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The Finite Element Method (FEM) is widely used to solve discrete Partial
Differential Equations (PDEs) in engineering and graphics applications. The
popularity of FEM led to the development of a large family of variants, most
of which require a tetrahedral or hexahedral mesh to construct the basis.
While the theoretical properties of FEM basis (such as convergence rate,
stability, etc.) are well understood under specific assumptions on the mesh
quality, their practical performance, influenced both by the choice of the basis
construction and quality of mesh generation, have not been systematically
documented for large collections of automatically meshed 3D geometries.

We introduce a set of benchmark problems involving most commonly
solved elliptic PDEs, starting from simple cases with an analytical solution,
moving to commonly used test problem setups, and using manufactured
solutions for thousands of real-world, automatically meshed geometries. For
all these cases, we use state-of-the-art meshing tools to create both tetra-
hedral and hexahedral meshes, and compare the performance of different
element types for common elliptic PDEs.

The goal of his benchmark is to enable comparison of complete FEM
pipelines, from mesh generation to algebraic solver, and exploration of
relative impact of different factors on the overall system performance.

As a specific application of our geometry and benchmark dataset, we ex-
plore the question of relative advantages of unstructured (triangular/tetrahedral)
and structured (quadrilateral/hexahedral) discretizations.We observe that for
Lagrange-type elements, while linear tetrahedral elements perform poorly,
quadratic tetrahedral elements perform equally well or outperform hexa-
hedral elements for our set of problems and currently available mesh gen-
eration algorithms. This observation suggests that for common problems
in structural analysis, thermal analysis, and low Reynolds number flows,
high-quality results can be obtained with unstructured tetrahedral meshes,
which can be created robustly and automatically.

We release the description of the benchmark problems, meshes, and
reference implementation of our testing infrastructure to enable statistically
significant comparisons between different FE methods, which we hope will
be helpful in the development of new meshing and FEA techniques.
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geometry models; Volumetric models; Simulation evaluation.

Authors’ addresses: Teseo Schneider, teseo@uvic.ca, University of Victoria, Canada;
Yixin Hu, New York University, USA; Xifeng Gao, Lightspeed & Quantum Studio,
Tencent America, USA; Jérémie Dumas, Adobe Research, USA; Denis Zorin, New York
University, USA; Daniele Panozzo, New York University, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0730-0301/2022/1-ART1 $15.00
https://doi.org/10.1145/3508372

Additional Key Words and Phrases: Tetrahedral Mesh, Hexahedral Mesh,
Finite Element, Comparison

ACM Reference Format:
Teseo Schneider, YixinHu, XifengGao, JérémieDumas, Denis Zorin, andDaniele
Panozzo. 2022. A Large-Scale Comparison of Tetrahedral and Hexahedral
Elements for Solving Elliptic PDEs with the Finite Element Method. ACM
Trans. Graph. 1, 1, Article 1 (January 2022), 14 pages. https://doi.org/10.1145/
3508372

1 INTRODUCTION
The finite element method (FEM) is commonly used to discretize par-
tial differential equations (PDEs), due to its generality, rich selection
of elements adapted to specific problem types, and wide availability
of commercial implementations. At a high level, a FE analysis code
takes as input the domain boundary, the boundary conditions, and
the governing equations of the phenomena of interest, and computes
the solution everywhere in the domain.
As an initial step in this procedure, the domain typically has to

be discretized in a finite collection of elements. Many choices are
possible, ranging from unstructured grids of tetrahedra to perfectly
regular grids of cubes. Despite the large amount of research on
mesh generation, we were unable to find a systematic study an-
swering a basic question: “What are the practical pros and cons of
using unstructured (triangular/tetrahedral) or structured (quadri-
lateral/hexahedral/grids) discretizations for commonly used elliptic
PDEs?”.
This question is critical to inform the development of meshing

algorithms: while tetrahedral meshes are easier to generate auto-
matically, hexahedral meshes (i.e., meshes that are composed of
only deformed cubes) are much more difficult to adapt to objects
with complex geometries, while maintaining high mesh quality. One
of the arguments motivating development of these more complex
algorithms is a common belief that hexahedral elements yield better
accuracy for a given computational cost (see the introduction of,
e.g., [Bernard et al. 2016; Guo et al. 2020; Lyon et al. 2016]).

The overall aim of our work is to provide an extensive benchmark
for comparing the performance of FE pipelines, including automatic
meshing, FE basis construction, and algebraic system solvers, on
a set of most common elliptic PDEs and a set of realistic geome-
tries. As an immediate application, we explore the performance of
widely used families of elements, coupled with standard solvers, on
a large set of meshes generated using currently available meshing
algorithms.
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More speci�cally, we compare thee�ciency of di�erent elements,
that is, how much time is typically required to obtain a solution
with a given accuracy for di�erent element types on automatically
generated unstructured meshes, on manually and automatically
generated semi-structured meshes, and on regular lattices.

We consider standard Lagrangian bases [Ciarlet 2002a; Szabó and
Babu²ka 1991] of varying degrees, as well as serendipity [Zienkiewicz
et al. 2005] elements (for hexahedra only), which are by far the most
popular brick element. Finally, we perform several comparisons us-
ing spline-based elements [Hughes et al. 2005], which have recently
gained popularity in the IsoGeometric Analysis (IGA) community.
While this clearly does not re�ect the broad range of existing ele-
ment types and PDEs in the literature, it includes the most popular
general-purpose elements currently used in commercial and open-
source FE systems. For solving the resulting linear systems, we
consider both state of the art direct [De Coninck et al. 2016] and
iterative solvers [Falgout and Yang 2002].

We collected a set of test problems of varying complexity for
elliptic PDEs (including Poisson, linear elasticity, Neo-Hookean
elasticity, incompressible elasticity, and incompressible Stokes equa-
tions). Our set includes common simple test problems (where most
of the hex-meshes are grids): beam bending, beam twisting, driven
cavity �ow, planar domain with a hole, elasticity problems with sin-
gular solutions, as well as a large-scale benchmark of manufactured
solutions [Salari and Knupp 2000] on3 200automatically meshed,
real-world, complex 3D models. Our model collection includes both
CAD models and scanned geometries, providing a realistic sampling
of analysis scenarios. We use TetWild [Hu et al. 2020, 2018] and
MeshGems [Spatial 2018] to generate the tetrahedral and hexahedral
meshes respectively (we also included the state-of-the-art meshes
from Hexalab [Bracci et al. 2019]).

This combination of test models, 3D meshes for these models, ele-
ments and solvers is representative of many common FE application
scenarios.

We quantify (to the best of our knowledge, for the �rst time)
the overall performance di�erences between these two families of
elements. Our main conclusion is that, while linear elements on
triangular/tetrahedral meshes exhibit well-known problems, qua-
dratic tetrahedral elements perform similarly or better (i.e., require
similar or less time to compute a solution with a given accuracy)
than Lagrangian elements on semi-structured hexahedral meshes,
and are somewhat inferior (but still competitive, especially consid-
ering tetrahedral meshing is much faster and more robust) to the
performance of spline elements on regular lattices when a direct
solver is used. Combined with available state-of-the-art robust mesh-
ing techniques, quadratic tetrahedral elements are a good choice
to realize a fully automatic pipeline,.e.g., for SciML applications,
or shape optimization, without sacri�cing performance compared
to hexahedral elements, which require far more complex and less
robust mesh generation. More detailed conclusions are presented in
Section 6.

We emphasize that our study is limited to a speci�c set of PDEs,
commonly used geometry-agnostic linear solvers, and state-of-the-
art meshing algorithms; we leave adding dynamic scenarios, multi-
physics, di�erent linear solvers, and other extensions as future work
� the provided framework can be readily extended to these cases. We

also note that adaptive re�nement is simpler for hexahedral meshes
and, as a consequence, adaptive geometric multigrid solvers are
more readily available [Alzetta et al. 2018], although it is possible
to develop similar solvers for tetrahedral meshes [Kohl et al. 2019].
While the outcome of our study should not be interpreted as a
reason to favor tetrahedral discretizations in all situations (and
there are applications of hexahedral meshes outside the scope of
FEM discretizations, such as lattice structure design), it does point
to the need for direct experimental evaluation of meshing strategies,
in the context of speci�c target applications.

We provide the complete source code1 for the integrated analysis
pipelines we tested, the dataset we used2, the benchmark solutions,
and the scripts to reproduce all results3, to enable researchers and
practitioners to easily expand this study to additional mesh types
(such as polyhedral meshes) and bases.

This study is divided into �ve sections: we �rst introduce the
closest related works on meshing and analysis (Section 2). We then
overview the background on mesh types, basis, and the model PDE
that we consider in this study (Section 3). We divide the experimental
evaluation into a set of individual experiments, targeting a set of
common test problems (including problems with singularities) in
Section 4, and then perform a large scale analysis on thousands
of automatically generated meshes in Section 5. We �nally draw
conclusions and identify open challenges in Section 6.

2 RELATED WORK
We �rst review existing comparisons of di�erent types of �nite
elements (Section 2.1), then brie�y discuss commonly used �nite
element software (Section 2.2) and the state-of-the-art meshing
algorithms (Section 2.3).

2.1 FEA on Unstructured and Structured Meshes
To the best of our knowledge, our study is the �rst large-scale
comparison between di�erent commonly used types of elements in
FEM. However, there are multiple existing comparisons focused on
speci�c models and physics.

In [Cifuentes and Kalbag 1992], the authors conclude that qua-
dratic tetrahedral meshes lead to roughly the same accuracy and
time as linear hexahedral meshes, by comparing solutions for sev-
eral simple structural problems. By evaluating the eigenvalues of
the sti�ness matrices of various nonlinear and elastoplastic prob-
lems, [Benzley et al. 1995] reports that, in their study, linear hexahe-
dral meshes are superior to linear tetrahedral meshes. The authors
also show that linear hexahedral meshes are slightly superior to
quadratic tetrahedral meshes in the nonlinear elastoplastic analysis
experiment.

A more recent work, [Tadepalli et al. 2010, 2011], focuses on
modeling footwear with a nonlinear incompressible material model
under shear force loading conditions. The conclusion of these works
is that trilinear hexahedral meshes are superior to linear tetrahedral
meshes, and that quadratic tetrahedral elements are computation-
ally more expensive compared to trilinear hexahedral elements, but

1https://github.com/polyfem/polyfem/
2https://archive.nyu.edu/handle/2451/44221
3https://github.com/polyfem/tet-vs-hex
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have higher accuracy. [Wang et al. 2004] compares tetrahedral and
hexahedral meshes on linear static problems, modal and nonlinear
analysis. The study concludes that quadratic tetrahedral and hexa-
hedral elements have similar performance, but quadratic hexahedra
are computationally more expensive. The same study also con�rms
that linear tetrahedra are too sti� for large deformations, and linear
hexahedra with large corner angles should be avoided in regions
of stress concentration. The study is restricted to a small set of ge-
ometries and focuses on manual hexahedral mesh generation. Our
study instead focuses on automatic meshing algorithms for both
tetrahedral and hexahedral meshes, and we provide experimental
results on thousand of complex geometric models and a wide array
of elliptic PDEs.

In medical applications, results for femur models [Ramos and
Simões 2006] show that linear tetrahedral meshes of the simpli�ed
femur model lead to a closer agreement with the theoretical ones,
while quadratic hexahedral meshes are more stable and the result is
less a�ected by mesh re�nement. On a kidney model, [Bourdin et al.
2007] observes that both linear and quadratic tetrahedral meshes are
slightly sti�er than hexahedral meshes, but are more stable when
high impact energies are present in the simulation. For heart me-
chanics and electrophysiology, [Oliveira and Sundnes 2016] notes
that quadratic hexahedra are slightly better than quadratic tetrahe-
dra in the mechanics regime, while linear tetrahedral meshes are
the best choice for the electrophysiology problem.

2.2 Finite Element Analysis So�ware
There exists a large number of libraries and software for �nite-
element analysis, both open-source and commercial. An exhaustive
comparison of all existing packages4 is beyond the scope of this
paper, therefore we discuss only several representative packages.
We point out an interesting project [Ladutenko 2018] attempting to
maintain a complete list of FEA packages with a list of characteris-
tics.

Our goal is to investigate and compare the performance of FEM
on meshes with tetrahedral and hexahedral elements, using the
standard Lagrangian basis functions and serendipity elements com-
monly used in engineering applications, as well as spline elements
used in IGA.

Open-source packages such as FEniCS [Alnæs et al. 2015], Get-
FEM++ [Renard and Pommier 2018], libMesh [Kirk et al. 2006],
and MFEM [MFEM 2020] support both tetrahedral and hexahe-
dral meshes, although very few (e.g., libMesh) implement both the
20-(serendipity) and 27-nodes variant for quadratic hexahedral ele-
ments. Deal.II [Alzetta et al. 2018] is another popular open-source
FEA library, however it only supports quadrilateral and hexahe-
dral elements. Commercials packages such as ANSYS [ANSYS Inc.

4A non-exhaustive list of open-source FEA packages known to the authors include,
in alphabetical order, code_aster [EDF 2018], Deal.II [Alzetta et al. 2018], DOLFIN
(FEniCS) [Alnæs et al. 2015], ElmerFEM [Elmer 2018], FEATool Multiphysics (MAT-
LAB) [Ltd. 2019], Feel++ [Prud'homme et al. 2012], FEI (Trilinos) [Heroux et al. 2005],
Firedrake [McRae et al. 2016], FreeFEM++ [Hecht 2012], GetDP [Geuzaine 2008], Get-
FEM++ [Renard and Pommier 2018], libMESH [Kirk et al. 2006], MFEM [MFEM 2020],
Nektar++ [Cantwell et al. 2015], NGSolve [Schöberl 2014], OOFEM [Patzák 2012],
PolyFEM [Schneider et al. 2019b], Range [’oltys 2019], SOFA [Faure et al. 2012], and
VegaFEM [Barbi£ et al. 2012].

2019], Abaqus [ABAQUS Inc. 2019], COMSOL Multiphysics [COM-
SOL Inc. 2018] support Lagrangian tetrahedral elements, but sur-
prisingly often implement only serendipity elements for hexahe-
dra [Zienkiewicz et al. 2005, Chapter 6]. Given their popularity, we
included serendipity elements in our study in addition to traditional
Lagrangian elements.

Another increasingly popular choice of bases for hexahedral
meshes are B-splines and NURBS, most commonly used in the con-
text of isogeometric analysis (IGA) [Hughes et al. 2005]. The popu-
larity of spline bases stems from the fact that they have only one
dof per element independently of the degree (however, the support
of each basis function grows accordingly, and, as a consequence the
sti�ness matrices become less sparse). De�ning this type of element
on fully general hexahedral domains is an open problem [Aigner
et al. 2009; Li et al. 2013; Martin and Cohen 2010]. Due to their rising
popularity, we deem important to include experiments with these
elements in our study, but restrict them to cases where a regular
lattice mesh is used.

Since none of these libraries implements both Lagrangian (tetra-
hedral and hexahedral), serendipity, and spline basis functions (hex-
ahedral only) in the same framework, we added all the elements and
basis used in this study to our own open-source FEA library [Schnei-
der et al. 2019b] to ensure a fair comparison. PolyFEM [Schneider
et al. 2019b] supports all these element types and interfaces with
Hypre [Falgout and Yang 2002] and PARDISO [De Coninck et al.
2016; Kourounis et al. 2018; Verbosio et al. 2017] for the solver and
Eigen [Guennebaud et al. 2010] for linear algebra.

2.3 Meshing
Three-dimensional mesh generation has been thoroughly studied
in multiple communities [Carey 1997; Owen 1998; Shewchuk 2012;
Tautges 2001]. For the sake of brevity, we restrict our review to the
techniques generating pure tetrahedral or pure hexahedral meshes,
which are the focus of our study, with an emphasis on methods im-
plemented in readily available open-source or commercial libraries.

Tetrahedral Meshing.The most e�cient, popular, and well-studied
family of algorithms tackles the generation of meshes satisfying
the Delaunay condition [Alliez et al. 2005; Boissonnat and Oudot
2005; Chen and Xu 2004; Cheng et al. 2008; Chew 1987, 1993; Cohen-
Steiner et al. 2002; Dey and Levine 2008; Du and Wang 2003; Jamin
et al. 2015; Murphy et al. 2001; Remacle 2017; Ruppert 1995; Sheehy
2012; Shewchuk 2012, 1996, 1998, 2002; Si 2015; Si and Gärtner 2005;
Si and Shewchuk 2014; Tournois et al. 2009]. These methods are
robust if the input is a point cloud, but might fail if the boundary of
a shape has to be preserved exactly [Hu et al. 2020, 2018].

To overcome these robustness limitations, alternative approaches
are based on a background grid [Bridson and Doran 2014; Bronson
et al. 2013; Doran et al. 2013; Labelle and Shewchuk 2007; Molino
et al. 2003]. The idea is to �ll the bounding box of the 3D input
surface with either a uniform grid or an adaptive octree, whose
convex cells are trivial to tetrahedralize. These methods achieve
high quality in the interior of the mesh (where the grid is regular),
but introduce badly shaped elements near the boundary, which
is often the region of interest in many practical simulations. On
the other hand, front-advancing methods [Alauzet and Marcum
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2014; Cuillière et al. 2013; Haimes 2014] start by marching from the
boundary to the interior, adding one element at a time, pushing the
problematic elements into the interior where the advancing fronts
meet.

All these methods are unable to handle commonly occurring
input surfaces which contain degenerated faces, gaps, and self-
intersections. These types of defects are, unfortunately, common
in CAD models, due to the NURBS representation (with a �xed de-
gree) not being closed under boolean operations. To the best of our
knowledge, the only method that was demonstrated to be capable
of handling these casesrobustlyis TetWild [Hu et al. 2018]. It is
based on a hybrid numerical representation to ensure correctness,
and it allows a small, controlled deviation from the input surface to
achieve a good element quality. We used this technique to generate
all unstructured tetrahedral meshes in this study.

Hexahedral Meshing.aims at �lling the volume enclosed by an
input surface with hexahedra. Hexahedra also need to have a good
shape to ensure good solution approximation. The natural tensor-
product structure of a hexahedron enables to de�ne tensor-product
bases, and, e.g., use spline-based elements, but dramatically increases
the complexity of meshing algorithms. Semi-manual or interactive
approaches are usually employed, such as sweeping and advancing
front methods [Gao et al. 2016; Livesu et al. 2016; Shepherd and
Johnson 2008], which are used in commercial software such as
[ANSYS Inc. 2019; Coreform 2020].

By allowing lower element quality, one can design automatic
approaches based on regular lattices [Schneiders 1996; Schneiders
and Bünten 1995; Su et al. 2004; Zhang et al. 2007; Zhang and Bajaj
2006] or on octrees [Ebeida et al. 2011; Elsheikh and Elsheikh 2014;
Ito et al. 2009; Maréchal 2009; Owen et al. 2017; Qian and Zhang
2010; Schneiders et al. 1996; Spatial 2018; Zhang and Bajaj 2006;
Zhang et al. 2013].

Polycube methods [Fang et al. 2016; Fu et al. 2016; Gregson et al.
2011; Huang et al. 2014; Li et al. 2013; Livesu et al. 2013; Zhao et al.
2018] and �eld-aligned parameterization-based methods [Huang
et al. 2011; Jiang et al. 2014; Li et al. 2012; Liu et al. 2018; Nieser et al.
2011; Solomon et al. 2017] aim at producing hexahedral meshes with
as few irregular edges and vertices as possible, but designing robust
algorithms of this type is still an open problem. Sample results from
some of the previous methods have been recently collected into a
single repository [Bracci et al. 2019], which we use in our study. We
also generate a new dataset composed of 3200 hexahedral meshes
using the commercial MeshGems-Hexa software [Spatial 2018].

3 BACKGROUND

3.1 FEM bases
There is a multitude of di�erent de�nitions of bases for both tetrahe-
dral (or triangular) and hexahedral (or quadrilateral) element shapes,
with di�erent elements tailored to speci�c types of problems (e.g.,
axisymmetric elements, shell elements, plasticity elements, etc.). In
our comparison, we target the most common choices: we use the
standard linear and quadratic Lagrange bases for tetrahedra, which
we denoteP1 andP2 respectively, and hexahedra, withQ1 denoting
linear tensor-product basis andQ2 quadratic tensor-product basis
[Ciarlet 2002b; Szabó and Babu²ka 1991]. We also use the serendipity

basis [Zienkiewicz et al. 2005], commonly used in commercial soft-
ware, and spline basis [Hughes et al. 2005] for hexahedral elements.
We use the standard Galerkin formulation [Ciarlet 2002b; Szabó and
Babu²ka 1991] with Gaussian quadrature for all our experiments,
avoiding non-standard quadrature.

3.2 Mesh and solution characterization
We use the number of vertices as a measure of the resolution of
tetrahedral and hexahedral meshes, as the number of vertices is often
used by the meshing algorithms as the �budget� that the meshing
algorithms can use to create the best possible mesh, and the number
of vertices is equal to the number of degrees of freedom in the case
of linear (or tri-linear) elements.

In addition to this particular choice, we also investigate other
metrics for a speci�c example (Table 1), and provide an interactive
plot that allows one to compare our results using 24 di�erent mea-
sures: solution error measured usingH1, H1 semi-norm,L2, L1 , L1

of gradient, andL8 norms; mesh average edge length, minimum
edge length and number of vertices; the system matrix size and
the number of non zero entries, the numbers of basis functions,
dofs, elements, and pressure basis functions; timings for loading
mesh data, building basis functions, computing the right-hand side,
assembling the system matrix, solving the system, computing the
errors, total time and time without right-hand side assembly.

3.3 Model PDEs
We selected the following set of representativeelliptic problems: (1)
Poisson; (2) incompressible stationary Stokes �uid �ow equations;
(3) elasticity with linear Hooke's law as the constitutive equation;
(4) Neo-Hookean elasticity (5) incompressible linear elasticity. We
list the corresponding PDEs for completeness.

Let 
 � Rd ,d 2 f 2; 3gbe the domain with boundary@
 . We aim
to solve

F ¹x;u; r u;D2uº = b; subject to

u = d on @
 D and r u � n = f on @
 N

for the function

u : 
 ! Rn ;

whereD2 is the matrix of second derivatives,b is the right-hand
side,@
 D � @
 is the part of the boundary with Dirichlet boundary
conditions, and@
 N � @
 is the part of the boundary with Neu-
mann boundary conditions. Since we consider second-order PDEs
only, @
 D \ @
 N = ; . The form ofF and the role ofu depends on
the speci�c PDE.

We consider polygonal and polyhedral domains@
 (possibly non-
convex). The right-hand sideb in our test examples is analytic, the
boundaryd is continuous and piecewise-smooth, andf is piecewise
smooth (but possibly with �nite-jump discontinuities); under these
assumptions, the weak solutions of the equations we consider are
(at least) continuous, but the solution derivatives may be singular.
We primarily focus on the error in the solution itself, rather than
the derivative error, although consider the stress for some elasticity
examples. We state the model problems in the strong form, but only
the weak solutions exist for many of the test cases.
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Poisson Equation.This problem is given by

8>>><

>>>
:

� � u = b on 


u = d on @
 D

r u � n = f on @
 N :

(1)

Incompressible Steady Stokes Equations.The Stokes equations pro-
vide the relationship between the velocityu and the pressurep for
an incompressible �uid with viscosity� .

8>>>>><

>>>>>
:

� � � u + r p = b on 


� r � u = 0 on 


u = d on @
 D

� ¹r u + r Tuº � n � pn = f on @
 N

(2)

Elasticity.Elasticity PDEs are formulated in terms of the stress
tensor� »u¼(which depends on the displacementu) as

8>>><

>>>
:

� r � � »u¼= b on 


u = d on @
 D

� »u¼n = f on @
 N :

(3)

In this case the right-hand sideb plays the role of a body force,
the Dirichlet boundary conditions are �xed displacement, and the
Neumann ones are surface tractions.

Material models de�ne how the stress� is related to the displace-
ment �eld u. For the linear Hookean model,

� L»u¼= 2�� »u¼+ � tr � »u¼I � »u¼=
1
2

�
r uT + r u

�
; (4)

where� »u¼is the strain tensor,� is the �rst Lamé parameter, and� is
the shear modulus. There are two common assumptions reducing the
elasticity problem to a 2D problem, planestressand planestrain; in
our experiments we are using plane stress. In this case, the elasticity
equation has the same form but with di�erent constants [Hughes
2012]:

� =
E

2¹1+ � º
; � 3D =

E�
¹1+ � º¹1 � 2� º

; and � 2D =
� E

1 � � 2 :

Incompressible materials form a separate class: in 3D, an isotropic
material has Poisson ratio equal to 0.5, and the previous equation is
not well-de�ned, as� becomes in�nite. While isotropic materials in
plane stress state cannot have this problem, as the isotropic Poisson
ratio cannot exceed 0.5, anisotropic materials can have Poisson ratio
1 for in-plane deformations, and thus can be 2D-incompressible,
which geometrically corresponds to the area of the cross-section of
a material element preserved under deformations [Lee and Lakes
1997]). As a consequence, equations for 2D-incompressible materials
in plane stress state are also of interest. Additionally, when� grows,
the linear system arising from the discretization of the PDE becomes
unstable. A common way to avoid such problem is to introduce a
Lagrange-multiplier-like function in the form of the pressurep. This
leads to a mixed formulation of elasticity similar to Stokes equations
which is stable for large� s, and reduces to incompressible elasticity

for � � 1 ! 0.
8>>>>><

>>>>>
:

� r � ¹2�� »u¼+ pIº = b on 


r � u � � � 1p = 0 on 


u = d on @
 D

� N »u¼ �n = f on @
 N

(5)

Finally, in the Neo-Hookean material model the stress is a non-
linear function of strain.

� »u¼= � ¹F»u¼ �F»u¼� T º + � ln¹detF»u¼ºF»u¼� T F»u¼= r u + I;
(6)

whereF»u¼is the deformation gradient.
For elasticity problems, we often use the von Mises stresses

S2
2D =� 2

0;0 � � 0;0� 1;1 + � 2
1;1 + 3� 0;1� 1;0

S2
3D =

¹� 0;0 � � 1;1º2 + ¹� 2;2 � � 1;1º2 + ¹� 2;2 � � 0;0º2

2
+

3¹� 0;1� 1;0 + � 2;1� 1;2 + � 2;0� 0;2º:

(7)

Note that the stresses are discontinuous since they depend on the
gradient of the displacement which is onlyC0 for our discretizations.
To mitigate visual artefacts we average the stresses around vertices
in our plots.

3.4 Linear Solvers
All FEM problems we consider require to solve a linear system,
which, as the mesh size grows, dominates the running time. A vast
amount of research has been invested in developing e�cient and ro-
bust linear solvers. In our study we use two state-of-the art solvers:
Pardiso [De Coninck et al. 2016] a direct solver using the Cholesky
factorization, which we use for smaller problems, and Hypre [Fal-
gout and Yang 2002] an algebraic multigrid solver, which we use
for larger problems. Direct solvers work particularly well in 2D,
but scale poorly for 3D problems. We leave as future work a more
detailed study on the e�ect of the linear solver on the solution time.
The conclusions of this study hold for both types of solvers for our
experimental setup and test problems.

4 COMMON TEST PROBLEMS
We collected a number of standard test cases to cover di�erent physi-
cal phenomena and di�erent scenarios: �uid simulation (Section 4.1),
linear elastic time dependent (Section 4.2), linear elastic bars (Sec-
tion 4.3), linear orthotropic material models (Section 4.4), meshes
with high aspect-ratio for linear elastic bars (Section 4.5), classi-
cal plane with hole with symmetric boundary conditions for com-
pressible and nearly incompressible material (Section 4.6), nearly
incompressible linear material (Section 4.7), nonlinear Neo-Hookean
material (Section 4.8), and nonlinear Neo-Hookean material with
high stresses (Section 4.9).

Most of the solution domains are chosen to simplify manual
creation of hexahedral meshes: the simulations will be performed
on an unstructured tetrahedral mesh and a nearly regular lattice
with the same number of vertices. Experiments in Sections 4.2 to 4.7
are run on a MacBook Pro 3.1GHz Intel Core i7, 16GB of RAM, and
8 threads. Experiments in Sections 4.8 and 4.9 are run on a cluster
node with 2 Xeon E5-2690v4 2.6GHz CPUs and 250GB memory,
each with max 128GB of reserved memory and 8 threads. For all
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Fig. 1. The velocity magnitude for a Stokes problem discretized with mixed
elements. The plot shows the velocity iny -direction along horizontal lines
y = 0:01, 0:05, and0:5 parametrized byx .
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Fig. 2. x displacement of the bo�om-le� corner (black dot) of a unit square.

experiments, we use the PolyFEM library [Schneider et al. 2019b],
which uses the Pardiso [De Coninck et al. 2016; Kourounis et al.
2018; Verbosio et al. 2017] direct solver, and Newton iterations for
the nonlinear problems.

Note that, for completeness, we also validated PolyFEM on the
example in Figure 3 for linear and quadratic tetrahedra and serendip-
ity hexahedra on Hooke material against Abaqus. The results are
identical up to numerical precision.

4.1 Incompressible Stokes
We use a planar square domain mesh with 4 229 vertices for the
triangle mesh and 4 225 vertices for the regular grid. We simulate
the Stokesian �uid(2)with viscosity � = 1 in the standard �driven
cavity� example: the �uid has zero boundary conditions on 3 of the
4 sides and a tangential velocity of 0.25 on the left side. Figure 1
shows the results for mixed linear (for the pressure) and quadratic
(for the velocity) elements: the results are indistinguishable between
hexahedral and tetrahedral elements.

4.2 Time-Dependent Linear Elasticity
We consider the dynamics of a suspended object under gravity: we
�x the top part of a unit square with material parametersE = 200
and� = 0:35and apply a constant body force of20in they direction.
We integrate the dynamic simulation fort from 0 to 0:5 with 40
time steps integrated with Newmark [Newmark 1959]. We mesh
the domain at a coarse and �ne resolution, both for triangles and
for quads. Figure 2 shows the displacement in thex direction of
the bottom left corner for the 4 discretizations, using linear and
quadratic elements.

tb ta ts t ef
P1 8.07e-3 1.88e-2 5.60e-28.29e-2 6.14e-3
P2 2.30e-2 1.80e-1 3.43e-15.47e-1 9.19e-5
Q1 5.96e-3 3.36e-2 6.39e-21.03e-1 1.27e-3
Q2 1.46e-2 4.61e-1 4.34e-19.10e-1 4.66e-5 Tet. mesh Hex. mesh

Fig. 3. Displacement error in they displacement of the moving endpoint
compared with a dense solution for a unit force applied at the endpoint of
a beam with a square cross-section. The times are averaged over10runs
per force sample.

T
im

e

Error

Fig. 4. Time vs. error (with respect to a dense solution) (total time on the le�,
and solve time only on the right) forP2, Q1, and quadratic spline elements.

4.3 Transversally Loaded Beam
In this experiment, we consider beams with di�erent cross-sections
(square, circular, and I-like) in thexy-plane of lengthL. The beam is
�xed (i.e., zero Dirichlet conditions are applied) at the end (z = L),
and di�erent tangential forcesf = »0; � fy ; 0¼T , fy 2 »� 0:1; � 2¼,
are applied atz = 0, opposite to the �xed side. The rest of the
boundary is left free and we do not apply any body force. For these
experiments we use linear isotropic material model(4)with Young's
modulusE = 210 000and Poisson's ratio� = 0:3. We study the
displacement at the bottom corner of the moving end (z = 0) in the
y direction and compare it with a dense solution to compute the
error e (note that the solution is singular only atz = L, far from the
evaluation points). We report asef the slope of the linear �t of the
error as a function of the force magnitude. We also report the basis
construction timetb , assembly timeta , solve timets, and total time
t . Note that all the timings reported are averaged over10di�erent
runs per force sample.

Square Cross-section.For running the simulation, we use a square
cross-section of sides = 20, lengthL = 100and mesh it with a
tetrahedral mesh with739vertices and a hexahedral mesh (regular
grid) with 750vertices. Figure 3 shows the errors compared with
the dense solution, where trilinear hexahedral elements outperform
linear tetrahedral elements but the quadratic counterparts are in-
distinguishable. Timing-wise, the quadratic tetrahedra are slightly
better.

We created a sequence of hexahedral and tetrahedral meshes with
similar errors for a forcef = »0; � 2;0¼T . Figure 4 shows that for a
given error,P2 discretization is around four times faster thanQ1,
andSPLINE2 have a slight advantage overP2. Note that bothQ1
andSPLINE2 are constructed over a perfectly regular grid, while
the P2 elements are de�ned over an unstructured tetrahedral mesh.

Finally, we created a sequence of hexahedral meshes that matches
total time, total memory, total number of degrees of freedom, and

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.


	Abstract
	1 Introduction
	2 Related Work
	2.1 FEA on Unstructured and Structured Meshes
	2.2 Finite Element Analysis Software
	2.3 Meshing

	3 Background
	3.1 FEM bases
	3.2 Mesh and solution characterization
	3.3 Model PDEs
	3.4 Linear Solvers

	4 Common Test Problems
	4.1 Incompressible Stokes
	4.2 Time-Dependent Linear Elasticity
	4.3 Transversally Loaded Beam
	4.4 Orthotropic Material
	4.5 High Aspect-Ratio
	4.6 2D Domain with a Hole
	4.7 Nearly Incompressible Material
	4.8 Beam with Torsional Loads
	4.9 High Stress

	5 Large Dataset
	6 Discussion and conclusions
	Acknowledgments
	References

