
ABC: A Big CAD Model Dataset For Geometric Deep Learning
Supplementary Material

Sebastian Koch
TU Berlin

s.koch@tu-berlin.de

Albert Matveev
Skoltech, IITP

albert.matveev@skoltech.ru

Zhongshi Jiang
New York University
jiangzs@nyu.edu

Francis Williams
New York University

francis.williams@nyu.edu

Alexey Artemov
Skoltech

a.artemov@skoltech.ru

Evgeny Burnaev
Skoltech

e.burnaev@skoltech.ru

Marc Alexa
TU Berlin

marc.alexa@tu-berlin.de

Denis Zorin
New York University
dzorin@cs.nyu.edu

Daniele Panozzo
New York University
panozzo@nyu.edu

Figure 1: Example model with differently colored patches
and highlighted sharp feature curves on the left as well as
all feature curves on the right.

1. Model Filtering and Post-Processing
We filter out defective and low quality models in the

Onshape collection using a set of automatic filters, which
users can modify depending on their application. First,
empty CAD models are filtered by file size of the origi-
nal STEP files. Second, models that only consist of a sin-
gle primitive or models that require shape healing during
the translation and meshing phase are also filtered out. At
this stage, we also filter by file size of the resulting meshes
to avoid extremely large meshes that occur in some corner
cases, where the meshing algorithm overly refines the CAD
model. For the benchmark datasets we have two additional
post-processing steps. The full models are generated by re-
sampling the triangle meshes to match the defined numbers
of vertices [6]. For the patches, we perform breadth-first
search starting from a random selection of vertices to gen-
erate patches of pre-defined sizes.

2. File Types Description

Every model in the ABC-Dataset is stored in three dif-
ferent representations and multiple filetypes.

2.1. Boundary Representation/CAD

This is the original format acquired from Onshape,
which contains an explicit description of the topology and
geometry information of the CAD models in STEP and
Parasolid format. The STEP files can be read and processed
with Open Cascade [1] and Gmsh [7]. The processing al-
lows for example to sample at arbitrary resolution, to gen-
erate meshes and to extract differential quantities.

2.2. Discrete Triangle Meshes

The discrete triangle meshes are supplied in two formats.
The first is an STL file which is generated from the Para-
solid format by Onshape with a high resolution. While these
meshes are faithful approximations of the original geome-
try, the mesh quality is low: the triangles may have bad
aspect ratios, and the sampling can be highly non-uniform,
which is undesirable for many geometry processing algo-
rithms. We thus also provide a second mesh, in OBJ format,
produced by our processing pipeline. Our result is fairly
regular, with a uniform vertex distribution and most trian-
gles have angles close to 60◦. In addition to the triangle
mesh itself, differential properties are analytically derived
from the boundary representation and stored in these OBJ
files. The vertices and faces of the OBJ are matched with
the curves and patches stored in the YAML representation
described in Section 2.3. Note that OBJ uses 1-indexing of
the vertices, whereas we use 0-indexing in YAML.



2.3. Curve and Patch Features

The boundary representation of the STEP files defines
surfaces and curves of different types. In addition to the ge-
ometrical information in the files listed above, we store the
defining properties of surfaces and curves with references
to the corresponding vertices and faces of the discrete tri-
angle mesh representation. All this information is stored
in YAML files [3], which contain a list of patches, and a
list of curves, describing the boundary of the patches. Fig-
ure 1 shows one example model where different patches are
highlighted in different colors and feature curves are drawn
as red lines, all loaded from the OBJ and YAML files.

Curves. The curves list contains all curves of the CAD
model. For each curve, different information is given de-
pending on its type.

type Line, Circle, Ellipse, BSpline, Other.

sharp True if this curve is a sharp feature curve.

vert indices List of all mesh vertex indices that are sam-
pled from the curve (0-indexed).

vert parameters List of the parameters that describe the
corresponding mesh vertices.

Line c(t) = l+ t · d

• location(l): The location vector of the line.

• direction(d): The direction vector of the line.

Circle c(t) = l+ r · cos(t) · x+ r · sin(t) · y

• location(l): The center of the circle.

• z axis: The normal axis of the plane of the circle.

• radius(r): The radius of the circle.

• x axis(x): The first axis of the local coordinate
system.

• y axis(y): The second axis of the local coordi-
nate system.

Ellipse c(t) = l+ rx · cos(t)x+ ry · sin(t) · y

• focus1: The first focal point of the ellipse.

• focus2: The second focal point of the ellipse.

• x axis(x): The longer/major axis of the ellipse.

• y axis(y): The shorter/minor axis of the ellipse.

• z axis: The normal axis of the plane of the el-
lipse.

• x radius(rx): The major radius of the ellipse.

• y radius(ry): The minor radius of the ellipse.

BSpline Spline curves defined by control points, knots, and
optionally weights

• rational: True if the B-Spline is rational.

• closed: True if the B-Spline describes a closed
curve.

• continuity: The order of continuity of the B-
Spline functions.

• degree: The degree of the B-Spline polynomial
functions.

• poles: The control points of the B-Spline.

• knots: The knot vector with duplicate knots in
case of multiplicity greater than 1.

• weights: The weights of the B-Spline curve (only
used if it is a rational NURBS curve).

Patches. The patches list contains all patches of the CAD
model. For each patch, different information is given de-
pending on its type.

type Plane, Cylinder, Cone, Sphere, Torus, Revolution,
Extrusion, BSpline, Other.

vert indices List of all mesh vertex indices that are part of
the patch (0-indexed).

vert parameters List of the parameters that describe the
according mesh vertices.

face indices List of all face indices that are part of the
patch (0-indexed).

Plane p(u, v) = l+ u · x+ v · y

• location(l): The location vector of the plane.

• x axis(x): The first axis of the plane coordinate
system.

• y axis(y): The second axis of the plane coordi-
nate system.

• z axis: The normal axis of the plane.

• coefficients: Coefficients for the cartesian de-
scription of the plane: c[0] · x + c[1] · y + c[2] ·
z + c[3] = 0.0.

Cylinder p(u, v) = l+ r · cos(u) ·x+ r · sin(u) ·y+ v ·z

• location(l): The location vector defining the base
plane.

• x axis(x): The first axis of the cylinder coordi-
nate system.

• y axis(y): The second axis of the cylinder coor-
dinate system.



• z axis(z): The rotation/center axis of the cylin-
der.

• coefficients: Coefficients for the cartesian
quadric description of the cylinder: c[0] · x2 +
c[1] · y2 + c[2] · z2 +2 · (c[3] ·x · y+ c[4] ·x · z+
c[5]·y·z)+2·(c[6]·x+c[7]·y+c[8]·z)+c[9] = 0.0.

Cone p(u, v) = l+(r+ v · sin(a)) · (cos(u) ·x+sin(u) ·
y) + v · cos(a) · z

• location(l): The location vector defining the base
plane.

• x axis(x): The first axis of the cone coordinate
system.

• y axis(y): The second axis of the cone coordi-
nate system.

• z axis(z): The rotation/center axis of the cone.

• coefficients: Coefficients for the Cartesian
quadric description of the cone: c[0] · x2 + c[1] ·
y2+c[2] ·z2+2 · (c[3] ·x ·y+c[4] ·x ·z+c[5] ·y ·
z)+ 2 · (c[6] ·x+ c[7] · y+ c[8] · z)+ c[9] = 0.0.

• radius(r): The radius of the circle that describes
the intersection of the cone and base plane.

• angle(a): The half-angle at the apex of the cone.

• apex: The apex/tip of the cone.

Sphere p(u, v) = l+r ·cos(v) ·(cos(u) ·x+sin(u) ·y)+
r · sin(v) · z

• location(l): The location vector defining center
of the sphere.

• x axis(x): The first axis of the sphere coordinate
system.

• y axis(y): The second axis of the sphere coordi-
nate system.

• z axis(z): The third axis of the sphere coordinate
system.

• coefficients: Coefficients for the Cartesian
quadric description of the sphere: c[0] ·x2+c[1] ·
y2+c[2] ·z2+2 · (c[3] ·x ·y+c[4] ·x ·z+c[5] ·y ·
z)+ 2 · (c[6] ·x+ c[7] · y+ c[8] · z)+ c[9] = 0.0.

• radius(r): The radius of the sphere.

Torus p(u, v) = l+(rmax+ rmin · cos(v)) · (cos(u) ·x+
sin(u) · y) + r · sin(v) · z

• location(l): The location defining center of the
torus.

• x axis(x): The first axis of the torus coordinate
system.

• y axis(y): The second axis of the torus coordi-
nate system.

• z axis(z): The rotation/center axis of the torus.

• max radius(rmax): The major/larger radius of
the torus.

• min radius(rmin): The minor/smaller radius of
the torus.

Revolution Surface of revolution: a curve is rotated around
the rotation axis.

• location: A point on the rotation axis

• z axis: The rotation axis dirction.

• curve: The rotated curve that can be of any of the
curve types.

Extrusion Surface of linear extrusion: a curve is extruded
along a direction.

• direction: The linear extrusion direction of the
surface (v parameter).

• curve: The extruded curve that can be of any of
the curve types (u parameter).

BSpline Spline patch defined by control points, knots, and
optionally weights.

• u rational: True if the B-Spline is rational in u
direction.

• v rational: True if the B-Spline is rational in v
direction.

• u closed: True if the B-Spline describes a closed
surface in u direction.

• v closed: True if the B-Spline describes a closed
surface in v direction.

• continuity: The order of continuity of the B-
Spline functions.

• u degree: The degree of the B-Spline polynomial
functions in u direction.

• v degree: The degree of the B-Spline polynomial
functions in v direction.

• poles: 2D array of control points. The first di-
mension corresponds to the u direction, the sec-
ond dimension to the v direction.

• u knots: The knot vector for u with duplicate
knots in case of multiplicity greater than 1.

• v knots: The knot vector for v with duplicate
knots in case of multiplicity greater than 1.

• weights: 2D array of the weights of the NURBS
patch, corresponding to the control points (only
used if the patch is rational).



Method PN++ DGCNN PwCNN PCNN Laplace PCPN ExtOp

Parameters 1402180 1724100 10207 11454787 1003395 3469255 8189635

Table 1: Overview of the network capacities for the machine learning approaches.

3. Implementation Details
Parameters. The overall number of parameters used by
each method is listed in Table 1, while the running time is
listed in Table 3 in this document. In the following we give a
brief overview of the modifications and settings we used for
each method in our comparison. One common change that
we performed on all methods is to switch to the cosine loss
described in the main article (Section 5.1), and we provided
a maximum allowed time of 3 days.

Point Convolutional Neural Networks by Extension Op-
erators [4]. The architecture is the same as the one pro-
posed for classification, but with the last layer producing 3
values instead of 10. For each of the input sizes, we changed
the size of the input layer accordingly. We used a step size
of 10−3 using stochastic gradient descent. For the datasets
with patch sizes of 512 and 1024, we used a minibatch size
of 32. For the datasets with a patch size of 2048, we used
a minibatch size of 16. We trained each network for up to
250 epochs.

Surface Networks [12]. In some rare cases, there are de-
generate triangles in the triangle meshes, which pose chal-
lenge for discrete Laplacian operator computation. When
the coefficients overflow, we replace these coefficients with
1. For training, we use 300 epochs, with Adam [11] opti-
mizer and learning rate starting from 10−3, and after 100
epochs, halved at every 20 epochs.

PointNet++: Deep Hierarchical Feature Learning on
Point Sets in a Metric Space [14]. Since no experiments
for normal estimation were provided in the paper, we de-
cided that the most natural way to predict normals with
PointNet is by modifying the segmentation architecture,
predicting three continuous numbers and normalizing them.
We trained for 100 epochs with default settings and batch
size 16.

Dynamic Graph CNN for Learning on Point Clouds
[15]. We adapted the segmentation architecture by chang-
ing the last layer of the model to output 3 continuous values.
Normalization was applied to ensure the output vector has
unit length. We trained for 100 epochs with the default set-
tings used for segmentation in the original implementation,
batch size 16.

PCPNet: Learning Local Shape Properties from Raw
Point Clouds [8]. We used exactly the same architec-
ture specified in the original paper [8]. We trained with

the Adam [11] optimizer using a step size of 1 × 10−3,
β = (0.9, 0.99), and ε = 1 × 10−8, and no weight decay.
Training was run for up to 2000 epochs.

Pointwise Convolutional Neural Networks [9]. We
adapted PwCNN in the same fashion as PointNet++ and
DGCNN. We used 100 epochs for training, and took de-
fault segmentation settings from the original implementa-
tion with batch size 16.

PointCNN [13]. We took the PointCNN segmentation ar-
chitecture, changed the output dimensionality to 3, and ran
the training procedure with 100 epochs and default settings,
batch size 8.

Osculating Jets [5]. For the mesh version we use the de-
fault parameters of the CGAL implementation. In the point
cloud version, we use the 10 nearest neighbours for the jet
fitting.

Robust Statistical Estimation on Discrete Surfaces [10].
For the mesh version of RoSt we use the default parame-
ters set by the authors. The point cloud version is supplied
with estimated normals from locally fitting a plane to the 10
nearest neighbours of each point. The method then refines
these normals.

4. Running Times
We report the training time for data-driven methods in

Table 2, and the running times for analytic methods in Table
3. We capped the training time to three days, although the
instances are trained on different machines. The colors in
the table denote the GPU model that has been used for the
training. For the analytic methods, the times are measured
for running the normal estimation on one CPU core (Intel
Core i7).

Figure 2: Example NURBS patches of the three different
sampling densities with 512, 1024, and 2048 vertices (from
left to right).



Method / #V Full Models Patches

10k 50k 100k 10k 50k 100k

PN
++

512 173 857 1319 173 871 1241
1024 184 919 1615 183 920 1613
2048 226 1196 2124 227 1139 2328

D
G

C
N

N 512 155 734 819 155 784 814
1024 299 1158 1257 222 1163 1268
2048 490 2462 2467 487 2401 2498

Pw
C

N
N 512 258 1173 971 244 1256 891

1024 515 2626 2027 471 3413 1773
2048 1293 TO TO 1319 TO 4179

PC
N

N 512 614 3037 3375 616 3071 3483
1024 675 3370 3599 659 3368 3727
2048 862 4248 4298 848 4110 TO

L
ap

la
ce 512 492 1438 2793 285 1402 2747

1024 1001 3134* TO 983 2845 TO*
2048 1939 TO* TO* 1251 2807 TO

Table 2: Training time (in minutes) for all evaluated meth-
ods for the full model and patch benchmarks. Coloring in-
dicates different NVidia GPUs, with default GTX 1080Ti,
Tesla V100, Tesla P100, Titan V, Titan X, Titan Xp. TO:
training process time-out of 3-day (4320 min) limit. This
occurred for all trainings of PCPNet and ExtOp. *: Us-
ing more than two GPU (serially) during single training in-
stance, typically with GTX 1080Ti and Titan Xp.

Method / #V Full Models Patches

10k 50k 100k 10k 50k 100k

R
oS

tP
C 512 9.6 48.7 – 9.2 46.9 –

1024 17.4 87.1 – 16.7 81.8 –
2048 32.6 161.6 – 30.4 148.1 –

Je
ts

PC

512 6.5 32.3 – 5.9 29.7 –
1024 12.3 61.6 – 11.3 57.63 –
2048 23.6 117.8 – 22.1 114.9 –

U
ni

fo
rm 512 0.5 2.8 5.7 0.4 2.7 6.6

1024 0.8 3.9 7.9 0.6 2.9 8.8
2048 1.1 6.0 12.0 1.1 4.6 12.1

Table 3: Running time (in minutes) for traditional methods
for the full model and patch benchmarks.

5. NURBS Patches Experiment

We perform an additional experiment on a synthetic
dataset, where normals are supposedly easier to infer as the
space of possible shapes is artificially restricted, giving an
advantage to data-driven methods over traditional ones. We
generated two datasets of 10k and 50k random bi-variate B-
Spline surface patches of the same three different sampling
densities: 512, 1024 and 2048 (see Figure 2). Each patch
was generated by randomly picking between 0.1× samples

and 2.0 × samples points, choosing random values with
uniform probability between 0 and 1, and computing an
interpolating bicubic spline surface using the function
scipy.interpolate.SmoothBivariateSpline
[2]. By construction, the surface is smooth and the normals
are thus easier to predict than on real-world geometric
models. The relative performance of data-driven and
traditional methods is very similar to the one reported in
the paper (Section 5), confirming the trend observed on
real-world models.
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Figure 3: Plot of angle deviation error for the lower resolu-
tion NURBS (512 points) benchmark, using different sam-
ple size (top to bottom: 10k and 50k).
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Figure 4: Plot of angle deviation error for the medium res-
olution NURBS (1024 points) benchmark, using different
sample size (top to bottom: 10k and 50k).
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