
1

Half-Space Power Diagrams and Discrete
Surface Offsets

Zhen Chen, Daniele Panozzo, Jérémie Dumas

Abstract—We present an efficient, trivially parallelizable algorithm to compute offset surfaces of shapes discretized using a dexel data
structure. Our algorithm is based on a two-stage sweeping procedure that is simple to implement and efficient, entirely avoiding
volumetric distance field computations typical of existing methods. Our construction is based on properties of half-space power
diagrams, where each seed is only visible by a half-space, which were never used before for the computation of surface offsets.
The primary application of our method is interactive modeling for digital fabrication. Our technique enables a user to interactively
process high-resolution models. It is also useful in a plethora of other geometry processing tasks requiring fast, approximate offsets,
such as topology optimization, collision detection, and skeleton extraction. We present experimental timings, comparisons with previous
approaches, and provide a reference implementation in the supplemental material.

Index Terms—Geometry Processing, Offset, Voronoi Diagram, Power Diagram, Dexels, Layered Depth Images.

F

1 INTRODUCTION

Morphological operations, such as dilation and erosion,
have numerous applications: They can be used to regularize
shapes [1], to ensure robust designs in topology optimiza-
tion [2], to perform collision detection [3], or to compute
image skeletons [4]. By combining these operations, it is
possible to compute surface offsets. Offset surfaces are
often used in digital fabrication applications [5], to generate
support structures [6], to hollow object (Figure 1), to create
molds, and to remove topological noise.

While offset surfaces can be computed exactly with
Minkowski sums [7], these operations can be slow, especially
on large models. Recent approaches [8] provide better results,
but their performance is still insufficient for their use in
interactive applications. Conversely, approximate algorithms
which rely on a discrete re-sampling of the input volume,
achieve efficiency by sacrificing accuracy in a controlled
way [9, 10]. These methods are especially relevant in digital
fabrication where resolutions are inherently limited by the
machine fabrication tolerance, and using exact computation
is unnecessary.

We propose a novel algorithm to compute offset surfaces on
a solid object represented with a ray-based representation
(ray-rep). A ray-rep, such as the dexel buffer [11], stores the
intersections between a solid object and a set of parallel
rays emanating from a uniform 2D grid: Each cell of the
grid holds a list of intervals bounding the solid (Figure 2).
Ray-reps are appealing in the context of digital fabrication,
since they allow us to compute morphological operations
directly at the resolution of the machine. CSG operations
can be carried out directly in image space [12, 13], at a
fraction of the cost of their counterparts on meshes, for
which fast and robust implementations are notoriously
difficult [14]. Another advantage is that implicit surfaces
can be efficiently converted into ray-reps, avoiding explicit
meshing. Examples in the literature can be found for Com-

Input Surface Thick Shell 3D Printed

Fig. 1. 3D printed surface shell, computed with our approach. The shell
is the Boolean difference of a dilation and an erosion of the input volume.
The model uses a grid of 5122 dexels, and a dilation radius of 4 dexels.

puter Numerical Control (CNC) milling applications [11],
modeling for additive manufacturing [12], hollowing, or
contouring [5]. Our offset algorithm exploits the ray-rep
representation, and it is both fast and accurate, in the sense
that it computes the exact offset at the resolution used by the
input dexel structure. We demonstrate experimentally that
our algorithm scales well with the offset radius, in addition
to being embarrassingly parallel and thus can fully exploit
multi-core, shared-memory architectures.

Contribution. Our algorithm relies on a novel approach
for computing half-plane Voronoi diagrams [15]. We first
describe this approach in 2D, demonstrating a simple and
efficient sweeping algorithm to compute offsets in a 2D dexel
structure. We then extend our sweeping procedure to 3D by
leveraging the separability of the Euclidean distance [16].

In Section 4, we compare running times of our algorithm
with existing approaches, and showcase applications of our

2

approach in topological simplification and modeling for
additive manufacturing.

2 RELATED WORK

Exact Mesh Offsets. Dilated surfaces can be computed
exactly for triangle meshes, by dilating every triangle and
explicitly resolving the introduced self-intersections [17, 18].
A dilated mesh can also be obtained by computing the
Minkowski sum of the input triangle mesh and a sphere of
the desired radius [7]. This approach, which is implemented
robustly in CGAL [19], generates exact results, but is slow
for large models. A variant of this algorithm has been
introduced in [20], where the arbitrary precision arithmetic
is replaced by standard floating-point arithmetic. However,
the performance of this method is still insufficient to achieve
interactive runtimes. Offset surfaces can be used for shape
optimization, e.g., to optimize weight distribution inside an
object [21].

Resampled Offsets. To avoid the explicit computation of the
Minkoswki sum, which is a challenging and time-consuming
operation, other methods resample the offset surface by
computing the isosurface of the signed-distance function
of the original surface [22, 23]. Other methods relying on
adaptive sampling include [24, 25], but they are known
to have a large memory overhead when a high accuracy
is required. Meng et al. [8] distributes and optimizes the
position of sites at a specified distance from the original
surface, and produces a triangle from a restricted Delaunay
triangulation of the sites. Calderon et al. [26] introduced a
framework for performing morphology operations directly
on point sets.

Voronoi Diagrams and Signed-Distance Transforms. Cen-
troidal tessellations of Voronoi and power diagrams have
important application in geometry processing and remesh-
ing [27, 28]. Our algorithm relies on these techniques, in
particular on the implicit computation of Voronoi and power
diagrams of points and segments.

Fortune [29] introduces a sweep line algorithm to position
the Voronoi vertices (intersection of 3 bisectors) and create
a 2D Voronoi diagram of point sets. By relying on a slight
modification of the Voronoi diagram definition, called half-
space Voronoi diagrams [15], we will see in Section 3 how to
compute the Voronoi diagram of a set of parallel segments
directly, using two sweeps instead of one, and how it leads
to the efficient computation of a discrete offset surface. The
extension of our method to 3D requires the computation
of power diagrams [30] with a weight associated to each
seed. Our algorithm implicitly relies on the Voronoi and
power diagrams of line segments: while those could be
approximated by sampling each segments with multiple
points [31], we opted for an alternative solution which is
more efficient and simpler to implement.

Finally, our 3 dimensional, two-stage sweeping algorithm
bears some similarity to existing signed-distance transform
approaches [16, 32], as it leverages the separability of
the Euclidean distance to compute the resulting offset by
sweeping in two orthogonal directions. However, as we

(a) Input Surface. (b) Dexel Approximation. (c) Compact Storage.

Fig. 2. A dexel data structure constructed from a triangle mesh. The
input surface (a) intersects with evenly spaced parallel rays (b), and is
stored compactly as a 2D grid of events in the dexel buffer (c). This can
be used to perform efficient CSG operations in modeling software [12].

operate on a dexel structure, we never need to store a full
3D distance field in memory. For a more complete review of
distance transform algorithms, the reader is referred to the
survey [33].

Medial Axis and Skeleton. Medial axis and shape skeletons
are widely used in geometry processing applications, such
as shape deformation, analysis, and classification [34]. One
popular approach is “thinning” [35, 36], which exploits an
erosion operator to reduce a shape to its skeleton. Our
algorithm provides a practical and efficient way of defining
such an operator. A shape can be approximated by a union
of balls centered on its medial axis, and Voronoi diagrams
are a common way of computing candidate centers for these
balls [37]. These algorithms are know to be sensitive to small
scale surface details [38], and special care needs to taken to
ensure robustness [39, 40].

Ray-Based Representations and Offsets. A ray-based rep-
resentation of a shape is obtained by computing the in-
tersection of a set of rays with the given shape. In most
applications, the cast rays are parallel and sampled on a
uniform 2D grid. They are typically stored in a structure
called dexel buffer. A dexel buffer is simply a 2D array, where
each cell contains a list of intersection events (z`, za), each
one representing one intersection with the solid (Figure 2).
To the best of our knowledge, the term dexel (for depth
pixel) can be traced back to [11], which introduced the dexel
buffer to compute the results of CSG operations to ease NC
milling path-planning. Similar data structures have been
described in different contexts over the years. Layered Depth
Images (LDI) [41] are used to achieve efficient image-based
rendering. The A-buffer [42, 43] was used to achieve order-
independent transparency. It is worth mentioning that, while
the construction algorithm is different, the underlying data
structures used in all these algorithms remain extremely
similar. The G-buffer [44] stores a normal in every pixel
for further image-processing and CNC milling applications,
augmenting ray-reps with normal information. In the context
of additive manufacturing, Layered Depth Normal Images
have been proposed as an alternative way to discretize 3D
models [45, 13].

Ray-based data structures offer an intermediate represen-
tation between usual boundary representations (such as
triangle meshes), and volumetric representations (such as a
full or sparse 3D voxel grids). While both 3D images and
dexel buffers suffer from uniform discretization errors across
the volume, a dexel buffer is cheaper to store compared to

3

Fig. 3. Voronoi diagram of line segments. The bisectors are defined by
second-order piecewise polynomial curves. Note that the Voronoi cell
of a single seed can be comprised of multiple connected components.
Illustration from [49].

a full volumetric representation: it is possible to represent
massive volumes (20483 and more) on standard worksta-
tions. Additionally, in the context of digital fabrication, 3D
printers and CNC milling machines have limited precision:
a dexel buffer at the resolution of the printer is sufficient to
cover the space of shapes that can be fabricated.

Ray-reps have been used to compute and store the results of
Minkoswki sums, offsets, and CSG operations [46]. Hui [47]
uses ray-reps to compute a solid sweeping in image-space.
In [48], Chen et al. use LDNI to offset polygonal meshes
by filtering the result of an initial overestimate of the true
dilated shape. Wang et al. [9] computes the offset mesh as the
union of spheres placed on the points sampled by the LDI.
Finally, [10] approximates the dilation by a spherical kernel
with a zonotope, effectively computing the Minkoswki sum
of the original shape with a sequence of segments in different
directions. Differently, the method presented in this paper
computes the exact offset of the discrete input ray-rep (at
the resolution of the dexel representation). Despite using a
similar data structure, our approach is different from Wang
et al. [9]: the latter requires a LDI sampled from 3 orthogonal
directions, while our method accelerates the offset operation
even when a ray-rep from a single direction is available. We
provide a comparison and describe the differences in more
details in Section 4.

Voronoi Diagrams of Line Segments and Motivations. An
example of a Voronoi diagram of line segments is shown
in Figure 3. Although the general abstract algorithm for
Voronoi diagrams applies (in theory) to line segments [29],
the problem is in practice extremely challenging, since
the bisector of two segments are piecewise second-order
polynomial curves. Some software is readily available to
solve the 2D case (e.g., VRONI [50, 51], Boost.Polygon [52],
OpenVoronoi [53] and CGAL [54]), but the problem is still
open in 3D. Aurenhammer et al. [55] present a method for
computing the Voronoi diagram of parallel line segments by
reducing the problem to computing the power diagram of
points in a hyperplane, but the problem of computing the
power diagram of line segments is still open, even in 2D. To the
best of the authors’ knowledge, the problem of computing
the power diagram for a set of line segments was not explored in
the literature, not even in 2D. This component is necessary
for the second step of our dilation process, and it is one
of the contributions of this work. Note that our method

(a) (b) SIn (c) SMid (d) SOut

Fig. 4. The dilation operation is performed in two stages (a). A seed is
dilated by a radius r along a first axis (in red). The resulting seed (in
green) is then dilated along a second axis by a different radius

√
d2 − r2,

where d is the distance between the two seeds (red point and green
point). The equivalent dexel data structure for each pass is shown on
right: (b) input dexel, (c) result of the first pass, (d) result of the second
pass.

does not explicitly store a full Voronoi or power diagram at
any time, since the process is online (the cells are computed
for the current sweepline only and updated as our sweep
progresses).

Compared to existing offsetting techniques, there are several
advantages to using our discrete approach when the result
needs only be computed at a fixed resolution (e.g., the printer
resolution in additive manufacturing).

(1) No need for a clean input triangle mesh. As long as the
input triangle soup can be properly discretized (e.g., using
generalized winding number [56, 57]), the input can have
gaps or self-intersecting triangles.

(2) Our method is also directly applicable when the input
is a 3D image (e.g., CT scan), where it can be used without
any loss of accuracy, providing high performance and low
memory footprint.

(3) Another advantage of working directly with the dexel
data structure is that CSG operations can be carried out
easily in dexel space, providing real-time interactive model-
ing capabilities [12]. Performing CSG operations on triangle
meshes is costly and requires a significant implementation
effort to be performed robustly [14]. Compared to [9], our
method can achieve higher resolutions when needed, and
compared to [10], the result of the dilation by a spherical
kernel is computed exactly.

3 METHOD

The key idea of our algorithm is to decompose the dilation of
a point in two 2D dilations along orthogonal axes. Figure 4a
illustrates this idea. The result of the 3D dilation of a point—
the blue sphere in Figure 4a—can be computed by first
performing the dilation along the first axis (in red). Then, the
green point can be dilated along a second axis (in green) by a
different radius, producing the green circle. By applying this
construction directly to a dexel buffer, the input point in Fig-
ure 4b is first dilated to produce the line in Figure 4c. Then,
each element of this line is dilated again in the orthogonal

4

direction, but with a different dilation radius, producing the
final result (Figure 4d). Each stage is a set of 2D dilations: the
first stage relying on Voronoi diagrams (uniform offsetting)
and the second stage leveraging power diagrams to compute
efficient offsets against different dilation radii for each dexel
segment. We denote by SIn → SMid → SOut the different
steps of the pipeline.

We start by formally defining the different concepts and
notations in Section 3.1. In Section 3.2, we describe our
uniform offsetting method (in 2D), based on efficiently
computing the Voronoi diagram of a set of parallel segments.
Then, in Section 3.3, we extend the algorithm to compute
the power diagram of a set of parallel segments in 2D,
which completes the necessary building blocks to extend
our algorithm from 2D to 3D.

3.1 Definitions

Dexel Representation. A dexel buffer of a shape S ⊂ Ω

(with Ω
def
= R3) is a set of parallel segments arranged in

a 2D grid, where each cell Sij of the grid contains a list
of segments sharing the same xy coordinate. Specifically,
we discretize S as S ≈ ∪ijSij where Sij = {(z`k , zak)}nij

k=1.
Each segment (z`k , z

a
k) in the same cell Sij has the same

xy coordinate, and represents the intersections of the input
shape S with a vertical ray at the same xy coordinate (see
Figure 2).

Dilation. Given an input shape S and a radius r > 0 we
define the dilated shapeDr(S) as the set of points at a distance
less or equal than r from S:

Dr(S) = {p ∈ Ω, ‖p− x‖ 6 r,x ∈ S}. (1)

Erosion. The erosion of a shape S is equivalent to computing
the dilation on the complemented shape S, and taking the
complement of the result. Since the complement operation
is trivial under a ray-rep representation, we will focus on
describing our algorithm applied to the dilation operation,
from which all other morphological operators (erosion,
closing, and opening) will follow.

Voronoi Diagram. The Voronoi diagram of a set of seeds S =
{si}ni=1 is a partition of the space Ω into different Voronoi
cells Ωi:

Ωi = {p ∈ Ω,dist(p, si) 6 dist(p, sj), i 6= j}. (2)

We also define Vor(S) to be the interface between each
overlapping Voronoi cell:

Vor(S) = ∪i 6=jΩi ∩ Ωj . (3)

Notations. In the context of this paper, seeds can be either
points or line segments. Throughout the paper, si shall
denote the geometric entity of a seed, whether it is a point or
a line segment. si shall denote the position of the seed when
it is a point, and (s`i , s

a
i) shall be used to denote the positions

of its endpoints when the seed is a line segment. When the
seeds {si}i are points, Vor(S) is a set of straight lines in
2D (planes in 3D), which are equidistant to their closest

↓

↑

Fig. 5. Voronoi diagram of seed points {si}ni=1. From left to right: Voronoi
diagram formed by the full Voronoi cells Ωi; half-space Voronoi diagram
formed by the half-space Voronoi cells

−→
Ω i and

←−
Ω i respectively. Note

that Ωi ⊆
−→
Ω i ∪

←−
Ω i. In each diagram, a Voronoi vertex (intersection

between 3+ Voronoi cells) is shown with a red square.

↓

↑

Fig. 6. Voronoi diagram of seed segments {si}ni=1. From left to right:
Voronoi diagram formed by the full Voronoi cells Ωi; half-space Voronoi
diagram formed by the half-space Voronoi cells

−→
Ω i and

←−
Ω i respectively.

seeds. When the seeds are segments, Vor(S) is comprised
of parabolic arcs in 2D [31], and parabolic surfaces in 3D.

In a half-space Voronoi diagram for seed points [15], each
seed point si is associated with a visibility direction vi,
and a point p is considered in Equation (2) if and only
if (p − si) · vi > 0. In this work, we are interested in half-
space Voronoi diagrams of seed segments, where each seed
is associated to the same visibility direction v. Figure 5 (resp.
Figure 6) shows the difference between Voronoi diagrams
and half-space Voronoi diagrams for point seeds (resp.
segment seeds). More precisely, given a set of parallel seed
segments (s`i , s

a
i)ni=1, and a direction v orthogonal to each

segment v ⊥ (sai − s`i), we define the half-space Voronoi
cells

−→
Ω i and

←−
Ω i as

−→
Ω i =

{
p ∈ Ω, ‖p− p̃i‖ 6

∥∥p− p̃j

∥∥, i 6= j,

(p− p̃i) · v > 0, (p− p̃j) · v > 0
}

←−
Ω i =

{
p ∈ Ω, ‖p− p̃i‖ 6

∥∥p− p̃j

∥∥, i 6= j,

(p− p̃i) · v 6 0, (p− p̃j) · v 6 0
} (4)

where p̃i is the point p projected on the line (s`i , s
a
i). Note

that the segments (s`i , s
a
i) are parallel, following a direction

that is orthogonal to the chosen direction v. Thus, the dot
product (p−q)·v in Equation (4) has the same sign for all the
points q in the line (s`i , s

a
i). Note that we have Ωi ⊆

−→
Ωi ∪

←−
Ωi

(see Figure 5).

Half-Dilated Shape. We define the half-dilated shape
−→
D (S),

as the dilation restricted to the half-space Voronoi cells of
segments in S:
−→
D r(S) = {p ∈

−→
Ω i, ‖p− x‖ 6 r,x ∈ si, i ∈ J1, nK}. (5)

Remember that si is the i-th segment (z`i , z
a
i) in the dexel

buffer approximating the shape S. The half-space dilated

5

Fig. 7. Fortune’s sweepline algorithm [29] requires transforming the
point coordinates to compute the correct Voronoi diagram of points in a
single sweeping pass, which makes it impossible to compute the result
of the dilation in the same sweeping pass (without back-propagating the
contribution of each newly inserted seed in the dilated shape).

shape
←−
D r(S) is defined in a similar manner using

←−
Ω i. For

simplicity, we will omit the dilation radius and simply write
D(S), unless there is an ambiguity.

Power Diagram. Finally, the power diagram of a set of seeds
{si}ni=1 is a weighted variant of the Voronoi diagram. Each
seed is given a weight wi that determines the size of the
power cell Ωp

i associated to it:

Ωp
i =

{
p ∈ Ω,dist(p, si)

2 − wi 6 dist(p, sj)
2 − wj , i 6= j

}
.

(6)
Intuitively, one could interpret a 2D power diagram as the or-
thographic projection of the intersection of a set of parabola
centered on each seed, where the weights determine the
height of each seed embedded in R3. This definition extends
naturally to half-space power diagrams.

3.2 Half-Space Voronoi Diagram of Segments and 2D
Offsets

Given a 2D input shape S and dilation radius r, we seek
to compute the dilated shape D(S) comprised of the set of
points at a distance 6 r from S. The input shape is given
as a union of disjoint parallel segments evenly spaced on
a regular grid (the dexel data structure), and we seek to
compute the output shape as another dexel structure (the
discretized version of the continuous dilated shape).

The dilated shape D(S) can be expressed as the union of the
dilation of each individual segment of S. To compute this
union efficiently, our key insight is to partition the dilated
shape based on the Voronoi diagram of the input segments
(power diagrams are only needed for the extension to 3D).
Within each Voronoi cell Ωi, if a point p is at a distance 6 r
from the seed segment (s`i , s

a
i) ∈ S, then p ∈ D(S).

The Voronoi diagram of point seeds can be computed in
single pass with a sweepline algorithm [29]. The construction
requires lifting coordinates in the plane according to the co-
ordinate along the sweep direction, as illustrated in Figure 7.
Unfortunately, this approach cannot be used to compute
the result of a dilation operation in a single pass without
“backtracking”. Indeed, whenever a new seed is added to the
current sweepline, its dilation will affect rows of the image
above the sweepline, which have already processed. Instead,

Fig. 8. A single sweep in one direction allows us to compute the
half-space Voronoi diagram of parallel line segments (the dexel data
structure). This figure illustrates how dexels are stored as nested arrays.
The gray area shows the expected result of the half-dilation in one
direction, while the solid colored lines show the boundary of the half-
space Voronoi diagram of the input line segments (half-space Voronoi
cells are shown on the top right).

y

z

Fig. 9. The bisector of two line segments can be described by a
piecewise second-order polynomial curve. Voronoi vertices are located at
the intersection between two such bisectors. After this point, the middle
segment will always be further away from the sweepline than its two
neighbors. It will be marked as inactive and be removed from L.

we propose a simple construction for seed points and
segments, based on half-space Voronoi diagrams—which
we extend to power diagrams in Section 3.3. Our key idea is
to compute the dilation of a segment (s`i , s

a
i) in its Voronoi

cell Ωi as the union of the two half-dilated segments, in
−→
Ω i

and
←−
Ω i. Both

−→
Ω i and

←−
Ω i can be computed efficiently in two

separate sweeps of opposite direction, without requiring any
transformation to the coordinate system as in [29].

The idea behind our sweeping algorithm is as follows. We
advance a sweepline L parallel to the seed segments in the
input dexel S. A general view of a 2D dexel buffer and
the sweep process is presented in Figure 8, while Figure 9
shows the structure of the Voronoi diagram of three line
segments during the sweep process. At each step, for each
seed si ∈ S, we compute the intersection of the current
line L with the points in p ∈

−→
Ω i that are at a distance 6 r.

By choosing the visibility direction v to be the same as the
sweeping direction, then only the seeds {si}i previously
encountered in the sweep will contribute to this intersection
(any upcoming seed will have an empty Voronoi cell

−→
Ω i).

Figure 5 shows a Voronoi diagram of points, with two half-
space Voronoi diagrams of opposite directions. To make the
computation efficient, we do not want to iterate through all
the seeds to compute the intersection each time we advance
the sweep line (which would make the algorithm O(n2)
in the number of seeds). Instead, we want to keep only a
small list of active seeds, that will contribute to the dilated

6

shape D(S) and intersect the current sweepline L: this will
decrease the complexity to O(n log(n) + m), where m is the
number of line segments generated by the dilation process.

Pseudocode. From an algorithmic point of view, we main-
tain, during the sweeping algorithm, two data structures:
L, the list of active seed segments (s`i , s

a
i), whose Voronoi

cell
−→
Ω i intersects the current sweepline, (and are thus at

distance 6 r from the current sweepline), and Q, a priority
queue of upcoming events. These events indicate when an
active seed can safely be removed from the L as we advance
the sweepline, i.e., when it no longer affects the result of the
dilation. The events in Q can be of two types: (1) a Voronoi
vertex (the intersection between 3+ Voronoi cells); and (2)
a seed becoming inactive due to a distance > r from the
sweepline. Voronoi vertices can be located at the intersection
of the bisector curves between 3 consecutive seed segments
a, b, c ∈ L, as illustrated in Figure 9. Beyond this intersection,
we know that either a or c will be closer to the sweepline, so
we can remove b from L (its Voronoi cell

−→
Ω b will no longer

intersect the sweepline).

Both Q and L can be represented by standard STL data
structures. Note that since the seeds stored in L are disjoints,
they can be stored efficiently in a std::set<> (sorted by the
coordinate of their midpoint). A detailed description of our
sweep-line algorithm is given in pseudocode in Figures 10
and 11. A full C++ implementation is available on github1.
In line 13 in Figure 10, the function DILATELINE computes
the result of the dilation on the current sweep line, by going
through the list of active seeds, and merging the resulting di-
lated line segments. Insertion and removal of seed segments
in L is handled by the functions INSERTSEEDSEGMENT and
REMOVESEEDSEGMENT respectively. When inserting a new
active seed segment in L, to maintain the efficient storage
with the std::set<>, we need to remove subsegments which
are occluded by the newly inserted seed segment (and split
partially occluded segments). Indeed, the contribution of
such seed segments is superseded by the new seed segment
that is inserted. Then, we need to compute the possible
Voronoi vertices formed by the newly inserted seed segment
and its neighboring seeds in L. The derivation for the
coordinates of the Voronoi vertex of 3 parallel seed segments
in given in Appendix A.

3.3 Half-Space Power Diagram of Points and 3D Offsets

3D Dilation. As illustrated in Figure 4, the 3D dilation
process is decomposed in two stages SIn 7→ SMid 7→ SOut.
We first perform an extrusion along the first axis (in red),
followed by a dilation along the second axis (in green). Note
that the first operation SIn 7→ SMid is not exactly the same
as a dilation along the first axis (red plane): the segments
(s`i , s

a
i) ∈ SIn are extruded, not dilated (they map to a

rectangle, not a disk).

To obtain the final dilated shape in 3D, we need to perform a
dilation of the intermediate shape SMid, where each segment
(s`j , s

a
j) ∈ SMid is dilated by a different radius rj along

the second axis (green plane in Figure 4), depending on

1. https://github.com/geometryprocessing/voroffset

Input: 2D dexel structure S + dilation radius r.
Output: Half-dilated dexel shape S′ =

−→
D r(S).

1: function VORONOISWEEPLINE(S, r)
2: L ← ∅ . Set of active segments on the sweep line
3: Q ← {} . List of removal events marking a seed as inactive
4: S′ ← ∅ . Dilated result
5: for i← 0, N − 1 do
6: for all sj ∈ Q do
7: REMOVESEEDSEGMENT(L, r, sj);
8: end for
9: for all sij = (z`, za) ∈ Si do

10: INSERTSEEDSEGMENT(L,Q, r, sj);
11: end for
12: . Dilate and merge active seeds on the current sweepline
13: S′ ← S′∪ DILATELINE(L, i, r)
14: end for
15: return S′

16: end function

Fig. 10. Sweepline algorithm for computing the half-dilated shape−→
D r(S).

Input:


L Set of active seeds on the sweep line,
Q List of removal events,
r Dilation radius,
s Seed segment to insert, s = [(y, z`), (y, za)].

Output: Updated list of active seeds L and events Q.
1: function INSERTSEEDSEGMENT(L,Q, r, s)
2: REMOVEOCCLUDEDSEGMENTS(L, s)
3: SPLITPARTIALLYOCCLUDED(L, s)
4: L ← L ∪ s . Overlaps are resolved, insert s into L
5: Q ← Q∪ (y + r, s) . After this point, Dr(s) will be empty
6: while ∃ sequence (sa, sb, s) ∈ L do
7: (yv, zv)← VORONOIVERTEX(sa, sb, s) . See fig. 9
8: if yv < y then
9: L ← L \ sb . Seed sb becomes inactive

10: else
11: Q ← Q∪ (yv, sb) . Remove sb later on
12: end if
13: end while
14: while ∃ sequence (s, sa, sb) ∈ L do
15: . Repeat operation on the right side of s
16: end while
17: end function

Fig. 11. Insertion of a new seed segment s into L.

its distance from parent seed (red dot in Figure 4). In the
case where the first extrusion of SIn produces overlapping
segments in SMid, the overlapping subsegments would need
to be dilated by different radii, depending on which segment
in SIn it originated from. In such a case, where a subsegment
s̃j ∈ SMid has multiple parents s̃i ∈ SIn, it is enough to
dilate s̃j by the radius of its closest parent in SIn (the one for
which rij =

√
d2ij − r2 is the largest). In practice, we store

SMid as a set of non-overlapping segments, as computed
by the algorithm in Figure 10, with a slight modification
to the DILATELINE function (line 13 in Figure 10) to return
the extruded seeds on the current sweepline instead of the
dilated ones.

https://github.com/geometryprocessing/voroffset
https://github.com/geometryprocessing/voroffset

7

Fig. 12. Special case: the power cell (in green) of a seed segment
(central segment in purple) can be a disconnected region of the plane.
The blue points represent the center of the power circles (the boundary
of the power diagram is the locus of the lines intersecting each pair of
circle as the centers move along their respective segment).

Dp(S)

D�(S) D◦(S)

Fig. 13. To simplify the computation of the power diagram in the second
stage, the dilation of a segment is separated into a vertical extrusion
(left), and the dilation of its two endpoints (right).

2D Power Diagram. We now focus on computing the 2D di-
lation of a shape S composed of non-overlapping segments
(s`i , s

a
i ; ri), where each seed segment is weighted by the

dilation radius (wi
def
= ri in Equation (6)). In this setting, the

computation of the power cells Ωp
i of seed segments becomes

more involved, breaking some of the assumptions of the
sweepline algorithm. Specifically, the sweepline algorithm
(Figure 10) makes the following assumptions about L:
the seeds projected on the sweepline are non-overlapping
segments, and the Voronoi cells induced by the active seeds
are continuous regions. Once a seed (s`i , s

a
i) is inserted in L,

its cell
−→
Ω i immediately becomes active, and once we reach

the first removal event in Q, it will become inactive and stop
contributing to the dilation

−→
D (S). For the power cells of

segments, the situation is a little bit different, as illustrated
on Figure 12: a power cell

−→
Ωp

i of a line segment can contain
disjoints regions of the plane. It is not clear how to maintain
a disjoint set of seeds in L if we need to start removing and
inserting a seed multiple time, and this makes the number
of cases to consider grow significantly.

Instead, we propose to circumvent the problem entirely by
making the following observation. A 2D segment dilated
by a radius r is actually a capsule, which can be described
by two half-disks at the endpoints, and a rectangle in the
middle. We decompose the half-dilated shape

−→
Dp(S) into the

union of two different shapes:
−→
D◦(S) (the result of the half-

dilation of each endpoint) and
−→
D�(S), where each segment

Fig. 14. Sweepline algorithm computing
−→
D◦(S). When inserting the

rightmost point in the set of active seeds L, it may happen that the power
vertex with its two neighbors be located further away along the sweep
direction. In this case, the middle point should not be removed from L,
as its power cell will continue to intersect the sweepline.

si is extruded along the dilation axis by its radius ri. This
decomposition is illustrated in Figure 13.

Now, the dilated shape
−→
D�(S) is easy to compute with

a forward sweep, since there are no Voronoi diagrams or
power diagrams involved: we simply remove occluded
subsegments, keeping the ones with the largest radius, and
removing a seed si once its distance to the sweepline is
> ri. To compute

−→
D◦(S), we employ a sweep similar to the

one described Section 3.2, but now all the seeds are points,
which greatly simplifies the calculation of power vertices.
Indeed, the power bisectors are now lines, and the power
cells are intersections of half-spaces (and thus convex). The
derivations for the coordinates of a power vertex is given
in Appendix B. The only special case to consider here is
illustrated in Figure 14: when inserting a new seed and
updating L, the events corresponding to a power vertex
do not always correspond to a removal. For example, in
the situation illustrated in Figure 14, the power cell of the
middle point will continue to intersect the sweepline after it
has passed the power vertex, so we should not remove the
middle seed from L. Fortunately, this case is easy to detect,
and we simply forgo the insertion of the event in Q.

3.4 Complexity Analysis

We analyze the runtime complexity of our algorithm, assum-
ing that the dexel spacing is 1, so that the dilation radius r
is given in the same unit as the dexel numbers.

For the first 2D dilation operation, the complexity of com-
bining two dexel data structures is linear in the size of the
input, since the segments are already sorted. The cost of the
forward dilation operation

−→
D r(S) requires a more detailed

analysis: Let n be the number of input segments, and m be
the number of output segments in the dilated shape

−→
D (S). In

the worst case, each input segment generates O(r) distinct
output segments, m = O(nr), and each seed segment is
split twice by every newly inserted segment. Since each
seed can split at most one element of L into two separate
segments, we have that, at any time, |L| = O(n). Moreover,

8

each seed produces at most three events in Q (a Voronoi
vertex with its left/right neighbors, and the moment it
becomes inactive because of its distance to the sweepline). It
follows that |Q| = O(n) as well. Segments in L are stored
in a std::set<>, thus insertion and removal (lines 7 and
10 in Figure 10) can be performed in O(log n) time. While
the line dilation (line 13 in Figure 10) is linear in the size
of L, the total number of segments produced by this line
cannot exceed m, so the amortized time complexity over
the whole sweep is O(m). This brings the final cost of
the whole dilation algorithm to a time complexity that is
O(n log(n) + m), and it does not depend on the dilation
radius r (apart from the output size m). In contrast, the
offsetting algorithm presented in [9] has a total complexity
that grows proportionally to r2.

For the second dilation operation, where each input segment
is associated a specific dilation radius, the result is similar.
Indeed,

−→
D◦(S) is computed using the same algorithm as

before, so the analysis still holds. Combining the dexels in
−→
D◦(S) with the results from

−→
D�(S) can be done linearly in

the size of the output as we advance the sweepline, so the
total complexity of computing

−→
Dp(S) is stillO(n log(n)+m).

For the 3D case, the result of a first extrusion is used as input
for the second stage dilation, the total complexity is more
difficult to analyze, as it also depends on the structure of
the intermediate result. In a conservative estimate, bounding
the number of intermediate segments by O(nr), this bring
the final complexity of the 3D dilation to O(nr log(nr) +
m), where m = O(nr2) is the size of the output model. In
practice, many segments can be merged in the final output,
especially when the dilation radius is large, and m may even
be smaller than n (e.g., when details are erased from the
surface).

Finally, we note that in each stage of the 3D pipeline, the
2D dilations can be performed completely independently in
every slice of the dexel structure, making the process trivial
to parallelize. We discuss the experimental performance of a
multi-threaded implementation of our method in Section 4.

4 RESULTS

We implemented our algorithm in C++ using Eigen [58]
for linear algebra routines, and Intel Threading Building
Blocks [59] for parallelization. We ran our experiments
on a desktop with a 6-core Intel® Core™ i7-5930K CPU
clocked at 3.5 GHz and 64 GB of memory. Our reference
implementation is available on github2 to simplify the
adoption of our technique. Note that our results are sensitive
for the choice of the dexel direction, since it will lead to
different discretizations. In our experiments, we manually
select this direction. For 3D printing applications, Livesu et al.
[5] [Section 3.2] give an overview of algorithms computing
an optimized direction to increase the fidelity of the printing
process.

Baseline Comparison. We implemented a simple brute-
force dilation algorithm (on the dexel grid) to verify the

2. https://github.com/geometryprocessing/voroffset

correctness of our implementation, and to demonstrate the
benefits of our technique. In the brute-force algorithm, each
segment in the input dexel structure generates an explicit
list of dilated segments in a disk of radius r around it,
and all overlapping segments are merged in the output
data structure. Figure 15 compares the two methods using
a different number of threads, and with respect to both
grid size and dilation radius. In all cases, our algorithm
is, as expected, superior not only asymptotically but also
for a fixed grid size or dilation radius. Since each slice can
be treated independently in our two-stage dilation process,
our algorithm is embarrassingly parallel, and scales almost
linearly with the number of threads used.

We note that the asymptotic time complexity observed in
Figure 15 agrees with our analysis in Section 3.4. Indeed,
the dexel grid has a number of dexel n ∝ s2 is proportional
to the squared grid size s2, while the (absolute) dilation
radius rabs ∝ srrel grows linearly with the grid size. Since
the complexity analysis in Section 3.4 uses a dilation radius
r expressed in dexel units, the observed asymptotic rate of
≈ 3 indicates that our method is indeed O(s3).

300 400 500 600 700 800 900 1000

Grid Size

0

100

200

300

400

500
Ti

m
e

(s
)

Ours with 1 threads
Ours with 3 threads
Ours with 6 threads
Brute force with 1 threads
Brute force with 3 threads
Brute force with 6 threads

1000400 600

Grid Size

101

102

µ = 2.97

µ = 3.79

0.04 0.06 0.08 0.10

Dilation Radius

0

25

50

75

100

125

Ti
m

e
(s

)

1e-013e-02 4e-02 6e-02

Dilation Radius

101

102
µ = 0.88

µ = 1.81

Fig. 15. Total running time averaged on 11 testing models, compared
with a direct brute-force implementation. Standard deviation is shown in
overlay, and convergence rate µ are reported in the log-log plots. Radii
are relative to the grid size. The top row uses a relative radius of 0.05,
and the bottom row uses a grid size of 5122.

Dilation and Erosion. In Figure 16, we compare the perfor-
mance of the dilation and erosion operator on a small data
set of 11 models, provided in the supplemental material. The
dilation operator has a higher cost than the erosion, both
asymptotically and in absolute running time. This is because
the erosion operator reduces the number of dexels, leading
to a considerable speedup.

Comparison with Wang et al. [9]. The most closely related
work on offset from ray-reps representations is Wang et al.
[9]. It proposes to perform an offset from a LDI sampled from
three orthogonal directions. The offset is computed as the
union of spheres sampled at the endpoints of each segment
from all three directions at once. In contrast, our method
relies on a single dexel structure, which has both advantages
and drawbacks. It is applicable in a situation where only one
view is available, or where one view is enough to describe
the model (e.g., modeling for additive manufacturing [12]).

https://github.com/geometryprocessing/voroffset
https://github.com/geometryprocessing/voroffset

REFERENCES 9

500 750 1000 1250 1500 1750 2000

Grid Size

0

200

400

600

800
Ti

m
e

(s
)

Dilation, r = 0.025

Dilation, r = 0.05

Erosion, r = 0.025

Erosion, r = 0.05

1000400 600 2000

Grid Size

100

101

102

103

µ = 2.53

µ = 2.89

µ = 1.93

µ = 1.94

Fig. 16. Total running time for the dilation and erosion operators, for
two different radii. Standard deviation is shown in overlay and the
convergence rate µ is reported in a log-log plot.

The drawback is that it is less precise on the orthogonal
directions (where the 3-views LDI will have more precise
samples). However, the difference are minor, as shown in
the comparison in Figure 17.

We report a performance comparison in Figure 18, where
we compared our 6-core CPU version (running on a Intel®

Core™ i7-5930K) with their GPU implementation [9] (run-
ning on a GTX 1060). The timings of the two implementa-
tions are comparable, suggesting that our CPU implemen-
tation is competitive even with their GPU implementation.
Their implementation runs out of memory for the larger
resolution (20483), while our implementation successfully
computes the dilation.

Extending our method to the GPU is a challenging and
notable venue for future work, that could enable real-time
offsetting on large and complex dexel structures.

Comparison with Campen et al. [20]. In Figure 17, we
compare our dilation algorithm (based on a dexel data
structure) and [20] (based on an octree), matching their
parameters to get a similar final accuracy. Their running
time is higher and depends on the input complexity (45 s
for Octa-flower, 519 s for Vase, and 2294 s for Filigree). We
computed the Hausdorff distance between our result and
theirs (Figure 17). In all cases the error remains in the order of
the voxel/dexel size used for the discretization. Our results
are visually indistinguishable from theirs, but are computed
at a small fraction of the cost.

Topological Cleaning. Our efficient dilation and erosion
operators can be combined to obtain efficient opening and
closing operators (Figure 19). For example, the closing
operation can be used to remove topological noise, i.e., small
handles, by first dilating the shape by a fixed offset, and
then partially undoing it using erosion. While most regions
of the object will recover their original shape, small holes
and sharp features will not, providing an effective way to
simplify the topology.

Scalability. The compactness of the dexel representation
enables us to represent and process immense volumes
on normal desktop computers. An example is shown in
Figure 20 for the erosion operation. Note that the results
on the right have a resolution sufficiently high to hide
the dexels: this resolution would be prohibitive with a
traditional boundary or voxel representation (Figure 18).

3D Printing. The Boolean difference between a dilation and
erosion of a shape produces a shell of controllable thickness.

This operation is useful in 3D printing applications, since
the interior of an object is usually left void (or filled with
support structures) to save material. Another typical use case
for creating thick shells out of a surface mesh is the creation
of molds [61]. We show a high resolution example of this
procedure in Figure 1, and we fabricated the computed shell
using PLA plastic on an Ultimaker 3 printer.

Limitations. The main limitation of our method comes from
the uneven sampling of the dexel data structure in a single
direction (e.g., the flat areas on the sides of the reconstructed
models in Figure 17). While this is not a problem if the
application only needs a certain resolution to begin with (e.g.,
3D printing or CT scans), it is not optimal for the purpose
of reconstructing an output mesh, where other approaches
such as [20, 9] will lead to a higher fidelity. We could use our
method with a dexelized structure in 3 orthogonal directions
(similar to LDI [13]), and reconstruct the output surface
using [60], but this will lead to a threefold increase of the
running times.

5 FUTURE WORK AND CONCLUDING REMARKS

Our current algorithm is restricted to uniform morphological
operations. It would be worthwhile to extend it to single
direction thickening (for example in the normal direction
only) or to directly work on a LDI offset, i.e., representing the
shape with 3 dexel representations, one for each axis. A GPU
implementation of our technique would likely provide a
sufficient speedup to enable real-time processing of ray-reps
representation at the resolution typically used by modern
3D printers.

We proposed an algorithm to efficiently compute morpho-
logical operations on ray-rep representations, targeting in
particular the generation of surface offsets. Beside offering
theoretical insights on power diagrams and their application
to surface offsets, our algorithm is simple, robust, and
efficient: it is an ideal tool in 3D printing applications, since
it can directly process voxel or dexel representations to
filter out topological noise or extract volumetric shells from
boundary representations.

ACKNOWLEDGMENTS

This work was supported in part by the NSF CAREER award
IIS-1652515, the NSF grant OAC-1835712, a gift from Adobe,
and a gift from nTopology.

REFERENCES

[1] J. Williams and J. Rossignac, “Mason: Morphological
simplification,” Graphical Models, vol. 67, no. 4, pp. 285–
303, Jul. 2005. DOI: 10.1016/j.gmod.2004.10.001.

[2] O. Sigmund, “Morphology-based black and white
filters for topology optimization,” Structural and Mul-
tidisciplinary Optimization, vol. 33, no. 4-5, pp. 401–424,
Jan. 2007. DOI: 10.1007/s00158-006-0087-x.

https://doi.org/10.1016/j.gmod.2004.10.001
https://doi.org/10.1007/s00158-006-0087-x

REFERENCES 10

Model Campen et al. [20] Wang et al. [9] Ours

r1

dH = 1.85e−1 dH = 1.60e−1

r2

dH = 1.61e−1 dH = 1.46e−1

r1

dH = 7.48e−2 dH = 7.82e−2

r2

dH = 8.83e−2 dH = 9.51e−2

r1

dH = 1.56e−1

N/A

r2

dH = 1.15e−1

N/A

Fig. 17. Quality comparison between [20, 9], and our method. The dilation radii r1 and r2 are set to 0.025d and 0.05d respectively, where d is the
bounding box diagonal of each model. The zoom insert corresponds to the red frame on each picture. Both [9] and our method use a discretization of
1024 dexels. The Hausdorff distance dH between each result and ours is shown under the zoomed pictures, and is expressed as a percentage of the
bounding box diagonal. Note that the error corresponds roughly to the dexel size used for the discretization. The surface from [20] is reconstructed
by marching on cells of an octree, and [9] uses dual-contouring with normal information. For shading purposes, we show in our full-view a surface
reconstructed from the dexel samples using [60], while our zoomed view shows the raw dexels. Results for the vase using [9] is unavailable due to a
crash in the reference implementation provided by the authors.

REFERENCES 11

Radius Resolution Wang et al. [9] OursNormal Successive
Fi

lig
re

e

512 4.94 2.25 1.26
r1 1024 73.85 12.55 9.96

2048 - - 88.97

512 10.96 3.64 2.14
r2 1024 176.65 22.94 19.04

2048 - - 280.96

O
ct

a-
flo

w
er

512 5.93 1.20 2.39
r1 1024 90.17 8.90 22.41

2048 - - 322.34

512 13.68 2.53 5.04
r2 1024 224.40 19.52 54.99

2048 - - 1649.56

V
as

e

512 - - 1.38
r1 1024 - - 12.24

2048 - - 131.13

512 15.71 - 2.57
r2 1024 - - 25.61

2048 - - 524.90

Fig. 18. Timing (s) comparisons with [9] across different dexel resolutions.
Dilation radii r1 and r2 are set to 0.025d and 0.05d respectively, where
d is the diagonal of bounding box of the model. The two columns
for [9] corresponds to the “GPU Primary” and “GPU SH+P+Succ” in
their Table 2 respectively. A “-” indicates that the program terminated
with an error (crash or went out of memory). [9] ran on a GeForce
GTX 1060, while our comparisons on a 6-core Intel® Core™ i7-5930K
CPU. Our multi-thread CPU implementation is competitive with a GPU
implementation, while scaling to higher resolutions thanks to the memory
efficient dexel data structure.

[3] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zach-
mann, L. Raghupathi, A. Fuhrmann, M. .-.-P. Cani,
F. Faure, N. Magnenat-Thalmann, W. Strasser, and
P. Volino, “Collision detection for deformable objects,”
Computer Graphics Forum, vol. 24, no. 1, pp. 61–81, Mar.
2005. DOI: 10.1111/j.1467-8659.2005.00829.x.

[4] P. Maragos and R. Schafer, “Morphological skeleton
representation and coding of binary images,” IEEE
Transactions on Acoustics, Speech, and Signal Processing,
vol. 34, no. 5, pp. 1228–1244, Oct. 1986. DOI: 10.1109/
tassp.1986.1164959.

[5] M. Livesu, S. Ellero, J. Martínez, S. Lefebvre, and M.
Attene, “From 3D models to 3D prints: An overview
of the processing pipeline,” Computer Graphics Forum,
vol. 36, no. 2, pp. 537–564, May 2017. DOI: 10.1111/cgf.
13147.

[6] S. Hornus, S. Lefebvre, J. Dumas, and F. Claux,
“Tight printable enclosures and support structures
for additive manufacturing,” in Eurographics Workshop
on Graphics for Digital Fabrication, The Eurographics
Association, 2016, ISBN: 978-3-03868-003-1. DOI: 10 .
2312/gdf.20161074.

[7] P. Hachenberger, “Exact minkowksi sums of polyhedra
and exact and efficient decomposition of polyhedra
in convex pieces,” in Proceedings of the 15th Annual
European Conference on Algorithms, ser. ESA’07, Eilat,
Israel: Springer-Verlag, 2007, pp. 669–680.

[8] W. Meng, S. Chen, Z. Shu, S.-Q. Xin, H. Fu, and
C. Tu, “Efficiently computing feature-aligned and
high-quality polygonal offset surfaces,” Computers &
Graphics, Jul. 2017. DOI: 10.1016/j.cag.2017.07.003.

[9] C. C. L. Wang and D. Manocha, “Gpu-based offset
surface computation using point samples,” Computer-
Aided Design, vol. 45, no. 2, pp. 321–330, Feb. 2013. DOI:
10.1016/j.cad.2012.10.015.

[10] J. Martínez, S. Hornus, F. Claux, and S. Lefebvre,
“Chained segment offsetting for ray-based solid repre-
sentations,” Computers & Graphics, vol. 46, pp. 36–47,
Feb. 2015. DOI: 10.1016/j.cag.2014.09.017.

[11] T. Van Hook, “Real-time shaded nc milling display,”
in Proceedings of the 13th annual conference on Computer
graphics and interactive techniques - SIGGRAPH ’86,
Association for Computing Machinery (ACM), 1986.
DOI: 10.1145/15922.15887.

[12] S. Lefebvre, “Icesl: A gpu accelerated csg modeler and
slicer,” in AEFA’13, 18th European Forum on Additive
Manufacturing, 2013. eprint: http://webloria.loria.fr/
~slefebvr/icesl/icesl-whitepaper.pdf.

[13] P. Huang, C. C. L. Wang, and Y. Chen, “Algorithms for
layered manufacturing in image space,” in Advances
in Computers and Information in Engineering Research,
Volume 1, ASME Press, 2014. DOI: 10.1115/1.860328_
ch15.

[14] Q. Zhou, E. Grinspun, D. Zorin, and A. Jacobson,
“Mesh arrangements for solid geometry,” ACM Trans-
actions on Graphics, vol. 35, no. 4, pp. 1–15, Jul. 2016.
DOI: 10.1145/2897824.2925901.

[15] C. Fan, J. Luo, J. Liu, and Y. Xu, “Half-plane voronoi
diagram,” in 2011 Eighth International Symposium on
Voronoi Diagrams in Science and Engineering, Institute
of Electrical & Electronics Engineers (IEEE), Jun. 2011.
DOI: 10.1109/isvd.2011.25.

[16] A. Meijster, J. B. T. M. Roerdink, and W. H. Hesselink,
“A general algorithm for computing distance trans-
forms in linear time,” in Mathematical Morphology and
its Applications to Image and Signal Processing, Kluwer
Academic Publishers, 2002, pp. 331–340. DOI: 10.1007/
0-306-47025-x_36.

[17] W. Jung, H. Shin, and B. K. Choi, “Self-intersection
removal in triangular mesh offsetting,” Computer-Aided
Design and Applications, vol. 1, no. 1-4, pp. 477–484, Jan.
2004. DOI: 10.1080/16864360.2004.10738290.

[18] M. Campen and L. Kobbelt, “Exact and robust (self-
)intersections for polygonal meshes,” Computer Graph-
ics Forum, vol. 29, no. 2, pp. 397–406, May 2010. DOI:
10.1111/j.1467-8659.2009.01609.x.

[19] P. Hachenberger, “3D minkowski sum of polyhedra,”
in CGAL User and Reference Manual, 4.13, CGAL
Editorial Board, 2018. [Online]. Available: https : / /
doc . cgal . org / 4 . 13 / Manual / packages . html #
PkgMinkowskiSum3Summary.

[20] M. Campen and L. Kobbelt, “Polygonal boundary
evaluation of minkowski sums and swept volumes,”
Computer Graphics Forum, vol. 29, no. 5, pp. 1613–1622,
Sep. 2010. DOI: 10.1111/j.1467-8659.2010.01770.x.

[21] P. Musialski, T. Auzinger, M. Birsak, M. Wimmer, and
L. Kobbelt, “Reduced-order shape optimization using

https://doi.org/10.1111/j.1467-8659.2005.00829.x
https://doi.org/10.1109/tassp.1986.1164959
https://doi.org/10.1109/tassp.1986.1164959
https://doi.org/10.1111/cgf.13147
https://doi.org/10.1111/cgf.13147
https://doi.org/10.2312/gdf.20161074
https://doi.org/10.2312/gdf.20161074
https://doi.org/10.1016/j.cag.2017.07.003
https://doi.org/10.1016/j.cad.2012.10.015
https://doi.org/10.1016/j.cag.2014.09.017
https://doi.org/10.1145/15922.15887
http://webloria.loria.fr/~slefebvr/icesl/icesl-whitepaper.pdf
http://webloria.loria.fr/~slefebvr/icesl/icesl-whitepaper.pdf
https://doi.org/10.1115/1.860328_ch15
https://doi.org/10.1115/1.860328_ch15
https://doi.org/10.1145/2897824.2925901
https://doi.org/10.1109/isvd.2011.25
https://doi.org/10.1007/0-306-47025-x_36
https://doi.org/10.1007/0-306-47025-x_36
https://doi.org/10.1080/16864360.2004.10738290
https://doi.org/10.1111/j.1467-8659.2009.01609.x
https://doc.cgal.org/4.13/Manual/packages.html#PkgMinkowskiSum3Summary
https://doc.cgal.org/4.13/Manual/packages.html#PkgMinkowskiSum3Summary
https://doc.cgal.org/4.13/Manual/packages.html#PkgMinkowskiSum3Summary
https://doi.org/10.1111/j.1467-8659.2010.01770.x

REFERENCES 12

Input Dilation Erosion Opening Closing

Fig. 19. Topological cleaning of an input shape via morphological operations, using a grid of 256× 256 dexels. A hires zoomed-in view of the framed
area is shown atop each result.

Input Surface Grid Size 1282

0.06 s
Grid Size 2562

0.23 s
Grid Size 5122

1.7 s
Grid Size 10242

12.03 s
Grid Size 20482

110.98 s

Fig. 20. Result of an erosion operation using different grid resolutions.

offset surfaces,” ACM Transactions on Graphics, vol. 34,
no. 4, 102:1–102:9, Jul. 2015. DOI: 10.1145/2766955.

[22] G. Varadhan and D. Manocha, “Accurate minkowski
sum approximation of polyhedral models,” Graphical
Models, vol. 68, no. 4, pp. 343–355, Jul. 2006. DOI: 10.
1016/j.gmod.2005.11.003.

[23] M. Peternell and T. Steiner, “Minkowski sum bound-
ary surfaces of 3D-objects,” Graphical Models, vol. 69,
no. 3-4, pp. 180–190, May 2007. DOI: 10.1016/j.gmod.
2007.01.001.

[24] D. Pavić and L. Kobbelt, “High-resolution volumetric
computation of offset surfaces with feature preserva-
tion,” Computer Graphics Forum, vol. 27, no. 2, pp. 165–
174, Apr. 2008. DOI: 10.1111/j.1467-8659.2008.01113.x.

[25] S. Liu and C. C. L. Wang, “Fast intersection-free
offset surface generation from freeform models with
triangular meshes,” IEEE Transactions on Automation
Science and Engineering, vol. 8, no. 2, pp. 347–360, Apr.
2011. DOI: 10.1109/tase.2010.2066563.

[26] S. Calderon and T. Boubekeur, “Point morphology,”
ACM Transactions on Graphics, vol. 33, no. 4, pp. 1–13,
Jul. 2014. DOI: 10.1145/2601097.2601130.

[27] Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, and
C. Yang, “On centroidal voronoi tessellation—energy
smoothness and fast computation,” ACM Transactions

on Graphics, vol. 28, no. 4, pp. 1–17, Aug. 2009. DOI:
10.1145/1559755.1559758.

[28] S.-Q. Xin, B. Lévy, Z. Chen, L. Chu, Y. Yu, C. Tu, and
W. Wang, “Centroidal power diagrams with capacity
constraints,” ACM Transactions on Graphics, vol. 35,
no. 6, pp. 1–12, Nov. 2016. DOI: 10 . 1145 / 2980179 .
2982428.

[29] S. Fortune, “A sweepline algorithm for voronoi dia-
grams,” Algorithmica, vol. 2, no. 1-4, pp. 153–174, Nov.
1987. DOI: 10.1007/bf01840357.

[30] F. Aurenhammer, “Power diagrams: Properties, algo-
rithms and applications,” SIAM Journal on Computing,
vol. 16, no. 1, pp. 78–96, Feb. 1987. DOI: 10 . 1137 /
0216006.

[31] L. Lu, B. Lévy, and W. Wang, “Centroidal voronoi
tessellation of line segments and graphs,” Computer
Graphics Forum, vol. 31, no. 2pt4, pp. 775–784, May
2012. DOI: 10.1111/j.1467-8659.2012.03058.x.

[32] C. R. Maurer, R. Qi, and V. Raghavan, “A linear
time algorithm for computing exact euclidean distance
transforms of binary images in arbitrary dimensions,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 25, no. 2, pp. 265–270, Feb. 2003. DOI:
10.1109/tpami.2003.1177156.

[33] R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno,
“2D euclidean distance transform algorithms: A com-

https://doi.org/10.1145/2766955
https://doi.org/10.1016/j.gmod.2005.11.003
https://doi.org/10.1016/j.gmod.2005.11.003
https://doi.org/10.1016/j.gmod.2007.01.001
https://doi.org/10.1016/j.gmod.2007.01.001
https://doi.org/10.1111/j.1467-8659.2008.01113.x
https://doi.org/10.1109/tase.2010.2066563
https://doi.org/10.1145/2601097.2601130
https://doi.org/10.1145/1559755.1559758
https://doi.org/10.1145/2980179.2982428
https://doi.org/10.1145/2980179.2982428
https://doi.org/10.1007/bf01840357
https://doi.org/10.1137/0216006
https://doi.org/10.1137/0216006
https://doi.org/10.1111/j.1467-8659.2012.03058.x
https://doi.org/10.1109/tpami.2003.1177156

13

parative survey,” ACM Computing Surveys, vol. 40,
no. 1, pp. 1–44, Feb. 2008. DOI: 10 . 1145 / 1322432 .
1322434.

[34] A. Tagliasacchi, T. Delame, M. Spagnuolo, N. Amenta,
and A. Telea, “3d skeletons: A state-of-the-art report,”
Computer Graphics Forum, vol. 35, no. 2, pp. 573–597,
May 2016. DOI: 10.1111/cgf.12865.

[35] L. Lam, S. .-.-W. Lee, and C. Y. Suen, “Thinning
methodologies-a comprehensive survey,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 14,
no. 9, pp. 869–885, 1992. DOI: 10.1109/34.161346.

[36] L. Liu, E. W. Chambers, D. Letscher, and T. Ju, “A sim-
ple and robust thinning algorithm on cell complexes,”
Computer Graphics Forum, vol. 29, no. 7, pp. 2253–2260,
Sep. 2010. DOI: 10.1111/j.1467-8659.2010.01814.x.

[37] N. Amenta, S. Choi, and R. K. Kolluri, “The power
crust, unions of balls, and the medial axis transform,”
Computational Geometry, vol. 19, no. 2-3, pp. 127–153,
Jul. 2001. DOI: 10.1016/s0925-7721(01)00017-7.

[38] D. Attali, J.-D. Boissonnat, and H. Edelsbrunner, “Sta-
bility and computation of medial axes - a state-of-the-
art report,” in Mathematics and Visualization, Springer
Science + Business Media, 2009, pp. 109–125. DOI: 10.
1007/b106657_6.

[39] Y. Yan, K. Sykes, E. Chambers, D. Letscher, and T.
Ju, “Erosion thickness on medial axes of 3D shapes,”
ACM Transactions on Graphics, vol. 35, no. 4, pp. 1–12,
Jul. 2016. DOI: 10 . 1145 / 2897824 . 2925938. [Online].
Available: https://doi.org/10.1145/2897824.2925938.

[40] Y. Yan, D. Letscher, and T. Ju, “Voxel cores,” ACM
Transactions on Graphics, vol. 37, no. 4, pp. 1–13, Jul.
2018. DOI: 10.1145/3197517.3201396. [Online]. Avail-
able: https://doi.org/10.1145/3197517.3201396.

[41] J. Shade, S. Gortler, L.-w. He, and R. Szeliski, “Layered
depth images,” in Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques -
SIGGRAPH ’98, Association for Computing Machinery
(ACM), 1998. DOI: 10.1145/280814.280882.

[42] L. Carpenter, “The a-buffer, an antialiased hidden
surface method,” in Proceedings of the 11th annual con-
ference on Computer graphics and interactive techniques -
SIGGRAPH ’84, Association for Computing Machinery
(ACM), 1984. DOI: 10.1145/800031.808585.

[43] M. Maule, J. L. Comba, R. P. Torchelsen, and R. Bastos,
“A survey of raster-based transparency techniques,”
Computers & Graphics, vol. 35, no. 6, pp. 1023–1034,
Dec. 2011. DOI: 10.1016/j.cag.2011.07.006.

[44] T. Saito and T. Takahashi, “Nc machining with g-buffer
method,” ACM SIGGRAPH Computer Graphics, vol. 25,
no. 4, pp. 207–216, Jul. 1991. DOI: 10 .1145/127719 .
122741.

[45] C. C. L. Wang, Y.-S. Leung, and Y. Chen, “Solid
modeling of polyhedral objects by layered depth-
normal images on the gpu,” Computer-Aided Design,
vol. 42, no. 6, pp. 535–544, Jun. 2010. DOI: 10.1016/j.
cad.2010.02.001.

[46] E. E. Hartquist, J. P. Menon, K. Suresh, H. B. Voelcker,
and J. Zagajac, “A computing strategy for applications
involving offsets, sweeps, and minkowski operations,”
Computer-Aided Design, vol. 31, no. 3, pp. 175–183, Mar.
1999. DOI: 10.1016/s0010-4485(99)00014-7.

[47] K. C. Hui, “Solid sweeping in image
space—application in nc simulation,” The Visual
Computer, vol. 10, no. 6, pp. 306–316, Jun. 1994. DOI:
10.1007/bf01900825.

[48] Y. Chen and C. C. L. Wang, “Uniform offsetting of
polygonal model based on layered depth-normal im-
ages,” Computer-Aided Design, vol. 43, no. 1, pp. 31–46,
Jan. 2011. DOI: 10.1016/j.cad.2010.09.002.

[49] M. van Kreveld and W. van Toll, Lecture notes in
geometric algorithms, slides 7b, Apr. 2017. [Online].
Available: http://www.cs.uu.nl/docs/vakken/ga/.

[50] M. Held, “VRONI: An engineering approach to the
reliable and efficient computation of voronoi diagrams
of points and line segments,” Computational Geometry,
vol. 18, no. 2, pp. 95–123, Mar. 2001. DOI: 10 .1016/
s0925-7721(01)00003-7.

[51] M. Held and S. Huber, “Topology-oriented incremen-
tal computation of voronoi diagrams of circular arcs
and straight-line segments,” Computer-Aided Design,
vol. 41, no. 5, pp. 327–338, May 2009. DOI: 10.1016/j.
cad.2008.08.004.

[52] Boost, The Boost.Polygon Library, https://www.boost.
org/doc/libs/1_69_0/libs/polygon/doc/index.htm,
2010.

[53] A. Wallin, OpenVoronoi, https://github.com/aewallin/
openvoronoi, 2018.

[54] M. Karavelas, “2d segment delaunay graphs,” in
CGAL User and Reference Manual, 4.13, CGAL Ed-
itorial Board, 2018. [Online]. Available: https : / /
doc . cgal . org / 4 . 13 / Manual / packages . html #
PkgSegmentDelaunayGraph2Summary.

[55] F. Aurenhammer, B. Jüttler, and G. Paulini, “Voronoi
diagrams for parallel halflines and line segments in
space,” en, 2017. DOI: 10.4230/lipics.isaac.2017.7.

[56] A. Jacobson, L. Kavan, and O. Sorkine-Hornung, “Ro-
bust inside-outside segmentation using generalized
winding numbers,” ACM Transactions on Graphics,
vol. 32, no. 4, p. 1, Jul. 2013. DOI: 10.1145/2461912.
2461916.

[57] G. Barill, N. G. Dickson, R. Schmidt, D. I. W. Levin, and
A. Jacobson, “Fast winding numbers for soups and
clouds,” ACM Transactions on Graphics, vol. 37, no. 4,
pp. 1–12, Jul. 2018. DOI: 10.1145/3197517.3201337.

[58] G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen.
tuxfamily.org, 2010.

[59] J. Reinders, Intel Threading Building Blocks - Outfitting
C++ for Multi-core Processor Parallelism. O’Reilly Media,
Mar. 2010, pp. I–XXV, 1–303, ISBN: 978-0-596-51480-8.

[60] D. Boltcheva and B. Lévy, “Surface reconstruction
by computing restricted voronoi cells in parallel,”
Computer-Aided Design, vol. 90, pp. 123–134, Sep. 2017.
DOI: 10.1016/j.cad.2017.05.011.

[61] L. Malomo, N. Pietroni, B. Bickel, and P. Cignoni,
“Flexmolds: Automatic design of flexible shells for
molding,” ACM Transactions on Graphics, vol. 35, no. 6,
pp. 1–12, Nov. 2016. DOI: 10.1145/2980179.2982397.

https://doi.org/10.1145/1322432.1322434
https://doi.org/10.1145/1322432.1322434
https://doi.org/10.1111/cgf.12865
https://doi.org/10.1109/34.161346
https://doi.org/10.1111/j.1467-8659.2010.01814.x
https://doi.org/10.1016/s0925-7721(01)00017-7
https://doi.org/10.1007/b106657_6
https://doi.org/10.1007/b106657_6
https://doi.org/10.1145/2897824.2925938
https://doi.org/10.1145/2897824.2925938
https://doi.org/10.1145/3197517.3201396
https://doi.org/10.1145/3197517.3201396
https://doi.org/10.1145/280814.280882
https://doi.org/10.1145/800031.808585
https://doi.org/10.1016/j.cag.2011.07.006
https://doi.org/10.1145/127719.122741
https://doi.org/10.1145/127719.122741
https://doi.org/10.1016/j.cad.2010.02.001
https://doi.org/10.1016/j.cad.2010.02.001
https://doi.org/10.1016/s0010-4485(99)00014-7
https://doi.org/10.1007/bf01900825
https://doi.org/10.1016/j.cad.2010.09.002
http://www.cs.uu.nl/docs/vakken/ga/
https://doi.org/10.1016/s0925-7721(01)00003-7
https://doi.org/10.1016/s0925-7721(01)00003-7
https://doi.org/10.1016/j.cad.2008.08.004
https://doi.org/10.1016/j.cad.2008.08.004
https://www.boost.org/doc/libs/1_69_0/libs/polygon/doc/index.htm
https://www.boost.org/doc/libs/1_69_0/libs/polygon/doc/index.htm
https://github.com/aewallin/openvoronoi
https://github.com/aewallin/openvoronoi
https://doc.cgal.org/4.13/Manual/packages.html#PkgSegmentDelaunayGraph2Summary
https://doc.cgal.org/4.13/Manual/packages.html#PkgSegmentDelaunayGraph2Summary
https://doc.cgal.org/4.13/Manual/packages.html#PkgSegmentDelaunayGraph2Summary
https://doi.org/10.4230/lipics.isaac.2017.7
https://doi.org/10.1145/2461912.2461916
https://doi.org/10.1145/2461912.2461916
https://doi.org/10.1145/3197517.3201337
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://doi.org/10.1016/j.cad.2017.05.011
https://doi.org/10.1145/2980179.2982397

14

Zhen Chen is a first year PhD student at the
Department of Computer Science in the Univer-
sity of Texas at Austin. He earned his Bachelor
degree in Computational Mathematics at the
University of Science and Technology of China
in 2018. From June to August 2017, he has
been a visiting student at the Courant Institute
of Mathematical Sciences (New York University,
USA). His research interests are 3D printing,
geometry processing and shell deformation.

Daniele Panozzo Daniele Panozzo is an as-
sistant professor of computer science at the
Courant Institute of Mathematical Sciences in
New York University. Prior to joining NYU he was
a postdoctoral researcher at ETH Zurich (2012–
2015). He earned his PhD in Computer Science
from the University of Genova (2012) and his
doctoral thesis received the EUROGRAPHICS
Award for Best PhD Thesis (2013). He received
the EUROGRAPHICS Young Researcher Award
in 2015 and the NSF CAREER Award in 2017.

Daniele is leading the development of libigl (https://github.com/libigl/
libigl), an award-winning (EUROGRAPHICS Symposium of Geometry
Processing Software Award, 2015) open-source geometry process-
ing library that supports academic and industrial research and prac-
tice. Daniele is chairing the Graphics Replicability Stamp (http://www.
replicabilitystamp.org), which is an initiative to promote reproducibility
of research results and to allow scientists and practitioners to immedi-
ately benefit from state-of-the-art research results. Daniele’s research
interests are in digital fabrication, geometry processing, architectural
geometry, and discrete differential geometry.

Jérémie Dumas Jérémie Dumas is a research
engineer at nTopology in New York. Prior to
joining nTopology Inc. he was a postdoctoral
fellow at the Courant Institute of Mathematical
Sciences in New York University. Jérémie com-
pleted his PhD at INRIA Nancy Grand-Est in
2017, under the direction of Sylvain Lefebvre. His
doctoral thesis received the EUROGRAPHICS
Award for Best PhD Thesis (2018). His work
focuses on shape synthesis for digital fabrication,
shape optimization, simulation, microstructures,

and procedural synthesis.

APPENDIX A
VORONOI VERTEX BETWEEN THREE PARALLEL
SEGMENTS IN 2D

The bisector of two parallel segment seeds is 2D is a
piecewise-quadratic curve, as illustrated in Figure 9. A
Voronoi vertex is a point at the intersection of the bisector
curves between three segment seeds. Because the segment
seeds are non-overlapping, the Voronoi vertex can be either
between three points (Section A.1) or between one segment
and two points (Section A.2).

A.1 Voronoi Vertex between Three Points

Let p1,p2,p3 be three points, with coordinates pi = (yi, zi).
A point p lying on the bisector of (p1,p2) satisfies

‖p− p1‖
2

= ‖p− p2‖
2

⇐⇒ (y − y1)2 + (z − z1)2 = (y − y2)2 + (z − z2)2
(7)

After simplification, we get

2(y2 − y1)y + 2(z2 − z1)z = (y22 + z22)− (y21 + z21) (8)

Similarly, for a point lying on the bisector of (p2,p3),

2(y3 − y2)y + 2(z3 − z2)z = (y23 + z23)− (y22 + z22) (9)

We can get the coordinate of Voronoi vertex between three
points by solving the system formed by Equations (8) and (9):

2

y2 − y1 z2 − z1
y3 − y2 z3 − z2

y
z

 =

(y22 + z22)− (y21 + z21)
(y23 + z23)− (y22 + z22)


(10)

A.2 Voronoi Vertex between a Segment and Two Points

Let p1(y1, z1), s(ys, z
`
s , z
a
s),p2(y2, z2) be three seeds. We

only need to consider the case where ys < y1 < y2, other
cases are similar. For the Voronoi vertex p = (y, z) to
intersect the bisectors where it is closest to the interior of s,
and not one its endpoints, we need to have z`s < z < zas . It
follows the distance from p to the segment s is:

dist(p, s) = inf
(a,b)∈s

(y − a)2 + (z − b)2

= (y − ys)
2 when (a, b) = (ys, z)

(11)

By definition of the Voronoi vertex,

dist(p, s) = dist(p,p1) (12)
dist(p,p1) = dist(p,p2) (13)

Developing Equation (12), we get

(y − ys)
2 = (y − y1)2 + (z − z1)2

⇐⇒ 2(y1 − ys)y − (z − z1)2 = z21 − y2s
(14)

Similarly, developing Equation (13) leads to

2(y1 − y2)y + 2(z1 − z2)z = (y21 + z21)− (y22 + z22) (15)

https://github.com/libigl/libigl
https://github.com/libigl/libigl
http://www.replicabilitystamp.org
http://www.replicabilitystamp.org

15

Now, let 

u = 2(y1 − ys)

w = −y21 + y2s
a = 2(y1 − y2)

b = 2(z1 − z2)

c = (y21 + z21)− (y22 + z22)

We can rewrite the system of equations as{
uy − (z − z1)2 + w = 0

ay + bz = c
(16)

=⇒ az2 + (bu− 2az1)y + az1 − cu− aw = 0 (17)

Solving Equation (17), if the roots exist, we will have

∆ = (bu− 2a1z)2 − 4a(az21 − cu− aw)

z∗1,2 =
2az1 − bu±

√
∆

2a

Choosing the solution that belongs to [z`s , z
a
s], and substi-

tuting into ay + bz = c, we will get the y-coordinate of our
Voronoi vertex.

APPENDIX B
POWER VERTEX BETWEEN THREE POINTS IN 2D

Let p1(y1, z1; r1),p2(y2, z2; r2),p3(y3, z3; r3) be three seeds.
A power vertex can be computed from the intersection of
two bisector lines.

A point p(y, z) lying on the bisector of (p1,p2) satisfies:

‖p− p1‖
2 − r21 = ‖p− p2‖

2 − r22

⇐⇒ (y1 − y)2 + (z − z1)2 − r21 = (y2 − y)2 + (z − z2)2 − r22

⇐⇒ 2(y2 − y1)y + 2(z2 − z1)z = (y22 + z22 − r22)− (y21 + z21 − r21)
(18)

A similar equation holds for the bisector of (p2,p3). This
translates into the following system of equations:

2

y2 − y1 z2 − z1
y3 − y2 z3 − z2

y
z

 =

(y22 + z22 − r22)− (y21 + z21 − r21)
(y23 + z23 − r23)− (y22 + z22 − r22)


(19)

	Introduction
	Related Work
	Method
	Definitions
	Half-Space Voronoi Diagram of Segments and 2D Offsets
	Half-Space Power Diagram of Points and 3D Offsets
	Complexity Analysis

	Results
	Future Work and Concluding Remarks
	Biographies
	Zhen Chen
	Daniele Panozzo
	Jérémie Dumas

	Appendix A: Voronoi Vertex between Three Parallel Segments in 2D
	Voronoi Vertex between Three Points
	Voronoi Vertex between a Segment and Two Points

	Appendix B: Power Vertex between Three Points in 2D

