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Fig. 1. Our technique curves deposition paths to improve parts printed with fused filament fabrication. Compared to state of the art adaptive slicing (top left)
which is limited to planar layers, our print (bottom left) has a smooth surface finish while using the same number of layers (40). The reproduction accuracy is
improved overall (middle graph), with a total volume error of 57mm3 compared to the 149mm3 of adaptive slicing. Our approach computes a continuous
deformation of space (top right) under fabrication constraints (thicknesses, slope). The produced toolpaths are guaranteed to print without collisions on
standard 3-axis 3D printers, here an Ultimaker2 (bottom right).

Most additive manufacturing processes fabricate objects by stacking planar
layers of solidified material. As a result, produced parts exhibit a so-called
staircase effect, which results from sampling slanted surfaces with parallel
planes. Using thinner slices reduces this effect, but it always remains visible
where layers almost align with the input surfaces.

In this research we exploit the ability of some additive manufacturing
processes to deposit material slightly out of plane to dramatically reduce
these artifacts. We focus in particular on the widespread Fused Filament
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Fabrication (FFF) technology, since most printers in this category can deposit
along slightly curved paths, under deposition slope and thickness constraints.

Our algorithm curves the layers, making them either follow the natu-
ral slope of the input surface or on the contrary, make them intersect the
surfaces at a steeper angle thereby improving the sampling quality. Rather
than directly computing curved layers, our algorithm optimizes for a defor-
mation of the model which is then sliced with a standard planar approach.
We demonstrate that this approach enables us to encode all fabrication con-
straints, including the guarantee of generating collision-free toolpaths, in a
convex optimization that can be solved using a QP solver.

We produce a variety of models and compare print quality between curved
deposition and planar slicing.
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1 INTRODUCTION
Additive manufacturing processes fabricate physical objects by pro-
gressively depositing solidified material, forming a solid. In the vast
majority of cases, the deposition is performed layer by layer, where
each layer is a planar slab of the object. This constraint sometimes
stems from the implementation of the process itself; for instance
selective laser sintering technologies melt (and solidify) the flat sur-
face of a powder tank. However, many processes offer additional
degrees of freedom. In particular, Fused Filament Fabrication (FFF)
allows one to deposit molten plastic along curved paths, as long as
it is deposited onto an existing surface [Chakraborty et al. 2008].
This opportunity is used in recent methods tackling the generic

problem of free form deposition, e.g. using the 6-DOF of a robotic
arm [Dai et al. 2018]. We refer to such methodologies as curved slic-
ing and deposition. While offering many advantages over traditional
flat deposition, these systems require expensive hardware (6-DOF
robotic arms or 5-axis motion platforms), limiting their applicability.

We propose an algorithmic solution to enable curved deposition
using standard FFF machines, with the only requirement of having
a specific nozzle shape—no flat area around the molten filament exit
hole—which is the case on many printers already. Since replacement
nozzles for the most common printers are available at a modest
price (< 10 USD), our contribution has the potential to be widely
adopted by makers and 3D printing companies.

The key idea of our technique is to (1) compute a deformation of
the input object, (2) slice the deformed solid using standard uniform
planar slicing, and then (3) deform the toolpaths back into the origi-
nal space. By constraining the volumetric mapping, we guarantee
that there will be no collision between the part and the extrusion de-
vice and that deposition thicknesses remain within feasible bounds.
We propose a specific parameterization of the problem that reduces
it to a simple set of constraints which can be solved using a standard
QP solver. The mapping is optimized such that during slicing the
surface reproduction error is reduced. When mapping back to the
initial space, the deposition paths become curved, but the surface
quality improvement is preserved.

Our technique significantly improves surface accuracy and finish
over traditional FFF, in particular strongly reducing the staircase
defects due to planar layering. In fact, our technique compares
favorably to previous methods relying on robotic arms, offering a
highly effective solution with minimal hardware requirements. To
foster adoption of our technique, we will release an open source,
reference implementation of ourmethod, in addition to the toolpaths
for all our results and detailed instructions for modifying existing
FFF printers to achieve the best results.

2 PREVIOUS WORK
As most additive manufacturing processes solidify objects layer
by layer, the impact of layering on surface roughness and part
accuracy has been extensively studied. For an in-depth review of
how processing of a part relates to its final quality we refer to the
survey by Livesu et al. [2017].

Approaches fall into different categories: adapting the layer thick-
nesses, changing the part orientation, splitting parts, curving depo-
sition. We discuss each of these below.

Adaptive slicing. Many additive processes allow for the thickness
of an entire layer to be changed within some bounds. Therefore,
methods have been proposed to adapt the layer thicknesses to better
capture the part geometry [Pandey et al. 2003]. A first approach
consists of choosing the thickness using the local surface slope [Do-
lenc and Mäkelä 1994]. Other methods follow splitting strategies,
starting from an initial uniform slicing and then dividing or fusing
slices [Hayasi and Asiabanpour 2013; Hope et al. 1997; Kulkarni and
Dutta 1996; Sabourin et al. 1996; Tyberg and Bøhn 1999].

Recently, global approaches have been proposed.Wang et al. [2015]
formulate a global optimization of the thicknesses, minimizing the
worst cusp height [Dolenc and Mäkelä 1994] in each layer. Alexa
et al. [Alexa et al. 2017] propose a provably optimal adaptive slic-
ing algorithm, in the discrete setting. This approach minimizes the
overall volume error, that is the volume incorrectly assigned in the
sliced part [Masood et al. 2000; Tata et al. 1998]. We compare our
work to optimal adaptive slicing in Section 5.

One drawback of standard adaptive slicing is that it maintains
the same thickness everywhere within the layer. To address this
limitation, some approaches divide a part in multiple regions, and
use different layerings in each [Mani et al. 1999; Sabourin et al. 1997;
Tyberg and Bøhn 1998; Wang et al. 2015]. The object still prints as
a single part. One difficulty is that the abrupt change of layering
thickness results in visible scars along the surface. Curving the
layers avoids this problem.

Orientation. The orientation of a shape plays an important role in
the final part quality [Livesu et al. 2017]. While orientation impacts
many factors, such as structural strength [Umetani and Schmidt
2013] and aesthetics [Zhang et al. 2015], several techniques orient
the part to minimize errors due to layering [Cheng et al. 1995;
Thrimurthulu et al. 2004].

While we preserve the global orientation of the input, existing
techniques for global orientation optimization could be used as a
front-end. By curving the layers our approach further locally adapts
orientation to the part geometry.

Partitioning. A number of approaches split the input into different
parts, fabricated separately and assembled later. Different objectives
are sought for: fitting large parts in printers with limited extent [Luo
et al. 2012] or boxes of specific sizes [Attene 2015], fabricating large
objects with an empty inner core [Song et al. 2016], avoiding support
structures [Hu et al. 2014], finding optimal orientations for slicing
subparts [Hildebrand et al. 2013; Wang et al. 2016].
Our technique is complementary to these approaches, as it can

further improve the quality of each individual part.

Curving layers. Curved layers and their properties have been pro-
totyped by several researchers. [Chakraborty et al. 2008] considers
deposition paths along curved surfaces with the objective of obtain-
ing stronger parts. The benefits on structural strength of curved
layers are further studied in [Huang and Singamneni 2012; Singam-
neni et al. 2012]. Existing techniques typically combine flat layers
in the core with curved layers on the last few visible surfaces [Allen
and Trask 2015; Huang and Singamneni 2015][Ahlers 2018] or over-
lay thin skins on top of existing models [Thomas et al. 2016]. Lim
et al. [2016] perform similar experiments to fabricate large scale
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Fig. 2. Overview. We start from a 3D model Ω and optimize a mapping
M. We slice the deformed modelM to obtain the toolpaths T, which are
mapped back into the initial space asM−1(T) for fabrication.

concrete panels, with a system akin to fused filament fabrication.
Overall, curved layers provide smoother, stronger surfaces.
Printing shell-like, constant thickness curved layers on top of

flat layers is very practical but has two drawbacks. First, filament
along curved surfaces may sag in the staircases underneath, leaving
porosities. Instead our approach progressively curves and thickens
layers, avoiding abrupt transitions while leaving no gaps inside the
parts. Second, the error cannot improve for slopes exceeding the
printable angle. Our algorithm introduces the idea of verticalizing
to address such cases (detailed in Section 3.2).
Song et al. [2017] propose a general approach that curves tool-

paths by small amounts after slicing: the layers remain flat, but
have tiny height variations compensating the staircase defect. How-
ever, the technique cannot globally curve the paths nor precisely
follow a slanted surface. Ezair et al. [2018] generate curve tool-
paths within volumes following a user specified trivariate parame-
terization. Curved layers are produced along the isolvalue of one
parameterization variable, ensuring a proper coverage is obtained—
overall equal spacing—by trimming layers in close proximity. The
layers are covered with curves in a similar manner. A set of 3-axis
toolpaths is obtained by further splitting and ordering the curves
to avoid collisions during deposition. We take a different point of
view. Our technique optimizes a parameterization that allows to
slice the object in the parametric domain using any standard planar
slicer. The produced toolpaths are guaranteed to be fabricable when
mapped back into the initial domain, without requiring splitting
or re-ordering. The parameterization is automatically optimized to
obtain smooth surface tops and to globally reduce staircase defects.

Additional degrees of freedom. The approaches we have discussed
so far target 3-axis printers. A number of techniques have been
proposed to physically realize parts using 5-DOF or 6-DOF systems.
Keating et al. [2013] demonstrated a first prototype fabricating

parts of limited complexity with a 6-DOF robotic system. Pan et
al. [2014] rely on a multi-axis device to fabricate additional features
along existing curved surfaces. Chen et al. [2017] fabricate parts
with planar layers but use the rotational capabilities of a robotic
arm to change the part orientation mid-print.

Multi-axis systems have also been used to create wireframe mod-
els, for example to help prototype shapes quickly [Mueller et al.
2014; Peng et al. 2016]. Algorithms have been proposed for multi-
axis toolpath planning of arbitrary wireframe objects [Huang et al.
2016; Wu et al. 2016].

Dai et al. [2018] introduce a general algorithm to fabricate parts
with a robotic arm while avoiding the need for supports. Paths are
curved throughout the parts, albeit with a constant thickness.
While extremely promising, 6-DOF 3D printing requires special

equipment and a relatively complex setup. The part quality is also
not currently on-par with that of 3-axis printing, which is wide
spread and well understood. Our objective in this paper is to allow
for standard 3-axis printers to print curved objects, enabling novel
possibilities on the wide variety of printers already installed in
workshops, schools, FabLab and homes.

3 OVERVIEW
Our approach starts from a mesh Ω correctly defining a solid (e.g.
an STL file for fabrication), and oriented such that the Z axis is the
build direction. We then optimize for a mappingM from the object
space to the slicing space. The mesh to be sliced is obtained through
the mapping asM(Ω). A standard slicer is then called to produce a
set of toolpaths T , using uniform slicing. The final toolpaths used
for fabrication are obtained through the inverse mappingM−1(T ).
Our algorithm optimizes a deformation for both the object inside
and surrounding empty space, thus allowing for travel paths and
auxiliary structures (e.g. supports) to be properly curved alongside
the object. The pipeline is illustrated in Figure 2.
The crux of the problem is how to computeM (and its inverse)

so as to enforce all constraints while minimizing surface defects.
In terms of constraints, we have to ensure that no collisions occur
and that the deposition thickness remains within minimum and
maximum bounds after mapping (Section 3.1). In terms of objective,
we seek to improve surface finish, to reduce staircasing and to
accurately follow the initial surface (Sections 3.2 and 3.3).

3.1 Fabrication constraints
In this work we face two main fabrication constraints. The first
relates to avoiding collision between the extrusion device (nozzle,
extruder and carriage) while the second relates to feasible deposition
thicknesses. We assume the printer to be equipped with a pointed,
conical nozzle without a flat area around the exit hole.
We model the collision constraint

as an inverted cone. The Figure in-
set shows the cone constraint (dashed
line), the printer nozzle (orange), the
carriage (gray) and the object below
(blue). The constraint cone has its
apex aligned with the nozzle tip and
represents the forbidden space above it (lighter orange hatches). It
has to guarantee that if the part remains below the cone’s surface, no
collisions can occur with any part of the printer—first and foremost
the nozzle itself.

The collision conemust at least contain the nozzle, which typically
has a conic geometry. We denote the angle of the nozzle cone with
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respect to the horizontal by θnozzle (see Figure ??). We denote by
θmax the collision cone angle with respect to the horizontal. It is
obtained as θmax =min(θnozzle , tan−1 h

e ), where h is the distance
between the nozzle tip and carriage and e the maximum XY extent
of the printed object.

During deposition, we have to ensure that no already printed path
enters the forbidden cone. This translates into a local constraint on
the slope of the paths after inverse mapping: how quickly they are
allowed to raise in Z by units of X and Y.
Deposition thicknesses are bounded by a maximum and mini-

mum. The maximum stems from the nozzle exit diameter. A general
rule of thumb is that the maximum thickness should stay within
[0.1d, 0.75d]whered is the nozzle diameter. This gives from 0.04mm
to 0.3 mm for a typical 0.4 mm nozzle. The minimal thickness con-
straint is also impacted by printer mechanical quality and calibration
accuracy. Indeed, as thickness decreases, even small calibration er-
rors start to have a large impact. For do-it-yourself printers, the
typical minimal thickness is 0.1 mm – even though well calibrated
printers reliably print at 0.05 mm or less. We denote by τmin and
τmax the minimum and maximum thicknesses.

3.2 Improving surfaces
The main defect produced by planar slicing is the so-called staircas-
ing effect: the emergence of visible steps along the build direction.
The defect is more pronounced when the slope of the surfaces de-
creases: the vertical sampling density of the planar slices is no longer
sufficient to prevent large steps from appearing between slices (see
Figure 3). This leads to the observation that printed vertical walls
exhibit minimal staircase, while gently sloped surfaces suffer the
largest staircase defects. While using thinner slices reduces the
size of the defect, it remains visible on surfaces with low slopes. In
addition, thinner slices imply longer print times.

There is, however, a notable special case: a surface that is exactly
flat produces no staircase, and thus is ideally reproduced if a slice
exactly aligns with the surface.

To improve surface reproduction, we seek to minimize the stair-
case error of the printed part. The approach we propose is to attempt
to make all surfaces either vertical or flat during the slicing step as
both cases lead to minimal errors. The effect is to curve the slices,
locally adapting to the surface slopes, as illustrated in Figure 4. Of
course, due to the fabricability constraints, this ideal objective can
only be approximated.

Note that to avoid errors during slicing on flat areas, the surface
has to exactly align with the top of a slice. Otherwise, large errors
occur due to misalignment. This is a specific source of concern that
we address in our approach.

3.3 Choosing whether to flatten surfaces
A key question when computing the deformation is which set of
surfaces should be flattened. Our proposal is that ideally we would
like to flatten as many faces as possible—these regions later print as
curved surfaces with no staircase error, and offer accurate reproduc-
tion when well aligned with the tops of slices. However, if we seek
to flatten a surface, we have to ensure it ends up being reproduced

by a single, well aligned slice. A misalignment or residual slope
would have the surface intersect a slicing plane, resulting in a large
staircase error.
We therefore initially attempt to flatten all surfaces that could

be possibly reproduced under the maximum printable slope θmax .
This typically leads to the most accurate results (we provide mea-
surements in Section 5.3). Optionally the user can choose a smaller
initial set; this allows for selection of which surfaces are flattened.

The initial set usually leads to an infeasible problem due to fabri-
cation constraints. The freedom required to incline, compress, or
stretch slices around large flattened surfaces is often not available.

This leads to a challenging problem: flattening cannot be simply
expressed as soft constraints as any small violation immediately
results in worst-case stairstepping errors. Instead, we propose an
iterative scheme were we eliminate infeasible flattening require-
ments progressively, turning them into surfaces to be inclined. The
scheme is described in Section 4.4.
Note that we never attempt to flatten downward facing trian-

gles, as in general these could not print without adding supports
in a 3-axis system. There is one exception. The triangles that are
flat in the input—either downward facing or upward facing—are
always constrained to remain flat. This, in particular, implies that
the object’s bottom remains flat.

4 ALGORITHM
Prior to any computation, we remesh the input with TetWild [Hu
et al. 2018], to obtain a tetrahedral mesh Γ for both the inside and
outside volume, as well as the triangle mesh Ω at their interface.

Minimizing staircases amounts to making surfaces either exactly
flat, or making them as vertical as possible (Sections 3.2 and 3.3). To

Fig. 3. Slicing a part with uniform slicing, side view (actual result). The
model outline to be matched is in orange, the slices are shown in green/blue.
The staircase is more pronounced when the slope of the surfaces decreases:
the left part suffers less from the staircase defect than the right part.

Fig. 4. Slicing a part with curved slicing, side view (actual result). The model
outline to be matched is in orange, the slices are shown in green/blue. Our
algorithm curves the slices to accurately follow the object surface whenever
possible. In this case the slice thicknesses are allowed to vary from 0.1mm
to 0.6mm, while the maximum slope is constrained to θmax = 30 degrees.
The inset shows the deformed space where slices have been produced. Note
the alignment of the top surface with the top of the last slice.
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achieve this we optimize for a mapping that deforms the surfaces
along the vertical direction only, locally compressing or stretching
the initial solid and changing surface slopes. This parameterization
of the problem is in line with the constrainedmotions of a 3–axis sys-
tem, while leading to a practical optimization scheme only involving
minimizing for quadratic objectives under linear constraints.

We represent the mappingM as a deformation field of Γ, comput-
ing a new vertical position h(p) for each of its vertices p. These new
positions define a continuous deformation field within the volume
of Γ: any point inside can be mapped through linear interpolation
from the enclosing tetrahedron vertices. Swapping optimized and
original coordinates switches betweenM andM−1.
The unknown variables of the problem are thus the values h(p),

which will be optimized to define a mapping under the desired
objective and constraints.

Additional notation. In the following we denote by x(p), y(p) and
z(p) the coordinates of vertices p of Γ in the original, undeformed
space. We denote by F the set of surface triangles in Γ, that is
the tetrahedron faces that lie on the boundary of the solid. We
denote by F the set of triangles to be flattened and by F = F \ F
its complement: the triangles that we seek to incline. Since these
sets change during optimization and relaxation, we index them as
F 0, ...,F i .
We denote by t =< p0,p1,p2 > a triangle in F and nt its nor-

mal. We denote by z the vertical (build) direction. Faces pointing
upwards verify nt · z > 0. We similarly denote tetrahedrons as
< p0,p1,p2,p3 > in Γ, and denote by ΓI the set of inner tetrahedrons
and by ΓO the set of outer tetrahedrons.

Finally, we denote asMh the mapping obtained within Γ from a
vector of vertical positions h.

4.1 Main algorithm
Our main algorithm is iterative: each iteration starts with a previous
solution (initialized with h0 = z) and a set of surfaces to flatten. It
then solves for new vertical positions hi+1 by minimizing an ob-
jective function on Γ under fabrication constraints. The objective
attempts to flatten surfaces in F i and to incline surfaces in F i to-
wards the vertical. The flattening requirements are often unfeasible
if strictly enforced. Thus, we express flattening as a soft constraint
(objective with a high weight).

Once hi+1 is obtained, the surfaces in F i — connected compo-
nents of neighboring triangles — are checked for flatness. If all are
sufficiently flat, the loop terminates and we proceed with slicing. If
not, we relax the flattening objective by keeping only a subset of
triangles from F i in F i+1.

Note that the constrained minimization has at least one solution:
the identity deformation h = z. Therefore, at worst this process
always terminates as the flatness test passes for F = � ; or rather,
when F contains only the set of surfaces already flat in the input
as these are never relaxed. In practice, the algorithm succeeded in
flattening more surfaces on all our test cases.

All main steps are described in the next Sections: Fabrication con-
straints in Section 4.2, optimization of hi in Section 4.3, relaxation
in Section 4.4, slicing and toolpath mapping in Section 4.5.

1 Initialize F 0, h0 ← z
2 Setup fabrication constraints on Γ
3 Loop over i , from i ← 1
4 hi ← argminh E(h,hi−1,F i−1,F

i−1
) on Γ

5 If surfaces in F i−1 using hi are flat, or F i−1 == �
6 set h ← hi

7 break
8 EndIf
9 F i ← Relax(F i−1,hi )
10 EndLoop
11 T ← sliceMh (Ω)
12 returnM−1h (T )

4.2 Fabrication constraints
Thickness constraints. The thickness constraints are captured by

limiting the local stretch that the mapping is allowed to introduce.
The minimum and maximum allowed stretches are respectively 1
and τmax

τmin
with τmin and τmax respectively the min/max admissible

thicknesses on the target printer. We slice the model at τmax before
deformation byM−1.
Using this setup, a stretch of 1 inM will lead to having curved

slices with a local thickness of τmax , while a stretch of τmax
τmin

results
in a local thickness along the curved slices of τmin . Any stretch
above or below that range would violate the fabrication constraints.
The deformation field is defined by linear interpolation within

the tetrahedrons. Within each tetrahedron, the gradient ∇h of the
vertical coordinates h is thus constant. We formulate the thickness
constraint directly on the gradient ∇h.
Let us consider a tetrahedron with vertices < p0,p1,p2,p3 >.

The gradient of a function f defined on the vertices and linearly
interpolated within is obtained as ∇f =

∑2
i=0wk (fk − f3), where

fk = f (pk ) and wk are vector weights in R3. These weights (nine
unknowns) can be computed ahead of time for each tetrahedron,
setting f = x , f = y and f = z to obtain nine equations. For more
details, we refer the reader to literature on linear tetrahedra.

For each tetrahedron t ∈ ΓI we write the constraints as:

1 ≤ z(∇ht ) ≤
τmax
τmin

where z(∇ht ) =
∑2
k=0 z(w

t
k ) · (hk −h3) with z(w

t
k ) the Z coordinate

of the weight k of t and hk = h(pk ).

Slope constraints. The maximum admissible slope θmax depends
on the printer setup and printed part, as detailed in Section 3.1. The
constraint is applied to ∇h within each tetrahedron, preventing the
gradients along X and Y from varying too fast with respect to the
gradient along Z. We write the constraints for each tetrahedron
t ∈ ΓI as:

−z(∇ht ) ≤
x(∇ht )

tan (θmax )
≤ z(∇ht )

−z(∇ht ) ≤
y(∇ht )

tan (θmax )
≤ z(∇ht )

where z(∇ht ) =
∑2
k=0 z(w

t
k ) · (hk −h3) with z(w

t
k ) the Z coordinate

of weight k for the gradient within t and hk = h(pk ). The terms
x(∇ht ) and y(∇ht ) are similarly defined.

ACM Trans. Graph., Vol. 38, No. 4, Article 81. Publication date: July 2019.



81:6 • J. Etienne, N. Ray, D. Panozzo, S. Hornus, C. C. L. Wang, J. Martínez, S. McMains, M. Alexa, B. Wyvill, S. Lefebvre

4.3 Objective function
The objective is optimized under strict fabrication constraints (see
Section 4.2). We also add a set of constraints to prevent foldovers in
ΓO . This is done by imposing for all t ∈ ΓO that z(∇ht ) > 0. Note
that foldovers cannot occur in ΓI thanks to thickness constraints.
Given the set of surfaces F and F and a previous solution hi−1,

the objective to minimize is made of four different terms :

E(h,hi−1,F ,F ) =λf Ef lat (h,F ) + λaEaliдn (h,h
i−1,F )

+λs Eslope (h,F ) + λm Esmooth (h)

Ef lat attempts to flatten selected triangles while Ealiдn encourages
flat areas to align with slice tops. Eslope rotates other triangles
towards the vertical. Esmooth regularizes the problem by guiding
it towards smooth solutions, in particular in the less constrained
empty regions. The λi weights control the tradeoff between the
terms. For our target object scales (300 mm maximum in extent)
and layer thicknesses (0.05 to 0.6 mm) we determined that a good
tradeoff is given by λf = 30, λa = 1, λs = 0.1 and λm = 0.02. We
use this setup for all results.

If significantly different scales are targeted, the λi weights should
be rescaled noting that Ef lat and Ealiдn have the scale of τ 2max ,
Eslope has the scale of L2 with L the maximum object size (printer
bed extent), and Esmooth is dimensionless.

Flattening. The objective Ef lat is written as:

Ef lat (h,F ) =
∑
t ∈F

A({t})

A(F )

( ∑
i, j ∈[0,2]
i<j

(
h(ti ) − h(tj )

)2 )
with t a triangle, ti its i-th vertex and where A(.) computes the area
of a set of triangles in the initial model. This attempts to put all
vertices of each triangle in F to be at the same height.

Aligning. The alignment objective encourages flattened areas to
be aligned with slice tops. We slice the object after deformation
using uniform slicing, therefore the slices are located every k · τmax
with k an integer. This allows to compute an alignment error with
respect to the result of the previous iteration hi−1. To perform the
alignment we consider connected components c of triangles to be
flattened — sets of neighboring triangles in F . We attempt to snap
the average height of each flat component to a slice top. We compute
the height of a component c as a weighted average of its triangle
positions, H (c,h) =

∑
t ∈c

A({t })
A(c)

∑2
i=0 h(ti )

3 . We define the snapping
position from the previous iteration as:

Snap(c,hi−1) = τmax

⌊
0.5 + H (c,hi−1)

τmax

⌋
The alignment objective is defined as:

Ealiдn (h,h
i−1,F ) =

∑
c ∈C(F)

Flat(c)
A(c)

A(F )

(
H (c,h) − Snap(c,hi−1)

)2
where C(F ) are connected components of F . Flat(c) selects which
alignment objectives are active, returning 1 or 0. An objective is
active if 1) the connected component c is flat – as defined next

Fig. 5. Left: 3D view of the triangle with normal nt , tangent frame ut , qt .
Right: Side view of the z, vt plane, showing the rotation of qt around ut .

– and 2) all larger components are also flat. The second rule pre-
vents deciding on an alignment on small components before larger
components are properly aligned.

Component flatness. We evaluate the non-flatness of a component
in F by computing the average max height difference between
triangle vertices, weighted by triangle area:

err (c,h) =
∑
t ∈c

A({t})

A(c)
max

i, j ∈[0,2]
i<j

(
h(ti ) − h(tj )

)2
This takes into account the fact that smaller triangles contribute
less to the final error. A component is said flat if err (c,h) < ( τmin

8 )
2.

However, we reject as non flat any component where a triangle
would have vertices separated by more than τmax

2 : these could cross
a slice boundary, producing a staircase.

Changing slope. The objective Eslope seeks to make surfaces in F
vertical. Given a triangle t with normal nt , we compute a tangential
frame with vectors ut = nt∧z

| |nt∧z | |
and qt = ut ∧ nt . When changing

the vertices heights qt rotates around ut (see Figure 5). The objective
attempts to align qt with z, and thus we define a target vertical
direction qt = siдn(qt ·z) ·zwhere siдn(.) returns −1 if its argument
is negative, 1 otherwise.
The objective seeks to obtain the correct distances between the

vertices along qt , that is:

Eslope (h,η) =∑
t ∈F

A({t})

A(F )

( ∑
i, j ∈[0,2]
i<j

(
ai − aj +

(
(aj − ai ) · qt

)
· qt

)2 )
where t is the triangle < p0,p1,p2 > and ai is a vector using the
original vertex XY coordinates and the variable height as the Z
coordinate: (x(pi ),y(pi ),h(pi )).

We exclude triangles that are already vertical, since no change of
vertex heights can modify their angle. It is logical to exclude them,
since there will be no staircase defect on a vertical slope, regardless
of the slice thickness.

Smoothness. The smoothness term encourages neighboring tetra-
hedrons to be modified in a similar manner, that is, to have the same
gradient. This is written as:

Esmooth (h) =
∑
t ∈Γ

∑
n∈N(t )

V ({t}) +V ({n})

V (Γ)

(
∇ht − ∇hn

)2
ACM Trans. Graph., Vol. 38, No. 4, Article 81. Publication date: July 2019.



CurviSlicer: Slightly curved slicing for 3-axis printers • 81:7

where N(t) is the set of tetrahedrons sharing a face with t , V (.)
returns the volume of a set of tetrahedrons, and ∇ht is the (vector)
gradient of t .

Solver. The problem we formulate is a quadratic objective mini-
mization under linear constraints. We use the Gurobi solver [2018]
to obtain a solution at each iteration.

4.4 Relaxing flatness constraints
After obtaining a solution hi for the current iteration, we check
whether connected components in F i−1 are all properly flattened.
If not, we proceed to remove some of the flattening requirements.
This process is reminiscent of segmentation techniques in PolyCube
optimization [Gregson et al. 2011].

Removing many triangles from F at each iteration would quickly
lead to satisfying solutions, but may miss opportunities to flatten
some areas. Removing them one by one—canceling the triangle
with maximum vertex height differences—would require as many
iterations as there are triangles in F 0, which is unreasonable.

We propose the following strategy. We observe that in most cases
the error is concentrated along the boundaries of the connected
components of F i−1. We therefore relax all the boundary triangles
that exceed the flatness threshold. In this process, we consider as
boundary triangles only those whose neighbors were relaxed be-
fore. The rationale is that it is best to relax the flattened region
progressively along the same front.

If there is no boundary triangle in a component—which is always
the case on the first iteration—we relax the triangle with the largest
vertex height differences. Intuitively, this opens a tear in the non-flat
component that will then grow to relax the problem.
Note that, at each iteration, we relax all components which ac-

count for less than 5% of the total area to be flattened.

4.5 Applying the mapping and its inverse
The optimization gives us the mappingMh from the initial space
to the slicing space. We first apply the mapping to the input model,
in order to obtain the mesh that will be sliced with a standard slicer.
The mapping has been optimized to use τmax as uniform slicing
thickness.
After slicing we obtain a set of toolpaths in the form of G-code

for filament printers. We apply the inverse mappingM−1h to the
toolpath coordinates to obtain the final curved toolpaths.
As the deformation may vary along each toolpath, we first re-

sample the toolpaths using a sampling rate matching the nozzle
diameter. We then transform each point back to the inital space.
As the toolpath points lie on the top of each slice, we first offset

them down by half a layer thickness, τmax
2 . We then locate each

point withinM(Γ). Having identified the enclosing tetrahedra, we
interpolate the z coordinate of the point from the original tetrahe-
dron vertices. This gives us a new point in the inital object space,
located in the middle of a slice.

We offset it back to the slice top. This requires knowing the local
thickness. This information is directly available from the gradient
of h within the enclosing tetrahedra. We similarly adjust the ma-
terial flow, and adjust the deposition speed to maintain a constant
extrusion rate.

Fig. 6. Anklebase model with different slicing algorithms, all using 38 slices.
Top: views of distance maps between the input mesh with curved slicing
(left) and uniform slicing (right). A lighter color indicates a reduced error.
Bottom: Sides views of curved slicing print (left) and adaptive slicing (right).
All staircasing is eliminated while closely following the input.

4.6 Controlling the number of layers
By attempting to make surfaces vertical, our optimizer tends to
make the object as tall as possible in the slicing space – equivalently
using the thinnest slices. To control the number of layers we simply
constrain the vertices of F to never exceed a certain height. That is,
to obtain n layers we add the constraint:

forall p ∈ F ,h(p) < h(pbottom ) + n · τmax

where pbottom is the lowest vertex of F .
This affords for a time–quality trade-off that can be convenient

for the user.

5 RESULTS
We show a variety of prints in Section 5.1, we explore the influence of
the input parameters in Section 5.2, andwe providemeasurements of
surface accuracy in Section 5.3, comparing our technique to optimal
discrete adaptive slicing [Alexa et al. 2017].

5.1 Printed models
We produced a number of results using an off-the-shelf Ultimaker2
(UM2) printer with minor modifications. It is equipped with a 0.8mm
nozzle and we allow thicknesses from 0.6mm down to 0.1mm (1/6
ratio). To allow for increased freedom of motion we removed the
metal part holding the fans around the nozzle. We use a wider nozzle
to print with thicker layers, so as to clearly reveal the effect of curved
slicing. We also used a standard Anet A8 printer for Figure 8.
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Model # Tets # Iter. Optimization time
Wing 9 711 4 < 1 minute
Foil cutter 19 740 3 < 1 minute
Anklebase 25 607 3 < 1 minutes
Frog (small) 36 224 3 < 1 minute
Sports car 58 708 17 20 minutes
Kitten 133 838 3 14 minutes
Frog (big) 200 743 3 22 minutes

Table 1. Statistics for all models, with 0.1-0.6 mm layer thickness and
θmax = 30. The first column is the number of tetrahedrons, the second
column is the number of relaxation iteration and the third column reports
total optimization times (Intel i7-4790K, 4 cores).

Fig. 7. Frog model, adaptive slicing (left) and curved slicing (right) with 27
slices. Printed on the UM2. Note the difference in the silhouette.

All models use the same 30 degrees angle constraint θmax and the
algorithm attempts to flatten all surfaces below this angle, unless
otherwise specified. Table 1 summarizes the main statistics and
optimization times for the models shown in the paper. Optimization
typically takes a few minutes, with the time depending essentially
on the input size and number of relaxation iterations.
Figure 6 shows a mechanical part with a slanted area. Curved

slicing closely follows the surfaces, printing the entire part around
the hole with a matching slope. Note how the slices go from flat to
curved in the bottom part. Figure 6 also compares with the result of
uniform and adaptive slicing for the same number of slices.

Figure 7 shows a frog model sliced with our technique and adap-
tive slicing, using a low number of slices. Figure 8 shows the same
model printed with thinner layers on a standard Anet A8 (cooling
fan removed for clearance). In both Figures, note the smooth curved
top of the frog. A bigger frog model is also shown in Figure 9. Note
how the slices match the overall angle of the main body, and how
the slices become thicker at the vertical extremity (mouth).

Figure 1 shows a wing cross-section model, revealing how curved
slicing can accurately reproduce an entire curved top. The model is
more accurately reproduced with our approach.

Figure 10 compares two car model prints, one via curved slicing
and the other via adaptive slicing. The curved slices nicely follow
the car outline at the top of the part, as well as reproducing the
wheels more accurately. This reveals how fewer slices can be used
to better reproduce slanted surfaces, allowing the reallocation of
other slices to the more detailed parts of the model.

5.2 Influence of optimization parameters
We now study the impact of the optimization parameters. Figure 11
illustrates the effect of the angle constraint θmax on an example

Fig. 8. Small frog model printed with curved slicing on an Anet A8 printer,
with a 0.4mm nozzle and 103 layers between 0.3mm and 0.05mm. Layers
at the top smoothly follow the curvature.

Fig. 9. Big frog printed on the UM2 with 68 curved layers. Note how the
layers have been curved to follow the overall shape of the body, and how
they become thicker near the mouth.

model, showing the deformation obtained on printers offering differ-
ent degrees of freedom in terms of achievable angles. The results use
a similar number of slices, but smaller areas are flattened: increased
angular freedom leads to larger smooth surfaces.

Figure 12 illustrates the effect of the thickness ratio τmax
τmin

on the
same model. A ratio closer to one leaves little freedom to deform
the model upwards, resulting in using fewer slices. However, the
same set of surfaces are flattened.

In summary, increasing θmax allows larger curved surfaces, while
increasing τmax

τmin
leads to thinner slices.

Finally, Figure 13 illustrates the use of the number of layers target
(Section 4.6). Please note, however, that models obtained this way are
usually less accurate (in terms of volume error) than those obtained
automatically.

5.3 Quality
We compare the surface accuracy of our results to that of uniform
slicing and adaptive slicing in Figure 14. We use the volume assign-
ment error, computed by discretization [Alexa et al. 2017]. We run
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Fig. 10. Sport car model printed on the UM2 using 34 layers, using our
approach (top and then left) and adaptive slicing (bottom and then right).
The two side views reveal the smooth outline of the curved layers version.
Note the improved surface finish of the roof and hood, as well as the way
the curved layers uncompress to produce the lateral windows. Adaptive
slicing uses most layers around the hood.

an optimization of our models to obtain the reference number of
slices for comparison, and run each slicing algorithm on Ω using
the same number of slices. As can be seen from the left column of
each comparison in Figure 14, curved slicing generally results in
superior accuracy.
To evaluate the importance of flattening, we force the optimiza-

tion to start from artificially smaller sets of surfaces to flatten F
(all but first columns of each comparison in Figure 14). As expected,
curved slicing is less accurate with less flattening: flattened surfaces
— equivalently curved surfaces in the original space — are those
that benefit the most from our approach. Nevertheless, thanks to
verticalizing, even when little flattening is performed curved slicing
produces results which are better than uniform slicing, even though
less accurate than adaptive slicing on some models.

5.4 Discussion
Overall we can see that our technique outperforms both uniform
and adaptive slicing. This is true both in terms of accuracy (volume
error) and surface finish.

It is especially remarkable that our technique produces results that
are more accurate than optimal adaptive slicing. This is explained by
several factors. At low numbers of slices, adaptive slicing has little
freedom, whereas we curve the deposition and align with surfaces.
Adaptive slicing cannot perform local adaptations, while by curving
our algorithm can reallocate slice thicknesses as required. This is
true within the same region of the object but also for disconnected
components within a slice. Finally, adaptive slicing allocates many
slices to low slopes, while we capture low slopes with a single slice.
However, optimal discrete slicing [Alexa et al. 2017] is orders of

magnitude faster as it computes slicing plans for all slices at once.

Also, while we can target a specific number of slices (Section 4.6),
we cannot guarantee that the target is reached.

In many cases the visual aspect of the prints does not reflect the
actual volumetric error. This is for instance the case on the cars in
Figure 15: The orientation of the top surface fill — the zigzag pattern
— changes the perceived smoothness. The surface is nevertheless
smoother than that of the planar slicing result. To reduce such issues
the slicer could be made aware of a preferred direction for the covers.
It is worth noting that we leave vertical surfaces free in our ap-

proach. In the idealized vertical slice model, a vertical wall produces
no error regardless of the layering thickness. In practice, on filament
printers, slices have a rounded profile that changes the perceived
appearance. We could add a penalty requiring vertical surfaces to
be as tall as possible (and hence use as thin as possible slices). Nev-
ertheless, we found that leaving them free adds flexibility to the
solver and generally results in better solutions.
Finally, we did not consider structural properties in this eval-

uation. Based on observations from previous work prototyping
curved 3D printing, we expect the prints to be stronger [Huang and
Singamneni 2012; Lim et al. 2016; Singamneni et al. 2012] than those
obtained with planar slicing. As future work we will quantitatively
evaluate the change in structural properties.

6 LIMITATIONS AND FUTURE WORK
A first limitation of our approach is the relatively high running
time. Since we perform the optimization in a volume, the number of
variables grows quickly. As future work, it would be interesting to
consider a multi-resolution approach, and use a coarse solution to
bootstrap the deformation of a high-resolution version of the model.
Note, however, that the number of slices and the mesh optimization
are not correlated. Optimizing a scaled version of a model costs the
same, and slicing is fast.
A practical limitation relates to the range of 3D printers where

this technique is applicable. Some printers have very short extrusion
nozzles, and in such cases there is very little angular freedom (see
Figure 11 to see the impact of a reduced Θmax ). Another practical
concern, on devices mounting relatively heavy plates on the Z axis—
such as the UM2—is that the speed has to be limited to obtain a
smooth Z motion and deposition. We typically printed twice as slow
as for a normal UM2 print. The lighter carriage of the A8 did not
impose lower speeds. A delta printer would be ideal [Allen and Trask
2015]. Another practical difficulty relates to abrupt flow variations,
which can result in some defects where they occur.

Our iterative scheme favors flattening. This is a reasonable choice
as revealed in Figure 14: the accuracy is generally better with in-
creased flattening. However, it is clear that in some situations locally
relaxing flattening could improve the overall solution. Our optimizer
cannot currently detect such cases. A possible approach would be
to relax flattened areas that do not align well with the slice tops.
Allowing the user to select which faces to keep flattened would be
a good alternative, enabling application-dependent choices.
Finally, a better integration with the slicer would help further

improve perceived surface quality, in particular aligning the fill
patterns with the slope direction (see Section 5.4). Another potential

ACM Trans. Graph., Vol. 38, No. 4, Article 81. Publication date: July 2019.



81:10 • J. Etienne, N. Ray, D. Panozzo, S. Hornus, C. C. L. Wang, J. Martínez, S. McMains, M. Alexa, B. Wyvill, S. Lefebvre

Fig. 11. Optimization of kitten model for θmax = 10, 20, 30, 40, and 50 degrees. This shows both the object and the empty space around (cut open). The stripes
correspond to slices. The 3D models shown inset are obtained after mappingM(Ω). The original model is shown in the leftmost bottom corner. Note how
additional angular freedom results in more areas being curved and smoothly reproduced.

Fig. 12. Optimization of the frog model for different min/max thickness
ratios. The same surfaces are flattened, but the additional freedom leads to
using thinner layers (taller models imply more layers). The red frog (ratio
1.0) is deemed unfeasible by the optimizer ; this is due to numerical issues
as we request all slices to have exactly the same thickness.

Fig. 13. Optimization of the frog model targeting 16, 19, 21, 24, and 27
layers of 1mm, using the approach from Section 4.6. The renderings show
the models for 16 and 27 slices. Lighting enhanced to highlight slices.

approach is the ironing technique, where the print head performs
multiple passes to heat and smooth surfaces.

We hope our technique will encourage further adoption of curved
slicing on standard 3-axis machines. We expect this technique will
lead to future work regarding curved slicing using additional degrees
of freedom.
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3D MODELS
• wing https://www.thingiverse.com/thing:95502
• anklebase (50% scale) http://inmoov.fr/inmoov-stl-3d/?bodyparts=
Legs-Ankle&parts=AnkleBaseV1.stl
• frog (small) https://www.thingiverse.com/thing:3284
• frog (large) https://www.thingiverse.com/thing:182144
• kitten https://www.thingiverse.com/thing:12694
• sportscar https://www.thingiverse.com/thing:1587558
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Fig. 14. Comparison of uniform slicing (blue), optimal adaptive slicing (orange) and curved slicing (yellow) for five different models. We measure the volume
error inmm3. Lower is better. We run our approach first and then slice with uniform and adaptive slicing using the same number of slices. The result obtained
by our method in the normal setup is the leftmost in each graph (angle = 30 degrees). The other columns show the result obtained when starting from smaller
sets F, selecting only faces whose slopes are below the indicated angle (in degrees). Please refer to the text for discussion.

Fig. 15. Different toolpath orientations for the top layers in curved slicing
result in different surface finish. The visible stripes are shallower than the
layer thickness, yet they create a visual effect that is detrimental to perceived
quality. The effect also depends on lighting and view angle.
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