell constructed using a displacement field N

obtained by solving (3), satisfies property I1. However, T might

not formally satisfy the conditions for being a section of S, despite

being identical to the middle surface of S, due to our definition of

the projection operator P. The reason for this can be seen in Figure

8. After the initialization, the middle surface is the input mesh. Thus

every prism ∆ corresponds to a triangle T∆ of T . The intersection

∆ ∩ T , required to check if T is a section of ∆ (Definition 3.1)

contains points from both T∆ and its 1-ring neighborhood.

The projection operator (and thus the definition of the section)

is based on all tetrahedral decompositions of ∆; it is possible that

multiple tetrahedra (with different vector field values inV) overlap

on the boundary of ∆.

Depending on the dihedral angles in the mesh T , it is possible

that the dot product between one of the pillars (orange in Figure 8)

and the face normals of some of the triangles from 1-ring neigh-

borhood (green in Figure 8) is negative. While it may seem that

this problem could be addressed by changing the definition so that

each edge is assigned to one of the incident triangles, so that the

field direction only in one incident tetrahedron needs to be consid-

ered, this problem is more significant than it may seem, as it leads

to instability under small perturbations (e.g., due to floating-point

rounding of coordinates). Such small perturbations can change the

set of triangles intersecting a prism and thus violate the validity of

the shell and, consequently, the bijectivity of P. We propose instead

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.



Bijective Projection in a Shell • 1:7

Fig. 8. The vector field aligned with the pillar edge (orange) has a negative

dot product with the green triangle normal; the tetrahedron with this field

direction meets the green triangle at the red vertex. As a consequence, the

mid-surface is not a section. After topological beveling, the shell becomes

valid since the dot product between the green normal and the new pillar

(purple) is positive.

(a) (b) (c)

Fig. 9. The beveling patterns used to decompose prisms for which T is not

a section.

to refine T , without changing its geometry, so that the shell corre-

sponding to the refined mesh satisfies I2 (i.e., its middle surface is a

section).

Topological Beveling. We identify a prism ∆v for which I2 does not

hold and use a beveling pattern [Conway et al. 2016; Coxeter 1973;

Hart 2018] to decompose ∆v in a way that T becomes a section for

all 6 decompositions (I2). We refer to this operation as topological

beveling, as it does not change the geometry of the mesh, only its

connectivity (Figure 10). We use the pattern in Figure 9a for ∆v , and

we use the other two patterns (b) and (c) on the adjacent prisms to

ensure valid mesh connectivity. The positions of the vertices are

computed using barycentric coordinates (we used t = 0.2, i.e., the

orange dot is at 1/5 of the horizontal edge), and the normals of the

newly inserted vertices are copied from the closest vertex (in Figure

9, the internal vertices have the normal of the triangle corner with

the same color).

Theorem 3.6. Suppose T is the middle surface of S, and neither

TS or BS intersects with T . After topological beveling, I2 holds, that

is, T is a section of the shell S for all 6 decompositions.

Proof. We provide a proof in Appendix A.4. □

Output. The output of this stage is a valid shell with respect to

T (Section 3.2), that is, it satisfies I1 and I2.

3.4 Shell Optimization

During shell optimization, we perform local operations (Figure 11)

on a valid shell to reduce its complexity and increase the quality.

Before applying every operation, we check the validity of the opera-

tion to ensure that: (1) the resulting middle surface will be manifold

[Dey et al. 1999] and (2) the shell will be valid with respect to T (to

Screwdriver (input)

|F|=6786

Initial Middle Surface

|F|=10470

Optimized Shell

|F|=394

Fig. 10. Our algorithm refines the input model (left) with beveling patterns

(middle) to ensure the generation of a valid shell. The subsequent shell

optimizations gracefully remove the unnecessary vertices (right).

ensure a bijective projection). We forbid any operation that does

not pass these checks. We would like to remark that, while there

are different choices to guide the shell modification, we experimen-

tally discovered that allowing shell simplification and optimization

consistently leads to thicker shells with a richer space of sections.

Theorem 3.7. Let S be a valid shell with respect to a mesh T and

let C = {∆i }i ∈I ⊂ S be a collection of prisms such that the middle

surfaceMC of C is a simply connected topological disk.

Let O be an operation replacing C with a new collection of prisms

C ′ = {∆′i }i ∈I ′ , preserving both geometry and connectivity of the sides

of the prism collectionC , and ensuring thatMC ′ is a simply connected

topological disk.

If these three assumptions hold:

(1) property I1 holds for C ′,

(2) the top and bottom surfaces ofC ′ do not intersect T (TC ′ ∩T =

BC ′ ∩ T = ∅),

(3) the dot product condition n(p) · V (p) > 0 is satisfied for all

points p ∈ T ∩ ∆′i for all pillars of every prism ∆′i of C
′,

then, ∀i ∈ I ′, T ∩ ∆′i is a simply connected topological disk. In other

words, T is a section of the new shell S′ obtained by applying the

operation O to S.

Proof. We prove this theorem in Appendix A.5. □

We note that assumption (2) in Theorem 3.7 prevents the input

surface from crossing the bottom/top surface, thus avoiding it to

move in the interior of a region covered by more than one prism.

Our local operations (satisfying the definition of O in Theorem

3.7) are translated from surface remeshing methods [Dunyach et al.

2013] since our shell can be regarded as a triangle mesh (middle

surface) extruded through a displacement field N . All the local

operations described below directly change the middle surface, and

consequently affect the extruded shell. After every operation, the

middle surface is recomputed by intersecting T with the edges of

the prisms in S.
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Edge Flip Edge Collapse

Edge Split

Vertex Smooth (Pan)

Vertex Smooth (Zoom)

Vertex Smooth (Rotate)

Fig. 11. Different local operations used to optimize the shell. Mesh editing

operations translate naturally to the shell setting. For vertex smoothing, we

decompose the operation into 3 intermediate steps: pan, zoom, and rotate.

Shell Quality. We measure the quality of the shell S using the

MIPS energy [Hormann and Greiner 2000] of its middle surfaceMS .

For each triangle T of the middle surface, we build a local reference

frame, and compute the affine map JT transforming the triangle

into an equilateral reference triangle in the same reference frame.

The energy is then measured by

∑

T ∈MS

tr(JT
T
JT )

det(JT )
.

This energy is invariant to scaling, thus allowing the local opera-

tions to coarsen the shell whenever possible while encouraging the

optimization to create well-shaped triangles. Good quality of the

middle surface decreases the chances, for the subsequent operations,

to violate the shell invariants.

Shell Connectivity Modifications. We translate three operations

for triangular meshes to the shell settings (Figure 11 top). Edge col-

lapse, split, and flip operations can be performed by simultaneously

modifying the top and bottom surfaces and retrieve the positions

for the middle surface through the intersection. We only accept the

operations if they pass the invariant check.

Vertex Smoothing. Due to the additional degree of freedom on

vertex-pairs (position, direction, and thickness), we decompose the

smoothing operations into three components (Figure 11 bottom).

Pan moves the positions of the top and bottom vertex at the same

time, minimizing the MIPS quality of the middle surface. Neither

the thickness or direction will be changed. Rotate re-aligns the local

direction to be the average of the neighboring ones while keeping

the position of the middle vertex fixed. Zoom keeps the direction

and position of the middle vertex, and set the thickness of both top

and bottom to be 1.5 times of the neighbor average, capped by the

input target thickness.

Invariant Check. We use exact orientation predicates [Shewchuk

1997] to make sure all the prisms satisfy positivity (I1). Further, we

ensure that the original surfaceT is not intersectingwith the bottom

and top surface, except at the prescribed singularities. The check is

done using the triangle-triangle overlap test [Guigue and Devillers

2003], accelerated using a static axis-aligned bounding box tree

constructed from T . To accelerate the checks for normal condition,

for each prism ∆i , we maintain a list triangles overlapping with its

convex hull (an octahedron), and check their respective normals

Th
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k 
#1
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61

72

|F|=20846 |F|=2650

Fig. 12. A model with 48 singularities and a close up around one (left). Our

shell is pinched around each of them without affecting other regions (right).

against all the three pillars of ∆i . These three checks ensure that

the three conditions in Theorem 3.7 are satisfied. Note that the

vertex smoothing operation is continuous, in the sense that any

point between the current position and the optimal one improves

the shell. We, however, handle it as a discrete operation to check

our conditions: we attempt a full step, and if I1 is not satisfied, we

perform a bisection search for a displacement that does. We avoid

bisection for the other two conditions since they are expensive to

evaluate.

Projection Distortion. An optional invariant to maintain (not nec-

essary for guaranteeing bijectivity, but useful for applications), is

a bound on the maximal distortion DP (∆) of P for a prism ∆. We

measure it as the maximal angle between the normals of the set C

containing the faces of T intersecting ∆ andV :

DP (∆) = max
p∈C
∠(np ,V (p)),

where ∠ is the unsigned angle in degrees. This quantity is bounded

from below by the smallest dihedral angle ofT , making it impossible

to control exactly. However, we can prevent it from increasing by

measuring it and discarding the operations that increase it. In our

experiments, we use a threshold of 89.95 degrees.

Scheduling and Termination. Our optimization algorithm is com-

posed of two nested loops. The outer loop repeats a set of local

operations until the face count between two successive iteration

decreases by less than 0.01%. In the inner loop we: (1) flip every edge

of S decreasing the MIPS energy and avoiding high and low vertex

valences [Dunyach et al. 2013]; (2) smooth all vertices which include

pan, zoom, and rotate; and (3) collapse every edge of S not increas-

ing theMIPS energy over 30. Note that for every operation, we check

the invariants, the projection distortion, and manifold preservation

and reject any operation violating them. After the outer iteration

terminates (i.e. the shell cannot be coarsened anymore), we further

optimize the shell with 20 additional iterations of flips and vertex

smoothing.

3.5 Singularities

Singularities, i.e. vertices of T for which the constraints set of prob-

lem (2) is empty, are surprisingly common in large datasets (Fig-

ure 12 shows an example). For instance, in our subset of Thingi10k

[Zhou and Jacobson 2016], although only 0.01% vertices are sin-

gular, 8% of the models have at least one singular point. This has

been recently observed as a limitation for the construction of nested

cages [Sacht et al. 2015, Appendix A], and it is a well-known issue

when building boundary layers [Aubry et al. 2017, 2015; Garimella

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.



Bijective Projection in a Shell • 1:9

Fig. 13. Left to right: examples of a singularity as a feature point and as a

meshing artefact; and illustration of the degenerate prism with a singularity

(red) and its tetrahedral decomposition made of only four tetrahedra.

and Shephard 2000]. There are two main situations that give rise to

singular points. The first one naturally generates a singular point

when more than two ridge-lines meet (e.g., figures 12 and 30), thus

making the point a feature point. The second one is a pocket-like

mesh artifact, often produced as a result of mesh simplification

(Figure 13).

While singularities might seem fixable by applying local smooth-

ing or subdivision as a pre-process, it is not desirable in the case

of a feature point, and is likely to introduce self-intersection or

more serious geometric inconsistency. Therefore, due to the above

reasons and observing that they are very uncommon, we propose

to extend our theory (Appendix B) and algorithm to handle isolated

singularities by pinching the thickness of the shell. Note that in the

rare case where two singular points are sharing the same edge, they

are automatically separated by our topological beveling.

Pinching. We extend our definition of the shell by allowing it to

have zero thickness on singularities, thus tessellating the degenerate

prism with 4 instead of 6 tetrahedra (Figure 13). We further remark

that these isolated points must be excluded from Definition 3.1. In

the implementation, this requires to change the intersection predi-

cates to skip the singular vertices. With this change, the singularity

becomes a trivial point of the projection operator P, and the rest of

our shell can still be used in applications without further changes.

Since singularities tends to be isolated (they are usually located

at the juncture of multiple sharp features), this solution has min-

imal effects on applications: for example, when our shell is used

for remeshing, pinching the shell at singularities will freeze the

corresponding isolated vertices while allowing the rest of the mesh

to be freely optimized.

The topological beveling algorithm is

changed most significantly: for singular-

ities, there is no pillar to copy from. In

this case, we apply an additional edge

split, to use the pattern in the inset (with

the singularity marked by a white dot)

in the one-ring neighborhood of the sin-

gularity. The newly inserted vertices lie

either inside a triangle (uncircled red and orange dots), or in the

interior of an edge (circled red and orange dots). Therefore, we as-

sign to the orange vertices the average normal of the two adjacent

triangles, and to red the pillar of the connected orange one.

Top View Side View

A
B

D

A B

D
A’

Fig. 14. AA′ is a direction with positive dot product with respect to all

its neighboring faces. However, no valid shell can be built following that

direction.
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Fig. 15. An example of a mesh with boundary.

Additionally, the edges connecting singularities will always be

beveled/split after beveling. Therefore no prism will contain more

than one singular point. We discuss the technical extensions for our

proofs to shells with pinched prisms in Appendix B.

3.6 Boundaries.

We introduced our algorithm, assuming that the input mesh does

not have boundaries. We will now extend our construction to handle

this case, which requires minor variations to our algorithm.

For some vertices on the boundary, it might be impossible to

extrude a valid shell (Figure 14), even if problem (2) has a solution,

as Theorem 3.5 does not apply in its original form. We identify such

cases by connecting every edge in the 1-ring neighborhood of the

boundary vertex to the extruded point and check if they collide with

the existing 1-ring triangles (e.g., the triangle A′AB intersects the

existing input triangle in Figure 14). If it is the case, we consider

this vertex as a singularity, and we pinch the shell. Note that this is

an extremely rare case and, in our experiments, we detected it only

for models where the loss of precision in the STL export introduces

rounding noise on the boundary.

Once we pinch all boundary singularities, our construction ex-

tends naturally to the boundary. The only necessary modification

is in the shell optimization (Section 3.4), where we skip all oper-

ations acting on boundary vertices to maintain the bijectivity of

the induced projection operator (Figure 15). We thus freeze these

vertices and never allow them to move or be affected by any other

modification of the shell. Note that, in certain applications, it might

also be useful to freeze additional non-boundary vertices to ensure

that these remain on the middle surface during optimization (e.g.,

to exactly represent a corner of a CAD model).

4 RESULTS

Our algorithm is implemented in C++ and uses Eigen [Guennebaud

et al. 2010] for the linear algebra routines, CGAL [The CGAL Project
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Fig. 16. The effect of different target thickness on the number of prisms |F|

of the final shell, and distribution of final thickness (shown as the box plots

on the top).

2020] and Geogram [Lévy 2015] for predicates and spatial search-

ing, and libigl [Jacobson et al. 2016] for basic geometry processing

routines. We run our experiments on cluster nodes with a Xeon E5-

2690 v2 @ 3.00GHz. The reference implementation used to generate

the results is attached to the submission and will be released as an

open-source project.

Robustness. For each dataset, we selected the subset of meshes

satisfying our input assumptions: intersection-free, orientable, man-

ifold triangle meshes without zero area triangles (tested using a

numerical tolerance 10−16). We test self-intersections by two cri-

teria: a ball of radius 10−10 around each vertex does not contain

non-adjacent triangles; and all the dihedral angles are larger than

0.1 degrees.

We tested our algorithm on two datasets: (1) Thingi10k dataset

[Zhou and Jacobson 2016] containing, after the filtering due to our

input assumptions, 5018 models; and (2) the first chunk of for the

ABC dataset [Koch et al. 2019] with 5545 models. The only user-

controlled parameter of our algorithm is the target thickness of our

shell; in all our experiments (unless stated otherwise), we use 10%

of the longest edge of the bounding box. In Figure 16, we show

how the target thickness influences the usage of the shell: a thicker

shell provides a larger class of sections, thus accommodates more

processing algorithms, while a thinner one offers a natural bound

on the geometric fidelity of the sections.

Our algorithm successfully creates shells for all 5018 models for

Thingi10k and 5545 for ABC. We show a few representative exam-

ples of challenging models for both datasets in Figure 17, including

models with complicated geometric and topological details. In all

cases, our algorithm produces coarse and thick cages, with a bijec-

tive projection field defined.

We report as a scatter plot the number of output faces, the timing,

and the memory used by our algorithm (Figure 18). In total, the

number of prisms generated by our algorithm is 7% and 2% of the

number of input triangles for the Thingi10k and ABC dataset respec-

tively and runs with no more than 4.7 GB of RAM. The generation

and optimization of the shell takes 5min and 59s in average and

up to 8.6 hours for the largest model. 50% of the meshes finish in 3

minutes and 75% in 6 minutes and 15 seconds.

Comparison to Simple Baselines. In Figure 19 we compare to two

baseline methods based on [Garland and Heckbert 1998]. For each

method, we generate a coarse mesh, uniformly subdivide it for vi-

sualization purposes, and query the corresponding spatial position

Thingi10k

ABC

Fig. 17. Gallery of shells built around models from Thingi10k [Zhou and

Jacobson 2016] and ABC [Koch et al. 2019].
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Fig. 18. Statistics of 5018 shells in Thingi10k dataset [Zhou and Jacobson

2016] (left) and 5545 in ABC Dataset [Koch et al. 2019] (right).
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Zoom

Thai Statue
|F| = 79970

UV based
|F| = 3828

Naive Cage
|F| = 1950

Ours
|F| = 1950

Missed Projection

Fig. 19. The UV based method cannot simplify the prescribed seams, and

introduces self-intersections. The projection induced by the Naive Cage

method is not continuous and not bijective; it leads to visible spikes in the

reconstructed geometry.

on the original input to form the subdivided mesh. The UV based

method is a conventional way of establishing correspondence in

the context of texture mapping. However, the robust generation of

a UV atlas satisfying a variety of user constraints is still an open

problem. We use the state-of-the-art methods [Jiang et al. 2017;

Li et al. 2018] to generate a low-distortion bijective parametriza-

tion, and use seam-aware decimation technique [Liu et al. 2017] to

generate the coarse mesh. Due to the complex geometry and the

length of the seam (Figure 19 second figure), the simplification is not

able to proceed beyond the prescribed seam while maintaining the

bijectivity, making the pipeline inadequate especially for building

computational domains.

We also set up a baseline of the Naive Cage method by creating

a simplified coarse mesh with [Garland and Heckbert 1998] and

use Phong projection to establish the correspondence [Kobbelt et al.

1998; Panozzo et al. 2013]. Such attribute transfer is not guaranteed

to be bijective; some face may not be projected (Figure 19 third

image). With our method, we can generate a coarse mesh while

having a low-distortion bijective projection (Figure 19 fourth image).

Numerical accuracy. To evaluate the numerical error introduced

by our projection operator when implemented with floating-point

arithmetic, we transfer the vertices of the input mesh to the middle

surface and inverse transfer them from the middle surface back to

the input mesh. We measure the Euclidean distance with respect to

the source vertices (Figure 20). We compare the same experiment

with the Phong projection [Kobbelt et al. 1998]. This alternative

approach exhibits distance errors up to 10−5 even after ruling out

the outliers for which the method fails due to its lack of bijectivity.

The maximal error of our projection is on the order of 10−8; this

error could be completely eliminated (for applications requiring an

exact bijection) by implementing the projection operator and its

inverse using rational arithmetic.

1e−12 1e−9 1e−61e−12 1e−9 1e−6 1e−3 1

Shark (input) Phong Projection Shell Ours

Fig. 20. Our projection is three orders of magnitude more accurate than the

baseline method, and bijectively reconstructs the input vertex coordinates.

Rockerarm |F|=20088 QSlim |F|=100

Shell |F|=448 Ours |F|=136

Fig. 21. We attempt to simplify rockerarm (top left) from 20088 triangles to

100. QSlim [Garland and Heckbert 1998] succeeds in reaching the target

triangle count (top right) but generates an output with a self-intersection

(red) and flipped triangles (purple). With our shell constraints (bottom left),

the simplification stagnates at 136 triangles, but the output is free from

undesirable geometric configurations. Note that both examples use the

same quadratic error metric based sceduling [Garland and Heckbert 1998].

5 APPLICATIONS

Using our shell S, we implement the following predicates and func-

tions:

• is_inside(p): returns true if the point p ∈ R3 is inside S.

• is_section(T ): returns true if the triangle mesh T is a section

of S.

• P (p): returns the prism id (pid), the barycentric coordinates

(α , β) in the corresponding triangle of the middle surface, and

the relative offset distance from the middle surface (h, which

is -1 for the bottom surface, and 1 for the top surface) of the

projection of the point p

• P−1 (pid,α , β ,h) is the inverse of P (p).

• PT (tid,α , β ) = P (q), where q is the point in the triangle tid

of the mesh T , with barycentric coordinates α , β .

• P−1
T

(pid,α , β ) is the inverse of PT .

As explained in Section 3, our shell may self-intersect and we

opted to simply exclude the overlapping regions. In practice this

affects only the function is_inside(p) which needs to check if p is

contained in two or more non-adjacent prisms.

These functions are sufficient to implement all applications below,

demonstrating the flexibility of our construction and how easy it is

to integrate in existing geometry processing workflows.
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Fig. 22. The heat method (right top) produces inaccurate results due to a

poor triangulation (left top). We remesh the input with our method (left

bottom), compute the solution of the heat method [Crane et al. 2013] on

the high-quality mesh (middle bottom) and transfer the solution back to

the input mesh using the bijective projection (bottom right). This process

produces a result closer to the exact discrete geodesic distance [Mitchell

et al. 1987] (top middle, error shown in the histograms).

Knot 

|T|=1,497,488

Shell

|F|=7210

Section

|F|=30,182

Tetrahedralized

|T|=176,190

Fig. 23. Knot simplified with our method and tetrahedralized with TetGen.

The original model is converted to 1,503,428 tetrahedra (left) while the

simplified surface is converted to only 176,190 tetrahedra (right).

Remeshing. We integrated our shell in the meshing algorithm pro-

posed in [Dunyach et al. 2013] by adding envelope checks ensuring

that the surface is a section after every operation. After simplifi-

cation, we can use the projection operator to transfer properties

between the original and remeshed surface (e.g., figures 22, 23). Since

the remeshed surface is a section, a very practical side effect of our

construction is that the remeshed surface is guaranteed to be free of

self-intersections, As shown in Figure 21, the constraints enforced

through our shell prevents undesirable geometric configurations

(intersections, pockets, or triangle flips).

Proxy. A particularly useful application of our shell is the con-

struction of proxy domains for the solutions of PDEs on low-quality

meshes. Additionally, by specifying the target thickness parame-

ter (Figure 16), we are able to bound the geometry approximation

Fig. 24. The union of two meshes is coarsened through our algorithm, while

preserving the exact correspondence, as shown through color transfer.

error to the input as well. Using our method, we can (1) convert a

low-quality mesh to a proxy mesh with higher quality and desired

density, (2) map the boundary conditions from the input to the proxy

using the bijective projection map, (3) solve the PDE on the proxy

(which is a standard mesh), and (4) transfer back the solution on the

input surface (Figure 22). Our algorithm can be directly used to

solve volumetric PDEs. by calling an existing tetrahedral meshing

algorithm between steps 2 and 3 (figures 1, 23). In this case, we

control the geometric error by setting the target thickness (we use

2% of the longest edge of the bounding box).

Boolean Operations. The mesh arrangements algorithm enables

the robust and exact (up to a final floating-point rounding) compu-

tation of Boolean operations on PWN meshes [Zhou et al. 2016].

However, the produced meshes tend to have low triangle quality

that might hinder the performance of downstream algorithms. By

interleaving a remeshing step performed with our algorithm af-

ter every operation, we ensure high final quality and more stable

runtime. The composition of the bijections enables us to transfer

properties between different nodes of the CSG tree (Figure 24).

Displacement Mapping. The middle surface of the shell is a coarse

triangular mesh that can be directly used to compress the geometry

of the input mesh, storing only the coarse mesh connectivity and

adding the details using normal and displacement maps (Figure 25).

A common way to build such displacement is to project [Collins

and Hilton 2002; Kobbelt et al. 1998] the dense mesh on the coarser

version. As shown in Appendix D, our method guarantees that this

natural projection is also bijective as long as the coarse mesh is a

section. This alleviates the loss of information even on challenging

geometry configurations, and our shell can thus be used to automate

the creation of projection cages and displacement maps.

Geometric Textures. The inverse projection operator provides a

2.5D parametrization around a given mesh and can be used to apply

a volumetric texture (Figure 26). Note that we build the volumetric
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Input Mesh QSlim + Displacement Map

Shell Ours + Displacement Map

Fig. 25. Top: an input mesh decimated to create a coarse base mesh, and

the details are encoded in a displacement map (along the normal) with

correspondences computed with Phong projection [Kobbelt et al. 1998].

Bottom: the decimation is done within our shell while using the same

projection as above. With our construction, this projection becomes bijective

(Appendix D), avoiding the artifacts visible on the ears of the bunny in the

top row.

Input |F|=39040

Shell |F|=1584

Fig. 26. Two volumetric chainmail textures (right) are applied to a shell

(bottom left) constructed from the Animal mesh (top left). The original UV

coordinates are transferred using our projection operator.

texture on the simplified shell, while still being able to bijectively

transfer the texture coordinates.

6 VARIANTS

Input with Self-Intersections. Up to this point, we assumed that

our input meshes are without self-intersections. This requirement

is necessary to guarantee a bijection between any section (e.g., the

input mesh) and the middle surface. Such bijection is essential for

a key target application, the transfer of boundary conditions for

solving PDEs on meshes or mesh-bounded domains.

However, ourmethod can be easily extended tomeshes containing

self-intersections, broadening the class of meshes it can be applied to,

at the cost of making the resulting shell usable in fewer application

scenarios: for example, if it is used for remeshing, it will likely

generate a new surface that still contains self-intersections.

If T contains self-intersections, our algorithm can be trivially

extended to generate a shell which will be locally injective, and the

bijectivity of the mapping between sections still holds but with

respect to the immersion. The only change required is to modify

the invariance checks (Section 3.4): we have to replace the global

intersection check with checking whether local triangles overlap

Leg w/ Self-Intersection

|F| = 13230

Shell

|F|=528 

MidSurface w/ Transfer

|F|=528 

Fig. 27. An example of a shell built around a self-intersecting mesh.

Fig. 28. The Armadillo model with four nested cages. We create a shell from

the original mesh, and then rerun our algorithm on the outer shell to create

the other three layers. Note that all layers are free of self-intersections, and

we have an explicit bijective map between them.

with the current prisms. Figure 27 shows an example of a mesh

T with self-intersections, the generated shell, and the isolines of

geodesic transferred on the coarser middle surface.

Resolving Shell Self-Intersections. For certain applications it might

be preferable to have a shell whose top and bottom surfaces do

not self-intersect: for example, in the construction of nested cages

[Sacht et al. 2015] (useful for collision proxies and animation cages),

we want to iteratively build nested shells while ensuring no inter-

sections between them (Figure 28). With a small modification, our

algorithm can be used to generate nested cage automatically and

robustly, with the additional advantage of being able to map any

quantity bijectively across the layers and to the input mesh. In con-

trast, [Sacht et al. 2015] does not provide guarantees on the success

(e.g., the reference implementation of [Sacht et al. 2015] fails on

Figure 19, probably due to the presence of a singularity).

To resolve the self-intersections of the top (bottom) surface, we

identify the regions covered by more than one prism by explicitly

testing intersections between the tetrahedralized prisms, accelerated

using [Zomorodian and Edelsbrunner 2000]. For every detected

prism, we reduce the thickness by 20%, and iterate until no more

intersections are found. Differently from the procedure in Section

3.3, where reducing the thickness of the shell always maintains the

validity of the shell, at this stage, the shrinking of the shell may

make the shell invalid, since T may not be contained anymore

in S. Whenever this happens, we perform one step of red-green

refinement [Bank et al. 1983] on the regions we wish to thin, and we

iterate until we succeed. This procedure is guaranteed to terminate

since, on the limit of the refinement, the middle surface will be

geometrically identical to T , and thus Theorem 3.5 holds. In the

worst case, the procedure terminates when the size of triangles on

the middle surface is comparable to the input; then no refinement

is required to shrink below the minimum separation of the input.
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Camel w/ Self Intersecting Top Surface Self Intersection Resolved

Fig. 29. After optimization, the shell may self-intersect (left). Our postpro-

cessing can be used to extract a non-selfintersecting shell, which is easier

to use in downstream applications (right).

Fig. 30. We generate a pinched shell for a model with a singularity (left).

Optionally, we can complete the shell using our Boolean construction.

Figure 29 shows how the intersecting shell between the legs of the

camel can be shrunk to generate an intersection-free shell.

Pinching Alternative. For certain applications, such as boundary

layer meshing, it is necessary to have a shell with non-zero thickness

everywhere, including at singularities, and it is tolerable to lose

bijectivity at the vicinity of a singularity. For these cases, we propose

a Boolean construction to fill the shell around singularities, and to

extend the projection operator P inside these regions. That is, every

point in the filled region will project to the singularity.

Without loss of generality, let us assume that T has a single sin-

gularity (Figure 30). We initially construct a pinched shell, with zero

thickness at the singularity, construct a valid shell (Section 3), and

then perform a corefinement [Loriot et al. 2020] between a tetrahe-

dron (centered at the singularity and whose size is smaller than the

minimal thickness of the neighboring vertices) and the shell. The

result of the corefinement operation (Figure 30 middle) consists of

triangles belong to the tetrahedron, or the shell surface. The remain-

ing part of the tetrahedron is a star-shaped polyhedron with the

singularity in its kernel, and sharing a part of its boundary with the

shell. This polyhedron can be easily tetrahedralized by connecting

its triangulated boundary faces (one of them is highlighted in red

in Figure 30 middle) with the singularity. For every point p in these

tetrahedra, the projection operator P projects p to the singularity.

The remaining triangles are divided into two groups: the triangles

with only one new vertex complete the degenerate prisms (one of

them is highlighted in blue in Figure 30 middle), while the others

map to the edges they are attached to.

7 LIMITATIONS

Currently, our algorithm is limited to manifold and orientable sur-

faces: its extension to non-manifold and/or non-orientable meshes

is a potential venue for future work. With such an extension, the in-

tegration of shells with robust tetrahedral meshers [Hu et al. 2019b,

2018] would allow to solve PDEs on imperfect triangle meshes with-

out ever exposing the user to the volumetric mesh, allowing them to

directly work on the boundary representation to specify boundary

conditions and to analyze the solution of the desired PDE. Since

we rely on the additional checks for the bijective constraints, our

method is slower than classical surface mesh adaptation algorithms

and it is not suitable for interactive applications.

Integrating our approach into existing mesh processing algo-

rithms might lose some of their guarantees or properties since our

shell might prevent some local operations. Other surface process-

ing algorithms guarantee some properties under some regularity

assumptions on the input, which might not hold when our bijective

constraints are used. For example, QSlim [Garland and Heckbert

1997]might not be able to reach the desired target number of vertices

and [Dey and Ray 2010] might not be able to achieve the bounded

aspect ratio. A practical limitation is that integrating our approach

into existing remeshing or simplification implementations requires

code level access.

Our shell is ideal for triangle remeshing algorithms employing

incremental changes: not every geometry processing algorithm

requiring a bijective map can use our construction. For example, it

is unclear how isosurface-extraction methods [Hass and Trnkova

2020] could use our shell or how global parametrization algorithms

[Alliez et al. 2003; Bommes et al. 2013; Kraevoy and Sheffer 2004;

Schreiner et al. 2004] could benefit from our method since they

already compute a map to a common domain.

8 CONCLUDING REMARKS

We introduce an algorithm to construct shells around triangular

meshes and define bijections between surfaces inside the shell. We

proposed a robust algorithm to compute the shell, validated it on a

large collection of models, and demonstrated its practical applicabil-

ity in common applications in graphics and geometry processing.

We believe that many applications in geometry processing could

benefit from bijectively mapping spatially close surfaces, and that

the idea of using an explicit mesh as a common parametrization

domain could be extended to the more general case of comput-

ing cross-parametrizations between arbitrary surfaces. To foster

research in this direction, we will release our reference implementa-

tion as an open-source project.
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A PROOFS

A.1 Theorem 3.2

Consider the unique (up to symmetry) piece-wise affine map T

deforming ∆ into a reference prism ∆̂ = {u,v ≥ 0|u+v ≤ 1}×[−1, 1],

identifying the bottom surface of ∆̂ as z = −1, middle surface as

z = 0, and top surface as z = 1. Let TT be the affine map mapping

tetrahedron T to the reference prism. Since the volume of all T

is positive by assumption, the map T is bijective and orientation

preserving. In particular, T transforms V (p) to the const vector

ez = (0, 0, 1) since the edges of the prism are mapped to axis aligned

edges of the reference prism. The projection operator P (p) can thus

be equivalently defined as P (p) = T−1 (Pz (T (p))), where Pz is the

projection over the z-axis in the reference prism.Pz is bijective if the

piecewise linear mesh intersecting ∆ is composed of triangles with

positive area (and the boundaries are mapped to the boundaries)

[Lipman 2014], after being mapped to the reference ∆ and projected

by Pz . In the reference domain, having positive area after projection

(with a fixed boundary) is equivalent to that the dot product between

the projection direction and the normal of every face is positive.

In the top half of ∆, Pz is bijective if for every point T (p),p ∈ f

T (np ) ·[0, 0, 1] = T (np ) ·T (V (p)) > 0 which holds since np ·V (p) >

0 (from the definition of section) and the fact that T is orientation

preserving and thus not changing the sign of the dot product.

A.2 Proposition 3.4

For simplicity, we will show that a uniform lower bound δ for

all vertices exists. By consider a triangle of T , extruded over the

displacement field N , we obtain a generalized half prism with six

vertices 0, e1, e2, δn0, e1 + δn1, e2 + δ n2, with δ a positive constant.

The indices of the tetrahedra are:

(0 ,2, 3, 4), (0 ,3, 4, 5), (0 ,1, 5, 3), (0 ,1, 2, 3), (1 ,2, 3, 4), (0 ,1, 2, 4),

(0 ,1, 5, 4), (1 ,3, 4, 5), (1 ,2, 3, 5), (0 ,2, 5, 4), (0 ,1, 2, 5), (2 ,3, 4, 5).

For a sufficiently small δ , the linear term will dominate the higher

power of δ , which we omit. The dominant volume terms are listed

in the following table:

vol1(0, e2, δn0, e1 + δn1 ) δ ⟨e2, n0, e1⟩
vol2(0, δn0, e1 + δn1, e2 + δn2 ) δ ⟨n0, e1, e2⟩
vol3(0, e1, e2 + δn2, δn0 ) δ ⟨e1, e2, n0⟩

vol4(0, e1, e2, δn0 ) δ ⟨e1, e2, n0⟩

vol5(e1, e2, δn0, e1 + δn1 ) ⟨e2 − e1, δn0 − e1, δn1⟩

= δ ⟨e2, −e1, n1⟩

vol6(0, e1, e2, e1 + δn1 ) δ ⟨e1, e2, n1⟩

vol7(0, e1, e2 + δn2, e1 + δn1 ) ⟨e1, e2 + δn2, δn1⟩

= δ ⟨e1, e2, n1⟩

vol8(e1, δn0, e1 + δn1, e2 + δn2 ) δ ⟨δn0 − e1, n1, e2 − e1 + δn2⟩

= δ ⟨−e1, n1, e2⟩
vol9(e1, e2, δn0, e2 + δn2 ) ⟨e2 − e1, δn0 − e1, e2 + δn2 − e1⟩

= δ ⟨e2 − e1, δn0 − e1, n2⟩

= δ ⟨e2, −e1, n2⟩

vol10(0, e2, e2 + δn2, e1 + δn1 ) δ ⟨e2, n2, e1⟩
vol11(0, e1, e2, e2 + δn2 ) δ ⟨e1, e2, n2⟩

vol12(e2, δn0, e1 + δn1, e2 + δn2 ) ⟨δn0 − e2, e1 + δn1 − e2, δn2⟩

= δ ⟨−e2, e1, n2⟩

For all the 12 tetrahedra the linear term is multiplied by a deter-

minant containing the edges of the prism. We check directly that all

these determinants are positive due to the assumption that CNi > 0.

Fig. 31. Bevel patterns used in the proofs in Appendix A.4 and Appendix B

A.3 Theorem 3.5

Consider a ball around a point p of the middle faceM of the prism. If

the radius r (p) > 0 is sufficiently small, it contains, at most, a single

vertex ofM , and parts of incident faces. AsM is compact, there is

a minimal value of r on M , and it is positive. The line along the

normal, passing throughv , intersects incident faces atv so it cannot

intersect them at any other point. Thus, the top and bottom prism

vertices can be obtained by displacing V by r in either direction

along the normal. Consider the r -neighborhood of the M , i.e. the

union of all balls of radius r centered at points ofM . This is a convex

set, containing onlyM and parts of vertex-adjacent faces. All top and

bottom prism vertices are in this set. Thus tetrahedra connecting

these vertices are also in the set, i.e., complete prisms. The fact that

tetrahedra are nondegenerate is established in Proposition 3.4.

A.4 Theorem 3.6

To show that T is a section of S we need to show that (1) M∆ =

T ∩ ∆ is a simply connected patch for any prism of S and (2) for

each prism ∆ and every point p ∈ M∆ the dot product between the

face normal n(p) and the pillarsVi , i = 1, 2, 3 is strictly positive.

(1) is trivial since for every prism ∆ of S, ∆ contains exactly one

triangle of the topological bevel refinement face of T .

To prove (2), consider the dot products of the normals of each

of the triangles in the beveled region sharing at least a vertex with

M∆, and the vectors along the pillars ofM∆. We use colors to refer

to the triangles of beveled prisms as shown in Figure) 31 left.

The prism corresponding to the pink triangle covers only the

interior of the original triangle. It satisfies the dot product condition

since its pillars are copied from the solution of Problem (3) at each

vertex. A similar argument can be made for the green prisms: each

prism gets its pillars from the edges incident at two of the vertices,

which are compatible with the normal of the adjacent triangle (e.g.,

red and blue pillars have positive dot product with the normal of

T1). Finally, the prisms corresponding to orange triangles cover the

same one ring that was used to compute the original pillars (e.g.,

red pillar is compatible withT1 andT2). Since the same pillar is used

for each of the 3 vertices of the original prism, the dot product is

unchanged.

A.5 Theorem 3.7

We use A◦ to denote the interior of a set A. We first assert that the

topological disk patch T ∩C coincides with T ∩C ′. To make the

notation more concise, we define TC = T ∩C and TC ′ = T ∩C
′.

We show that TC ⊂ C
′ by contradiction: assume there is p ∈ TC

but p < C ′. Choose a point q ∈ ∂TC , that belongs to single prisms

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.
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in C and C ′ and denote the enclosing prism in C as ∆q and the

corresponding one in C ′ as ∆′q . It follows from the positivity of

the volumes of ∆q and ∆′q (Assumption 1), that there is ε > 0 such

that the half-ball (for sufficiently small ε) Ball(q, ε ) ∩ ∆q coincides

with Ball(q, ε ) ∩ ∆′q . Futhermore, the validity of the initial shell

guarantees that there exists an interior point q̄ ∈ Ball(q, ε )∩∆◦q ∩T ,

and q̄ ∈ ∆′◦q ∩ T ⊂ C
′◦ ∩ T .

Since neither p or q̄ lies on the boundary side triangles of ∂C ′

(since p, q̄ < ∂TC ), therefore there exists an interior path P (i.e., a

path both in TC and in TC ′ ) that connects p and q̄. By continuity the

path P it will cross ∂C ′ at some point pi ∈ TC . Since the ∂TC ′ = ∂TC
is a fixed boundary loop (by the definition ofO), and does not contain

interior points,pi can only cross on the top surface or bottom surface

ofC ′ which contradicts Assumption 2. The roles ofC andC ′ can be

inverted to complete the proof.

We then map MC to a regular planar n-gon D, with vertices

on ∂MC mapped cyclically to the vertices of ∂D. It follows from

[Floater 2003, Corollary 6.2] that such a convex combination map-

ping φ : MC → D is bijective. Then, similarly to the construction in

Theorem 3.2, we define ϕ : C → D × [−1, 1] through affine mapping

induced by the thetrahedralization of the prisms ∆i . Similarly, we

defineψ : C ′ → D × [−1, 1]. The mappingψ is also bijective because

of Assumption 1 and the definition ofO it follows that the codomain

ofψ is the same as ϕ. Note that in both cases, the map transforms

the vector fieldV (p) to the constant vector field ez = (0, 0, 2), and

the projection is Pz , as defined in Appendix A.1.

The dot product condition (Assumption 3) ensures that Pz defines

a bijection between D and ψ (TC ); and further, the image satisfies

Pz (ψ (∆
′
i ∩ T )) = ψ (M ′i ) where M

′
i is the middle surface (a single

triangle) of ∆′i . Therefore, sinceψ and Pz are both continuous and

bijective, they are homeomorphisms which preserve topology, thus

∆′i ∩ T is a simply connected topological disk.

B EXTENSION TO MESHES WITH SINGULARITIES

Most of the proofs and definition in Section 3 easily extends to

meshes with singularity or pinched shells. For instance, both Theo-

rem 3.2 and Definition 3.3 apply to pinched shells by just considering

a prism made of 4 (2 for the top and 2 for the bottom slab) instead

of 6. Propositions 3.4 and 3.5 both rely on per-vertex properties; by

just excluding singular vertices (and neighboring prism) from the

statements the proofs (and our algorithm) still holds.

Theorem 3.7 requires some minor additional considerations. As a

consequence of beveling, no two singularities are adjacent. There-

fore, we can always find a point q ∈ ∂TC that belongs to a single

prism (Appendix A.5) since every prism will have a positive volume

because no singularities are adjacent.

Finally Proposition 3.6 requires a new proof since the beveling

pattern used for singularities is different.

Proof. In Figure 31 right, we highlight in red and orange the

triangles not covered by the discussion in Appendix A.4. The prism

corresponding to an orange middle triangle intersects the edge-

adjacent triangle. And since the new pillars are computed as the

average of the normals of the two adjacent triangles with dihedral

angle strictly less than 360◦ (Section 3.5 inset), each dot product is

positive. The prism for a pink middle triangle intersects only the

interior of the original triangle, and the dot product between the

pillars and the triangle normal are positive by construction. □

C REDUCTION TO A STANDARD QP

With slack variable t , Problem 2 can be rewritten as

max
t

t ; dvnf ≥ t , ∥dv ∥ = 1, t ≥ ϵ .

In the admissible region, substituting t = 1/s ,

min
s
s; sdvnf ≥ 1, ∥dv ∥ = 1, 0 < s ≤ 1/ϵ .

Substituting x = sdv (thus ∥x ∥ = s∥d ∥ = s), we obtain the QP

problem 3. Note that the lower bound on s is implied from sdvnf ≥ 1,

and the upper bound ∥x ∥ < 1/ϵ is checked a posteriori.

D BIJECTIVITY OF THE NONLINEAR PRISMATIC

TRANSFORMATION

In this section, we show that the isoparametric transformation of

prismatic finite element [Ciarlet 1991] is also bijective if I1 holds.

We follow the notation from Appendix A.2. The map is defined

as (for the top slab)

f (u,v,η) = ue1 +ve2 + ηn0 + uηn01 +vηn02,

det Jf = ⟨(1 − u −v )n0 + un1 +vn2, e1 + ηn01, e2 + ηn02⟩,

where η is the variable corresponding to the thickness direction, and

ni j = nj − ni . Observe that det Jf (u,v,η0) is linear in u,v for fixed

η0, the extrema will only be achieved at the corner points [Knabner

and Summ 2001]. Therefore, it is sufficient to check the signs at

three edges (0, 0,η), (1, 0,η), (0, 1,η) for η ∈ [0, 1].

det Jf (0, 0,η)

= ⟨n0, (1 − η)e1 + η(e1 + n1 − n0), (1 − η)e2 + η(e2 + n2 − n0)⟩

= (1 − η)2⟨n0, e1, e2⟩ + (1 − η)η⟨n0, e1, e2 + n2⟩

+ (1 − η)η⟨n0, e1 + n1, e2⟩ + η
2⟨n0, e1 + n1, e2 + n2⟩

= (1 − η)2vol4 + (1 − η)η(vol3 + vol1) + η
2vol2 > 0.

By symmetry, it is easy to verify that the following are positive,

detJf (1, 0,η) = (1 − η)2vol6 + (1 − η)η(vol7 + vol5) + η
2vol8,

detJf (0, 1, ζ ) = (1 − η)2vol11 + (1 − η)η(vol9 + vol10) + η
2vol12,

E DOUBLE SLAB

In Section 3.1, we explain that we want to ensure that our shell

validity is independent from the enumeration of the faces; for this

reason, we require that the conditions I1 and I2 are satisfied for all

possible decompositions. Without using the double slab, different

decompositions of the prism will result in different intersections

with the middle surface. In other words, the projection operator will

project the input mesh to a different set of triangles on the middle

surface. The double slab makes the middle surface independent of

the decomposition by construction. We note that Theorem 3.6 is

valid only for double-slab prisms since the statement requires that

one prism contains only one triangle.
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